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Abstract
Coreness is an important index to reflect the cohesiveness of a graph. The problems of
core computation in static graphs and core update in dynamic graphs, known as the core
decomposition and core maintenance problems respectively, have been extensively studied
in previous work. However, most of these work focus on unweighted graphs. Considering
that graphs are weighted in a lot of realistic applications, it is indispensable to extend the
coreness to weighted graphs and devise efficient algorithms for weighted core decomposi-
tion and weighted core maintenance. In this work, we present a new definition of weighted
coreness for vertices in a weighted graph, by taking into account the weights of vertices,
which makes the coreness in unweighted graph be a special case. We propose efficient algo-
rithms for both weighted core decomposition and weighted core maintenance problems.
The coreness of vertices can be computed in linear time by the proposed decomposition
algorithm, while the proposed core maintenance algorithm can process multiple-edge inser-
tions/deletions simultaneously, which greatly reduces the core update time. Comprehensive
experiments on both realistic networks and temporal graphs exhibit our algorithms are
efficient and scalable.

Keywords Weighted graph · K-core · Core decomposition · Core maintenance

1 Introduction

Benefiting from the efficient computation and effectiveness, coreness has been recognized
as one of the most helpful and efficient index among a variety of indexes that depicts cohe-
siveness of vertices in graphs, such as clique, k-truss [7] and k-shell. Coreness has been
broadly used to detect community [10], as well as biological studies [22] and large-scale
network visualization [2, 4]. In unweighted graphs, a maximal connected subgraph is called
a k-core only if it satisfies that each vertex’s degree is larger than or equal to k in the sub-
graph, as a vertex v existing in different k-core, the core number of v is actually equal to
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the maximum k of k-core. The computation of coreness, known as core decomposition, has
been extensively studied, and an O(m) algorithm was given in [5], m stands for the quantity
of edges in the graph. Furthermore, considering that the graphs will be continuously chang-
ing as long as vertices and edges are inserted or deleted, the core maintenance problem
which is to renew vertices’ core number and avoid coreness recomputation, were presented
[19] and extensively studied [23].

Previous work mostly focus on handling unweighted graphs, and the proposed algorithms
cannot be adapted to weighted graphs, which is commonly seen in realistic. For instance,
in a social network, different vertices have different influence in the network, such as the
number of followers in twitter, which can be seen as the weight of vertices. Obviously,
connecting to a vertex with large weight can impact the network more significantly. Hence,
it is important and necessary to consider the weights of vertices in the coreness, rather than
just counting the number of connected vertices as in the unweighted scenario.

In this work, we present a new definition of weighted coreness for vertices in a weighted
graph, by taking into account the weights of vertices. The coreness in the unweighted graph
can be considered as a particular example of our definition when the weight of each ver-
tex is one. Hence, our definition well unifies the definitions of coreness in both weighted
and unweighted graphs, which can greatly facilitate the studies of coreness. In [27], k-core
decomposition is applied to analyze the large-scale software system, where relationships
have all been treated equally and have the same importance for structural analysis in [27].
With the definition we proposed, the influence of each component of a software system can
be considered in the analysis of large-scale software system. Clearly, in this case, the result
will be closer to the real scene. k-core decomposition is also widely used in the identification
of influential spreaders [13, 16],but only the degree of nodes in social networks cannot offer
exact influence of users. In [1], Mohammed studied that weighted k-core decomposition
(link-weighted) can be applied to identify the influential spreaders.

In the social network like Instagram and Twitter, some indicators cannot be represented
by the link of users, such as the official certification of the platform and the popularity of
user outside the platform, while the indicators can be represented by the weight of users
itself. There are also a number of different groups in social networks, while a user may
belong to several different groups. The influence of a user differs in the different groups and
it is difficult to distinguish the influence by the link of users for the reason that the links of
users will not change in different groups. It should also be noticed that in the social network
like Twitter, some people may possess many followers by registering a number of account
maliciously, the normal k-core cannot find the user with these low-quality followers. When
we use weighted k-core to analyze the cohesive subgraph and reduce the weight of these
users, we can moderate the impact of these malicious accounts and mine more accurate
results.

