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Abstract. In a variety of applications, the data items of multiple par-
ticipants are collected and analyzed, and meanwhile the participants’
privacy needs to be protected. This paper studies an over-threshold data
aggregation problem, i.e., over-threshold set-union. In our model, we as-
sume there are n participants, an untrusted data aggregator and a proxy,
and each participant has a sensitive data item. The over-threshold set-
union is normally defined as follows: given a threshold t, the aggregator
only learns the data items which appear at least t times in the union
of data items of all participants without learning anything else. Existing
solutions either suffer from high communication cost or leak the mul-
tiplicity information of data items. In order to handle this defect, we
present an efficient protocol in the honest-but-curious model by leverag-
ing threshold secret sharing and dual pairing vector spaces. We prove that
the proposed protocol not only has O(n log2 n) communication complex-
ity which nearly matches the lower bound Ω(n/ logn) but also protects
the data privacy.

Keywords: Over-threshold set-union · Data aggregation · Secure multi-
party computation · Privacy

1 Introduction

The privacy-preserving data aggregation problem is of particular interest in
many important applications. Most applications need to collect participants’
data and compute some algebraic statistics. However, the data items of partic-
ipants usually include sensitive information and the participants are reluctant
to leak the data privacy to anyone. For example [1], in privacy-preserving dis-
tributed network monitoring, every node monitors local behavior and a service
provider is responsible for a global anomalous monitoring task, and when the
number of local anomalous behaviors exceeds a predetermined system threshold,
the service provider identifies the anomaly.
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There are two major challenges for the privacy-preserving data aggregation
problem. One is communication efficiency. In many practical systems, monitoring
nodes usually have tight resource constraints. Thus, minimizing communication
overhead is a pursued goal of related researchers for designing the protocol. An-
other issue is privacy-preserving. After a protocol has been executed, the result
of the computation is leaked and no adversary can learn more extra information
than what can be inferred from the result.

Many types of research have been proposed on the privacy-preserving data
aggregation problem. For example, linear aggregation function-SUM [2], and
non-linear aggregation functions [2–7]. In this paper, we study a particular
privacy-preserving data aggregation problem, i.e., the over-threshold set-union.
This problem can be used in many application scenarios, such as the privacy-
preserving distributed network monitoring [1]. As far as we know, there are some
works [1], [3], [8], [9], [10] that discuss the over-threshold set-union. In [1], [10]
the authors present a probabilistic protocol based on polynomial representation
of sets and additively homomorphic encryption. In [3], a closely related work is
proposed by using secure multi-party computation. But the techniques used in
their protocols can lead to high communication complexity (O(n2)). In [8], [9],
the authors show cryptographic methodologies to compute the over-threshold
set-union. Although their protocols have lower communication complexity, their
schemes can reveal the multiplicity of data.

Thus, a natural question is: can we design a protocol which has lower com-
munication complexity and can protect data privacy including the multiplicity of
data. A positive answer is presented in this paper. We propose a new probabilis-
tic protocol for this problem. Our protocol can ensure that the data aggregator
obtains accurate results with high probability(a probability with at least 1−1/nε,
where ε ≥ 1). Our protocol has nearly linear communication complexity regard-
ing the number of participants while protecting the privacy of participants. We
summarize the comparison results in Table 1.

Table 1. Complexity Comparisons

Communication Method Lower bound Multiplicity privacy

O(n2) [1]

Ω(n/ logn)∗ [11]

√

O(n2) [3]
√

O(n2) [10]
√

O(n) [8] ×
O(n) [9] ×

O(n log2 n) our
√

∗The lower bound on communication complexity does not consider data privacy and security

Our main contributions in this paper are summarized as follows:

– The proposed protocol can precisely calculate the over-threshold set-union
with high probability.

– The proposed protocol not only has O(n log2 n) communication complexity
which nearly matches the lower bound Ω(n/ log n) but also protects the data
privacy.
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The remainder of this paper is organized as follows. We introduce our system
model, problem definition, the adversary model, and cryptographic background
in Section 2. In Section 3, we describe our efficient protocol for the over-threshold
set-union problem. We show the detailed analysis for our protocol in terms of
correctness, security, and complexity in Section 4. Finally, we conclude this paper
in Section 5.

