
HotDAG: Hybrid Consensus via Sharding in the
Permissionless Model

Chun-Xuan Zhou, Qiang-Sheng Hua(B), and Hai Jin

National Engineering Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and

Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
{chxzhou,qshua,hjin}@hust.edu.cn

Abstract. A major design to improve scalability and performance of blockchain is sharding,
which maintains a distributed ledger by running classical Byzantine Fault Tolerance (BFT)
protocols through several relatively small committees. However, there are several drawbacks
with the existing sharding protocols. First, the sharding mechanism which ensures that each
committee is strongly bias-resistant either weakens the decentralization or reduces the per-
formance of the protocol. Second, BFT protocols are either unresponsive or take quadratic
communication complexities under a byzantine leader. Third, they cannot defend against
transaction censorship attacks. Finally, nodes do not have enough motivation to follow the
protocol and selfish nodes can obtain more rewards through collusive behaviors. A recent
study proposes HotStuff – a BFT protocol that achieves linear view-change and optimistic
responsiveness. In this paper, we present HotDAG, a hybrid consensus protocol based on
HotStuff via sharding in the permissionless model. By employing the parallel Nakamoto con-
sensus protocol, we present a decentralized and bias-resistant sharding mechanism. HotDAG
has a linear communication complexity on transaction confirmation by introducing a scalable
BFT protocol and an inter-committee consensus mechanism based on blockDAG. By achiev-
ing an unpredictable leader rotation, HotDAG prevents the censorship attacks. At the same
time, HotDAG provides an incentive mechanism that is compatible with the scalable BFT
protocol to encourage nodes to actively participate in the protocol. Finally, we formally prove
the security and analyze the performance of HotDAG.

Keywords: Blockchain · Consensus · Byzantine Fault Tolerance · Scalability · Sharding ·
blockDAG.

1 Introduction

Since the advent of Bitcoin [1] in 2008, cryptocurrency and the underlying technology behind Bitcoin
(blockchain) have attracted widespread attention in the finance and academia. The blockchain
is essentially a distributed database system that provides a decentralized, open, and Byzantine
fault-tolerant protocol. Each participant maintains a distributed ledger which provides the total
order of transactions and runs a distributed consensus protocol (Nakamoto consensus) to ensure
the consistency of the distributed ledger. Although the blockchain is a fully decentralized and
securely designed protocol, it still faces scalability barriers such as low transaction throughput and
high latency. Bitcoin and Ethereum process at most 7 transactions per second (tx/s) and 25 tx/s
respectively, which is far from meeting the actual market demand. Therefore, many recent research
efforts such as [2–6] have been devoted to scaling the Nakamoto consensus.

2 C. Zhou et al.

Variants of Nakamoto consensus still suffer from low throughput and high latency due to the
probabilistic consistency and decentralization. It is an inherently tradeoff between security and
performance. In contrast, classical BFT protocols have deterministic consistency and the period
of blocks is much shorter. Thereby they obtain higher transaction throughput and lower latency.
However, these protocols work in a permissioned setting where the set of participants is fixed and
the identity of each participant is known (we define the participant as the validator, and the set
of validators as a committee). It is easy to be broken in a permissionless setting when suffering
from the sybil-attack [7] and it can’t run in the dynamic network [9, 10]. Therefore, several hybrid
protocols that combine the classical BFT protocol with Proof-of-Work (PoW) [8] or other proof-
based protocols have been proposed [11–15]. However, BFT protocols have poor scalability, that
is, an increase in the size of committee reduces transaction throughput. It motivated a design
of protocols based on multiple committees so that transaction throughput scales linearly as the
network size increases [16–19]. These protocols are also known as sharding-based protocols.