Under the proposed weighted coreness, we study both the core decomposition and core
maintenance problems. For the weighted core decomposition problem, we show that we
can compute the weighted core numbers of vertices in linear time. Then we pay our atten-
tion to maintain the weighted core number in the single-edge insertion/deletion scenario.
We present an efficient core maintenance algorithm on the basis of a key observation that
when a single edge is inserted/deleted, only a few vertices may update its core numbers. The
observation helps greatly reduce the searching range of potential update vertices, and hence
significantly improve the maintenance efficiency. We finally consider the more realistic
scenario, say multiple edges insertion and deletion. Multiple-edge insertion/deletion incurs
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many difficulties that do not exist in single-edge cases. For example, if we insert multiple
edges into the graph, it is hard to know the cumulative increase on each vertex’s core num-
ber, as shown in Figure 1. To overcome the difficulties, we first show that when a k-edge
set and a k-favorable edge set are inserted/deleted, the range of vertices whose core number
may alter can be bounded. Based on it we proposed our multiple-edge core maintenance
algorithms, by splitting inserted/deleted edges into multiple k-edge sets and k-favorable
edge sets and handling these sets one by one, instead of handling the inserted/deleted edges
one by one, such that the processing time can be greatly reduced. Experiments on realistic
graphs and temporal networks prove that the proposed multiple-edge maintenance algorithm
can remarkably make the maintenance more efficient.

Contributions Our contributions are multi-folded:

• We present a new definition of weighted coreness for vertices in a weighted graph, by
taking into account the weights of vertices. Our definition well unifies the definitions
of coreness in both weighted and unweighted graphs.

• We propose efficient algorithms for both weighted core decomposition and weighted
core maintenance problems. The coreness of vertices can be computed in linear time by
the proposed decomposition algorithm, while the proposed core maintenance algorithm
can process multiple-edge insertions / deletions simultaneously, which greatly reduces
the core update time.

• Extensive experiments on both realistic networks and temporal graphs show that our
algorithms are efficient and scalable.

Organizations The remainder of this paper is organized as follows. In Section 2, some
closely related works are reviewed. In Section 3, we give some definitions that will be used
in the following paper. The weighted core decomposition algorithms in static graphs is in
Section 4. Theoretical bases that can support the algorithm are presented in Section 5. We
present incremental core maintenance algorithm and decremental core maintenance algo-
rithm in Section 5. In Section 6, we maintain the weighted core number for multiple edge
insertion or deletion instead of single edge. In Section 7, there are illustration and analysis
for the experiments. At last, this work is concluded in Section 8.
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Figure 1 Assume < v2, v3 >,< v2, v9 > will be inserted into the graph(a), after the insertion, the core
number of v2 will be updated from 6 to 10, the core number of v3 will be updated from 9 to 10. Assume
< v2, v3 >,< v2, v6 > will be inserted into the graph(b), the core number of v2 will be updated from 6 to
11, and the core number of v3 will be updated from 9 to 11, the core number of v4, v5, v6 will be updated
from 10 to 11
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2 Related works

In unweighted graph, the core decomposition and maintenance problems have been well
studied. An O(m) algorithm for cores decomposition was given in [5], m stands for the
quantity of edges. In [6], an external-memory algorithm was given to solve the problem that
the memory cannot hold a very large graph. Core decomposition in the distributed setting
was studied in [21]. In [15], the above-mentioned three k-core-decomposition algorithms
were compared using the WebGraph and GraphChi model. A parallel core decomposition
algorithm was given in [8]. For core maintenance, in unweighted graphs, efficient algo-
rithms was proposed in [19, 23], it focus on single edge to maintain the core number of each
vertex. In [28], an order-based approach was proposed to reduce the time cost by maintain-
ing a k-order. The scenario of core maintenance with multiple edge insertion/deletion was
studied in [14, 24]. It shows that when a k-superior edge set is inserted into or deleted from
the graph, only the vertex whose core number equals to k may update its core number and
the change is at most 1. In [12], a joint edge set was proposed to optimize the algorithm in
[14, 24]. Core maintenance in distributed systems was considered in [3].