2 PRELIMINARIES

2.1 System Model

In this paper, we adopt the PDA system architecture [8] (see Figure 1), which
is composed of three parts: an untrusted data aggregator Agg, a proxy P and
n participants {p1, ..., pn}. Each participant pi holds a private data item xi ∈
[1,M ]. The data aggregator has a powerful computational and storage capacity
and is responsible for computing some aggregate functions (over-threshold set-
union in this paper). Let S denote the multiset {x1, ..., xn}, and [[xi]] denote the
number of times of data item xi which appears in the multiset S. For any set A,

let x
U←− A denote that x is sampled uniformly at random from A. We denote

by |A| the number of elements in the set A.

Participants Proxy Aggregator

Fig. 1. PDA system architecture

2.2 Problem Definition

In the paper, we mainly investigate the over-threshold set-union problem. Infor-
mally speaking, this problem is as follows: the aggregator only learns the data
items which appear at least t times in the union of private data items of all par-
ticipants without obtaining extra knowledge about other data items. The formal
definition states as follows.

Definition 1 (Over-Threshold Set-Union) In our system model, each par-
ticipant pi has a data item xi, and let S = {x1, ..., xn}. Given a threshold t,
the aggregator wants to compute the set U = {x′1, ..., x′l′} without obtaining extra
knowledge, where x′j ∈ S, [[x′j ]] ≥ t for any j ∈ {1, ..., l′}.
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2.3 Adversary Model

Like most other related work [1], [8], [9], we consider the honest-but-curious
adversaries model. In this model, each party faithfully executes the prescribed
actions of the protocol and meanwhile is curious about the private information
of other nodes. Moreover, we assume that the participants, proxy and data ag-
gregator do not collude with each other.

2.4 Cryptographic background

Asymmetric Bilinear Pairing Groups Let us denote the asymmetric bilinear
pairing groups by (q,G1,G2,GT , e) which is produced by G(1λ), where q is a
prime, λ is a security parameter, G1, G2 and GT are cyclic groups of order q,
and e: G1×G2 −→ GT . Let g1 and g2 be generators of G1 and G2, respectively.
The bilinear map e has the following properties:

1. Bilinearity: ∀a, b ∈ Zq, e(g1a, g2b) = e(g1, g2)ab;
2. Non-degeneracy: e(g1, g2) 6= 1.

Definition 2 (Symmetric External Diffie-Hellman: SXDH Assumption [12]).
Given the following distributions ((q,G1,G2,GT , e)← G(1λ), g1, g2, ga1 , gb1, Yσ)

, where Y0 = gab1 , Y1 = gab+r1 , a, b, r
U←− Zp, the advantage AdvSXDH

A that any
probabilistic polynomial time (PPT) adversary determines whether σ = 0 or 1 is
negligible in λ, where AdvSXDH

A = |Pr[A(1λ,Y0) −→ 1]− Pr[A(1λ,Y1) −→ 1]|.

If G1,G2 reverse the roles, the analogous distributions is also true.

Definition 3 (External Decisional Linear Assumption: XDLIN [13]) Given Pa =

((q,G1,G2,GT , e)← G(1λ), g1
ξ, gκ1 , gδξ1 , gσκ1 , gξ2, gκ2 , gδξ2 , gσκ2 , Ya) for b ∈ {1, 2},

where Y0 = gδ+σb , Y1 = gδ+σ+ρb , δ, κ, σ, ρ
U←− Zp, the advantage AdvXDLIN

A that
any PPT adversary determines whether a = 0 or 1 is negligible in λ, where
AdvXDLIN

A = |Pr[A(1λ,Y0) −→ 1]− Pr[A(1λ,Y1) −→ 1]|.

