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In vehicular edge computing (VEC), tasks and data collected by sensors on the vehicles can be offloaded to roadside units (RSUs)
equipped with a set of servers through the wireless transmission. These tasks may be dependent of each other and can be modeled
as a directed acyclic graph (DAG). The DAG scheduling problem is aimed at scheduling the tasks to the servers to minimize the
scheduling length (makespan), i.e., the maximum finish time of all tasks. The conventional heuristic algorithms only utilize partial
information of the DAG, so the performance of these algorithms is not stable. The state-of-the-art scheduling method employs the
graph neural network to further reduce the makespan. However, this method ignores the fact that there are communication delays
between tasks scheduled on different servers. In this paper, we tackle the DAG scheduling problem considering communication
delays which makes the problem much more challenging. Our method is based on graph convolutional neural network and
reinforcement learning. Experimental results show that our scheduling method reduces the DAG scheduling length by 8% to
15% compared with the representative scheduling strategies based on graph neural network models (GAT, GraphSAGE) and
15% to 25% compared with the conventional algorithms (HEFT, LC, and CPOP) and the sequence-to-sequence model.

1. Introduction

With the maturity of cloud computing technology, VCC (vehic-
ular cloud computing) [1] is considered to be a promising
method to improve vehicular services. Vehicles with limited
resources can oftfload computing-intensive tasks to the cloud
through VCC. However, cloud computing servers may be far
away from vehicles running on the road. It may take a long time
to transfer tasks from the vehicle to the cloud server and return
the calculation results from the cloud server to the vehicle. Thus,
VCC might not be suitable for delay-sensitive tasks.

In order to cope with the above issue, researchers proposed
vehicular edge computing (VEC) [2, 3]. VEC is a distributed
deployment service that extends the computing and storage
capacity to the edge of the network. In VEC, a large number

of roadside units (RSUs) will be deployed near the road where
the vehicles are driving. Thus, the computing tasks and the data
collected by sensors on vehicles no longer need to be offloaded
to the cloud servers but directly oftloaded to the roadside units
equipped with a set of servers through the wireless transmission
such as 5G. The remaining issue is how to schedule the tasks to
the servers to minimize the scheduling length.

At present, some works [2, 4] have discussed the schedul-
ing problem in VEC. However, these works assume that the
tasks to be scheduled are independent of each other. In fact,
there may be dependencies between different tasks from the
same application. Liu et al. [3] also pointed out the issue,
and they proposed a dependency-aware task scheduling algo-
rithm where the tasks are modeled as a directed acyclic graph
(DAG). However, they assume different tasks require the same
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computing time and the communication time between tasks is
ignored.

With the development of artificial intelligence and
machine learning, the neural network is also used to solve
the DAG scheduling problem. Mao et al. [5] utilized neural
networks and reinforcement learning (RL) [6] to learn job-
specific scheduling algorithms. However, they ignore the fact
that there are nonnegligible communication delays between
tasks scheduled on different servers (processors). Note that
the communication delay will become zero if the tasks are
scheduled on the same processor. Thus, minimizing the
DAG scheduling length needs a tradeoff between placing
all the tasks on one processor and placing them on all avail-
able processors. In this sense, the DAG scheduling problem
with communication delays will be much more challenging
than the one without considering them [7].

In this paper, we study the node-weighted and edge-
weighted DAG scheduling problem where the node weight
represents the task computation time and the edge weight
represents the communication time (communication delay)
between two tasks.

We design a scheduling method based on a two-layer
graph convolutional neural network (TLGC). Similar to
[5], we employ reinforcement learning [6] to optimize the
training of the strategy, which takes the execution time as
the reward for feedback and adjusts the network parameters.
However, our reward function is different from [5] since we
need to consider communication time between tasks. In
addition, when the graph neural network is trained, we also
consider the processor network information, which is
ignored in [5]. A better scheduling strategy is generated in
the process of multiple trainings. More details will be given
in Section 4.

Our contributions are as follows:

(1) We study the DAG scheduling problem considering
both the computation and communication time. The
node information is encoded through a graph neural
network. Combining with reinforcement learning,
we train the network to reduce the communication
overhead caused by task scheduling

(2) The scheduling scheme based on graph convolu-
tional neural network is evaluated with the conven-
tional DAG scheduling methods [8, 9] and the
sequence to sequence scheduling method [10]. The
results show that the DAG scheduling length is
reduced by 15% to 25%

(3) Compared with the state-of-the-art graph neural
network models (GAT [11], GraphSAGE [12]), the
evaluation shows that the DAG scheduling length
of the scheme based on graph convolutional neural
network and proximal policy optimization is
reduced by 8% to 15%

2. Related Work

VEC can be applied in many fields. Hong et al. [13] pro-
posed mobile fog, which helps the police search for and track
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target vehicles by using traffic cameras. Wan et al. [14]
migrated video processing tasks to computation units
deployed by the edge to analyze real-time traffic videos accu-
rately. It can reduce the latency of video analysis and
improve the quality of video analysis. Grassi et al. [15]
designed ParkMaster, a scheme for detecting open parking
spaces based on edge computing. ParkMaster can analyze
street videos uploaded to cloud servers to evaluate parking
spaces.