There have been some works studying core decomposition in weighted graphs. In [9],
Eidsaa puts forward the s-core in weighted graphs with weights on edges. The s-core is
defined by replacing the vertex degree with node strength which is the sum of edge weights
connected to a vertex. A s-core decomposition algorithm was proposed in [9]. In [11] and
[25], both edge’s weight and node degree were considered in the core definition. Wu [26]
presented a unified framework to generalize the established k-core decomposition algorithm
for both weighted and unweighted graphs with edge weights. The core maintenance prob-
lem on edge-weighted graph was studied in [20], the definition of weighted subcore and
purecore were introduced, the time cost can be reduced by operating the weighted subcore
and purecore. Unlike our work, all above results considered the weight on edges.

In [18], a new community model called k-influential community was proposed, which
can capture the influence of a community in a weighted graph with weights on vertex. This
model is based on normal k-core and the minimal node weight in a community. Li et al. [18]
studied the community search problem. Given two parameters r and k, it can find the top-
r-no-contained-k-influential community with the highest influence value. The difference
between our work and [18] is that we consider the node weight while we find the subgraphs,
but [18] do the normal k-core decomposition first to find the subgraphs, and node weight is
just a parameter that used to measure the influence of each k-core.

3 Problem definition

Let G be a undirected and weighted graph G = (V ,E,W), where V is the vertex set,
E is the edge set and W is the set of weight on each vertex. For a vertex v ∈ G, let
N(v) be the neighborhood of v. Denote by d(v) = |N(v)|. Let Wv be the weight of v.
The current weighted degree of v is determined as the sum of v’s neighbors’ weights, i.e.,
cd[v] =u∈N(v) W(u) .

Based on the weighted degree of vertices, we define the weighted core below.

Definition 1 (k-Weighted Core) A graph H is named a k-weighted core, only if H meets
the conditions below: (1) H is connected; (2) The weighted degree of each vertex is larger
than or equal to k; (3) H is the maximal substructure satisfying (1) and (2).
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Now we can give the definition for the weighted core number of vertices. In particular,
the definition of weighted core number is similar with unweighted scenario, as a vertex v

existing in different k-weighted cores, the weighted core number of v is actually equal to the
maximum k of k-weighted-core. The weighted degree is the sum of v’s neighbors’ weights
whose core number is at least corew(v), denoted as dw(v).

We study the weighted core decomposition and the weighted core maintenance prob-
lems. Specifically, the weighted core decomposition problem is computing the weighted
core number of each vertex in graphs, while the weighted core maintenance problem is
renewing the weighted core numbers of vertices avoiding recomputation. The core mainte-
nance problem can be further classified into two cases: incremental core maintenance and
decremental core maintenance, which corresponds to the cases that edges are inserted and
deleted respectively.

4 Weighted core decomposition

In this section, we present a weighted core decomposition algorithm as shown in Algorithm
1.

The basic strategy of the algorithm is deleting a vertex with the minimum weighted
degree recursively. In each iteration, the vertex v with the minimum weighted degree is
found, whose weighted core number is then determined. The principle is that if its current
weighted degree is larger than the weighted core number determined in the last iteration,
this means that v can be in a weighted core with larger weighted core number, and so v’s
weighted core number is set to its current weighted degree; otherwise, v’s weighted core
number is set to be the weighted core number determined in the last iteration. At the end of
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the iteration, v and its connected edges are deleted. We show an example using the graph
given in Figure 1. In the first iteration, the vertex with the minimum weighted degree is
v2, and the weighted degree of v2 is 6. By this algorithm, the weighted core number of v2
equals to 6, v2 and its connected edges will be deleted. In the second iteration, the vertex
with the minimum weighted degree is v3 and its weighted degree is 9. Then the weighted
core number of v3 is 9 by the principle given in the algorithm, v3 and its connected edges
will be deleted. In the third iteration, the vertex v6 has the minimum weighted degree 10.
This means v6’s weighted core number is 10, and then v6 and its connected edges will be
deleted. In the fourth iteration, the vertex v4 has the minimum weighted degree 5, then the
weighted core number of v4 is 10 by the given principle. Similarly, we can finally get the
weighted core numbers of every vertex (Fig. 2).