Definition 4 (Dual Pairing Vector Spaces [14,15]) Dual Pairing Vector
Spaces are defined by the tuple (q,V,V∗,GT ,A,A∗) and can be constructed by
G(1λ). V = Gm1 and V∗ = Gm2 are n dimensional vector spaces and V =
(a1, ...,am) and V∗ = (a∗1, ...,a

∗
m) are canonical bases of V and V∗, respectively,

where ai = (0i−1, G1, 0
m−i), a∗i = (0i−1, G2, 0

m−i), 0j represents a line of j
zeros, e.g., (04, 0) = (0, 0, 0, 0, 0). ẽ : V × V∗ −→ GT is pairing and is de-
fined by ẽ = (x,y) =

∏m
i=1 e(Xi, Yi) ∈ GT , where x = (X1, ..., Xm) ∈ V and

y = (Y1, ..., Ym) ∈ V∗.

Then, given (q,V,V∗,GT ,A,A∗, ẽ), we present random dual orthonormal bases
Gob(1λ,m) as follows:

ψ
U←− Z∗p ,B = (χi,j)← GL(m,Zq), (φi,j)← ψ(BT )−1,bi =

∑m
j=1 χi,jaj ,b

∗
i =∑m

j=1 φi,ja
∗
j , (i = 1, ...,m),B = (b1, ...,bm),B∗ = (b∗1, ...,b

∗
m), gT = e(G1, G2)ψ,
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output(B,B∗), where GL(m,Zq) denotes the general linear group of degree m
over Zp.

For x = (X1, ..., Xm)T and B = (b1, ...,bm),, we use (x)B to denote
∑m
i=1Xibi.

So we have ẽ(((x)A, (y)A∗) =
∏m
i=1 e(XiG1, YiG2) = e(G1, G2)

∑m
i=1XiYi and

ẽ((x)B, (y)B∗) = ẽ((Bx)A, (ψ(BT )−1y)A∗) = e(G1, G2)ψBx·B−1y = g
∑m
i=1XiYi

T .

Threshold Secret Sharing In this paper, we use an (n, t)-threshold secret
sharing scheme, i.e., Shamir’s secret sharing technique [16]. The secret sharing
scheme is that a secret s is split and distributed to n participants, and only t or
more than t participants which work together can reconstruct the secret s. For
the secret s, it constructs polynomial h(x) = s+s1x+s2x

2+· · ·+st−1xt−1, where

s1, ..., st−1
U←− Zq. Then, it randomly chooses n distinct elements α1, ...., αn from

Zq and computes h(α1), ..., h(αn) and sends (αi, h(αi)) to participant pi for any
i ∈ [n]. For any set B = {αi1 , ..., αit} of size t, the secret s can be recovered as
followings: s =

∑t
j=1∆αij ,B

(0)h(αij ), where ∆αij ,B
(0) =

∏
r∈B,r 6=αij

−r
αij−r

.

Moreover, we introduce the distributed ElGamal cryptosystem [17] in a thresh-
old manner, which will be adopted in our paper. A simplified description of the
cryptosystem between the proxy P and data aggregator Agg is described as
follows. Let G be a multiplicative cyclic group of prime order q and g is one
of its generators. P and Agg choose private keys sk1 and sk2 from Zq, respec-
tively. Then, they publish y1 = gsk1 and y2 = gsk2 , and compute the public key
pu = y1y2 = gsk1+sk2 . In order to encrypt a message m, any participant chooses

r
U←− Zq and outputs a ciphertext Epu[m]=(A,B) = (gr,myr). To decrypt the

ciphertext (A,B), Agg needs to send A to P. Then, P computes A1 = Ask1

and sends A1 = Ask1 to Agg, and Agg can obtain the message m by comput-
ing B/(A1A

sk2) (it is not difficult to see that B/(A1A
sk2) = myr/(grsk1grsk2) =

myr/g(sk1+sk2)r = myr/yr = m). The distributed ElGamal cryptosystem has an
improtant property: re-encryption. That is, given Epu[m] = (A,B), the proxy

can compute another encryption of m: (Agr
′
, Byr

′
), where r′

U←− Zq, which is
still denoted as Epu[m] for convenience.