Unfortunately, there are some limitations in previous sharding-based protocols. First, to ensure
that committees are bias-resistant, these protocols need to run a distributed randomness generation
protocol to generate a seed for sharding securely (assign validators to committees). It causes addi-
tional communication overhead. In addition, it will cause temporary inoperability of the system for
sharding protocols that use threshold signature schemes. Second, these protocols usually remain a
fixed leader unless it fails. It makes them more vulnerable to transaction censorship (transactions
are suppressed by the malicious leader) and the cost for the leader replacement to take a quadratic
communication complexity. Other protocols [18–20] follow the leader rotation regime. However,
they might be risky to deploy over the Internet because of the synchronous network assumption,
and they forego the optimistic responsiveness. Responsiveness requires that an honest leader can
drive the protocol to consensus in time depending only on the actual delay of the network. Third,
cross-shard transactions rely on honest clients or leaders and require multiple committees to run
the BFT protocol to resist the double-spend attack. Finally, previous work does not give incentive
for nodes to participate in the protocol very well or causes serious resource monopoly problems.

To solve the above issues, we introduce HotDAG. It is a novel sharding protocol that ensures se-
curity in the perminssionless model. At the same time, HotDAG is scalable and strongly censorship-
resistant. First, by introducing a parallel Nakamoto consensus protocol that is proposed by OHIE [6],
HotDAG chooses a set of representative validators periodically via Proof-of-Work. Then HotDAG
automatically and securely assigns validators to committees without any distributed randomness
generation protocol or any honest third party. Second, HotDAG builds on the HotStuff [21] and
provides an unpredictable leader rotation to guarantee censorship-resistance. Then, HotDAG ex-
tends the blockchain to the directed acyclic graph(blockDAG) and provides a safe total-ordering
protocol that all honest nodes are agreed upon the total order of transactions. Finally, we introduce
an incentive mechanism that is based on the epoch reputation to provide validators with enough
motivation to participate in consensus. The rewards are distributed through the current commit-
tee’s dynamic block reward coefficient and the node’s contribution to processing transactions. It
solves the problems of collusive behaviors and resource monopoly. Assume that any node outputs a
total ordering of transactions at any time, we define it as a LOG. HotDAG achieves the following
properties:

– Decentralization: Our protocol runs in a permissionless setting and does not rely on any
trusted third party.

– Consistency: Suppose that an honest node pi outputs LOG at time t and an honest node pj
outputs LOG′ at time t′ (i may equals to j and t may equals t′). Then with high probability,

HotDAG: Hybrid Consensus via Sharding in the Permissionless Model 3

either LOG is prefix of LOG′ or LOG′ is prefix of LOG. We use ≺ to represent the relationship
of the prefix.

– Scalability: The throughput increases linearly with the number of committees.
– Strongly censorship-resistance: The probability that a malicious validator is selected as the

leader is equal to the percentage of malicious validators in a committee.
– Incentive: Rational nodes have incentive to follow the protocol and selfish nodes will not get

more rewards through collusion.

The remainder of this paper is organized as follows. In section 2, we review the related work.
In section 3, we give the system, the network and the adversary models. The protocol details are
present in section 4. Then, we formally prove the security of HotDAG in section 5. In section 6, we
analyze the theoretical performance and incentive. Finally, we conclude the paper in section 7.

2 Related Work

In this section, we will review hybrid consensus protocols and sharding-based protocols.
Due to the strong consistency of BFT protocols, several hybrid consensus protocols [11,13] have

been proposed to scale up the throughput. Usually, hybrid consensus protocols select committees
by PoW and transactions are confirmed by the PBFT protocol. In addition, there are other hybrid
consensus protocols based on Proof-of-Stake(PoS), including Tendermint [20], Alogorand [14].

Although hybrid consensus protocols significantly improve performance over Nakamoto consen-
sus, there still exists a major limitation: the size of committee is not scalable. It inspires protocols
based on multiple committees that allow multiple committees to process transactions in parallel.
Elastico [16] is the first permissionless blockchain protocol based on transaction sharding. Elastico
has a hierarchical committee topology where normal committees propose blocks, and the final com-
mittee combines blocks received from normal committees. Based on this work, some protocols that
adopt the state sharding have been proposed, such as [17] and [18]. They have a flat committee
topology that all committees are at the same level. However, these protocols need to deal with
cross-shard transactions. [17] depends on the assumption that honest clients participate actively
when handling cross-shard transactions. And [18] relies on honest leaders, which is an unrealistic as-
sumption in practice. CycLedger [19] is the reputation-based sharding protocol. Unfortunately, they
both face serious reputation monopoly issues. We present a comparison of HotDAG with previous
sharding blockchain protocols in Table 1.

