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In multi-hop radio networks, such as wireless ad-hoc networks and wireless sensor 
networks, nodes employ a MAC (Medium Access Control) protocol such as TDMA 
to coordinate accesses to the shared medium and to avoid interference of close-by 
transmissions. These protocols can be implemented using standard node coloring. The 
(Δ + 1)-coloring problem is to color all nodes in as few timeslots as possible using at most 
Δ +1 colors such that any two nodes within distance R are assigned different colors, where 
R is a given parameter and Δ is the maximum degree of the modeled unit disk graph 
using R as a scaling factor. Being one of the most fundamental problems in distributed 
computing, this problem is well studied and there is a long chain of algorithms prescribed 
for it. However, all previous works are based on abstract models, such as message passing 
models and graph based interference models, which limit the utility of these algorithms 
in practice. In this paper, for the first time, we consider the distributed (Δ + 1)-coloring 
problem under the more practical SINR interference model. In particular, without requiring 
any knowledge about the neighborhood, we propose a novel randomized (Δ + 1)-coloring 
algorithm with time complexity O (Δ logn + log2 n). For the case where nodes cannot adjust 
their transmission power, we give an O (Δ log2 n) randomized algorithm, which only incurs 
a logarithmic multiplicative factor overhead.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The node coloring problem underpins the design of interference avoidance mechanisms in many multi-hop radio net-
works including wireless ad-hoc networks and wireless sensor networks. In these networks, radio communications are 
subject to interference, and messages may be lost due to interference. Without any interference avoidance mechanism, 
coordinating the nodes to achieve efficient and reliable communication can be quite a complex task. Traditionally, nodes 
employ MAC (Medium Access Control) protocols to coordinate their accesses to the shared medium and to avoid interfer-
ence of close-by transmissions, such as TDMA (Time Division Multiple-Access). These MAC protocols can all be reduced to 
the classical node coloring problem. For example, by assigning different colors to different time slots in a TDMA scheme, 
a proper coloring with parameter d corresponds to a MAC layer without “close-by” interference, i.e., no two nodes within 
distance d of each other transmit at the same time. In [4], it is shown that even under the more elaborate (but also more 
realistic) SINR model, we can still implement an interference free TDMA-like MAC protocol by computing a proper coloring 
for a well defined d if we adopt a uniform power assignment (all the nodes employ the same transmission power). Con-
ventionally, the node coloring problem is one of the most fundamental problems of symmetry breaking, and therefore has 
attracted a great deal of attention in the distributed computing community.
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Almost all previous works to derive distributed node coloring algorithms assume the graph based model in which inter-
ference is represented by a localized function—a message can be correctly received only if there are no other simultaneously 
transmitting senders in the receiver’s neighborhood. However, in multi-hop radio networks, interference is cumulative and is 
contributed to by all simultaneously transmitting nodes, near by and far away. The physically based Signal-to-Interference-
plus-Noise-Ratio (SINR) model [6] captures this reality in wireless networks more faithfully. Under the SINR model, the 
signal strength fades with distance to the power of some path-loss exponent α and a message can be successfully received 
if the ratio of the received signal strength and the sum of the interference caused by simultaneously transmitting nodes 
plus noise is above a certain hardware-defined threshold β .

1.1. Related work

In the absence of global knowledge, to derive a (Δ + 1)-coloring in a distributed manner is challenging and has attracted 
much attention in the distributed computing community for more than two decades. The traditional message passing model 
was considered in the beginning. Following Cole and Vishkin who presented the first distributed (Δ + 1)-coloring for rings 
in [2], a long line of papers were devoted to this problem. The state-of-the-art results are the O (Δ) + 1