There are some research works on how to offload the
tasks. Guo et al. [16] modeled the computation offloading
problem as a mixed integer nonlinear programming prob-
lem. Since the problem is NP-hard, they proposed a subop-
timal solution which makes use of particle swarm
optimization (PSO) and genetic algorithm (GA). Zhu et al.
[17] proposed two approximated algorithms to solve the
problem where multiple mobile devices share multiple het-
erogeneous mobile edge computing servers. Their goal is to
minimize energy consumption. Fang et al. [18] designed an
approximated offline algorithm to minimize the total
response time for finishing all the tasks in edge computing.
Zhu et al. [4] proposed a novel scheme named Fog Following
Me (Folo), which considers the mobility of vehicles. These
vehicles may generate tasks or serve as fog nodes. The pri-
vacy and security issues are also considered in vehicular-
related networks [19-22].

For the scheduling problem of DAG, conventional solu-
tions define the properties of CP (critical path) [23], bottom-
level (BL) [24], and top-level (TL) [25] of DAG. These
scheduling algorithms are only based on the properties of
one aspect of DAG. They do not consider the global struc-
ture information of the graph, so they might not obtain an
efficient scheduling strategy. Taking CP as an example, CP
is the critical path of DAG, that is, the longest path of the
DAG. The goal of scheduling is to reduce the critical path
as much as possible. The commonly used algorithms include
LC (Linear Clustering) algorithm [8] which repeatedly clus-
ters the critical path directly and CPOP (Critical-Path-on-a-
Processor) algorithm [9] which calculates node scheduling
priority through the sum of TL and BL values. An illustrat-
ing example for scheduling a DAG based on four represen-
tative conventional algorithms is shown in Section 5.1.

With the development of neural networks, for the sched-
uling problem of DAG, more and more researchers often use
the model of recurrent neural network (RNN) [26] to read
the input information about operations and their dependen-
cies to generate scheduling strategies. Moreover, they use
reinforcement learning (RL) to continuously optimize train-
ing to generate better strategies [10, 27, 28]. Although the
sequence to sequence recurrent neural network model bene-
fits natural language processing, it only serializes the input
information. Therefore, in order to extract the information
from the graph, researchers proposed graph neural networks
[29]. Common graph neural networks include graph convo-
lutional neural network (GCN) [30], graph attention net-
work (GAT) [11], and GraphSAGE [12].

Although GAT introduces the attention mechanism and
GraphSAGE generalizes the node information, they cannot
accurately extract the key information that affects the
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scheduling performance, so the scheduling performance by
these neural network methods might not be good enough. In
our paper, the purpose of the TLGC method using graph con-
volutional neural network is to consider both the information
such as CP and the global DAG structure to generate a more
efficient scheduling strategy (cf. Figure 1).

3. System Model

For the scheduling problem of the DAG, the definition of
each symbol is shown in Table 1.

Graph G=(V,E,w(V),w(E)) is a node-weighted and
edge-weighted DAG, where V ={v,,v,,---,v,} represents
the set of nodes (tasks), and E = {e;, e,, -, ¢,,} C V x V rep-

resents the set of directed edges. A directed edge e=(v;, v;)

means that the task v; cannot be executed until task v; has been

finished. w(v;) represents the computation time of task v;, and
w(e;) represents the communication time between the two
tasks associated with edge e;. Figure 2 gives an illustrating
DAG. The value below a node means its computation time,
and the value close to a directed edge means the communica-
tion time of the two tasks if they are scheduled on different
processors.

Let P={p,, p,» > Px} be the processor group. In order
to simplify the system model, it is assumed that all proces-
sors are homogeneous and are fully connected. It means that
the running time of the same task on different processors is
the same, and the communication bandwidth between pro-
cessors is the same.

The objective of the DAG scheduling problem is to min-
imize the scheduling length (makespan), which is the maxi-
mum finish time of all tasks. Note that the waiting time is
counted in each task’s finish time calculation. We also
assume the tasks are nonpreemptive in the sense that once
a task is scheduled to a processor, it cannot be terminated
until it finishes its computation on that processor.