3 System Overview

3.1 System Model

HotDAG adopts the UTXO (unspent transaction outputs) model which is similar to Bitcoin. Our
system has a public key infrastructure (PKI) and each node holds a public/private key pair. We
adopt a double-layer architecture that consists of the identity chain and the transaction chain.
And multiple transaction chains form a blockDAG. At a high level, HotDAG has a flat commit-
tee topology. All blocks generated by a committee constitute a transaction chain. Blocks on all
transaction chains and references between blocks together form a blockDAG. Consider that each
committee adds transactions to the corresponding transaction chain, we will use the transaction
chain to illustrate our protocol in subsequent sections, instead of using the blockDAG.

4 C. Zhou et al.

Table 1: COMPARISON BETWEEN HOTDAG AND THE EXISTING WORKS

Elastico OmniLedger RapidChain CycLedger HotDAG

Resiliency 1/4 1/4 1/3 1/3 1/4
Responsive

√ √
× ×

√

Decentralizaton1 √
× × ×

√

Anti-censorship × × × ×
√

Incentive × × ×
√ √

Operability2 × × × ×
√

1 There are no always honest parties in Elastico and HotDAG. OmniLedger,
RapidChain and CycLedger rely on honest clients, the honest reference
committee and honest leaders, respectively.

2 The system can process transactions during the transition phase when the
threshold signature scheme is used.

3.2 Network Model

We assume a δ-partially synchronous network model as in HotStuff. After an unknown Global
Stabilization Time (GST), any message broadcast by an honest node at time t will arrive at all
honest nodes at time t + δ (δ is known). In addition, we assume a priori loose upper bound ∆ of
network delay. The confirmation time of a block only depends on the network’s actual delay δ.

3.3 Adversary Model

We adopt the adversary model which is the same as [13]. We regard Byzantine nodes as being
controlled by an adversary, denoted as A. Honest nodes strictly follow the protocol while A can
run away from protocol, such as reordering messages and delaying up to the maximal network
delay δ. We stress that A cannot drop or modify messages by honest nodes. Honest nodes may be
corrupted due to the adversary’s attack. We adopt a τ -corruption model [13] where it takes τ time
for honest nodes to be corrupted after the attack. We assume that A can have up to 25% of the
total hashpower at any given moment.

3.4 Cryptographic Primitives

Our protocol makes use of a threshold signature scheme [22–24]. The (n, k)-threshold signature
scheme can tolerate up to n − k malicious nodes when there are n nodes. The node can generate
a partial signature by using the private key and can combine a signature of the message m with k
partial signatures on m. The signature can be verified by the single public key. It is computationally
infeasible to forge a signature or to modify a signature to match a modified message.

4 Main Protocol

4.1 Identity Establishment and Committee Configuration

To ensure a negligible probability that any committee is compromised, committees need to be
re-formed periodically (we assume that committees are re-formed per epoch). To reduce the com-
munication overhead and to make committees re-form in an independent epoch, we aim to extend

HotDAG: Hybrid Consensus via Sharding in the Permissionless Model 5

the identity chain in [17] to parallel identity chains. In this way, validators are automatically as-
signed to committees while identities are established. To securely assign validators to committees,
we need to ensure that A gains no significant advantage in trying to bias its computational power
towards any identity chain. We adopt a parallel Nakamoto consensus model to force A to evenly
split its power across all identity chains and to guarantee the safety of each committee.

In (λ, p, T)-Nakamoto consensus, there is a security parameter λ and a mining hardness pa-
rameter p which is the probability of successful execution of a random oracle query. All blocks on
blockchain except the last T blocks are confirmed. Nodes iterate through a nonce which makes the
hash digest of a block to include a certain number of leading zeros, and the length of the hash is
λ. In HotDAG, we assume that there are k identity chains corresponding to k committees. And we
define that the hash of a block is H(preHash|nonce|PK) where H is a cryptographic hash function
(H is modeled as random oracles in the analysis), preHash is the hash of the last block that is
determined by the Merkle Tree, nonce is a random number and PK is the public key. It inputs
hashes of the last blocks on k identify chains as leaves, and outputs the root’s hash as preHash. The
hash of a valid block should have log2