5 Coremaintenance with single-edge insertion/deletion

In this section, we consider the core maintenance problem with single-edge insertion and
deletion. Specifically, we will first present some theoretical results that can help reduce
searching range of vertices that their weighted core number may be updated, on the basis
of which we give our algorithms for both single-edge incremental and decremental core
maintenance.

5.1 Theoretical basis

In this section, we first show that when an edge is inserted or deleted, only vertices whose
weighted core numbers are in a specified range may update their weighted core numbers.
These results can greatly reduce the search range in the graph.

We first consider the insertion case. let G be a graph and an insert a edge (u1, u2) into
G, the weighted core numbers of u1 and u2 are k1 and k2 respectively. Assume that k1 ≤ k2.
w1 is the weight of vertex u1 and w2 is the weight of vertex u2.

By the definition of the weighted core number, we get the following result.

Lemma 1 The weighted core number of u1 can be at most k1 + w1 after an insertion.

We next show that only vertices satisfying a specified condition may update the weighted
core number.

Lemma 2 When an edge (u1, u2)(k1 ≤ k2) is inserted into the graph, only vertices whose
weighted core numbers are in the range [k1, k1 + w2) and can connect to (u1, u2) may
update their weighted core numbers after the edge insertion.

Figure 2 An example for
weighted core decomposition.
The red numbers represent the
weighted core numbers of
vertices
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Proof If a vertex v is not connected to the insert edge u1, u2, the cd of every vertex in its
subgraph will not be updated after the insertion, hence the weighted core number of v will
not be updated. We first prove the upper bound. It is known that the weighted core number
of u1 after edge insertion is at most k1 +w2 by Lemma 1. Consider a vertex v with weighted
core number k3 not smaller than k1 + w2 which updates its weighted core number after
the insertion, and the new weighted core number is k′

3. Let Hv and H+
v denote the max-

weighted cores for vertex v before and after the insertion, respectively. It must have that
(u1, u2) ∈ H+

v , as otherwise Hv has been a k′
3-core including v, the contradiction occurs.

Let Z = H+
v \ {e}. It is easy to see that Z is a k′

3 − w2 > k1 weighted core, which is a
contradiction.

Using a similar approach, we can show the lower bound.

Similarly with the insertion case, we can show that when an edge is deleted, only ver-
tices whose weighted core numbers are in a specified range can change their weighted core
number.

Lemma 3 When an edge (u1, u2)(k1 ≤ k2) is deleted from the graph, only those vertices
whose weighted core numbers are in the range (k1 − w2, k1] and can connect to (u1, u2)

may update their core numbers after the deletion.

Proof The weighted core number k2 may update to is [k1 − w2, k1], the neighbor of u2
whose weighted core number is in (k1 − w2, k1] may update its weighted core number
then. The rage of the weighted core number will decrease for the neighbor’s neighbor. So
only vertex whose weighted core number is in (k1 − w2, k1] may update its weighted core
number.

The above results can help reducing the searching range of update vertices greatly. Based
on these results, we then present our weighted core maintenance algorithm.

5.2 Incremental core maintenance algorithm

The incremental algorithm for single-edge insertion is given in Algorithm 2, Algorithm 3
and Algorithm 4. In particular, the main algorithm is given in Algorithm 3, which shows
how to update the current degree of vertices that may update their weighted core numbers,
such that the real value of the weighted core number of vertices can be obtained; Algo-
rithm 2 shows how to find the vertices which may update the weighted core number, and
we try to find the fewest vertices, based on the theoretical results given in the last section;
In Algorithm 2, it is shown how to update the current degree of vertices when a vertex is
determined not to update the weighted core number. We next introduce the algorithms in
more detail.

