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Abstract—Graph partitioning is a fundamental problem to enable scalable graph computation on large graphs. Existing partitioning

models are either streaming based or offline based. In the streaming model, the current edge needs all previous edges’ partition

choices to make a decision. As a result, it is hard to carry out partitioning in parallel. Besides, offline based partitioning requires full

knowledge about the input graph which may not suit well for large graphs. In this work, we propose a quasi-streaming partitioning

model and a game theory based solution for the edge partitioning problem. Specifically, we separate the whole edge stream into a

series of batches where the batch size is a constant multiple of the number of partitions. In each batch, we model the graph edge

partitioning problem as a game process, where the edge’s partition choice is regarded as a rational strategy choice of the player in the

game. As a result, the edge partitioning problem is decomposed into finding Nash Equilibriums in a series of game processes. We

mathematically prove the existence of Nash Equilibrium in such a game process, and analyze the number of rounds needed to

converge into a Nash Equilibrium. We further measure the quality of these Nash Equilibriums via computing the PoA (Price of Anarchy),

which is bounded by the number of partitions. Then we evaluate the performance of our strategy via comprehensive experiments on

both real-world graphs and random graphs. Results show that our solution achieves significant improvements on load balance and

replication factor when compared with five exsiting streaming partitioning strategies.

Index Terms—Graph edge partitioning, exact potential game, Nash Equilibrium, replication factor, load balance

Ç

1 INTRODUCTION

NOWADAYS big graphs have emerged in a wide range of
real applications, such as web graphs and online social

networks. Mining knowledge from these graphs faces a
great challenge since their volume is explosively increasing.
To perform graph computing on distributed systems with
several machines, partitioning the entire graph across
machines is an imperative procedure. Graph partitioning
can significantly affect the performance of distributed graph
computing systems in terms of communication cost and
workload balance. Existing graph partitioning strategies
can be classified into two categories: vertex partitioning and
edge partitioning. Vertex partitioning leads to vertices being
disjoint in different partitions, and edges being spanned
between two partitions. On the contrary, edge partitioning
leads to edges being separated in different partitions, and
vertices being spanned among several partitions. The differ-
ence between vertex partitioning and edge partitioning is
illustrated in Fig. 1.

In the vertex partitioning scheme, the workload of each
partition is determined by the number of vertices hosted in
it. The communication cost is determined by the number of
edges crossing different partitions. In the edge partitioning
scheme, the workload of each partition is determined by the
number of edges hosted in it. Besides, the communication
cost is determined by the total number of replicas of all ver-
tices. The vertex partitioning scheme has been employed in
most distributed graph computing frameworks such as
Pregel [15], GraphLab [14] and Giraph [19].

Most real-world graphs follow the power law degree dis-
tribution. It has been proved that edge partitioning scheme
can achieve better performance for power law graphs [9]. For
this reason, several edge partitioning based strategies have
been proposed such as DBH [24] and HDRF [18]. However,
DBH [24] makes use of global degree information to always
cut the high degree vertices. It might be infeasible in the real
streaming setting, since in streaming processing systems
such as [22], the computation is performed continuously and
uninterruptedly. As for HDRF [18], it uses the partial degree
to help make decisions. It maintains a global degree table
with partitial degree of each vertex. When a new edge
arrives, the degrees of two endpoints are updated. However,
these solutions may not suit well in real streaming setting
either. In real streaming setting, it is not possible to compute
global degrees information in advance. Moreover, storing
the global degree table entails the QðmÞ memory consump-
tion where m is the number of edges of a graph. For a com-
modity machine, this might be unacceptable when the
number of edges of a graph exceeds a limit. Moreover, it may
also be inefficient to perform lookup in such a huge table.
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In addition, existing solutions based on streaming model
lack of parallelism (more details refer to Section 3.1). For
example, Stanton and Kliot [21] regard performing stream-
ing graph partitioning in parallel as their future work,
quoted as “The second direction is to address using parallel
loaders. . . .We expect the performance of running parallel loader
on independent portions of the graph stream. . . “.

Based on these observations, in this paper we propose a
quasi-streaming model and a novel corresponding edge par-
titioning strategy derived from game theory, which is dem-
onstrated as Fig. 2. In this model, the whole edge stream is
separated into series of batches, where the batch size (some
constant number of edges) is an input parameter. In each
batch, all edges constitute the players set in a game process.
The edge’s partition choice is regarded as the rational strat-
egy in the game. When the game process of each batch
reaches a Nash Equilibrium, i.e., no edge has incentive to
unilaterally change its current partition choice, the partition-
ing task of this batch is finished. The partitioning task of each
batch can be accomplished by a partitioning thread, which
corresponds to a partitioner in Fig. 2. All partitioning threads
can carry on in parallel. As mentioned before, the quasi-
streaming model might be an interesting attempt to discover
potential parallelism from the streaming model [21], where
similar performance is expected via partitioning indepen-
dent portions of the graph stream in parallel.

Compared with the streaming model and the offline
model, the total memory consumption of our quasi-stream-
ing model is only Qðbatch size � number of threadsÞ, which
is much smaller than the QðmÞ memory consumption in
both the streaming model and the offline model. Further-
more, in contrast with the streaming model, the time used
by the quasi-streaming model could be also greatly reduced
due to the introduced parallelism. These theoretical analy-
ses are also corroborated in the experiment (Section 6.2).

Notice that most real world graphs are collected by
crawling in breadth-first manner [3], [25]. As a result, when
the graph is stored as the edge list form, edges incident on

the same vertex are stored next to each other. In addition,
most real-world graphs’ degrees follow the power law dis-
tribution, where most vertices have small degrees. If the
batch size is larger than most vertices’ degrees, we can
regard these subgraphs composed by each batch approxi-
mately disjoint. As a result, we can perform partitioning on
these batches in parallel. We need to point out that if the
above assumption does not hold, i.e., if the incident edges
of a vertex are not present consecutively in the input, we
can perform a preprocessing step where more details will
be given in Section 6.2.

Note that it seems like the hypothesis of the quasi-stream-
ing model is much stronger than the streaming model, since
an edge can deviate its current partition choice according to
other edges’ choices within the same batch (more details
refer to Section 5) in the quasi-streaming model. However,
the batch size in the quasi-streaming model is a constant
multiple of the number of partitions. As a result, the informa-
tion within each batch is quite limited. In contrast, in the
streaming model each edge can make use of all previous
edges’ partition choices via a one-pass manner. Hence, per-
forming efficient partitioning in the quasi-streaming could
bemuch harder than in the streamingmodel.

We list our contributions as follows:

� We propose the quasi-streaming model for edge par-
titioning problem and a novel partitioning strategy
based on game theory for this model.