1
kp leading zeros. We use the last logk2 bits of the block hash

to specify the id of the identify chain. As shown in Fig. 1a, the last blocks on all identity chains are
A,B,C,D. When a node mines the block E and we assume that the last logk2 bits of E.hash is 0,
then the block E is added to i-chain0. For any identity chain, the probability of successful execution
of a random oracle query is the same as in Nakamoto consensus (log2

1
p = log2

1
kp+logk2) [6].

i-chain0 A

i-chain1

i-chain2 C

B
PK, nonce

E

hash hash

A.hash B.hash C.hash D.hash

PreHash

i-chain3 D

(a) Merkle Tree

i-chaini

committee window of size c T blocks

identity block

validator

committeei,e

2 votes

epoch e-1 epoch e

1 vote 1 vote

(b) Committee configuration.

Fig. 1: Structure of identity chains.

From Lemma 3 in [6], the existing properties on (λ, p, T)-Nakomato consensus can directly carry
over to each identity chain. Therefore, it guarantees that the proportion of malicious validators in
each committee is less than 1

3 with high probability. The committee reconfiguration is triggered
when the identity chain grows by c blocks (c is the committee size), as shown in Fig. 1b. We define
i-chaini[:−T] to denote the chain that removes the last T blocks on the i-chaini. Let’s take the
switch from committeei,e−1 to committeei,e as an example. When the height of i-chaini[:−T] is
(e+ 1) ∗ c, miners in the committee window form a new committee to take place of committeei,e−1.
Validators in committeei,e send stop messages to validators in committeei,e−1. The color of the
identity block indicates different miners. Validators’ shares or voting power are directly proportional
to their commitment to hashpower in the committee window. When the epoch e− 1 is terminated,
committeei,e starts processing transactions by running the intra-committee consensus protocol.

6 C. Zhou et al.

4.2 Intra-committee Consensus

In HotStuff, the leader commits a block by collecting 2f+1 votes in three phases: pre-commit,
commit and decide. The leader generates a QC(quorum certificate) through the threshold signature
scheme. The Chained-HotStuff [21] pipelines these phases and works in a succession of rounds. The
leader collects votes for a block b and proposes a new block b′, and the work of collecting votes
for b′ will be handed over to the next leader. Votes for the block b′ also serve as votes for the
second phase of b. Its chain structure is similar to Bitcoin, as shown in Figure 2. QC.block means
that QC is generated by enough votes for block and the round of QC is the same as the round
of QC.block. Each validator keeps track of the following state variables: (1) qchigh: the QC with
the highest round, and the validator updates it when it receives a new block(or QC); (2) block: the
lastest block that finished the second phase; (3) bcommit: the lastest block that finished all voting
phases. (4) v: the round of last voted block. For example in Fig. 2, B0.round = r0, B1.round = r1,
B2.round = r2. We have qchigh = B.QC, block = B1, bcommit = B0.

The intra-committee consensus protocol is based on the Chained-HotStuff. We extend the chain
structure of Chained-HotStuff to k chains and each validator maintains k sets of state variables.
We define t-chaini as the i-th transaction chain. We consider a committee consisting of c = 3f + 1
validators where f is the number of Byzantine validators and each round has a unique dedicated
leader. We add the termination condition for timely termination [13] to ensure that the current
committee will not generate any valid block upon all honest validators reach a consensus on entering
the next epoch.

t-chaini QC r0

block.parent
QC.block

B0 B1 B2 B

QC r1 QC r2 QC r

Fig. 2: Structure of Chained-HotStuff.

Protocol Specification.The intra-committee consensus protocol has four phases:

1. Startup phase: At the beginning, the validator sends a new-view message to the leader, including
its qchigh. Then the committee enters the normal phase.

2. Normal phase: Upon receiving enough votes or new-view messages, the leader generates a QC.
The leader selects transactions according to the transaction hash and proposes a new block b.
Then it sends b to validators in the committee(including itself). At the same time, the leader
also broadcasts QC and the block in QC to other committees. Upon receiving b and b is valid,
the validator sends a vote (with qchigh) to the next leader and enters the next round.