2 log∗ n algorithm for 
arbitrary graphs in [1] and the optimal O (log∗ n) algorithm for bounded-independence graphs in [18]. However, the message 
passing model abstracts away some crucial elements of wireless networks, including interference, collision and asynchrony. 
Taking interference into account and assuming a locally synchronous circumstance, Schneider and Wattenhofer [19] pro-
posed a distributed (Δ + 1)-coloring algorithm with running time O (Δ + logΔ log n) and O (Δ + log2 n) with and without 
knowledge of Δ respectively. When further considering asynchrony, and assuming prior knowledge of n and Δ, Moscibroda 
and Wattenhofer [14] gave an O (Δ log n) distributed coloring algorithm for the simple unit disk graph model which only 
considers direct interferences from neighbors. In an extended version [15], the result was generalized for the bounded-
independence graph. In a recent paper [4], Derbel and Talbi showed that the algorithm in [15] also works under the SINR 
model within the same time bound. However, all the above three algorithms need O (Δ) colors instead of at most Δ + 1
colors.

In the SINR model, the interference is modeled as a global function, which greatly adds to the difficulty of designing 
efficient distributed algorithms with global performance guarantee. In spite of the difficulty, there are still many recent 
works facing up to the challenge and designing efficient distributed algorithms for various fundamental problems in wireless 
networks, e.g., the dominating set problem [17], the contention resolution problem [13,8,7], the broadcast problem [3,11,12,
10,21,22] and the local broadcasting problem [5,9,23,20].

1.2. Our contribution

To the best of our knowledge, this work is the first one that considers the distributed (Δ +1)-coloring problem under the 
physical model. Without relying on any knowledge about the neighborhood, we give an O (Δ log n + log2 n) time randomized 
distributed (Δ + 1)-coloring algorithm for asynchronous wake-up multi-hop radio networks under the physical model. Our 
result even matches the coloring algorithm in [4] for large Δ, e.g., Δ ≥ log n, which needs a linear estimate of Δ and uses 
O (Δ) colors. In our algorithm, we adopt a clustering based coloring strategy, i.e., a Maximal Independent Set (MIS) is first 
computed, and then the nodes in the MIS assign colors to their neighbors. To be able to employ the strategy, we first show 
that the MIS algorithm in [16] still works under the SINR model by carefully tuning the parameters. This algorithm is of 
independent interest, since it is the first MIS algorithm in the physical model.

Furthermore, assuming nodes cannot adjust their transmission powers, we then give a distributed (Δ + 1)-coloring 
algorithm with time complexity O (Δ log2 n) by iteratively carrying out the MIS algorithm, which also does not need any 
knowledge about the neighborhood.

1.3. Organization

The remaining part of this paper is organized as follows. In Section 2, we give a formal introduction of the network model 
and the problem. We present the O (Δ log n + log2 n) time (Δ + 1)-coloring algorithm and the (Δ + 1)-coloring algorithm 
under uniform power assignment in Section 3 and Section 4, respectively. Section 5 concludes the paper.

2. Problem definition and network model

The network consists of n nodes that are placed arbitrarily in a Euclidean space. Each node v has a unique IDv . Nodes 
cannot sense the physical carrier. The only prior knowledge given to the nodes is a polynomial estimate of the number n of 
nodes in the network, but they are clueless about the number of nodes in its close proximity.

We assume that the time is divided into timeslots by which the nodes are synchronized. In each timeslot, a node can 
either transmit or listen, but cannot do both. Nodes may wake up asynchronously or by an incoming message and not 
according to any global clock. Each node executes the algorithm based on its own clock. Note that the assumption of 
synchronous timeslots is just for ease of analysis; our algorithm does not rely on any synchrony in any way.

Message transmissions in wireless networks are subject to interference. We adopt the physical interference model (the 
SINR model) [6] which is a close approximation to the physical reality. Denote by d(x, y) the Euclidean distance between 
two nodes x and y. In the SINR model, a message sent by node u to node v can be correctly received at v iff
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Pu
d(u,v)α

N + ∑
w∈V \{u,v}

P w
d(w,v)α

≥ β, (1)

where Pu (P w ) is the transmission power for node u (w); α is the path-loss exponent whose value is normally between 2 
and 6; β is a hardware-determined threshold value which is greater than 1; N is the ambient noise, and 

∑
w∈V \{u,v}

P w
d(w,v)α

is the interference experienced by the receiver v caused by all simultaneously transmitting nodes in the network.
The transmission range RT of a node v can be defined as the maximum distance at which a node u can receive a 

clear transmission from v (SINR ≥ β) when there are no other simultaneous transmissions in the network. From the SINR 
condition (1), RT ≤ Rmax = ( P

β·N )1/α for the given power level P . We further assume that RT < Rmax and define RT =
(P/cNβ)1/α , where c > 1 is a constant determined by the environment.