� We mathematically prove the existence of pure Nash
Equilibrium in the quasi-streaming edge partitioning
game and analyze the number of rounds needed to
converge into a Nash Equilibrium.We prove the Price
of Anarchy PoA, i.e., the ratio between the worst Nash
Equlibrium and social optimum, is bounded by the
number of partitions in our edge partitioning game.

Fig. 2. The quasi-streaming model. Each partitioner is wrapped into a
thread. The Reader thread reads a batch of edges from disk to memory
each time, then the batch of edges are fed into the partition module. All
partitioners run in parallel within the partition module. The partitioning
results are represented as key value pairs, where the key is an edge e
and the value is the partition id for the edge e. These results are saved in
the data sink.

Fig. 1. (a) Edge partitioning and (b) vertex partitioning. (c) and (d) are the
partitioning results of (a) and (b) respectively. Vertices with dashed
circles are replicas.
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� The performance of our method is evaluated via
comprehensive experiments on both large real-world
graphs and random graphs.

The rest of our paper is structured as follows. Section 2
introduces the relatedwork. Systemmodel and problem def-
inition are shown in Section 3. We present the quasi-stream-
ing edge partitioning game with theoretical analyses in
Section 4. Section 5 shows aBest ResponseDynamics [17] based
algorithm to find aNash Equilibrium. Section 6 evaluates the
performance of our strategy. Section 7 concludes thework.

2 RELATED WORK

Graph partitioning plays a key role in parallel and distrib-
uted graph computing applications, since data layout has a
significant impact on these applications’ performance in
terms of communication cost and workload balance. Due to
the intrinsic hardness [1], [8] of graph partitioning, many
heuristic partitioning strategies have been proposed in prac-
tice. The state of the art heuristic partitioning strategies can
be divided into offline based and streaming based. METIS
[20] is a well-regarded offline heuristic, which combines a
quantity of heuristics such as the well-known Kergnighan-
Lin heuristic [12]. However, offline based heuristics [11]
require full knowledge about the graph, which might be
impractical for large-scale graphs and dynamic graphs. A
hybrid heuristic is proposed in Powerlyra [7], which com-
bines vertex partitioning and edge partitioning schemes
together. The hybrid heuristic is called Ginger, where an
extra reassignment phase is needed for the high degree ver-
tices after the original partitioning.

Balanced graph partitioning problem in streaming set-
ting was first introduced by Stanton [21]. Several greedy
strategies are proposed in [21], which assign current vertex
to the partition based on load balance and the number of
neighbors hosted in each partition. Fennel [23], another ver-
tex partitioning scheme, combines two heuristics together:
placing the newly arrived vertex in the partition holding the
most number of neighbors or holding the least number of
non-neighbors. Note that, the authors in [5] implemented
an edge partitioning version of Fennel. A game theory based
solution for the specific vertex partitioning problem is pro-
posed in [2], which is quite different from the conventional
streaming graph vertex partitioning [21] in terms of both
settings and optimization objectives.

The heuristic for streaming edge partitioning was first
proposed in [9], where the edge partition based scheme has
been proved more efficient than vertex partitioning based
scheme for power law graphs [9] . The other two streaming
edge partitioning schemes, DBH [24] and HDRF [18] make
use of the skewed degree distribution characteristics for nat-
ural graphs. A survey for the graph partitioning heuristics
can be found in [6].

3 SYSTEM MODEL AND PROBLEM DEFINITION

3.1 System Model

Before introducing the quasi-streaming partitioning model,
we briefly review the intensively studied streaming partition-
ing model [18], [21]. For the streaming vertex partitioning
problem, vertices arrivewith the set of their neighbors. For the
streaming edge partitioning problem, each edge arrives with

its two endpoints. In these two variants, the heuristics decide
to place the current vertex or edge on a certain partition based
the all previous vertices’ or edges’ partition choices, which is
implemented via maintaining a global table recording all pre-
vious vertices’ or edges’ partition choices. Moreover, for
degree based heuristics such as DBH [24] and HDRF [18] in
the edge partitioning problem, an extra degree table has to be
maintained to record the degree information of each vertex.

For the real streaming scenario, the stream may be
extremely huge or even infinite [22], thus these solutions may
be inefficient in terms of huge table’s memory usage and inef-
ficient lookup on such a huge table. Besides , it is hardly to per-
form partitioning in parallel, since the global tables are read
and written intensively. In order to make a partition choice,
each edge has to obtain the number of neighbors hosted in
each partition and the load of each partition before making
the choice. When the edge has made its choice, it has to record
its choice in these tables to benefit the successors in the stream.

Based on these two observations, we propose the quasi-
streaming model aimed at achieving more parallelism and
less memory usage. We formally define the quasi-streaming
partition model for edge partitioning problem as follows:

� The whole graph is represented by an edge stream,
where each edge arrives with its endpoints.

� The whole stream is segmented as a series of batches,
where the batch size is specified as an input parame-
ter, which is a constant multiple of the number of
partitions. The number of partitions k is an input
parameter as well.

� In each batch, the partitioning problem is modeled as
a game process. When a Nash Equalibrium is found,
the partitioning of this batch is finished. More details
are given in Sections 3.3 and 4.

� The Nash Equibrium is found via a Best Response
Dynamics based algorithm. More details refer to
Section 5.

In the quasi-streaming model, the current edge can take full
advantage of other edges’ partition choices within the same
batch via an iterative fashion, which can achieve a better
local optimum compared with the streaming based solu-
tions. There is no overhead to maintain a huge gobal table
to record the all previous edges’ choices. We only use a local
table to record other edges’s choices within the same batch,
which is far smaller than the global one. Moreover, the local
table’s memory can be reused when the current batch has
finished its partitioning.

3.2 Strategic Game Theory

In order tomodel the edge partitioning problem in each batch
as a game,we introduce some basic game theory concepts.

In strategic games, players are assumed as selfish and
rational to optimize their individual objective (or cost) func-
tions. Based on this assumption, the player chooses a strat-
egy minimizing its own cost without considering the effect
of its choice on other players’ objectives. Formally, a strate-
gic game is defined as:

� The set of playersN ¼ f1; . . . ; Ng.
� The strategy space S ¼ S1 � . . .� SN, where Si is the

strategy set of player i, i.e., all actions where player i
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can select from. S ¼ ðS1; . . . ; SNÞ 2 S is called a strat-
egy profile, and S ¼ ðSi; S�iÞ is its abbreviation form,
where S�i denotes all players’ strategy choices
except player i.

� The objective (cost) function CiðSÞ : S 7! R for each
player i, i.e., the objective the player tries to mini-
mize or maximize.

A strategic game is determined via the tuple G ¼ fN ;
S; fCigi2N g. The social welfare is usually defined asP

i2N CiðSÞ, which we want to minimize.