3. Timeout phase: To guarantee the liveness, honest validators cannot keep the same round all the
time. The validator starts a timer T1 when it enters a new round. When T1 expires, it sends a
new-view message with qchigh to a new leader and enters the next round. We make use of an
exponential back-off mechanism. The timer doubles value every time it expires [25].

HotDAG: Hybrid Consensus via Sharding in the Permissionless Model 7

4. Stop phase: When the leader receives enough stopmessages from the next committee, it proposes
a stop block and the current committee enters the stop phase. When the stop block finishes
all voting phases, the current epoch is terminated and the next committee enters the startup
phase.

Voting rules. In the normal phase, validators check the validity of a block according to the following
rules:

1. The current epoch is not terminated.
2. Each transaction is valid: the sum of outputs is less than the sum of inputs and all inputs are

outputs of some transactions on transaction chains.
3. The round of b is greater than the round of the last voted block, that is b.round > v.
4. b.parent.round > block.round.

Partially-Committed rule. Consider four blocksB,B0,B1 andB2 such thatB2 = B.parent,B1 =
B2.parent and B0 = B1.parent. If B2.round = B1.round + 1 and B1.round = B0.round + 1, we
consider the branch led by B0 is partially-committed. For example, blocks that on the branch led
by B0 are partially-committed in Fig. 2.

Leader selection. To avoid predicting the leader in advance, our protocol makes use of a verifiable
random function (VRF) [26] and a pseudo-random function (PRF) to select the leader randomly.
While proposing a block b, the leader also generates a seed s = V RFsk(′leader′||e||r) and a proof π
where sk is the private key of the leader, e is the current epoch and r is the round of b.QC. Anyone
can verify the seed using the leader’s public key and the proof π. Each validator keeps track of
the latest seed s and calculates the leader’id of round n by id = PRF (s, n) mod c. In order to
ensure that validators will not keep different seeds for a long time (it will cause validators’ views
on the next leader to be different), we need to setup a timeout T2 that is used by the validator to
synchronize the latest seed. The first block on the transaction chain contains the initial seed.

4.3 Inter-committee consensus

In intra-committee consensus, transactions are partitioned to different committees and multi-
ple committees process transactions in parallel. To detect conflicting transactions in partially-
committed blocks to prevent the double-spend attack, each validator needs to output a total-
ordering of all blocks. A simple approach to order all blocks is to include the first block of each
chain into LOG, and then the second block, etc. That is, LOG = {b0,0...bk−1,0, b0,1...bk−1,1...}.
However, OHIE points out that the difference in the block growth rate among the k transaction
chains will cause that some blocks may not be confirmed for a long time. Our protocol is diffierent
from OHIE where the block in OHIE is in a random manner to extend the transaction chain, but
this difference still exists in HotDAG due to malicious leaders and the committee reconfiguration.

OHIE provides a total-ordering protocol to solve this issue. However, OHIE may violate happen-
before relationships between transactions. For example in Fig. 3, the total order is B00,B10,B01,B11,
B12,B13,B14 according to [6]. Therefore, Tx2 is before Tx1 which makes Tx2 invalid. (A more
detailed explanation can be found in the full version [27].) To ensure that each non-conflicting
transaction can be successfully confirmed, we extend parallel blockchains to a directed acyclic
graph (DAG) where blocks specify the happen-before relationships among transactions. Each block
b contains three fields < height, nextHeight, references > where height is the height of b and

8 C. Zhou et al.

nextHeight represents the height of the next block to compensate for the gap between the current
transaction chain and the longest transaction chain, that is, nextHeight is the largest nextHeight
of the lastest blocks on transaction chains. references is a set of block hashes and it represents
the happen-before relationships among transactions. The height of b should be greater than all
reference block, that is, b.height = max(b.parent.nextHeight,{r ∈ b.references|r.height + 1}). It
should be noted that the cyclic dependencies between blocks do not occur. For example, we define
that the transaction Tx1 depends on Tx2 and the transaction Tx3 depends on Tx4. Tx1 and Tx4
are included in block A, and Tx2, Tx3 are included in block B. Without loss of generality, we
assume that A is proposed first, Tx3 has not been on the transaction chain at this time. Honest
validators will consider the block A to be invalid because the input of Tx4 is invalid.