In this work, we consider two application scenarios. In the first scenario, nodes can adjust their transmission powers up 
to a constant factor. In the second scenario, nodes use the same transmission power and cannot adjust the power during the 
algorithm execution. The reason that we do not take “arbitrary” power control into consideration is that in reality, arbitrary 
power control is very hard to implement given the wide variations in the relevant chipsets.

Because nodes may be able to adjust their transmission powers, and different power assignments correspond to different 
communication graphs. So here we do not define the node coloring problem on the communication graph as in previous 
works under the graph based model. Instead, we define the problem in terms of a given distance parameter R . In particular, 
given a distance parameter R , we say two nodes u and v are neighbors if d(u, v) ≤ R . The neighborhood of a node v is the 
set of all its neighbors, denoted by N(v). Additionally, we use N[v] to denote the set N(v) ∪ {v}. For a node v , we denote 
by Δv the number of nodes in v ’s neighborhood. We write Δ = maxv∈V Δv . A set of nodes S is called an independent set 
if any two nodes of S are not in each other’s neighborhood. An independent set S is maximal if for any node v , either 
v ∈ S or there is a node u ∈ N(v) such that u ∈ S . A node coloring is proper if each set of nodes with the same color is 
an independent set, i.e., the distance between any two nodes with the same color is larger than R . The (Δ + 1)-coloring 
problem then is to color all nodes properly in as few timeslots as possible using at most Δ + 1 colors.

We define a node v ’s running time as the interval from the timeslot when v starts executing the algorithm to the 
timeslot when v quits the algorithm. The time complexity of the algorithm is the maximum of all the nodes’ running times.

In subsequent sections, when we say “an event occurs with high probability” we mean that the event occurs with 
probability at least 1 − n−c for a constant c > 0, and “a node correctly gets a color” means that the resulting coloring of 
the network is proper. Greek letters represent constants. Definition 1 and Lemma 1 in the following will be useful in the 
analysis of the algorithms.

Definition 1. For a node v ∈ V , the probabilistic interference at v , Ψv , is defined as the expected interference experienced 
by v in a certain timeslot t .

Ψv =
∑

u∈V \{v}

Pu pu

d(u, v)α
, (2)

where Pu is the transmission power and pu is the sending probability of node u in timeslot t .

Lemma 1. (See [5].) Consider two disks D1 and D2 of radii R1 and R2 , R1 > R2 , we define χ(R1, R2) to be the smallest number of 
disks D2 needed to cover the larger disk D1 . It holds that: χ(R1, R2) ≤ 2π

3
√

3
· (R1+2R2)2

R2
2

.

3. An O (Δ log n + log2 n) (Δ + 1)-coloring algorithm

In this section, we introduce the distributed randomized coloring algorithm, which is shown as Algorithm 1. It is assumed 
that nodes can adjust the transmission power up to a constant factor. Every node v possesses a color list from which it 
chooses a color. Without loss of generality, we assume that all nodes’ color lists are {0, 1, . . . , n − 1}, where n is the estimate 
of the number of nodes.