Definition 1. A pure strategy provides a complete definition of
how a player will play a game for any situation.

Definition 2. The pure strategy profile S� 2 S is pure strategy
Nash Equilibrium if and only if for each i 2 N :

CiðSi
�; S��iÞ � CiðS0i; S��iÞ; (1)

where Si
� 6¼ S0i; S

0
i 2 Si is another strategy. In other words,

no players have incentives to deviate from their current
strategies unilaterally.

3.3 Problem Definition

Now we define the edge partitioning problem in the quasi-
streaming model. We use Gb ¼ ðVb; EbÞ to represent the sub-
graph in each batch b and G ¼ ðV;EÞ to represent the whole
graph stream consisting of all batches. Given the number of
partitions k, our goal is to assign edges to partitions evenly,
while minimizing the average replicated times of each ver-
tex. We follow the same balanced edge partitioning defini-
tion used in [9], [18], [24], formulated as follows:

min
1

jV j
X
v2V
jRepðvÞj

s:t:max
pi2P

LðpiÞ < �
jEj
k

;

(2)

where RepðvÞ � P is the set of partitions which hold the
replica of vertex v and � � 1 is a small constant. P ¼
fp1; . . . ; pkg is the set of partitions, and LðpiÞ represents the
number of edges hosted in partition pi in terms of all

batches, i.e.,
Pk

i¼1 LðpiÞ ¼ jEj. Note that the edge partition-

ing problem is NP-hard [1], [8].
The partitioning quality in this paper is measured via

two metrics similar to [9], [18]:

� s (Standard deviation of edge load): the standard devia-
tion of the number of edges hosted in each partition.

� rep (Replication factor): the average replicated times
of each vertex, defined as 1

jV j
P

v2V jRepðvÞj, where
RepðvÞ is the set of partitions which hold the replica
of vertex v.

The Replication factor metric is the same as [9], [18]. But our
load balance metric s is different from the Relative Standard
deviation metric which is defined as the ratio of s over the
average load in [18]. The s metric is different from the met-
ric defined as the ratio of the max load over the average
load in [23], [24] as well. Note that our standard of deviation
metric s is a much harsher metric than these two metrics for
measuring the load balance status, which may distinguish
partitioning strategies further in terms load balance.

4 QUASI-STREAMING EDGE PARTITION GAME

In order to model the edge partitioning problem as a game
process, we regard each edge as a player, and edges’ parti-
tion choices are equivalent to players’ strategy choices. In
game processes, when a Nash Equilibrium is found, it indi-
cates that we have arrived at a local optimum of social wel-
fare objective. So we want to explore whether we can find a
good local optimum of edge partitioning problem via build-
ing a bridge between the objective function in edge parti-
tioning problem and social welfare function in the game
process. In this section, we first build a game process related
to the edge partitioning problem. Then we demonstrate that
the game process can always converge into a Nash Equilib-
rium. Finally we measure the quality of these Nash Equilib-
riums via PoA (Price of Anarchy). The main notations and
their descriptions used in this paper are listed in Table 1.

4.1 Game Construction

First of all, we define the edge partitioning objective func-
tion QGEP (Quasi-streaming Graph Edge Partitioning) in
each batch as follows:

QGEP ðGb; P Þ ¼ abs2 þ ð1� aÞ
X
v2Vb
jRepðvÞj (3)

whereGb is denoted as the subgraph in each batch and P is a
set of partitions. s is the standard deviation of edge load in
each partition mentioned in Section 3.3. a 2 ð0; 1Þ is the pref-
erence factor between these twometrics. b is a normalization
factor, which will be discussed elaborately in Section 4.2.
According to the QGEP objective function, we define the
social welfare function of edge partitioning game as follows:

CðSÞ ¼ ab
1

k

Xk
i¼1

l2ðpiÞ þ ð1� aÞ
X
v2Vb
jRepðvÞj (4)

where S ¼ ðS1; . . . ; SjEbjÞ is a strategy profile, which is
defined in Section 3.2. lðpiÞ is the number of edges hosted in
partition pi in terms of each batch. Since each batch is

TABLE 1
Notations

Notations Description

Gb ¼ ðVb; EbÞ the subgraph stream in batch b
G ¼ ðV;EÞ S

bGb

B batch size
pi denotes the partition with ID pi
P the set of k partitions {p1; . . . ; pk}
LðpiÞ the number of edges in feje 2 E; e locates in pig
lðpiÞ the number of edges in feje 2 Eb; e locates in pig
dðpi; vÞ the number of edges incident on v 2 Vb in pi
Se the partition choice of edge e 2 Eb

S�e the partition choicies of all edges except e
lðSeÞ the number of edges hosted in partition Se

RepðvÞ the set of partitions containing v’s replica
CeðSe; S�eÞ individual cost function of edge e
CðSe; S�eÞ the social welfare function
s the standard deviation of edge load
rep the replication factor
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partitioned separately, we have
Pk

i¼1 lðpiÞ ¼ jEbj. Now we
will show the equivalence between CðSÞ and QGEP.

Proposition 1. The difference between social welfare CðSÞ and
QGEP’s objective function is a constant value.

Proof. Since the second part in CðSÞ and QGEP is same , we
only consider the first part. We first denote a ¼ jEbj

k which
is a constant since jEbj is a multiple constant of k. Note
that

Pk
i¼1 lðpiÞ ¼ jEbj, then we have:

s2 ¼ 1

k

Xk
i¼1
ðlðpiÞ � aÞ2

¼ 1

k

Xk
i¼1

l2ðpiÞ � 2a
Xk
i¼1

lðpiÞ þ ka2

" #

¼ 1

k

Xk
i¼1

l2ðpiÞ � 1

k
2ajEbj þ a2 ¼ 1

k

Xk
i¼1

l2ðpiÞ � a2:

(5)

Therefore, QGEP ¼ abs2 þ ð1� aÞPv2Vb jRepðvÞj ¼ CðSÞ �
aba2. tu
Next, we define the individual cost function for each

player based on social welfare CðSÞ. For each edge e, the
cost of e choosing partition Se is given by:

CeðSÞ ¼ ab
1

k
lðSeÞ þ ð1� aÞ 1

dðSe; uÞ þ
1

dðSe; vÞ
� �

; (6)

where e is incident on vertex u and v, dðSe; uÞ is the number
of edges which are hosted in partition Se and incident on
vertex u.

Proposition 2. The social welfare CðSÞ is the sum of all edges’
individual costs in this game.