Chain 0

Chain 1

0, 1

0, 1 1, 2 2, 3 3, 4 4, 5

Tx 1
Input: X

Output: Y

Chain 0

Chain 1

0, 1

0, 1 1, 2 2, 3 3, 4 4, 5

Tx 2
Input: Y

Output: Z1, 5 5, 6 6, 7

Chain 0

Chain 1

0, 1

0, 1 1, 2 2, 3 3, 4 4, 5

1, 5 5, 6 6, 7

8, 97, 8

B00 B01

B10 B11 B12 B13 B14

time t1

time t2

time t3

Fig. 3: The transaction Tx1 is proposed at time t1, and the transaction Tx2 which spends the
output in Tx1 is proposed at time t2.

Eventually-Committed rule. We define that blocks that meet eventually-committed rule can be
included in LOG: Consider an honest node and a blockDAG G consisting of k transaction chains at
time t, we define B is a set of bcommit of k transaction chains. Let Heightconfirm = min({b ∈
B|b.nextHeight}), then blocks in the set {b ∈ G|b.height < Heightconfirm} are eventually-
committed. Eventually-committed blocks are ordered by the height, with tie-breaking favoring
smaller transaction chain ids.

As shown in Fig. 4, each block has a tuple < round, height, nextHeight >. There are three
transaction chains and the lastest partially-committed blocks on each chain are A6, B8 and C6
according to the partially-committed rule. Then, Heightconfirm = 7. If there are two conflicting
transactions in A1 and B2, then the transaction in B2 is invalid. The pseudo-code of the ordering
protocol can be found in [27].

4.4 Incentive Mechanism

The key to our design is to use the epoch reputation to represent the performance of validators in
committees, including the resources and behaviors. Our incentive mechanism includes three parts:
malicious behaviors, epoch reputation and rewards allocation.

HotDAG: Hybrid Consensus via Sharding in the Permissionless Model 9

t-chain0

t-chain1

t-chain2

0,0,1 1,1,2

A2A1

2,2,3

A4A3

4,4,5 6,5,7

A6A5

0,0,1 1,1,2

B2B1

2,2,3 3,3,4

B4B3

4,4,5 5,5,6

B6B5

6,6,7

B7

7,7,8

B8

8,9,10 9,10,11

B10B9 B11

0,0,1 1,1,2

C2C1

2,2,3 3,3,4

C4C3

4,4,5

C5

7,7,9

C6

8,9,10 9,10,11

C8C7

10,11,12

C9

7,8,9

A7

8,9,10

A9A8

11,11,12

3,3,4 9,10,11

partially-committed block

eventually-committed block

Heightconfirm = min{7, 8, 9} = 7

LOG = {A1, B1, C1, A2, B2, C2, A3, B3, C3, A4, B4, C4, A5, B5, C5, A6, B6, B7}

Fig. 4: Structure of transaction chains.

Malicious behaviors. HotDAG can detect three malicious behaviors: malicious votes, conflicting
blocks and double-spending transactions. We can judge whether a validator is malicious through
the first two behaviors. If a leader receives a vote that violates the voting rules, it can conclude
that the validator who sends the vote is malicious. If a node receives two different blocks with the
same round that are proposed by the same validator, it can conclude that this validator proposes
conflicting blocks. The leader can propose a block with the evidence of malicious behaviors. Finally,
double-spending transactions can be easily detected in LOG: transactions in LOG that cost the
same input. For nodes who have sent double-spending transactions, we can increase the cost of
malicious behaviors by increasing its transaction fee.

Epoch Reputation. Inspired by Accountable-Subgroup Multisignatures Scheme [28], we assume
that a quorum certificate(QC) contains the identity information of 2f + 1 voters. [28] guarantees
that leaders cannot forge the identity information. After the epoch ends for a period of time, any
node can calculate the epoch reputation because the proposer and voters of a block are recorded on
the transaction chains. The epoch reputation of the validator i is calculated according to Algorithm
1 and notations are defined in Table 2 . It is worth noting that Y ∈ {0, 1} represents the honesty
of the validator. It is ′1′ for each new validator and it is set to ′0′ if the validator has misbehaved1.
For the validator i, xi is the standard score (z-score) and ri is the epoch reputation. It should be
noted that the epoch reputation will not be accumulated, that is, the epoch reputation previously
obtained by the validator will not have any impact on rewards allocation of the current epoch
(unless malicious behaviors of the node has been detected).