4. The TLGC Scheduling Scheme

In this paper, by considering both the computation and com-
munication time of tasks, the initial scheduling strategy is gen-
erated through a graph neural network. The neural network is
trained by reinforcement learning (RL). In the training, by
observing the results of the generated scheduling strategy, a cor-
responding reward will be provided for the network. The
reward function is set according to an evaluation mechanism,
such as to minimize the DAG scheduling length. The RL algo-
rithm utilizes this reward signal to gradually improve the sched-
uling scheme.

The design of the TLGC scheme faces the following
challenges:

(1) In DAG scheduling, as mentioned before, the com-
munication delay between tasks cannot be ignored
which makes the training much more difficult

(2) The purpose of the reinforcement learning is to max-
imize the cumulative rewards. The reward value

directly influences the DAG scheduling length, and
it also determines whether the model will converge
or not. Therefore, the design of the reward function
should comprehensively consider the factors such
as communication time of tasks and the degree of
parallelism (whether or not to use all the available
processors)

We now discuss how to tackle the above challenges in
the subsequent subsections.

4.1. Information Embedding. In each state observation, the
state information (the states of the DAG and the processors)
must be transformed into feature vectors to be transmitted
to the policy network. One option is to create a planar fea-
ture vector containing all state information. However, this
method cannot scale to arbitrary size and topology of DAGs.
In addition, processing high-dimensional feature vectors will
require a huge size policy network. It will be difficult to train.

Therefore, the scalability can be achieved by using a
graph neural network, which encodes or “embeds” state
information (e.g., the running time of tasks, the dependency
structure between nodes, the communication time between
tasks, and the state of processing units) into a set of embed-
ding vectors. The method adopted in this paper is based on a
graph convolutional neural network [31] but customized for
scheduling. The notations used in this paper and their
descriptions are shown in Table 1.

The graph embedding takes the DAG as the input whose
nodes have a set of stage attributes (such as task computa-
tion time) and outputs two different types of embeddings:

(1) Node embeddings capture information about nodes
and their child nodes (for example, including the
aggregated information along the critical path from
the node)

(2) DAG embeddings can summarize the information in
the DAG and the processor’s information during
execution

It is important that the information embedded and
stored is not hardcoded. It will automatically learn the statis-
tically significant content and how to calculate the informa-
tion from the input DAG through end-to-end training. In
other words, embedding can be regarded as a feature vector,
and a graph neural network can learn and calculate without
manual feature engineering.

Given the feature vector x, of node v in a DAG, the
embedding (G, x,) — e, of each node is established where
e, is a vector containing the information of all nodes (v’s
child nodes and their descedants) reaching node v. In order
to calculate these vectors, starting from the leaves of the
DAG, the information propagates from the child nodes to
the parent nodes according to a series of information passing
steps (Figure 3). In each information passing step, the
embedding of a node v (the shadow nodes in Figure 3)
whose child nodes have aggregated information from its
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uek(v)

where f(-) and g(-) are nonlinear transformations on input
vectors, which are realized by graph neural network, and &
(v) represents child node set of v. The first is the general
nonlinear aggregation operation, which summarizes the
embedding of v’s child nodes and the communication over-
head to v’s child nodes. Adding the summary item from this
aggregation to the feature vector x, of v can obtain the
embedding of v. The same nonlinear transformations f(-)
and g(-) are used repeatedly in all nodes and information
passing steps.
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FIGURE 1: In the DAG scheduling process, the network will generate the task (node) to be scheduled in each scheduling event.
TabLE 1: Notation table When calculating the node embedding of node v
through nonlinear transformation, it is usually calculated
Notations Descriptions in the form of a nonlinear transformation f(:). In our
N A node in the DAG scheme, the second nonlinear transformation g(-) is added.
c ation ti ¢ The reason is that the graph neural network cannot calculate
Wy omputation fime 6L v some valuable features for scheduling without f(-) [5]. For
&(v) Child node set of v example, it cannot calculate the critical path of the DAG,
{(v) Parent node set of v which requires a series of steps operations on nodes during
information passing. Note that the communication delays
X, Feature vector of v . . . . .
play an important role in calculating this kind of critical
e Embedding information of v h
v path.
y Embedding information of the DAG We add a summary node to the DAG to calculate the
c Communication time from # to v embedding of the DAG. The summary node takes all nodes
u,v . . .
o in the DAG as child nodes and takes the state of processing
T Finish time of v : :

v units (processors) as its feature vector to calculate the
b, The ready node set in step ¢ embedding of the DAG. Similarly, the embedding of sum-
199 Nonlinear functions realized by neural networks mary node is also calculated by Equation (1). That is, each