The main idea of the algorithm is as follows. A set of leaders is first elected. These leaders will coordinate the color 
choosing processes of their neighbors that are within distance R . Specifically, each non-leader sends a message to report 
its existence to its leader. After receiving these messages from the non-leaders, the leader assigns each non-leader a non-
overlapping interval of timeslots for choosing its color and informing its neighboring nodes of the choice, which guarantees 
that any neighboring non-leaders dominated by the same leader will not choose the same color. In the coloring algorithm, 
the leader is elected by executing a Maximal Independent Set (MIS) algorithm. In particular, we show that the distributed 
MIS algorithm in [16] still works under the SINR model by carefully tuning the parameters. Due to asynchrony, when some 
nodes execute the MIS algorithm, other nodes may be carrying out other operations in the coloring algorithm. Here we 
show that under such an asynchronous circumstance, the MIS algorithm can still correctly output an independent set in 
any timeslot with high probability. The MIS algorithm is shown as Algorithm 2. Furthermore, the leader is elected in terms 
of 3R , i.e., any pair of leaders has distance larger than 3R . The purpose of doing this is to make sure that any two neigh-
boring non-leaders that are dominated by different leaders will not choose their colors at the same time. Combining with 
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the fact that any two neighboring non-leaders dominated by the same leader would not choose their colors simultaneously, 
it is guaranteed that any pair of neighboring nodes will not choose the same color. Thus the MIS algorithm is executed in 
terms of 3R . After satisfying a specified condition, a leader will quit the algorithm such that nodes within distance 3R that 
have not chosen their colors can start their coloring processes. The quit condition can guarantee that with high probability, 
when a leader quits the algorithm, all non-leaders dominated by it have chosen their colors.

In Algorithm 1, there are four states: nodes in state G are leaders; nodes in state C1 are non-leaders that are competing 
for the right to choose a color; nodes in state C2 are non-leaders that have chosen a color and are informing their neighbors 
of their choice; state S is for making sure that newly waken-up nodes will not disturb the coloring processes of nearby 
nodes. We also use several control messages to guarantee the correctness and efficiency of the coloring algorithm. The 
DoNotTransmit message is used by a leader to ask nodes within 3R to keep silence; nodes within distance 3R from the 
leader that received this message will join state S . The StartColoring message is used by a leader to inform its neighbors 
within R to join its cluster and start the coloring process. All its neighbors within distance R received this message will join 
state C1. The RequestColor message is for a non-leader in state C1 to inform its leader of its existence. The Grant message 
is used by a leader to prompt a non-leader in its cluster to choose a color; after receiving this message, the non-leader in 
question joins state C2. The Grant message also works as a control message to adjust non-leaders’ transmission probabilities. 
The Color message is used by a non-leader in state C2 to inform its neighbors of its choice. The StartTransmit message is 
used by a leader to remove the restriction on nodes within distance 3R caused by the DoNotTransmit message transmitted 
by it before. Furthermore, in Algorithm 1, we assign each leader a set Q to store the IDs of non-leaders that have sent 
a RequestColor message to the leader. We use the set T for a non-leader to store the colors that have been chosen by its 
neighbors.

In the coloring algorithm, nodes adopt different transmission powers when executing different operations. Generally 
speaking, nodes adopt the transmission power of P M = c · 3α NβRα when they execute the MIS algorithm and transmit 
a StartTransmit message in state G , while nodes adopt the transmission power of P C = cNβRα when they perform other 
operations. By the definition in Section 2, the transmission ranges of nodes are 3R and R for P M and P C , respectively. Next 
we discuss the algorithm in more details.

3.1. Description of Algorithm 1

After waking up, a node v will first wait for at most 2(μ1 +μ2) log n timeslots (both μ1 and μ2 are constants which will 
be defined later). During the process, if v received a DoNotTransmitu message, it enters state S and adds u to its forbidden 
set F v . Otherwise, it starts executing the MIS algorithm after waiting for 2(μ1 +μ2) log n timeslots. After executing the MIS 
algorithm (Algorithm 2), each node will either join state M meaning that it is a member of the computed independent 
set, or join state S . Here we must point out a difference of our MIS algorithm from that in [16] regarding state M. In 
our algorithm, when a node v joins state M, it first uses μ2 log n timeslots to wake up all nodes within distance 3R by 
transmitting a message with constant probability. Then v transmits a DoNotTransmitv message forcing all nodes within 
distance 3R to join state S . Having done this, v joins state G .