Block rewards and Transaction Fees. Similar to Bitcoin, there are two kinds of rewards in
HotDAG: block rewards and transaction fees. We assume that a committee confirmed L blocks in
epoch e, and LOG grew S blocks during this period. The basic block rewards is Rb and the total
transaction fees in epoch e are F . We assume that A (A > 1) is the rewards parameter and the
rewards for the validator i is:

Ri = F ∗ ri
Σc
i=1ri

+ (1 +
L

S
∗A) ∗Rb ∗ li (1)

1 It includes sending malicious votes and proposing conflicting blocks.

10 C. Zhou et al.

Table 2: Notations of incentive mechanism

Natation Explanation

γ epoch reputation parameter
c the size of committee
L the length of the t-chain generated in the current epoch
vi the number of the i-th validator’s votes1

li the number of blocks that are proposed by the i-th validator
Y whether the validator is honest(”1”) or not (”0”)

1 The vote is not included when it is the leader.

Algorithm 1 Epoch reputation

Require: c, L, {vi}ci=1, {li}ci=1, {Yi}ci=1, γ.

1: meanv =
Σc

i=1vi
c

2: meanl =
Σc

i=1li
c

3: sv =

√
Σc

i=1(vi−meanv)2

c

4: sl =

√
Σc

i=1(li−meanl)2

c
5: meanv = meanv − γ ∗ L
6: xi = li−meanl

sl
+ vi−meanv

sv

7: ri = Yi ∗ 1
1+e−xi

8: return ri;

5 SECURITY ANALYSIS

Due to the page limit, the analysis (the security on committee configuration and the security on
committee consensus) can be found in [27].

6 PERFORMANCE ANALYSIS AND INCENTIVE ANALYSIS

6.1 Performance analysis

We use n to denote the total number of nodes, c to denote the committee size and b to denote the
block size. We summarize a comparison of theoretical performance analysis with previous sharding
blockchain protocols in Table 3, and the detailed analysis can be found in [27].

6.2 Incentive analysis

To avoid the serious monopoly problem, HotDAG decouples the reputation from consensus and
focuses on designing a fair incentive mechanism for the protocol that uses a threshold signature
scheme. The goal of HotDAG’s incentive mechanism is that the epoch reputation can correctly reflect
the resources (including computing resources and network resources) of honest validators, which
means that the proportion of rewards obtained by honest validators is close to the proportion of
their resources. We analyze two attack strategies: the free-riding attack and the aggregation attack.
Due to the page limit, the detailed analysis can be found in [27]

HotDAG: Hybrid Consensus via Sharding in the Permissionless Model 11

Table 3: A COMPARISON OF THEORETICAL PERFORMANCE ANALYSIS

Communication Complexity OmniLedger RapidChain CycLedger HotDAG

Identity Establishment1 O(n2) O(nc) O(nc) O(n2)
Committee Configuration O(n2 + nc2) O(nc) O(nc) –2

Intra-committee Consensus3 O(nc/b) O(nc/b) O(nc/b) O(c/b)
Inter-committee Consensus O(n) O(c log n) O(nc/b) O(n/b)

1 RapidChain and CycLedger achieve the lower communication complexity at
the cost of weakening decentralization.

2 There is no communication overhead.
3 We assume that a cross-shard transaction is relative with all committees.

7 Conclusion

We present HotDAG, a hybrid consensus protocol via sharding in the permissionless model. HotDAG
achieves security and scalability through a novel method consisting of four parts. First, we present
a decentralized and bias-resistant committee formation protocol for sharding securely. Second, each
transaction requires only one committee to run the BFT protocol and the inter-committee consensus
has linear communication complexity. Third, HotDAG is strongly censorship-resistant due to the
unpredictable leader rotation. Finally, we design an incentive mechanism that is compatible with
the scalable BFT protocol and all rational nodes are motivated to honestly follow the protocol. In
the future, we will implement and evaluate HotDAG in the real network.