Proof. First, we denote EðpiÞ ¼ feje hosted in pi; e 2 Ebg as
the set of edges hosted in partition pi and incidentðpi; vÞ ¼
feje incident on vertex v; e 2 EðpiÞg. 1fconditiong is the
indicator function, which equals to 1 when condition is
true otherwise 0. jEðpiÞj ¼ lðpiÞ, jincidentðpi; vÞj ¼ dðpi; vÞ.
Then we have:

X
e2Eb

CeðSÞ

¼ ab
1

k

X
e2Eb

lðSeÞ þ ð1� aÞ
X
e2Eb

1

dðSe; uÞ þ
1

dðSe; vÞ
� �

¼ ab
1

k

Xk
i¼1

X
e2EðpiÞ

lðpiÞ þ ð1� aÞ
Xk
i¼1

X
Se¼pi

1

dðSe; uÞ þ
1

dðSe; vÞ
� �

¼ ab
1

k

Xk
i¼1

l2ðpiÞ þ ð1� aÞ
Xk
i¼1

X
w2Vb

pi2RepðwÞ

jincidentðpi; wÞj
dðpi; wÞ

¼ ab
1

k

Xk
i¼1

l2ðpiÞ þ ð1� aÞ
Xk
i¼1

X
w2Vb

1fpi 2 RepðwÞg

¼ ab
1

k

Xk
i¼1

l2ðpiÞ þ ð1� aÞ
X
w2Vb
jRepðwÞj ¼ CðSÞ:

(7)

tu
Specifically, in Fig. 3,

P
e2Eb
½ 1
dðSe;uÞ þ 1

dðSe;vÞ	 ¼
½ð1
1
þ 1

2
Þ þ ð1

1
þ 1

2
Þ	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p1:e1;e3

þ ½ð1
1
þ 1

2
Þ þ ð1

1
þ 1

2
Þ	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p2:e2;e7

þ ½ð1
2
þ 1

2
Þ þ ð1

2
þ 1

2
Þ þ ð1

2
þ 1

2
Þ	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p3:e4;e5;e6

¼

P
v2Vb jRepðvÞj ¼ 9. We denote the game constructed here as

EPG (Edge Partitioning Game), i.e., EPG ¼ fEb; S; fCege2Eb
g,

where S ¼ f1; . . . ; kg � . . .� f1; . . . ; kg is the Cartesian
product of all edges’ strategy sets. In the rest of paper, we
use EPG ¼ fEb; S; fCegg for brevity.

4.2 Normalization Issue

Note that, without normalization parameter b, the value of
load balance part CBALðSÞ ¼ a 1

k

Pk
i¼1 l

2ðpiÞ is not compara-
ble to the value of replication factor part CREP ðSÞ ¼ ð1�
aÞPv2Vb jRepðvÞj in the social welfare function (Eq. (4)). The
load balance part may be far larger than the replication part
in the social welfare function without the normalization

Fig. 3. The partitioning result of (a) based on Algorithm 2 is shown on (b).
Vertices with dashed circles are replicas. Table 2 shows computation in
details.

TABLE 2
Algorithm 2 on Fig. 3, k ¼ 3;a ¼ 0:5;b ¼ 1:6

Steps p1 p2 p3

Initialization e1ð1:235Þ; e2ð1:485Þ; e3ð1:485Þ e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ

Round 1

e1ð1:235; 1:490; 1:980Þ e1ð1:235Þ; e2ð1:485Þ; e3ð1:485Þ e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
e2ð1:485; 1:240; 1:980Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
e3ð1:240; 1:735; 1:646Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
e4ð1:485; 1:735; 1:235Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
e5ð1:485; 1:485; 1:235Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
e6ð1:735; 1:485; 1:235Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
e7ð1:735; 1:240; 1:646Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ

Round 2
e1ð1:240; 1:485; 1:980Þ e1ð1:240Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ

... ... ... ...
e7ð1:735; 1:240; 1:646Þ e1ð1:235Þ; e3ð1:485Þ e2ð1:240Þ; e7ð1:245Þ e4ð1:235Þ; e5ð1:235Þ; e6ð1:235Þ
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parameter b. Therefore, we introduce normalization param-
eter b to make the two parts become comparable, where b is
the normalization parameter. When the preference coeffi-
cient a ¼ 0:5, the load balance part should equal to the repli-
cation factor part:

b
1

k

Xk
i¼1

l2ðpiÞ ¼
X
v2Vb
jRepðvÞj

) b ¼ k
P

v2Vb jRepðvÞjPk
i¼1 l2ðpiÞ

(8)

Next we will give the valid variation range of b.

Proposition 3. The maximum of
Pk

i¼1 l
2ðpiÞ is jEbj2, when all

edges e in Eb is placed in the same partition. The minimum ofPk
i¼1 l

2ðpiÞ is jEbj2
k , when all edges are evenly assigned to each

partition.

The proof of Proposition 3 can be found in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2018.2890515.

Proposition 4. The minimum of
P

v2Vb jRepðvÞj is jVbj, when all

vertices are replicated exactly once. The maximum of
P

v2Vb j
RepðvÞj is kjVbj, when all vertices are replicated by k times in
the worst case.

Proposition 5. Base on Proposition 3, Proposition 4 and Eq. (8),

we can conclude that bmax ¼ k3jVbj
jEbj2

, bmin ¼ kjVbj
jEbj2

.

4.3 Exact Potential Game

Now we are going to prove the edge partitioning game con-
structed above is an Exact Potential Game, which is guaran-
teed to have a pure Nash Equalibrium [16].

Definition 3. Game G ¼ fN ; S; fCigi2N g is an Exact Potential
Game [16] if and only if there is a function F : S 7! R such
that for 8i 2 N ,

FðS0i; S�iÞ �FðSi; S�iÞ ¼ CiðS0i; S�iÞ � CiðSi; S�iÞ (9)

where S0i 6¼ Si; S
0
i 2 Si is another strategy.

Theorem 1. Game EGP ¼ fEb; S; fCeg is an Exact Potential
Game.

We postpone the proof for Theorem 1 in Appendix B,
available in the online supplemental material.

Since each Exact Potential Game owns a pure Nash Equi-
librium [16], we conclude that game EPG ¼ fEb; S; fCegg
exists at least one pure Nash Equilibrium. Next we will
evaluate the quality of these Nash Equilibriums.

4.4 Price of Anarchy

PoA (Price of Anarchy) is the worst ratio of social welfare
CðSÞ when the strategy profile is a Nash Equilibrium over
the optimum value of CðSÞ. It is an important metric to mea-
sure the quality of Nash Equilibriums. For minimization
cost social welfare objective, it is formally defined as:

Definition 4.

PoA ¼ maxS2PNECðSÞ
OPT

; (10)

where PNE � S is the set of pure Nash Equilibriums, OPT is
the global minimum value of social welfare in the case of cost
minimization problem.