. . , aggregation step has its own nonlinear transformations f/(-)
sinks The nodes without outgoing edges and g(-)
sources The nodes without ingoing edges

4.2. The Design of the Scheduling Network. The TLGC sched-
uling scheme constructs the generation of scheduling policy
into the Markov Decision Process (MDP). In each decision-
making process, the scheduling policy of one node is gener-
ated. The scheduling process is illustrated in Figure 1, which
is built upon [5]. However, as mentioned before, the proces-
sor network information and communication delay are con-
sidered which are ignored there.

Determining the next task (node) to be scheduled is
based on the assigned score for each task. For task v in the
DAG, the score of node v is q, = q(e,, y), where g(-) is a non-
linear function for calculating the score which is realized by
the two-layer fully connected neural network. Note that, at
each step ¢, only the ready tasks can be scheduled, i.e., the
tasks satisfying all the precedence constraints. We denote
this kind of ready tasks at step t as ¢,. Then, the normaliza-
tion (softmax operation) is used to calculate the probability
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DAG Stepl Step2 step3

FIGURE 3: The process of information passing and aggregation in
the DAG. The example shows the steps of information passing
from the child nodes to the parent nodes. The shadow nodes
represent calculating the information.

of selecting task v based on the priority scores:

P(task=v) = M. 2
( ) Zueqbl €xp (qu) ( )

It should be emphasized that ¢, changes in real-time
according to the execution process of the DAG and limits
the output of the normalization operation.

In order to gradually improve the task selection process,
we need the following reinforcement learning with the care-
fully designed reward function.

4.3. The Design of Reward Function and Training Process.
We use reinforcement learning (RL) to train the neural net-
work through many offline (simulation) experiments. In
these experiments, rewards are provided by observing each
decision-making process’s operation. The rewards are set
through the evaluation mechanism of the DAG scheduling
(such as minimizing the makespan and maximizing parallel-
ism). RL algorithm uses this reward signal to improve the
scheduling strategy gradually. Therefore, the design of the
reward signal is essential to the training effect of the
network.

The finish time of each task can only be obtained after
the task is scheduled on a certain processor. Therefore, we
adopt two calculation methods for the reward function:

(1) We take the communication delay of the tasks as the
negative signal of the reward. Considering the situa-
tion that the task v is scheduled to the processor p,,
there are two cases to calculate the finish time of task
v. The first case is all of v’s parent nodes (tasks) have
also been scheduled on processor p,. In this case,
there is no communication cost between v and its
parent tasks. Denote ¢ as the starting time of v on
processor p; in this case; i.e., the time processor p,
has finished executing all the tasks already placed
on it. The second case is some of v’s parent tasks
have been scheduled to another processor. In this
case, there will exist communication time. Denote
t5" as the starting time of v on processor p; in this
case

t;)l = maxue((v) (Tu + Cu,v)' (3)
At this time, reward is calculated as follows:
reward’, = £V — %, (4)

After the DAG task is completed, the average reward of
each decision is calculated according to the scheduling
length of the DAG (the maximum finish time of all tasks)
and the above reward’. We now can adjust the neural net-
work based on Equation (5). For this equation, k in the
numerator means the number of processors. The denomina-

tor max,p(t,) means the scheduling length of the DAG

where #, means the finish time of executing all tasks placed
on the processor p.

Zle (rewardi)

AV eward = W.
peP\"p

(5)

Similar to [5, 32], the TLGC scheme is then trained by
reinforcement learning and proximal policy optimization
[33] with the strategy gradient method. The method is to
learn by gradient descent of neural network parameters
using the above rewards observed during training. These
are commonly used methods, and we omit the details.

The above describes how to select the scheduled task.
Then, we need to allocate it to some processor that satisfies
its earliest start time (EST) [34]. For a task v, we need to
calcuate all the earliest start time EST;(v) on each processor
i and then pick the processor with the smallest EST,(v)
value. A detailed example for calculating EST,(v) can be
found in the TLGC processor selection example (cf. the last
paragraphs of Section 5.2). Note that the communication
delay between two tasks will become zero if they are placed
on the same processor.
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F1GURE 4: The scheduling length of the DAG in Figure 2 based on four representative conventional scheduling algorithms. The x-axis means
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TaBLE 2: The earliest start time for each task on different

TaBLE 3: The attributes of the six real workflow DAGs.

processors.