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China Grant No.
61972447.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2009), http://www.bitcoin.org
2. Yonatan, S., Aviv, Z.: Secure high-rate transaction processing in bitcoin. In: Financial Cryptography

and Data Security - 19th International Conference (2015). pp. 507–527
3. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-ng: A scalable blockchain protocol. In: 13th

USENIX Symposium on Operating Systems Design and Implementation. pp. 45–59 (2016)
4. Sompolinsky, Y., Zohar, A.: Phantom: A scalable blockdag protocol. Cryptology ePrint Archive 2018,

104 (2018)
5. Li, C., Li, P., Xu, W., Long, F., Yao, A.C.C.: Scaling nakamoto consensus to thousands of transactions

per second. CoRR,abs/1805.03870 (2018)
6. Yu, H., Nikolic, I., Hou, R., Saxena, P.: OHIE:blockchain scaling made simple. In: Proceedings of the

41st IEEE Symposium on Security and Privacy. pp. 112–127
7. Douceur, J.R.: The sybil attack. In: Proceedings of the 1st International Workshop on Peer to Peer

Systems(2001). pp. 251–260
8. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Proceedings of the 12th

Annual International Cryptology Conference

12 C. Zhou et al.

9. Yu D, Zou Y, Yu J, et al. Implementing Abstract MAC Layer in Dynamic Networks. IEEE Transactions
on Mobile Computing, DOI: 10.1109/TMC.2020.2971599, 2020.

10. Hua Q.S, Shi Y, Yu D, et al. Faster Parallel Core Maintenance Algorithms in Dynamic Graphs. IEEE
Transactions on Parallel and Distributed Systems. 31(6): 1287-1300(2020).

11. Kokoris, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and
performance with strong consistency via collective signing. In: 25th USENIX Security Symposium. pp.
279–296

12. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solida: A blockchain protocol based
on reconfigurable byzantine consensus. In: 21st International Conference on Principles of Distributed
Systems. pp. 25:1–25:19

13. Pass, R., Shi, E.: Hybrid consensus: Efficient consensus in the permissionless model. In: 31st Inter-
national Symposium on Distributed Computing (DISC 2017). pp. 39:1–39:16. Leibniz International
Proceedings in Informatics (LIPIcs)

14. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling byzantine agreements for
cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles. pp. 51–68

15. Zhu S , Cai Z , Hu H , et al. zkCrowd: A Hybrid Blockchain-based Crowdsourcing Platform. IEEE
Transactions on Industrial Informatics (TII). 16(6): 4196-4205 (2020).

16. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for
open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 17–30

17. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: A secure,
scale-out, decentralized ledger via sharding. Cryptology ePrint Archive, Report 2017/406 (2017)

18. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full sharding. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. pp. 931–948

19. Mengqian Zhang, Jichen Li, Z.C.H.C., Deng, X.: Cycledger: A scalable and secure parallel protocol for
distributed ledger via sharding. In: Proceedings of the 34th IEEE International Parallel and Distributed
Processing Symposium(2020)

20. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains. Ph.D. thesis, The Uni-
versity of Guelph, Guelph, Ontario, Canada (June 2016)

21. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consensus with linearity and
responsiveness. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.

22. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Proceedings of the 9th
Annual International Cryptology Conference

23. Shoup, V.: Practical threshold signatures. In: EUROCRYPT 2000: International Conference on the
Theory and Application of Cryptographic Techniques

24. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Proceedings of the 7th
International Conference on the Theory and Application of Cryptology and Information Security

25. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation(1999). pp. 173-186

26. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foun-
dations of Computer Science (Cat. No.99CB37039) (1999)

27. Zhou, C.X., Hua, Q.S., Jin, H.: HotDAG: Hybrid consensus via sharding in the permissionless model,
https://qiangshenghua.github.io/papers/hotdag.pdf

28. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T.,
Galbraith, S. (eds.) Advances in Cryptology – ASIACRYPT 2018. pp. 435–464 (2018)

29. Archetti, M., Scheuring, I.: Review: Game theory of public goods in one-shot social dilemmas without
assortment. Journal of Theoretical Biology 299, 9–20 (2012)