Proposition 6. Denote OPTBAL
min , OPTREP

min and OPTmin

as the minimum value of CBALðSÞ, CREP ðSÞ and CðSÞ re-
spectively, where CBALðSÞ ¼ ab 1

k

Pk
i¼1 l

2ðpiÞ, CREP ðSÞ ¼
ð1� aÞPv2Vb jRepðvÞj. Then we have:

OPTBAL
min þOPTREP

min � OPTmin (11)

Similarly, we can get OPTBAL
max þOPTREP

max � OPTmax as well,

where the OPTBAL
max , OPTREP

max and OPTmax are the maximum

values of CBALðSÞ, CREP ðSÞ and CðSÞ respectively.
Proof. For the sake of brevity, we only prove Eq. (11).

Denote S�BAL, S�REP and S� are the strategy profiles
where the CBALðSÞ, CREP ðSÞ and CðSÞ get their mini-
mum values respectively, then we have:

CBALðS�Þ � CBALðS�BALÞ
CREP ðS�Þ � CREP ðS�REP Þ (12)

) CðS�Þ ¼ CBALðS�Þ þ CREP ðS�Þ
� CBALðS�BALÞ þ CREP ðS�REP Þ
) OPTmin � OPTBAL

min þOPTREP
min :

(13)

tu
Based on these results, we formulate the PoA of edge

partitioning game as follows:

Proposition 7. PoA of edge partitioning game EPG ¼ fEb; S;
fCegg is bounded by k.
The proof for Proposition 7 can be found in Appendix C,

available in the online supplemental material.

5 BEST RESPONSE DYNAMICS AND ROUND

COMPLEXITY

5.1 Best Response Dynamics Algorithm

In this section, we will show how to get a pure Nash Equi-
librium based on Best Response Dynamics [17] and how fast it
can converge into a Nash Equilibrium. The general Best
Response Dynamics to find Nash Equalibrium is shown in
Algorithm 1. To find a Nash Equilibrium for edge partition-
ing game, we propose a variant based on Algorithm 1. We
show it in Algorithm 2.

In Algorithm 2, we use the partitioning results of Ran-
dom strategy as the starting point of game process, where
each edge randomly chooses a partition from the parti-
tion set with equal probability. For each e 2 Eb, we com-
pute the minimum cost and record the corresponding
partition ID via t (line 4-line 13). Note that in order to
guarantee the pure strategy characteristic mentioned in
Definition 1, when e gets the minimum in more than one
partition, we break the tie with the minimum partition
ID. If the partition with the minimum cost is not its cur-
rent choice, then e changes its choice to get the minimum
cost. The iteration subroutine (line 3-line 17) will con-
tinue proceeding until no edges change their partition
choices in certain round.
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Table 2 shows the computation of Algorithm 2 on Fig. 3.
First, each edge randomly chooses an initial partition, for
example, e1 chooses partition p1. Then in each round, every
edge computes its best response based on the individual
cost function (Eq. (6)), where it can get the minimum cost.
The best response is marked with underline. For example,
the best response for e1 in Round 1 is p1. The gray-filled cell
pair in each row indicates an edge’s (marked with bold
font) strategy transformation. For example, e2 changes its
partition from p1 to p2 in Round 1. Note that no edge
changes its current partition choice in Round 2, so a Nash
Equilibrium is found in Round 2, i.e., the partitioning task
of this batch is finished.

Algorithm 1. Best Response Dynamics

Input:Game EPG ¼ fEb; S; fCegg, partition set P ¼ fp1; . . . ; pkg.
Output:Nash Equilibrium.
1: Each edge e randomly chooses an initial partition from the

partition set with equal probability.
2: repeat
3: for each edge e 2 Eb do
4: Find e’s best response S0;
5: if Se 6¼ S0 then
6: Se  S0

7: end if
8: end for
9: untilNo edges change their current strategies.

5.2 Round Complexity

Let us analyze the round complexity of Algorithm 2. Denote
the Harmonical Series HðnÞ ¼Pn

i¼1
1
i, then we define the

potential function FðSÞ as:

FðSÞ ¼ 1

k
ab

Xk
i¼1

XlðpiÞ
j¼1

jþ ð1� aÞ
X
v2Vb

Xk
i¼1

Hðdðpi; vÞÞ: (14)

In order to get the round complexity, we scale up the prob-
lem where the potential function FðSÞ takes integer values
[2]. Specifically, we denote FZðSÞ ¼ cFðSÞ, where c is an
integer such that FZðSÞ only takes integer values.

Proposition 8. The number of rounds required until game
EPG ¼ fEb; S; fCegg converges to a pure Nash Equilibrium is
OðcjVbj ln jVbj þ cjVbjÞ.
The proof for Proposition 8 is listed in Appendix D, avail-

able in the online supplemental material.

6 EXPERIMENTS

In this section, we evaluate the performance of our parti-
tioning strategy. Section 6.1 describes the experimental
setup, including system model, environment description
and datasets used. Section 6.2 describes how to preprocess
the input in case it does not satisfy the assumption that
the incident edges of a vertex are not present consecutively.
Section 6.3 presents the time and memory consumption
of the state-of-the-art partitioning methods based on the
streaming, the quasi-streaming and the offline models,
respectively. Section 6.4 compares the partitioning results
with other five state-of-the-art streaming edge partitioning

strategies based on the quasi-streaming model. Section 6.5
demonstrates the impact of batch size and the number of
threads on our quasi-streaming model.

Algorithm 2. Edge Partitioning Game

Input: batch of edges Eb, partition set P ¼ fp1; . . . ; pkg,
perference factor a, normalization factor b.

Output: patitioning results for edges in this batch.
1: Each edge e randomly chooses an initial partition Se from

the partition set with equal probability.
2: repeat
3: for each edge e ¼ ðu; vÞ 2 Eb do
4: minCost 1, t  1
5: for i 2 ½1, k	 do
6: compute Ceðpi; S�eÞ based on Eq. (6)
7: if Ceðpi; S�eÞ < minCost then
8: minCost Ceðpi; S�eÞ
9: t  i
10: else if Ceðpi; S�eÞ=minCost and i < t then
11: t  i
12: end if
13: end for
14: if Se 6¼ pt then
15: Se  pt
16: end if
17: end for
18: untilNo edges change their current partition choices.

6.1 Experiment Setup

We implemented a stand-alone version of graph partitioner
that captures the behavior of distributed graph computing
systems during the graph loading phase. All experiments
(except the model comparisons in Section 6.2) are based on
the quasi-streaming model illustrated in Fig. 2, which
means all competitive strategies partition the whole graph
in the batch based fashion. In other words, each batch is the
basic unit of partitioning. When all batches finish their parti-
tioning tasks, the whole graph’s partitioning task is accom-
plished. For example, an edge adopting Greedy [21]
strategy under the quasi-streaming model can only make
use of the partition choices of edges inside the same batch.
DBH [24] only uses degree information inside each batch.
Other strategies carry on partitioning in a similar fashion.
The data source and data sink in Fig. 2 correspond to the
disk in our implementation.