In the coloring algorithm, the leaders in state G first choose color 0 as its own color. Then they transmit a StartColoring
message bidding their neighbors within distance R to join state C1. While in state G , a node v adds each of its neigh-
bors that send a RequestColor message to v to a set Q v . If Q v is not empty, it deletes the first node u from Q v and 
transmits a Grantu message with constant probability for 2μ1 log n timeslots, which ensures that the Grant message can 
be received by all neighbors with high probability. As described later, this Grantu message has two functions: first, af-
ter receiving the message, u will start choosing its color; second, neighbors of v will adjust the transmission probability 
based on the reception of Grant messages. We assign two counters cv and bv to each node v in state G . cv is used to 
count the number of timeslots that v has not received any RequestColor message since the last one, while bv is for count-
ing the number of Grant messages that have been transmitted by v . These two counters are set in order to guarantee 
that with high probability, v will not quit the algorithm until all neighbors have been colored. Then if Q v is empty and 
cv > bv · 5μ1 log n + 3μ1 log2 n + μ1 log n, v quits the algorithm after transmitting a StartTransmitv message for μ2 logn
timeslots adopting power P M . By doing so, v removes its restriction on nodes within distance 3R caused by the mes-
sage DoNotTransmitv .

For each node u in state S , it will do nothing except listening. When u stays in state S , it adds the nodes that 
send DoNotTransmit messages to u into its forbidden set Fu , and it removes a node v from Fu if it receives a message 
StartTransmitv . Node u will not leave state S until Fu is empty or it receives a StartColoring message from a leader node v . 
For the first case, u starts executing the MIS algorithm. For the second case, it joins state C1 and starts competing for 
the right to choose a color. After joining state C1, node u starts transmitting a RequestColoru message with a small initial 
transmission probability. Then if u did not receive any Grant message and did not change its transmission probability for 
3μ1 logn timeslots, it doubles the transmission probability. While in state C1, if u receives a Grant message and the Grant
message is not for u, it halves the transmission probability. If the received Grant message is for u, u would join state C2. 
The transmission probability adjustment strategy guarantees that on the one hand, the sum of transmission probabilities 
in any local region of the network can be bounded with high probability, which helps bound the interference caused by 
simultaneously transmitting nodes; and on the other hand, each node u in C1 can send its RequestColoru message to the 
leader with high probability in O (Δ log n + log2 n) timeslots, such that the node will finally get the Grantu message from 
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Algorithm 1 (Δ + 1)-Coloring.

Initially, pv = 2−ω−1

n ; cv = 0;bv = 0; tv = 0; Q v = ∅; T v = ∅;ω = 6.4;
Upon node v wakes up
1: wait for 2(μ1 + μ2) logn timeslots
2: if Received DoNotTransmitu from node u then add u into F v ; state = S;
3: Else execute the MIS algorithm adopting transmission power P M end if

Message Received
1: if Received Colorw then delete the color in Colorw from its color list end if

Node v in state G
1: choose color 0;
2: for μ1 logn timeslots do transmit StartColoringv adopting power PC with probability 2−ω end for
3: if Q v is not empty then
4: bv = bv + 1;
5: for 2μ1 logn timeslots do delete the first node u from Q v and transmit Grantu adopting power PC with probability 2−ω ; cv = cv + 1 end for
6: else cv = cv + 1 end if
7: if Q v is empty and cv > bv · 5μ1 log n + 3μ1 log2 n + μ1 logn then
8: for μ2 logn timeslots do transmit StartTransmitv adopting power P M with probability 2−ω end for
9: quit

10: end if
Message Received
1: if Received RequestColoru then add u into Q v ; cv = 0 end if

Node v in state S
1: if F v is empty then execute the MIS algorithm with power P M else listen end if

Message Received
1: if Received DoNotTransmitw from node w then add w into F v end if
2: if Received Colorw then delete the color in Colorw from its color list end if
3: if Received StartTransmitw from node w then delete w from F v end if
4: if Received StartColoringw from node w then state = C1 end if