3 Efficient Protocol for Threshold-Over Set-Union

3.1 Overview

In the previous schemes [1], [3], [8], [9], [10] they process the data items directly.
And yet we use the binary bits of data items to compute the over-threshold set-
union. The main idea for our protocol is that only t or more than t ciphertexts
which are generated by using the same data item can be decrypted. To achieve
the design goal and reduce the communication complexity, we propose a novel
protocol based on the threshold secret sharing and dual pairing vector spaces.
Our protocol is composed of the four phases as follows: the System Setup,
Ciphertext Generation, Blind Ciphertext and Ciphertext Aggregation.
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3.2 Basic Protocol

We first introduce a basic protocol which can exactly compute the over-threshold
set-union with high probability.

System Setup A trusted authority produces some private keys and dis-
tributes to the participants, and the data aggregator and proxy generate their
own secret keys. Specifically, it selects (q,G1,G2,GT , e) ← G(1λ) and gener-
ates (q,V,V∗,GT ,A,A∗, ẽ), {(Bj ,B∗j ), (Cj ,C∗j )}3j=1 from Gob(1λ,m), where Bj =
(bj,1, ...,bj,9),B∗j = (b∗j,1, ...,b

∗
j,9) for j = 1, 2, B3 = (b3,1, ...,b3,6l+11),B∗3 =

(b∗3,1, ...,b
∗
3,6l+11), Cj = (cj,1, ..., cj,6l+9),C∗j = (c∗j,1, ..., c

∗
j,6l+9) for j = 1, 2,

C3 = (c3,1, ..., c3,6l+11),C∗3 = (c∗3,1, ..., c
∗
3,6l+11). Then it computes {(αi,j , hi,j),

(αi,j , hi,j)} for secrets {βj , γj} by using the Shamir’s protocol and samples
{a1, b1} from {0, 1}λ (to be used in pseudo-random function (PRF)), where i ∈
[n], j ∈ [2] = {1, 2}. It sends (q,G1,G2,GT , e), {(Bj ,B∗j ), (Cj ,C∗j )}3j=1, {a1, b1},
{(αi,j , hi,j), (αi,j , hi,j)}2j=1 to participant pi for any i ∈ [n] and (q,G1,G2,GT , e)
to the data aggregator and proxy.

The data aggregator together with proxy compute secret key sk1 and sk2,
respectively, and they publish common public key pu by running the distributed
EIGamal cryptosystem.

Ciphertext Generation In this phase, each participant pi encrypts its own
data item xi by using private keys.

Specifically, participant pi first converts xi into binary vector vi = (xi,l−1, ...,
xi,0), where l = dlogMe. Let Xi,1 and Xi,2 denote the vectors (vi,1,vi) and
(1,vi,−2vi), respectively, where 1 = (1, 1, ..., 1) which has l elements. fa1(· )
(fb1(· )) is a pseudorandom function of the PRF family Fλ = {fs : {0, 1}λ →
{0, 1}λ}s∈{0,1}λ that uses a1 (b1) as parameter [18]. Then it computes the ci-

phertexts Ci = {Ci,1, ..., Ci,6, Ci} as follows:

Ci,1 = (ri,1, hi,1, 0
2, ri,2, ri,3, 0, 0, 0)B1

, Ci,2 = (ri,4, ri,5, 0
2, 0, 0, ri,6, ri,7, 0)B∗1 ,

Ci,3 = (ri,4, hi,1, 0
2, r̂i,1, r̂i,2, 0, 0, 0)B2

, Ci,4 = (ri,1, r̂i,3, 0
2, 0, 0, r̂i,4, r̂i,5, 0)B∗2 ,

Ci,5 = (ri,1fa1(r)·Xi,1, ri,5, r̂i,3, 1, 0
3l+3, ri,2, ri,3, 0, 0, 0)B3

,

Ci,6 = (fb1(r) ·Xi,2, hi,1, hi,1, ri,4, 0
3l+3, 0, 0, ri,5, ri,6, 0)B∗3 ,

Ci = e(G1, G2)β1ri,5+γ1r̂i,3+ri,4 ,

where {ri,j}7j=1, {r̂i,j}5j=1, {ri,j}6j=2
U←− Zq, ri,1

U←− Zq′ (q′ < q/tl), and r is
a nonce about the message, and fa1(r)fb1(r) 6= 0. . Similarly, it computes the
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following ciphertexts Di = {{Di,j}6j=1, Di}:.