All experiments were performed on a single machine,
equipped with two fifteen-core Gold 6151 CPUs, extending
to 60 vCPUs, 960 GB memory, running CentOs Linux
Release 7.3 (kernel 3.10.0-514.el7) and JDK1.8.0. The maxi-
mum heap size of JVM is set to 950 GB. The real-world
graph datasets [4], [13] and random graph datasets we used
are listed in Tables 3 and 4 respectively. The random graph
datasets are generated based on Erd€os-Renyi random graph
model via SNAP [13]. For all six partitioning strategies, in
order to get rid of the impact from streaming order, we
shuffle each batch before it is processed.

For the sake of convenience, we denote our game theory
based strategy as Mint. Without explict declaration, the
default parameters of our quasi-streaming model are set as
follows. The batch size B is set to 6400 and the number of
partitioning threads is set to 60, which is applied to all
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competitive strategies. In addition, The default parameters

of Mint strategy are set as a ¼ 0:5, b ¼ k3jVbj
2jEbj2

, where k is the

number of partitions, jEbj and jVbj are the number of edges
and vertices in each batch respectively.

We evaluate the performance of our approach by the
metrics mentioned in Section 3.3.

6.2 Preprocessing

As mentioned in the introduction, our algorithms are based
on the assumption that the edges incident on the same ver-
tex are present consecutively in the input. As a result, if the
input graphs do not meet this assumption, we need to have
a preprocessing step.

The preprocessing scheme we used is a hash table that
supports multi-threading. One vertex of an edge is used as
the index key of the hash table, and the other vertex is
added to a list corresponding to the index key. Thus the
time complexity of the preprocessing step is OðjEjÞ where
jEjmeans the total number of edges in the graph.

We designed an experiment to evaluate the actual time
consumption of the preprocessing. First, we generated an
Erd€os-Renyi graph [13] where the incident edges of a vertex
are stored next to each other; Second, we randomize all the
edges in the graph; Third, the preprocessing step will be
performed. The Erd€os-Renyi graph we used and the time
taken for preprocessing have been listed in Table 5. From
this table, we can see that the execution time of the multi-
threaded preprocessor is linearly related to the number of
edges in the graph. In the following performance evalua-
tions, we assume all graphs have been either preprocessed
or satisfy the assumption that the edges incident on the
same vertex are presented consecutively.

6.3 Performance Comparisons with Streaming and
Offline Models

In this section, we will first compare our quasi-streaming
model with the streaming and the offline models in terms of

both time and memory consumption. Then we will compare
the partitioning quality in terms of the replication factor and
the standard deviation of the edge load between the quasi-
streaming and the streaming models. The algorithm for the
quasi-streaming model is Mint, and we pick the state-of-the-
art algorithms HDRF [18] for the streaming model and
METIS [11] for the offline model. As mentioned in Section
6.1, we use the default setting for Mint. For HDRF [18], we
set the parameters � ¼ 3 and � ¼ 1, which are the same as the
authors’ setting. For METIS, we use the default partitioning
strategy stated on the manual.1 The time and memory com-
parisons are illustrated in Figs. 5 and 6, respectively.

As Fig. 5 shows, the time taken by the streaming model is
much longer than both the quasi-streaming and the offline
models, and the gap is even increasing as the number parti-
tions increases. In addition, the time consumed by the quasi-
streamingmodel is comparable with the offlinemodel.

As for the memory consumption, Fig. 6 shows that the
memory occupied by both the streaming and the offlinemod-
els are much larger than the quasi-streaming model, which
corroborates the theoretical analysesmentioned in Section 1.

Note that although the quasi-streaming model excelled
in both the time and memory consumptions on the stream-
ing model, the partitioning quality is relatively worse than
the streaming one which can be found in Tables 6 and 7.
The reason is that, compared with the quasi-streaming
model where each edge can only decide its partitioning
choice within the corresponding batch consisting of a con-
stant number of edges, in the streaming model, each edge
can make use of all previous edges’ partition choices. As a
result, the streaming model can achieve nearly optimal
edge load balance and smaller replication factors.

We did not compare the two partitioning metrics
between the Mint algorithm in the quasi-streaming model
and the METIS algorithm in the offline model. The reason is
that, on one hand, the quasi-streaming model is close to
streaming setting and far away from the offline model, since
the batch size is a constant multiple of the number of parti-
tions k. On the other hand, METIS is a vertex partitioning

TABLE 3
Description of Real-World Graphs

Alias Graph jV j jEj size

Arabic arabic-2005 [4] 22 M 0.6 B 11 GB
UK uk-2002 [4] 19 M 0.3 B 4.7 GB
Wiki enwiki-2013 [4] 5.7 M 101 M 1.5 GB
LJ soc-LiveJournal1 [13] 4.8 M 69 M 1.1 GB
Hollywood hollywood-2009 [4] 1.1 M 113 M 1.5 GB
Weibo rel_pre2 0.47 B 44.3 B 750.3 GB

Letter ‘M’ is the abbreviation of Million. Letter ‘B’ is the abbreviation of
Billion and ‘GB’ represents GigaBytes.

TABLE 4
Description of Erd€os-Renyi Random Graphs

jV j jV j ¼ 50M

h ¼ jEjjV j 15 16 17 18 19 20

jEj 0.75 B 0.8 B 0.85 B 0.9 B 0.95 B 1 B
size 12.2 GB 13.1 GB 13.9 GB 14.7 GB 15.5 GB 16.3 GB

Larger h produces denser graphs.

TABLE 5
Preprocessing Time on Various Erd€os-Renyi Random Graphs

jV j 5 M 10 M 10 M 10 M 10 M 10 M
jEj 50 M 100 M 150 M 200 M 250 M 300 M
time 29 s 56 s 78 s 105 s 137 s 159 s

Fig. 4. Each edge cut will generate two replicated vertices in the worst
case. However, vertices can share a replicated vertex in the same parti-
tion. For example, the replica of v1 is shared by v2 and v3.

1. http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.
pdf
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based strategy, where the partitioning quality is measured
by edge cut. A straightforward observation is that each
edge cut will generate two replication vertices in the worst
case [18]. As a result, the replication factor of METIS can be

roughly estimated as 2�jEcutj
jV j , where Ecut is the set of edge

cuts of METIS. However, this may be quite unfair for
METIS, which is illustrated in Fig. 4. If we just assert each
edge cut will generate two replicated vertices, we will get 4
replicated vertices in Fig. 4. But the actual number of repli-
cated vertices is 3, since vertex v2 and vertex v3 can share
the same replicated vertex of v1 in partition p2. Therefore,
we don’t compare the partitioning metrics with METIS.