5.3 Insertion algorithm

In this section, we present our weighted core maintenance algorithm as shown in Algo-
rithm 2
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In the algorithm, the endpoint of the inserted edge that has smaller weighted core number is
recognized as the root vertex. Then a DFS traversal is executed to find the vertices that may
update the weighted core number. This process is given in Algorithm 3. Only vertices that
are reachable from the root (vertex r) and whose weighted core numbers are not smaller than
that of the root should be checked by Lemma 2 (those in subgraph P ). During the process,
a cd value, which is recording the weighted degree of a vertex caused by neighbors whose
weighted core numbers are at least k (the weighted core number of the root), is computed
for each vertex. This value indicates whether the vertex is potential to increase the weighted
core number. After all vertices are found (those in P ), the vertices with the smallest core
numbers are iteratively processed to determine whether there are still update vertices. In
particular, when a vertex’s weighted core number is confirmed, as shown in Algorithm 4,
a DFS process is executed to update the current degree cd of vertices that will be used in
the remaining computation. Finally, when the core numbers of vertices in H are all at least
K(r) + W [l], then by Lemma 2, all remaining vertices will not change their weighted core
number, and hence, the algorithm halts.

5.4 Decremental core maintenance algorithm

We give the weighted core maintenance algorithm for single-edge deletion in Algorithm 6
and Algorithm 5. Here the algorithm uses the bound given in Lemma 3 to determine the
potential vertices.

6 Coremaintenance withmultiple-edge insertion/deletion

We turn our attention to the scenario of multiple edge insertion and deletion. A naive
approach is to handle the inserted/deleted edges one by one using the algorithms given
in the last section. However, this approach is clearly very inefficient. We investigate the
approaches which can handle multiple edges at one time.

To solve the problem of multiple edges insertion and deletion, it is hard to determine the
cumulative increase/decrease on the weighted core number of vertices, we instead think the
problem that what kind of edges are inserted/deleted will make the weighted core number
of vertices change in the same boundary. In this case, after the insertion and deletion of
multiple edges, edges can be handled at the same time.
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In subsequence, we find the set of edges that can make coreness of vertices change in a
same boundary, based on which we present our algorithms.

6.1 Incremental algorithm

6.1.1 Theoretical basis

We first give some notations. Let graph G = (V ,E,W) be a graph, an edge e =< u, v > is
called a favorable edge for u if corew(v) ≥ corew(u). The weighted core value of an edge
is the smaller one of its endpoints’ core value, i.e., corew(e) = min{corew(u), corew(v)}.

Definition 2 (k-Edge Set) Ek = {e1, e2, ..., em} is a k-edge set, if it satisfies:

(i) The weighted core number of ei is k, for 1 ≤ i ≤ m.
(ii) if ea and eb (1 ≤ a, b ≤ m, a �= b) have the same endpoints q, corew(q) > k.

World Wide Web (202 ) 2 : –541 56141550



Given a k-edge set Ek = {e1, e2, ..., em}, without loss of generality, for each edge
ei =< ui, vi >, 1 ≤ i ≤ m, we assume corew(vi) ≥ corew(ui). Furthermore, let
l ∈ {v1, v2, ..., vm} be the vertex with the maximum weight. Then we have the following
result.

Lemma 4 After inserting Ek into graph G, for every vertex v in G, it satisfies that:

(i) if k ≤ corew(v) < k + W(l), after insertion, corew(v) will not exceed k + W(l);
(ii) if corew(v) ≥ k + W(l) or corew(v) < k, corew(v) will not change.

Proof For (i), we assume the vertex v with k ≤ corew(v) < k + W(l) can increase its
weighted core number to k + x (x > W(l)). Let Hv and H+

v be the max-k-core of v before
edge insertion and the max-(k+x)-core of v after the insertion respectively. It can be known
that one of the edges in Ek must belong to H+

v , if not, corew(v) = k + x before the
insertion, and a contradiction occurs. Let Z = H+

v \Ek . For a vertex u ∈ Z, if corew(u) < k,
the weighted degree of u does not change when the edges in Ek are deleted from H+

v , so
dw(u) ≥ k + x in Z. If corew(u) = k, u can lose at most one neighbor j that is connected
by a favorable edge for it in Ek . Because W(j) ≤ W(l)and x > W(l) , we can conclude
dw(u) ≥ k + x − W(j) > k in Z. If corew(u) > k, u would not lose any neighbor that
will influence its weighted degree after the deletion, and hence dw(u) > k. Then it can be
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concluded that each vertex in Z has a weighted degree that is larger than k. This contradicts
with our assumption.