Di,1 = (si,1·Xi,1, si,2, hi,2, 0
3l+2, si,3, si,4, 0, 0, 0)C1 ,

Di,2 = (si,5·Xi,2, si,6, si,7, 0
3l+2, 0, 0, si,8, si,9, 0)C∗1 ,

Di,3 = (ŝi,1·Xi,1, si,6, hi,2, 0
3l+2, ŝi,2, ŝi,3, 0, 0, 0)C2 ,

Di,4 = (ŝi,4·Xi,2, si,2, ŝi,5, 0
3l+2, 0, 0, ŝi,6, ŝi,7, 0)C∗2 ,

Di,5 = (si,1·Xi,1, si,7, ŝi,5, 1, 0
3l+3, si,2, si,3, 0, 0, 0)C3

,

Di,6 = (si,4·Xi,2, hi,2, hi,2, si,5, 0
3l+3, 0, 0, si,6, si,7, 0)C∗3 ,

Di = e(G1, G2)xi+β2si,7+γ2ŝi,5+si,5 ,

where {si,j}9j=1, {ŝi,j , si,j}7j=1
U←− Zq.

Then, pi handles Ci and Di by using pu according to the distributed ElGamal
cryptosystem, and obtains Ei = (Epu[Ci], {Epu[Ci,j ]}6j=1,Epu[αi,1]) and E′i =

(Epu[Di], {Epu[Di,j ]}6j=1,Epu[αi,2]).
Finally, pi sends {Ei, E′i} to the proxy.
Note that although Ci,j and Di,j are similar to the secret keys and ciphertexts

defined in [15], we do not need to assume the restriction of queries (full-hiding
security) used in the paper.

Blind Ciphertext In this phase, the proxy needs to blind the ciphertexts
such that the data aggregator does not learn knowledge about the source of
ciphertexts. In fact, communication is very expensive and the participants drop
out at any time in many important applications. Thus, denote the index i of the
participants pi that the proxy receives messages by active set A. After receiving
messages from A, the proxy performs the blind operation as follows.

It first performs two shuffle operations for the ciphertext {Ei}i∈A and {E′i}i∈A.
Specifically, the proxy picks two random permutations π and π′ from the set A,
and re-encrypts E = {Eπ(i)}i∈A and E′ = {E′π(i)′}i∈A by using the re-encryption
property of distributed ElGamal cryptosystem.

Finally, it sends {E,E′} to the data aggregator.

Ciphertext Aggregation In this phase, Agg computes the over-threshold
set-union by using decryption operation. The detailed decryption operation is
summarized in Algorithm 1.

More specifically, with the help of the proxy, Agg decrypts the ciphertexts
E and E′ and obtains {Cj , αj,1}j∈A, {Dj , αj,2}j∈A (line 1). Next, if |A| < t,
the participants’ data items do not contain the over-threshold set-union and the
data aggregator outputs an empty set φ (lines 2-3). Otherwise, they may contain
the over-threshold set-union. Any t participants’ data items could be the same.
Agg needs to traverse all possible combination of t participants’ ciphertexts.
Thus, it computes a family of sets U1 whose elements are all subsets of size t
of A (line 5). Obviously, |U1| =

(|A|
t

)
. Then it randomly chooses an element

E = {e1, ..., et} from A and removes E from A and computes B, B′ (line 8).
Next, Agg computes H,Fi,1, Fi,2, F̂i,1, F̂i,2 and F i (lines 9). Then, it calculates
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∏
i∈E

(
Fi,1F̂i,1F i

Fi,2F̂i,2

)∆αi,1,B(0)

and H, and decides whether
∏
i∈E

(
Fi,1F̂i,1F i

Fi,2F̂i,2

)∆αi,1,B(0)

= H (line 10).
If the above equation holds, the data aggregator continues to computeK,Ji,1,

Ji,2, Ĵi,1, Ĵi,2, J i and Û (lines 11-12). To recover U , it needs to compute the

discrete logarithm of Û to the base e(G1, G2). By using the Pollard’s lambda
algorithm [19], this takes expected time O(

√
M) since xi ∈ [1,M ]. Note that if

the above equation (line 10) holds, then it means the t ciphertexts contain the
same data item which belongs to over-threshold set-union (see Theorem 1). We
can obtain the data item by using the above operations.