6.4 Partitioning Quality Comparisons with Other
Strategies within the Quasi-Streaming Model

In this section, we compare our solution’s performance with
five other state-of-the-art streaming partitioning strategies
in terms of load balance metric s and replication factor met-
ric rep, which are defined in Section 3.3. The five other
streaming partitioning strategies are Greedy [21], Fennel
[23], DBH [24], HDRF [18] and Random strategy, where
each edge chooses a partition randomly from the partition
set with equal probability. Note that the first Greedy
strategy for vertex partitioning was first proposed in [21].
Fennel is another vertex partitioning strategy. We refer
to their edge partitioning counterparts provided in [5], [18].
The implementation details of the edge partitioning ver-
sions of Greedy and Fennel can be found in VGP2 and
BGEP,3 respectively.

We use the Random strategy to get the intitial partition-
ing for Mint. For HDRF [18], we set the parameters � ¼ 3,
� ¼ 1 as same as the authors’ setting. Considering the edge
partitioning version of Greedy in [18] may give rise to
severe load imbalance, we fine tune the original imple-
mentation via changing the balance factor � from 1 to 3 for
giving more attention to load balance part during the parti-
tioning. DBH is a variant of hashing strategy, which lever-
ages the skewed degree distribution in real-world graphs.
Random strategy is similar to the hashing strategy, where
each edge chooses a partition from partition set with equal
probability. The parameters of system model and Mint

Fig. 5. Time comparison of quasi-streaming model (Mint), streaming model (HDRF), and offline model (METIS) on real-world graphs: LJ, Wiki and
Hollywood.

Fig. 6. Memory comparison of quasi-streaming model (Mint), streaming model (HDRF), and offline model (METIS) on real-world graphs: LJ, Wiki and
Hollywood. The number of partitions varies in ½8; 256	.

TABLE 6
The s Comparison between the Quasi-Streaming Model

and the Streaming Model Where the Number of
Partitions k is Fixed as 64

Graphs WIKI LJ HOLLYWOOD

s of quasi-streaming model 61.4 70.7 90.3
s of streaming model 0.56 0.89 0.70

TABLE 7
The Replication Factor Comparison between the
Quasi-Streaming Model and the Streaming Model
Where the Number of Partitions k is Fixed as 64

Graphs WIKI LJ HOLLYWOOD

Rep of quasi-streaming model 8.68 7.67 20.13
Rep of streaming model 5.09 3.04 6.58 2. https://github.com/fabiopetroni/VGP

3. https://www.di.ens.fr/fbourse/publications/index.html
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follow the default settings in the experiment setup given in
Section 6.1.

The replication factor comparisons of real world graphs
(except for Weibo) and random graphs are illustrated in
Fig. 7. As Fig. 7 shows, Mint can always achieve the smallest
replication factor among all six partition strategies. To
measure the improvement compared with the other five
strategies, we define the replication factor improvement
ratio as follows:

g
Rep
strategy ¼

Repstrategy �RepMint

Repstrategy
� 100%; (15)

where Repstrategy denotes the replication factor of a specific

strategy, g
Rep
strategy denotes the quantified improvement of

Mint against the specific strategy in terms of replication fac-
tor. Then, the maximum and the average replication factor
improvement ratio results through all datasets are listed in
Table 8, where the number of partitions varies in ½8; 256	. As
Table 8 shows, Mint can achieve a reduction of replication
factor up to 39.8 and 78.2 percent in terms of replication fac-
tor improvement ratio when compared with HDRF and
Random strategy, respectively. Notice that replication factor
is a harsh metric to minimize: when replication factor is
decreased by one, the total number of replicated vertices
will be reduced by jV j.

The s metric comparison of real world graphs (except for
Weibo) and random graphs are illustrated in Fig. 8. The s

metric of DBH is much larger than the other five strategies
on Wiki graph, so we omit it from Fig. 8b. As Fig. 8 shows,
Mint achieves far smaller s metric compared with the other
five strategies. Similarlly, to measure the improvement
quantitatively, we define the s metric improvement ratio
as follows:

gs
strategy ¼

sstrategy

sMint
; (16)

where sstrategy denotes the load balance metric of a specific
strategy, gsstrategy denotes the quantified improvement of
Mint against the specific strategy in terms of load balance
metric. The maximum and the average s metric improve-
ment ratio results are listed in Table 9, where the number of
partitions varies in ½8; 256	. As Table 9 shows, there is a case
that Mint can achieve 830� smaller s metric than DBH,
when comparing the two strategies on Wiki graph with 64
partitions. In this case, the s metric of DBH and Mint are
50963.3199 and 61.3541, respectively. The significant reduc-
tion of s metric experimentally demonstrates the tight rele-
vance between social welfare function and QGEP’s
objective function, which is proved in Proposition 1.

Now we will show the partitioning performance on the
Weibo graph under the quasi-streaming model. This graph
consists of 0.47 Billion vertices and 44.3 Billion edges, which
is around 500 times the Wiki graph in terms of graph size.
According to Table 10, we can see that both the replication
factor and the standard deviation of edge load of our Mint
algorithm is better than those of the other five strategies.
This is in line with Mint algorithm’s partitioning results on
the smaller size graphs shown before. In addition, the aver-
age time for processing the Weibo graph using different

Fig. 7. Replication factor comparsions on real-world graphs and random graphs. The number of partitions varies in [8, 256]. As for random graphs’
comparison, the number of partitions is fixed as 32.

TABLE 8
The Replicatoin Factor Improvement Ratio of Mint Compared

with the Other Five Partitioning Strategies

Strategies DBH Fennel Greedy Random HDRF

max of gRep
strategy 51.9% 38.5% 58.9% 78.2% 39.8%

mean of gRep
strategy 22.9% 17.6% 28.2% 52.1% 19.3%

1652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 7, JULY 2019



strategies will take around 21 thousands seconds. This is
also in accordance with the processing efficiency (the proc-
essing time over the number of edges) on smaller size
graphs. For example, as will be shown in Fig. 11a, the
average time for processing the Wiki graph takes around
47 seconds. Since the number of edges in Weibo graph is
around 440 times of the Wiki graph, we will calculate the
processing time of Weibo graph will be around 21 thou-
sands seconds. This time consumption did not take into
account the preprocessing since all the input graphs satisfy
the assumption mentioned in the introduction and in
Section 6.2. For huge graphs that do not satisfy the input
assumption, according to Table 5, by simple calculations
the preprocessing time on a huge graph with 44.3 Billion
edges will be almost the same of the partitioning time on
the graph.