For (ii), we assume corew(v) = y increases by x to y +x, where x ≥ 1. Let Hv and H+
v

be the max-y-core of v before edge insertion and the max-(y + x)-core after edge insertion
respectively.

We first consider the case that corew(v) > k +W(l). It must hold that at least one of the
edges ei in Ek belongs to H+

v , if not, y = corew(v) ≥ y + x before the insertion. For edge
ei , there is at least one of its endpoints has a weighted core number k as it is in a k-edge set.
Denote the vertex as v′. as proved in (i), corew(v′) can increase at most to k+W(l). Hence,
after the insertion, corew(v′) ≤ k + W(l) < y + x. It means v′ is not in H+

v , which is a
contradiction. So, if corew(v) > k + W(l), corew(v) will not increase after the insertion.

We then consider the case corew(v) < k. Similar with above, it can obtained that there
must be at least one of the edges ei in Ek belonging to H+

v . Let Z = H+
v \Ek . Let u be a

vertex in Z. We need to consider three cases. If corew(u) = k in graph G , corew(u) = k

in Z can be obtained as proved before. If corew(u) > k in G, the weighted core number
of u will not be affected by the insertion. If corew(u) < k in G, the vertex in H+

v has a
weighted degree which is larger than y + x, and u does not connect to any edges in Ek

due to the definition. Then we can get that dw(u) ≥ y + x. Hence, Z is a s-core. It can be
concluded that corew(v) ≥ y + x in Z. But on the hand, the weighted core number of v in
Z is not larger that that in G, and we know that corew(v) = y < y + x. This contradiction
completes the proof.

As defined before, for an edge set Em = {e1, e2, ..., ep}, where ei =< ui, vi >, we let
l denote the vertex that has the largest weighted core number among endpoints of edges in
Em.

Definition 3 (k-Favorable Insertion Edge Set) An edge set Em is a k-favorable insertion
edge set, if it satisfies:

(i) k < corew(ei) < k + W(l) for each edge in Em;
(ii) dw(ui) + W(vi) ≤ k + W(l) for each edge ei in Em;

(iii) Each vertex u has only one favorable edge.

Using a similar analysis as in Lemma 4, we then can bound the weighted core number
change after we insert a k-favorable insertion edge set,

Lemma 5 Let graph G = (V ,E, W), if a k-favorable insertion edge set is inserted to G

after the insertion of a k-edge set, where k > 0, for each vertex v in G, it holds that:

(i) if k ≤ corew(v) < k + W(l), after insertion corew(v) will not exceed k + W(l);
(ii) if corew(v) ≥ k + W(l) or corew(v) < k, corew(v) will not change.

Claim Given an edge (u, v) of the k-favorable insertion edge set, (u, v) is inserted to G

after the insertion of k-edge set, if k ≤ corew(v) < k + W(l), the weighted core number of
vertex in G after insertion will not exceed k + W(l).

Proof For (i), The insertion of the k-favorable insertion edge set can be seen as insert the
edge one by one, we assume a vertex v whose weighted core number corew(v) ∈ (k, k +
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W(l)), the weighted degree of v is dw(v). Based on Lemma 4, after the insertion of k-edge
set, the vertices’ weighted core number in graph will not exceed k + W(l), the sum weight
of v’s neighbor whose weighted core number is larger than k + W(l) denoted as Sv , hence,
Sv ≤ dw(v). If an edge (u, v) which satisfies dw(v) + W(u) ≤ k + W(l) is inserted, as
dw(v)+W(u) ≤ k+W(l), then we get W(u) < k+W(l), and Sv ≤ dw(v) ≤ k+W(l) can
be concluded, hence, the weighted core number of v is maximally not exceeding k + W(l),
the weighted core number of vertex in graph G is no more than k + W(l), (i) is done. (ii)
can be proved as Lemma 4.