Node v in state C1

1: tv = tv + 1
2: if tv > 3μ1 log n then pv = 2pv ; tv = 0 end if
3: transmit RequestColorv adopting power PC with probability pv ;

Message Received
1: if received Grantv then state = C2 end if
2: if received Grantw for some node w that has not been received before then pv = pv/2; tv = 0 end if
3: if Received Colorw then delete the color in Colorw from its color list end if

Node v in state C2

1: choose the first available color from its color list;
2: for μ1 logn timeslots do transmit a message Colorv containing its color adopting power PC with probability 2−ω end for
3: quit;

the leader. After joining C2, u chooses the first color remaining in its color list except color 0 and transmits a Coloru mes-
sage with constant probability for μ1 log n timeslots. This ensures that it can inform its neighbors of its choice with high 
probability. After waking up, each node will delete the color in the received Color message from its color list; hence it will 
not choose a color that has been chosen by its neighbors.

In order to make sure Algorithm 1 is correct with high probability, we assign μ1 = 2ω+7 · 43·21−ω ·χ(R I +R,0.5R)/(1 − 1/ρ), 
where ρ and R I (Eq. (3) below) are constants defined in the following analysis. The values of ω and μ2 are determined by 
the MIS algorithm, which can be found in the analysis of the MIS algorithm in Appendix A.

3.2. Description of the MIS algorithm

The MIS algorithm is given as Algorithm 2, which is the same as that in [16] except for the operations in the last 
state M. The basic idea of the algorithm is that through competition in two stages, A and B, the number of competitors is 
reduced until there is only one active node left in the required range. Specifically, after the first competition stage (A), the 
number of neighboring nodes that will participate in the second stage is at most O (log n). In the second stage, candidates 
use a counter to record the time passed since their first transmission or the last reception of a sufficiently close neighbor’s 
counter. When a node’s counter exceeds a specified threshold, the node joins the MIS and makes all its neighbors stop the 
competition via a control message. For further details, please refer to [16]. In order to compute an MIS in terms of Rmis , the 
transmission power of the nodes is assigned as Pmis = cNβRα

mis . In the coloring algorithm, Rmis should be 3R . Based on a 
sufficient condition for successful transmissions under the SINR model, we can show that, as long as the sum of transmission 
probabilities of nodes in any local region executing other algorithms can be bounded by a constant in any timeslot, each 
node can correctly decide whether to join the MIS or state S in O (log2 n) timeslots. The analysis is similar to that in [16], 
which we include in Appendix A for the sake of completeness. Furthermore, the values of the constant parameters used 
in Algorithm 2 are given in the analysis of the MIS algorithm in Appendix A.
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Algorithm 2 MIS.
Upon node v begins to execute the algorithm:

1: step = count = 0; state = W; qv = 2−ω−1

n ; qB = τ
2ω log n ; qC = 2−ω; Pmis = cNβRα

mis

Node v in state W
1: while state = W do
2: step := step + 1;
3: if step ≥ 4θδ log2 n + 2μ2 logn then state := A; step := 0 end if

Message Received
4: if mA received then step := 0 end if
5: if DoNotTransmitu received then add u into F v and state = S end if

node v in state A
1: while state := A do
2: step := step + 1
3: if step ≥ λ log n then qv = 2qv ; step := 0 end if
4: s :=

{
1, with probability qv

0, with probability 1 − qv

5: if s = 1 then transmit mA with power Pmis; state := B; step := 0 end if
Message Received
6: if mA received then state := W ; step := 0 end if
7: if DoNotTransmitu received then add u into F v and state = S end if

node v in state B
1: while state = B do
2: step := setp + 1
3: if step > 2μ2 log n then count := count + 1; transmit mB (count) with probability qB and transmission power Pmis end if
4: if count ≥ δ log2 n then state := M end if