6.5 The Impact of Batch Size and The Number of
Threads on the Partitioning Quality within the
Quasi-Streaming Model

Next we will show how the batch size B and the number of
partitioning threads running concurrently affect the strat-
egies’ performance. The graphs used are LJ, Wiki, UK and
Hollywood in the following experiments.

6.5.1 Impact of Batch Size

We now turn to evaluate the effect of batch size B. We fix
the number of partitions to 32. The parameters’ setting of all
competitive strategies are the same with the configuration
adopted in Section 6.4. The number of partitioning threads
is 60, the same as the default setting. We only change the
batch size B from 640 to 6400. For evaluating the effect com-
prehensively, we will illustrate how batch size B affects rep-
lication factor, s of edge load and running time. The batch
size B’s impact on replication factor, edge load s and run-
ning time are illustrated in Figs. 9, 10 and 11, respectively.

First of all, as Fig. 9 shows, the replication factors of all
six strategies except the Random strategy decrease with the
increasing of batch size. On the other hand, Fig. 10 shows
that the s metric of all six strategies decreases sharply along
with the increasing of batch size except for the DBH and
Random strategy. Finally, as Fig. 11 shows, all six strategies’
running time almost stay invariant .

Now we analyze the reasons behind these results. For
B’s impact on replication factor, all five strategies can

Fig. 8. s (standard deviation of edge load) comparisons on real-world graphs and random graphs. Since the s measure of DBH onWiki graph is much
larger than the others, we omit it from the comparison. The number of partitions varies in ½8; 256	. As for random graphs’ comparison, the number of
partitions is fixed as 32.

TABLE 9
The s Metric Improvement Ratio of Mint Compared

with the Other Five Partitioning Strategies

Strategies DBH Fennel Greedy Random HDRF

max of gs
strategy 830.7 75.5 61.5 19.1 46.6

mean of gs
strategy 109.8 21.4 21.8 7.3 14.8

TABLE 10
Partitioning Results on Weibo Graph When the

Number of Partitions k is Fixed as 64

Strategies DBH Fennel Greedy

rep 17.58 17.59 17.24
s 232889.1 1230213.3 83865.5
timeðsecondsÞ 20809 21158 20987
Strategies Random HDRF mint
rep 24.64 17.58 16.43
s 210699.6 798400.7 21365.6
timeðsecondsÞ 21266 21628 21898
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get more information except for the Random strategy
when B increases. Much more information will help
these strategies make better decisions. Note that Random
strategy always chooses a partition with equal probabil-
ity among all partitions no matter how big the batch size
is. Therefore, batch size B almost has no effect on Ran-
dom strategy in terms of both the replication factor met-
ric and the s metric. Since DBH chooses a partition for
each edge by hashing the vertex ID with higher degree,
bigger batch size almost has no effect on the s metric of
DBH. On the other hand, DBH is a degree based parti-
tioning strategy, which could reduce the replication fac-
tor via cutting the high degree vertices as many as
possible. Therefore, with a much bigger batch size, the
paritial degree [18] information of vertices is more close
to the real one, which can help DBH reduce the replica-
tion factor.

6.5.2 Impact of Number of Threads

To evaluate the number of partitioning threads’ impact on
Mint strategy, we adopt the default parameters’ setting of
Mint and only change the threads’ number from 5 to 60 in
the system model. In order to get the benefit of parallelism
quantitatively, we define the speedup as the ratio of run-
ning time. The running time includes I/O time and parti-
tioning time. The speedup for Mint algorithm on real world
graphs is illustrated in Fig. 12. As the figure shows, the
speedup is almost linear to the number of partitioning
threads for the cases from partition number k ¼ 32 to parti-
tion number k ¼ 64. For the other cases, i.e., the partition
number ranges from 4 to 16, the speedup does not increase
linearly. For example, on Hollywood graph (Fig. 12c), Mint
strategy can get its maximum speedup for partition number
k ¼ 4, k ¼ 8, and k ¼ 16 when the number of corresponding
partitioning threads equals 15, 30, 40 respectively. After the

Fig. 9. Batch size B’ impact on replication factor, where B varies from 640 to 6400. The number of partitions is 32.

Fig. 11. Batch size B’ impact on running time where B varies from 640 to 6400. The number of partitions is 32.

Fig. 10. Batch size B’ impact on s, where B varies from 640 to 6400. The number of partitions is 32.
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respective points, the speedup does not increase with more
partitioning threads. Compared with the total number of
threads, when the partition number is relatively small, the
time cost of each round also weighs small (See Algorithm
2). As a result, the partitioning task of each batch can be fin-
ished quickly. When the Reader thread’s feeding cannot
keep up with the partitioning threads’ processing in the sys-
tem model (details refer to Fig. 2), race condition could
occur frequently, which is a heavy burden to the underlying
operating system. Consequently, the total running time
could increase when severe race condition happens.

7 CONCLUSION

In this paper, we proposed the quasi-streaming model for
edge partitioning problem, and a corresponding novel parti-
tioning strategy based on game theory. In the quasi-stream-
ing model, the edge stream is segmented into a series of
batches where each batch size is a constant multiple of the
number of partitions. Comparing with the streaming model,
although each edge can have full knowledge of the edges
within the same batch, each edge’s decision cannot get bene-
fits from the other edges’ decisions outside of the batch. Thus
performing efficient graph partitioning in the quasi-stream-
ing model could be much harder than the streaming model
and the offline model. We mathematically proved that the
game process can always converge to a Nash Equilibrium.
Then we measured the quality of these Nash-Equilibriums
via PoA. The experiments show that our solution outper-
forms all other five exsiting streaming partitioning strategies
in terms of load balance metric and replication factor metric
on both real-world graphs and random graphs. Specifically,
our game theory based solution can achieve 19.3 percent
reduction on replication factor and 14.8� smaller load bal-
ance metric averagely when compared with the HDRF strat-
egy, which is the state-of-the art streaming edge partitioning
strategy. The significant reduction on replication factor and
load balance metrics would improve the distributed graph
computing systems’ performance in terms of communication
cost and computation balance. Finally, experiment results
show that the game theory based strategy can get almost lin-
ear speedup related to the number of partitioning threads in
the quasi-streamingmodel.

There are two directions in our future works. First, we
intend to develop our solution based on �-approximated
Nash Equilibrium [17] instead of Nash Equilibrium, which

may reduce convergence time sharply with modest loss on
partitioning quality. Second, in order to evaluate how much
speedup a specific application can get from our partitioning
strategy, such as PageRank, we intend to apply our parti-
tioning strategy to the real distributed graph computing
systems [10] in the future work.
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