6.1.2 Algorithm

As shown above, if a k-edge set and a k-favorable edge set have been inserted to the graph,
the weighted core value change of every vertex can be bounded. Using these properties we
can greatly reduce the searching range of potential vertices that may update its weighted
core number, and hence we can get an efficient algorithm.

Our algorithm is shown in Algorithm 7 and Algorithm 8. The algorithm split the inserted
edges into several sets, each of which consists of a k-edge sets and a k-favorable insertion
edge set for some k > 0. Algorithm 11 get a subgraph H of G that the weighted core number
of every vertex in H is at least k. With the k-edge set, the searching range of potential
vertices and the change range of weighted core numbers of vertices can be determined.
More specifically, in each iteration of the algorithm execution, a set of insertion edges is first
elected from remaining uninserted edges, by finding a k-edge set and a k-favorable edge set.
After inserting the edges, a similar approach as that for the single-edge insertion is adopted
to update the current degree value of vertices and determine the final weighted core number.
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6.2 Deletion algorithm

We then consider the deletion case. Similarly, we can show that if we delete a k-edge set
from the graph, the weighted core number change can be bounded as follows.

Lemma 6 Given a graph G, if a k-edge set Ek is deleted from G, for each vertex v, it
satisfies that:

(i) if k − W(l) ≤ corew(v) ≤ k, after deletion, corew(v) will not be less than k − W(l);
(ii) if corew(v) > k or corew(v) < k − W(l), corew(v) will not change.

We then define the k-favorable deletion edge set for the deletion case. We use the same
notations as those in the incremental section.

Definition 4 (k-Favorable Deletion Edge Set) An edge set Em is called a k-favorable
deletion edge set if it satisfies:

(i) k − W(l) ≤ corew(ei) < k

(ii) dw(ui) − W(vi) ≥ k − W(l)

(iii) Each vertex u has only one favorable edge.

For k-favorable deletion edge set, we can get the following result similarly.

Lemma 7 Given a graph G, if a k-favorable deletion edge set is deleted from G after the
deletion of a k-edge set, where k > 0, for each vertex v, it holds that:

(i) if k − W(l) < corew(v) ≤ k, after deletion, corew(v) will not be less than k − W(l);
(ii) if corew(v) > k or corew(v) ≤ k − W(l), corew(v) will not change.

With the above properties, we then present our decremental algorithm, as shown in
Algorithm 9 and Algorithm 10.
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7 Comparision between weighted k-core maintenance
and unweighted k-core maintenance

Our algorithm can also be applied to unweighted k-core maintenance for the reason that the
weight of each node in unweighted graph can be seen as 1. But the algorithms that have
been proposed in [19, 23] perform better than our algorithm in unweighted graphs. This is
because in unweighted graphs, when an edge is inserted into or deleted from the graph, the
core number of a vertex can change at most 1, but this principle is not applied for weighted
graphs. Using the principle proposed in the weighted graph, the range of vertices that may
update the core number may be larger than the proposed core maintenance algorithm for
unweighted graph.
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8 Experiments

We evaluate how efficient and scalable our algorithms are by experiments conducted on
realistic networks and temporal graphs.

We first evaluate the efficiency and scalability of the algorithms on realistic networks,
by changing the quantity of the edges in insertion/deletion. To further show our algorithms’
performance in reality, we also implement our algorithms on temporal graphs. Finally,
we compare our multi-edge weighted core maintenance algorithms(MEIA, MEDA) with
single-edge ones (SEIA, SEDA), to evaluate the improvement by simultaneously handling
multiple edges.

All experiments are conducted on a Mac OS machine with Intel CPU Core i7@2.2GHz
and 16GB main memory implemented in Java.