Application V| |E | CCR
Tasks  EST,() EST,() EST,() EST() Processor Cycles 1322 1940 14.84
vl 0 0 0 0 po 1000Genome 902 1166 12.93
v3 1 8 8 1 0 Epigenomics 863 1068 12.38
V2 2 9 9 2 PO Montage 472 12840 2.72
va 4 8 3 4 0 Seismology 1101 1100 5.30
V5 7 5 5 5 pl Soykb 546 1344 2.46
v6 7 9 9 7 pO
v7 11 8 11 8 pl
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F1Gure 6: When CCR =0.1, the scheduling lengths of the randomly generated DAGs with 100, 1000, and 5000 nodes under different

scheduling methods.

5. An Illustrating Experiment for DAG
Scheduling with Communication Delays

In order to give the readers a concrete feeling of DAG sched-
uling with different methods, taking Figure 2 as an example,
we will show the corresponding scheduling results based on
both the conventional scheduling algorithms and the neural
network-based methods.

5.1. Scheduling Results with Conventional Algorithms. For
the scheduling problem of a DAG, conventional solutions
are to define the properties of CP (critical path), BL (bottom
level, as defined in Equation (6)), and TL (top level, as
defined in Equation (7)) of a DAG. Conventional scheduling
algorithms often only consider these properties but lack the
global information of DAGs. Thus, the scheduling results
might not be stable.

v € sinks,

)

blevel(v) = {

max, ., (blevel(u) + w, +¢,,), otherwise,

(6)

0, v € sources,

tlevel(v) = {

max, () (flevel(u) + w, +¢c,,), otherwise.
(7)

The critical path of a DAG is the longest path in the
DAG. The goal of scheduling is to reduce the critical path
as much as possible. The commonly used algorithms include
LC algorithm [8] which repeatedly clusters the critical paths,
DCP (Dynamic Critical Path) algorithm [23] which orders

the tasks based on an increasing sum of TL and BL values,
CPOP algorithm [9] which calculates node scheduling prior-
ity through a descending sum of TL and BL values, and MCP
(Modified Critical Path) algorithm [35] which prioritize
tasks with their descending BL values. Although these algo-
rithms intuitively shorten the length of the critical path,
the scheduling effects are often not satisfactory.

Considering the DAG in Figure 2, the number of avail-
able processors is 3, and the length of the critical path of
the DAG before the scheduling is 21. Figure 4(a) shows the
scheduling result of the LC algorithm, which maps the
DAG into 3 clusters where each processor hosts one cluster
of tasks. Note that there is a total order of the tasks in each
linear cluster. The scheduling length of the LC algorithm is
17. Figures 4(c) and 4(d) show the scheduling results by
employing the DCP and MCP algorithms, respectively.
Their scheduling lengths are both 14 which is smaller than
the one by the LC algorithm. After performing the CPOP
scheduling algorithm, the scheduling length becomes 13,
which is shown in Figure 4(b).

As shown in the scheduling results of utilizing the four
representative scheduling algorithms, we can see the key to
these conventional scheduling algorithms is to reduce the
critical path’s length. However, this process ignores the com-
munication time of noncritical path nodes, which also plays
an important factor in affecting the DAG’s scheduling
length.

5.2. Scheduling Results with Neural Networks. In order to
cope with the above issue and to get a smaller scheduling
length, more and more researchers often use the model of
recurrent neural network (RNN) [26] to read the input
information about operations and their dependencies to
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scheduling methods.

generate scheduling strategies. Moreover, they use reinforce-
ment learning (RL) to continuously optimize training to gen-
erate better strategies [10, 27, 28]. For example, under the
scheduling model of seq2seq [28], the scheduling length of
DAG in Figure 2 is 13, which is shown in Figure 5(a).

As mentioned before, although the sequence to sequence
recurrent neural network model benefits natural language pro-
cessing, it only serializes the input information. Therefore, in
order to extract the information from the graph, researchers
proposed graph neural networks [29]. Common graph neural
networks include graph attention network (GAT) [11] and
GraphSAGE [12]. Figure 5(b) shows the scheduling result
based on the GAT model. Its scheduling length is 13 since it
does not thoroughly learn the impact of communication time
on the scheduling length. Figure 5(c) shows the scheduling
result based on the GraphSAGE model, and its scheduling
length is 12 because it does not thoroughly learn the impact
of previously scheduled tasks on subsequent tasks.
Figure 5(d) shows the scheduling result of our TLGC scheme,
and the length is 11, which is the smallest among all the sched-
uling methods.