Finally, to obtain over-threshold set-union, the data aggregator requires at
most

(
n
t

)
times of the above computation (lines 6-13), because U1 contains at

most
(
n
t

)
elements when |A| = n.

Algorithm 1: Ciphertext Aggregation: Agg
Input: {Ei, Ei}i∈A,U ← φ
Output: Over-Threshold Set-Union U

1 with the help of the proxy, Agg decrypts {Ei, Ei}i∈A based on the distributed

ElGamal cryptosystem and obtains {Cj , αj,1}j∈A, {Dj , αj,2}j∈A;
2 if |A| < t then
3 Agg outputs an empty set φ;

4 else
5 Agg computes a family of sets U1 whose elements are all subsets of size t of

A, where |U1| =
(|A|
t

)
;

6 while |U1| > 0 do
7 Agg randomly chooses an element E = {e1, ..., et} from U1;
8 U1 ← U1 − {E}, B ← {αi,1|i ∈ E}, B′ ← {αi,2|i ∈ E};
9 Agg computes H =

∏
j∈E Cj , Fi,1 =

∏
j∈E e(Ci,1, Cj,2),

Fi,2 =
∏
j∈E e(Ci,4, Cj,3), F̂i,1 =

∏
j∈E e(Ci,3, Cj,4),

F̂i,2 =
∏
j∈E e(Ci,2, Cj,1), F i =

∏
j∈E e(Ci,5, Cj,6);

10 if
∏
i∈E

(
Fi,1F̂i,1F i

Fi,2F̂i,2

)∆αi,1,B(0)

== H then

11 Agg computea K =
∏
j∈E Dj , Ji,1 =

∏
j∈E e(Di,1, Dj,2),

Ji,2 =
∏
j∈E e(Di,4, Dj,3), Ĵi,1 =

∏
j∈E e(Di,3, Dj,4),

Ĵi,2 =
∏
j∈E e(Di,2, Dj,1), J i =

∏
j∈E e(Di,5, Dj,6);

12 Û =

(∏
i∈εKi

( Ji,2Ĵi,2

Ji,1Ĵi,1Ji

)∆αi,2,B′ (0)) 1
t

, U = log Û ;

13 U ← U
⋃
U ;

14 return U

3.3 Further Improvement

In fact, each pi generates a new private data item in a certain time interval.
If participants use the basic protocol to encrypt their data items in each time
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interval, the data aggregator may learn more information than the over-threshold
set-union. For example, suppose that p1 produces the same data item in t time
intervals and encrypts it by using the basic protocol, and if the data item does not
belong to over-threshold set-union in the t time intervals, the data aggregator
can obtain the data item by using the decryption operation. Thus, the basic
protocol cannot be applied to this scenario.

To resolve this drawback, we propose our improved algorithm in this section.
The main idea is that the ciphertexts can be decrypted only if they are at the
same time interval. Specifically, since ciphertexts Ci,j and Di,j are computed by
using some vectors and random dual orthonormal bases in each time interval, we
can use different vectors in different time interval. An efficient method is that
we can rearrange the order of the elements in the vectors. For example, Di,1 is
computed by using vector (si,1·Xi,1, si,2, hi,2, 0

3l+2, si,3, si,4, 0, 0, 0), and we use
a new vector whose elements are randomly arranged to compute ciphertexts in
each time interval. Although the scheme is feasible, there is a disadvantage to
this approach. Because the number of elements in vectors is limited. Thus, the
number of random permutations is limited. To overcome the weakness, we can
add some elements to vectors. In the following, we will illustrate our improved
algorithm in detail.