Datasets Six realistic networks and three temporal graphs are used in experiments, which
can be downloaded from SNAP [17]. Among the six real-world graphs, Facebook and Wiki-
vote are social networks, Email is a communication network, Ca-Hepth is a collaboration
network, Berstan and Google are Weblink networks. Among the three temporal graphs, CM
(CollegeMSG), Mo (sx-matheoverflow) and CQ (sx-mathoverflow-c2q), CM is an interac-
tion network similar to Facebook platform, Mo is a complete interaction network on the

World Wide Web (202 ) 2 : –541 56141556



Figure 3 Contrast between the single-edge core maintenance algorithm and the multiple-edge core mainte-
nance algorithm, x-axis stands for the graphs, y-axis stands for the processing time per edge

mathoverflow platform, and CQ is a temporal network of interactions on the stack exchange
Web site Stack Overflow.

We use the PageRank value of each vertex as its weight, to simulate a weighted graph.
We measure the efficiency of our algorithms by comparing the processing time per edge.

8.1 Performance comparison

We compare the proposed MEIA and MEDA with the SEIA and SEDA on real-word
graphs (Table 1). The performance comparisons for the insertion and the deletion cases are
illustrated in Figure 3a and b. From the figures, it shows that using the proposed multi-
edge maintenance algorithms, the processing time per edge can be significantly reduced.
Hence, we then turn our attention to evaluate how efficient and scalable the multiple-edge
maintenance algorithms are.

8.2 Performance evaluation

The performance of MEIA and MEDA are evaluated in both realistic networks and tem-
poral graphs. In the experiments, number of inserted/deleted edges are changed to show the
efficiency and scalability of the algorithms.

The results of the experiments on realistic networks are presented in Figure 4a and
b. We insert/delete 1%, 3%, 5%, 7% edges of the original graphs. From the figures, it
can be observed that if we increase the number of inserted or deleted edges, the average

Table 1 Realistic DataSets

Datasets n = |V | m = |E|

FB (ego-Facebook) 4,039 88,234

Wiki (Wiki-vote) 7,115 103,689

Ca-Hep (Ca-Hepth) 9,877 25,998

EM (email-Enron) 36,692 183,831

BerkStan (Web-BerkStan) 685,230 7,600,595

Google (Web-Google) 875,713 5,105,039
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Figure 4 Effect of the quantity of inserted or deleted edges on realistic graphs, x-axis stands for different
datasets, and the y-axis stands for the processing time per edge

processing time for single edge will decreases. This is because the more edges are inserted
or deleted, the more edges will be processed simultaneously in each iteration, such that
the average processing time is reduced. Hence, our algorithms have good scalability, which
perform better when larger number of edges inserted/deleted.

The experimental results on temporal networks are presented in Figures 5 and 6. The
algorithms are implemented on four selected time points. The results showed in figures are
similar to realistic graph scenario. The process time per edges will be reduced if the number
of inserted or deleted edges increases.

8.3 Case study

A case is illustrated in Figure 6. The weight of vertex represents the followers of the user
in a social network. In Figure 6a, the weighted core number of Ben is 16, and the weighted
core number of Lisa, Lili, Joe and Anne is 26, The weighted-26-core consisits of Lisa, Lili,
Joe and Anne. If Lisa update its weight to 21 as [b] showed, the weighted core number
of Ben, Lisa, Lili, Joe and Anne will update to 30. All users in the social network form a
weighted-30-core.

Figure 5 Effect of the quantity of inserted or deleted edges in temporal networks, x-axis stands for the
various time points, y-axis stands for the processing time per edge
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Figure 6 Case study: results when a vertex update its weight

9 Conclusion

We studied the core decomposition and maintenance problem in weighted graphs. By
considering the weight of vertices, we gave a new definition of coreness for weighted
graphs, which extends the coreness of unweighted graphs. We presented efficient algorithms
for both weighted core decomposition and maintenance problems, such that the vertices’
weighted core number can be computed and update efficiently. Importantly, by deeply inves-
tigating the graph structure, our weighted core maintenance algorithm can process multiple
edge insertions/deletions simultaneously, such that the efficiency of core maintenance is
significantly improved. Extensive experiments show that our algorithms works well in real
scenarios.

Our work extend the coreness studies to weighted graphs. Proper definitions would be
further considered about both vertex and edge weights.
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