The output of our TLGC scheme gives the scheduling
order of tasks in Figure 2 as v1, v3, v2, v4, v5, v6, and v7.
The processors that can handle tasks are p0, p1, and p2. For
a task v, its earliest start time determines the processor where
it will be executed. For v1 in Figure 2, its earliest start time
EST(v1) is O for each processor. Without loss of generality,
we schedule task v1 to processor p0. v3 is also scheduled on
processor p0 (EST,(v3) = 1); otherwise, the communication
with v1 will increase the earliest start time of v3
(EST,(v3) =EST,(v3) =1+7=38). Thus, the earliest start
time of v3 is 1.

If v2 is scheduled on processor pl or p2, its earliest start
time EST, (v2) = EST,(v2) =1+ 8=9. If v2 is scheduled on
processor po0, it can start after v3 is completed and EST,(v
2) =EST(v3) + 1 =2. Thus, its earliest start time EST(v2) is
2 on processor p0. The case for v4 is similar with v2. Its ear-
liest start time on processors p0, pl, and p2 are 4, 8, and 8,
respectively. Thus, v4 is scheduled on processor p0 and
EST(v4) is 4.

For v5, it depends on v2 and v3. If v5 is scheduled on
processor p0, the communication time can be saved and
EST,(v5) =7(EST(v4)) + 3 =7 since it needs to wait for v4
to be completed. If v5 is scheduled on process p1, EST, (v5
) is the maximum between (EST(v2)+2+1=5) and
(EST(v3) +1+2=4). Thus, v5 is scheduled on processor p
1 and EST(v5) is 5. For v6, its earliest start time on p0, p1,
and p2 is 7, 9, and 9, respectively. Thus, v6 is scheduled on
processor pO0.

The parent tasks of v7 are v2 and v5. If v7 is scheduled
on processor p0, the communication time between v7 and
v2 can be avoided. v7 may start after v6 is completed which
is time 9. However, since v7 also depends on v5, task v7 can
only be executed after v5 finishes its computation which is
time 5+ 3+ 3 =11. Thus, EST,(v7) is 11. If v7 is scheduled
on processor pl, considering its parent node v2, the time it
may be executed is 2 + 2 + 2 = 6. Considering its parent node
v5, the time it may be executed is 5 + 3 = 8. So EST, (v7) is 8.
If v7 is scheduled on processor p2, its earliest start time ES
T,(v7) is 11. Thus, EST(v7) is 8 on processor pl and v7 is
scheduled on this processor.

Table 2 shows the earliest start time for each task on dif-
ferent processors. The last column in Table 2 means the
selected processor where the corresponding task is placed
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FiGure 8: When CCR =10.0, the scheduling lengths of the randomly generated DAGs with 100, 1000, and 5000 nodes under different

scheduling methods.
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FIGURE 9: The scheduling lengths of real workflow DAGs under the strategies generated by different scheduling methods.

onto. The tasks are executed with the order from the top to
the bottom.

6. Experiments

In this section, based on both randomly generated and real-
world data sets, we will compare the proposed TLGC sched-
uling scheme with the conventional scheduling algorithms
and neural network based methods to show the superiority
of the TLGC scheme proposed in this paper.

6.1. Experimental Environment. The experiment was con-
ducted on a Linux server with 56 Intel Xeon E5-
2680v4@2.40 GHz CPUs, 256 GB memory, and 3.0 TB hard
disk. The operating system of the server is Ubuntu 16.04.7
LTS. The code was implemented by Python 3.7.9 and Ten-
sorFlow 1.14.0. The server was equipped NVIDIA Tesla
P100 GPU with 16 GB video memory. The versions of NVI-
DIA driver and CUDA are 440.118.02 and 10.2, respectively.

6.2. Data Sets. This subsection describes the DAG data sets
used in this paper. This paper adopts two data sets: random
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FiGure 10: With the increase of the number of processors, the scheduling lengths of the same workflow (cycles) DAG under different

scheduling methods.

structure [36] and tasks generated from parallelized
applications.

Reference [36] generated DAGs with a random struc-
ture. However, the data set does not consider the communi-
cation cost. We add the communication overhead between
tasks in the DAG without changing its topology. The com-
munication overhead is proportional to the amount of data
transmitted. Reference [37] investigates the weight of the
edge is affected by the computation time of its two end
nodes. As a result, the communication overhead is generated
as follows:

(1) A random value R is generated by uniform distribu-
tion, normal distribution, or gamma distribution as
the randomization parameter of communication
overhead

(2) The weights (w,, w,) of the nodes connected with the
corresponding edge (the source node w, and the desti-
nation node w,) are added, and the sum is square-
rooted to weaken the influence of node weights

(3) Multiply the random value R by the result obtained in
step (2), i.e, R\/w, + w,
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TaBLE 4: Scheduling generation time vs. scheduling length.