We again run the System Setup phase for the trusted authority, but we
make the following modifications.

– Add: samples ci, di,j ← {0, 1}λ (i = 1, ..., 6, j = 1, ..., 4) and sends to all
participants;

– Replace {(Bi,B∗i ), (Ci,C∗i )}3i=1 by {(Bi,B
∗
i ), (Ci,C

∗
i )}3i=1 : Samples {(Bi,B

∗
i )

, (Ci,C
∗
i )}3i=1 ← Gob(1λ,m), where m = 6l + 11 + cη log n+ cu;

To rearrange the order of the elements in the vectors in different time intervals,
we use a pseudorandom permutation and the Luby-Rackoff construction [20]. Let
fs1,s2,s3,s4() be a pseudorandom permutation indexed by s1, s2, s3, s4 (because it

uses four pseudorandom functions), where fs1,s2,s3,s4() : {0, 1}6l+11+cη logn+cu ×
{0, 1}λ −→ {0, 1}6l+11+cη logn+cu , and cη and cu are large constants. For a vec-
tor (x1, x2, x3), we use positive integers 1, 2, 3 to label the positions of the
elements x1, x2, x3 in the vector from left to right and let R(x1, x2, x3) de-
note them, i.e., R(x1, x2, x3) = (1, 2, 3). Let fs1,s2,s3,s4(R(x1, x2, x3)) denote

fs1,s2,s3,s4(R(x1, x2, x3)) = fs1,s2,s3,s4(1, 2, 3) = (fs1,s2,s3,s4(1), fs1,s2,s3,s4(2),

fs1,s2,s3,s4(3))) = (y1, y2, y3)). Let R(y1, y2, y3) denote a new vector which con-
sists of x1, x2, x3 and rearranges the positions of x1, x2, x3 according to y1, y2, y3,
respectively. For example, when (y1, y2, y3) = (3, 2, 1), we have R(y1, y2, y3) =
(x3, x2, x1). For convenience, we use< ki(r) > to denote fdi,1(r), fdi,2(r), fdi,3(r),
fdi,4(r) for i = 1, ..., 6.

We again run the Ciphertext Generation phase for pi (i ∈ [n]), but we
make the following modifications.

– Replace {{Ci,j}6j=1, Ci} by {{C̃i,j}6j=1, C̃i} :

C̃i,1 = R
(
f<k1(r)>

(
R(ri,1, hi,1, 0

2, ri,2, ri,3, 0, 0, 0, fc1(1), ..., fc1(t′))
))

B1

,
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C̃i,2 = R
(
f<k1(r)>

(
R(ri,4, ri,5, 0

2, 0, 0, ri,6, ri,7, 0, ui,1, ...., ui,t′)
))

B∗1
,

C̃i,3 = R
(
f<k2(r)>

(
R(ri,4, hi,1, 0

2, r̂i,1, r̂i,2, 0, 0, 0, fc2(1), ..., fc2(t′))
))

B2

,

C̃i,4 = R(f<k2(r)>
(
R(ri,1, r̂i,3, 0

2, 0, 0, r̂i,4, r̂i,5, 0, ûi,1, ..., ûi,t′)
))

B∗2
,

C̃i,5 = R
(
f<k3(r)>

(
R(ri,1fa1(r)·Xi,1, ri,5, r̂i,3, 1, 0

3l+3, ri,2, ri,3, 0, 0, 0,

fc3(1), ..., fc3(t′′))
))

B3

,

C̃i,6 = R
(
f<k3(r)>

(
R(fb1(r) ·Xi,2, hi,1, hi,1, ri,4, 0

3l+3, 0, 0, ri,5, ri,6, 0,

ui,1, ..., ui,t′′)
))

B∗3
,

C̃i = e(G1, G2)β1ri,5+γ1r̂i,3+ri,4

where t′ = 6l + 2 + cη log n + cu, t′′ = cη log n + cu, and ui,j ûi,j , ui,j′ ←
Zq for j = 1, ..., t′ − 1 and j′ = 1, ..., t′′ − 1, and