Model/ Scheduling Scheduling Proportion
algorithm generation (s) length (s) (%)
HEFT 0.614 2119.050 0.0287
LC 0.592 2192.470 0.0268
CPOP 0.620 2126.570 0.0292
seq2seq 15.419 2256.650 0.683
GAT 19.812 1866.450 1.062
GraphSAGE 20.089 1817.940 1.105
TLGC 20.303 1676.870 1.211

(4) According to the requirement of CCR (Communica-
tion to Computation Ratios), the weights of edges in
the DAG can be scaled

CCR represents the proportion of communication time
and computation time in the DAG. In this paper, the values
of CCR are set as 0.1, 1.0, and 10.0 to generate three ran-
domized data sets.

For the real data traces, this paper uses the following six
DAGs (https://github.com/workflowhub/pegasus-traces) to
train and evaluate the graph neural network. The number
of edges is usually far less than the square of the number
of nodes in practical DAGs, so it is often a sparse graph.
The attribute information of the six DAGs is shown in
Table 3.

6.3. Results and Analysis. The scheduling network is trained
by using the above data sets. Three graph neural networks
models (GAT, GraphSAGE, and TLGC) and reinforcement
learning method for proximal policy optimization [33] are
implemented with the data sets to obtain their scheduling
lengths. The results are compared with the commonly used
conventional algorithms and sequence to sequence model
[10]. The conventional algorithms include the Heteroge-
neous Earliest Finish Time algorithm (HEFT [9]), Linear
Clustering algorithm (LC [8]), and Critical-Path-on-a-Pro-
cessor algorithm (CPOP [9]). Note that similar to the MCP
algorithm [35] mentioned before, HEFT prioritizes the tasks
based on their descending BL values, but HEFT breaks ties
randomly while MCP algorithm breaks ties with BL values
of descendants.

6.3.1. Results on Randomly Generated DAGs. For the ran-
domly generated DAGs, we evaluate the data sets with 100,
1000, and 5000 nodes when CCR=0.1 (as shown in
Figure 6), 1.0 (as shown in Figure 7), and 10.0 (as shown in
Figure 8). The experimental results show that the scheduling
strategy generated by the TLGC scheduling scheme has stable
performance and sufficient superiority compared with conven-
tional scheduling algorithms, the sequence to sequence schedul-
ing model, and other graph neural network models (GAT,
GraphSAGE).

For data sets with different CCR and node number values,
the TLGC scheduling scheme can always find a good scheduling
strategy, while the performance of conventional scheduling
algorithms is unstable in the sense that the performance of the

Wireless Communications and Mobile Computing

same algorithm may differ greatly for DAGs with different attri-
butes. As shown in Figure 8(a), HEFT and LC have poor perfor-
mance in the data set. The scheduling length of our TLGC
scheme is almost one-third of the ones by HEFT and LC. In
addition, the scheduling length of TLGC is still shorter than that
of CPOP, which is the best conventional scheduling algorithm
on this data set. Although HEFT did not perform well on this
data set, it achieves the shortest scheduling lengths among the
conventional scheduling algorithms on the data sets in
Figures 7(a) and 7(b). However, even for these two data sets,
the scheduling strategy generated by the TLGC scheme is still
significantly improved compared with HEFT on the same data
sets. The reason is that the conventional algorithms are based
on greedy or heuristic ideas and only consider the characteris-
tics of one aspect of the DAG (such as the critical path), so they
cannot devise an efficient scheduling based on the global infor-
mation. In contrast, the TLGC scheme can learn the informa-
tion of graph topology so it can schedule tasks well.

We note that for some DAGs, the scheduling strategy
generated by the TLGC scheme has no remarkable improve-
ment compared with the conventional algorithms (cf.
Figure 7(c)). The result can be expected. For the DAG of a
specific structure, a strategy may “happen” to find the opti-
mal or suboptimal scheduling, so there is not much room
for further reducing the scheduling length.

The scheduling based on sequence to sequence (seq2seq)
neural network is also unstable. For example, the scheduling
lengths of the seq2seq method are even higher than the ones
by conventional scheduling algorithms (cf. Figures 7(c) and
8(c)). However, for the data sets in Figures 8(a) and 8(b), the
scheduling lengths of the seq2seq method are much shorter
than the ones by conventional scheduling algorithms. The rea-
son is that the sequence to sequence neural network serializes
the DAG and ignores graph structure information. Therefore,
the performance fluctuates wildly, and the scheduling strategy
has a certain contingency.

At the same time, it can be seen that the scheduling strategy
based on TLGC reduces the scheduling lengths of the DAGs by
8%-15% compared with the strategies generated by other graph
neural network models. In addition, it reduces the scheduling
lengths of DAGs by 15%-25% compared with the conventional
scheduling algorithms and the scheduling strategy based on the
seq2seq method.

6.3.2. Results on the Real Workflow DAGs. The scheduling
results for the six real DAG workflows by various scheduling
methods are shown in Figure 9. It can be found that the TLGC
scheduling scheme still outperforms the conventional schedul-
ing algorithms and all the other neural network-based methods.
Specifically, compared with the conventional scheduling algo-
rithms and the scheduling strategy based on the sequence to
sequence model, the TLGC scheme can reduce the scheduling
lengths by around 20%. Compared with the scheduling strate-
gies based on GAT or GraphSAGE models, the TLGC scheme
can reduce the scheduling lengths by around 10%.

We also evaluate the scheduling lengths of the same
workflow (cycles) DAG under different scheduling methods
when increasing the number of processors. Figure 10(a)
compares HEFT (the frequently wused conventional
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scheduling algorithm), sequence to sequence scheduling,
and the TLGC scheduling model. Figure 10(b) compares
the TLGC scheduling model with the other two neural net-
work models (GAT and GraphSAGE). It can be seen from
the figure that, when the number of available processors is
not large, doubling the number of processors (from 5 to 10
and 20), the scheduling lengths decrease sharply. Then, the
curve tends to be flat, and the scheduling lengths decrease
slowly. When the number of processors reaches 80, the
scheduling lengths tend not to change with the number of
processors. This means that the number of processors is no
longer the bottleneck of the task scheduling strategy, and
increasing the number of processors cannot reduce the
scheduling lengths.

For the scheduling performance of the sequence to
sequence model, we can see it does not always decrease steadily
with increasing the number of processors. For example, when
the number of processors increases from 70 to 80, the schedul-
ing length does not decrease but increases, indicating that the
sequence to sequence model does not thoroughly learn the
structured information of the DAG and its scheduling perfor-
mance is unstable.

In addition, as shown in Figure 10, with the increase of pro-
cessor numbers, the TLGC scheduling scheme always achieves
the shortest scheduling lengths. Compared with HEFT and
the sequence to sequence scheduling model, the scheduling
lengths are reduced by around 20% and this proportion tends
to be stable with the increased processor numbers. Compared
with the other two graph neural network (GAT, GraphSAGE)
scheduling models, the scheduling lengths are reduced around
10% and are stable at 10% when increasing the number of avail-
able processors.

6.4. Overhead Analysis. In this subsection, we will analyze how
much the scheduling generation time will account for in the
scheduling length of the DAG under various scheduling
methods. For the data sets generated with CCR = 1.0 and node
numbers = 1000, we randomly select ten samples and calculate
the average of both the running time of generating the schedul-
ing strategy and the scheduling lengths of different scheduling
methods. We then calculate the proportion of the scheduling
strategy generation time in the scheduling length. The results
are shown in Table 4.

The TLGC scheme involves the cost of neural network
parameter training and inference. The training requires many
data sets and takes much time. However, the trained model
can be used for scheduling strategy generation. Thus, we only
consider the inference time for generating the scheduling strat-
egy. According to this table, we can see that the scheduling gen-
eration time of TLGC is much higher than that of the
conventional scheduling algorithms. However, for a relatively
large DAG, the scheduling strategy generation overhead
accounts for about 1% of the scheduling time, which can be
ignored.

7. Conclusion

This paper studies the DAG scheduling problem which is
aimed at scheduling all the tasks offloaded from vehicles to
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the servers on the roadside units. The objective is to mini-
mize the scheduling length, i.e., the maximum finish time
of all tasks. We propose the TLGC scheduling scheme which
adopts the reinforcement learning scheduling based on
graph convolutional neural network. Different from previ-
ous works [3, 5], the TLGC considers the communication
delay between tasks which makes minimizing the scheduling
length more challenging. Compared with the representative
conventional scheduling methods (HEFT [9], LC [8], and
CPOP [9]) and the scheduling model based on seq2seq
[10], the scheduling length of TLGC is reduced by 15% to
25%, and the scheduling performance remains stable with
the increase of the number of processors. Compared with
the other graph neural network models (GAT [11], Graph-
SAGE [12]), the scheduling length of TLGC is reduced by
8% to 15%.

Data Availability

The experiment data sets are from previously reported stud-
ies cited in the paper.
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