∑t′

j=1 fc1(j)ui,j = 0,∑t′

j=1 fc2(j)ûi,j = 0,
∑t′′

j′=1 fc3(j′)ui,j′ = 0

– Replace {{Di,j}6j=1, Di} by {{D̃i,j}6j=1, D̃i}:
D̃i,1 = R

(
f<k4(r)>

(
R(si,1·Xi,1, si,2, hi,2, 0

3l+2, si,3, si,4, 0, 0, 0, fc4(1), ...,

fc4(t̂′))
))

C1

,

D̃i,2 = R
(
f<k4(r)>(R(si,5·Xi,2, si,6, si,7, 0

3l+2, 0, 0, si,8, si,9, 0, ji,1, ....,

ji,t̂′))
)
C∗1
,

D̃i,3 = R
(
ff<k5(r)>

(
R(ŝi,1·Xi,1, si,6, hi,2, 0

3l+2, ŝi,2, ŝi,3, 0, 0, 0, fc5(1), ...,

fc5(t̂′))
))

C2

,

D̃i,4 = R
(
f<k5(r)>

(
R(ŝi,4·Xi,2, si,2, ŝi,5, 0

3l+2, 0, 0, ŝi,6, ŝi,7, 0, ĵi,1, ...,

ĵi,t̂′)
))

C∗2
,

D̃i,5 = R
(
ff<k6 (r)>

(
R(si,1·Xi,1, si,7, ŝi,5, 1, 0

3l+3, si,2, si,3, 0, 0, 0, fc6(1), ...,

fc6(t̂′′))
))

C3

,

D̃i,6 = R
(
f<k6(r)>

(
R(si,4·Xi,2, hi,2, hi,2, si,5, 0

3l+3, 0, 0, si,6, si,7, 0, ji,1, ...,

ji,t̂′′)
))

C∗3
,

D̃i = e(G1, G2)xi+β2si,7+γ2ŝi,5+si,5 ,
where t̂′ = 2 + cη log n + cu and t̂′′ = cη log n + cu, and ji,k ĵi,k, ji,k′ ←
Zq for k = 1, ..., t̂′ − 1 and k′ = 1, ..., t̂′′ − 1, and

∑t̂′

k=1 fc4(k)ji,k = 0,∑t̂′

k=1 fc5(k)ĵi,k = 0,
∑t̂′′

k′=1 fc6(k′)ji,k′ = 0

Note that we add some elements to the vectors used to compute cipher-
texts such that the vectors have the same number of elements. Moreover, the
added elements do not affect the result of executed protocol. For O(log n) ele-
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ments, we have that the number of different permutations is O((log n)!). By using
Stirling’s approximation, we have O((log n)!) ∼ O(

√
2π log n( logn

e )logn). On the
other hand, O((log n)logn) = O(elogn log logn). Thus, we have O((cη log n)!) =
O(e(log logn−1)cη logn) = O(ncη log logn).

Finally, the proxy and data aggregator again run the Blind Ciphertext
and Ciphertext Aggregation phases to decrypt ciphertexts and do not make
any modifications.

4 Protocol Analysis

4.1 Correctness

Theorem 1. In our protocol, the data aggregator can accurately obtain the over-
threshold set-union.

Proof. We omit here due to limited space. A detailed proof can be found in [21].

4.2 Privacy

Theorem 2. Our protocol is secure under the SXDH and XDLIN assumptions.

Proof. We omit here due to limited space. A detailed proof can be found in [21].

4.3 Complexity

It is not difficult to see that the communication complexity of System Setup,
Ciphertext Generation and Blind Ciphertext of our protocol areO(n log2 n),
O(n log n log p) and O(n log n log p), respectively. Thus, the total communication
complexity of our protocol is O(n log2 n).

5 Conclusions

In this paper, we propose a novel communication-efficient and privacy-preserving
protocol for the over-threshold set-union problem. Compared with previous schemes,
our protocol has nearly optimal communication complexity and meanwhile can
protect data privacy.
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