Message Received
5: if mB (count′) received then
6: if |count − count′| ≤ 2μ2 logn then count := 0; step := 0 end if
7: end if
8: if DoNotTransmitu received then add u into F v and state = S end if

node v in state M
1: for μ2 logn time-slots do transmit a waking-up message with probability qC and transmission power Pmis end for
2: for μ2 logn time-slots do transmit a message DoNotTransmitv with probability qC and transmission power Pmis end for
3: state = G;

3.3. Analysis

In this section, we show that with high probability, each node can correctly get a color after executing Algorithm 1
for O (Δ log n + log2 n) timeslots, and the total number of colors used is at most Δ + 1. We first give some definitions 
and notations that will be used in the subsequent analysis. A new parameter R I is defined as follows, for bounding the 
interference.

R I = R

(
27−ω3α+1

√
3πρβ · 1

1 − 1/c
· α − 1

α − 2

)1/(α−2)

, (3)

where ρ is a constant larger than 1. We choose ρ such that R I > 2R . Furthermore, we denote Ti , Di and Ii as the disks 
centered at node i with radii R , R

2 and R I , respectively. By Er
i we denote the disk centered at node i with radius r. We also 

use Ti , Di , Ii and Er
i to denote the set of nodes in Ti , Di , Ii and Er

i , respectively.
Before analyzing Algorithm 1, we first give a lemma on the time complexity and the correctness of the MIS algorithm, 

the proof of which is in Appendix A.

Lemma 2. With probability 1 − O (n−3), every node v ∈ V decides whether it should join the computed independent set or state S
after executing the MIS algorithm for at most O (log2 n) timeslots. Furthermore, with probability at least 1 − O (n−3), in any timeslot t, 
the independent set computed by the MIS algorithm is correct.

The following property is also proved to be correct with probability at least 1 − O (n−3) in the analysis of the MIS 
algorithm in Appendix A.

Property 1. For any disk Di and in any timeslot t throughout the execution of the algorithm, the sum of transmission probabilities of 
nodes that are executing the MIS algorithm is at most 3 · 2−ω .

In order to bound the interference, we present Property 2 which can be proved to hold with probability at least 
1 − O (n−1) by Lemma 8.



D. Yu et al. / Theoretical Computer Science 553 (2014) 37–56 43
Property 2. For any disk Di and in any timeslot t throughout the execution of the algorithm,

(i) there is at most one node in state C2;
(ii) the sum of transmission probabilities of nodes in state C1 is at most 

∑
u∈C1

≤ 2−ω ;
(iii) there is at most one node in state G .

Based on Properties 1, 2 and the transmission probability in each state, we can bound the sum of transmission probabil-
ities as follows.

Lemma 3. Assume that Property 1 and Property 2 hold. For any disk Di and in any timeslot t throughout the execution of the algorithm, 
the sum of transmission probabilities can be bounded as 

∑
v∈Di

pv ≤ 3 · 21−ω .

In the following Lemma 4, we give a sufficient condition for a successful transmission.

Lemma 4. Assume that Property 1 and Property 2 hold. If node v is the only sending node in E R I+R
v , with probability 1 − 1

ρ , the 
message sent by v will be received successfully by all nodes in T v .

Proof. We first bound the interference at a receiver u ∈ T v caused by nodes outside Iu .

Claim. For a node u ∈ T v , the probabilistic interference caused by nodes outside Iu can be bounded as: Ψ w /∈Iu
u ≤ (1−1/c)PC

ρβRα .

Proof. By Lemma 1 and Lemma 3, the sum of transmission probabilities in each Ti can be bounded as follows:

∑
w∈Ti

pw ≤ 2π

3
√

3
· (R + 2 · R

2 )2

( R
2 )2

·
∑

w∈D j

pv ≤ 64π√
3 · 2ω

. (4)

Let Rl = {w ∈ V : lR I ≤ d(u, w) ≤ (l + 1)R I } and I be a maximum independent set in Rl . Clearly, I is also a dominating 
set in Rl . Thus 

∑
i∈I Ti covers all nodes in Rl . Furthermore, all disks Di for every i ∈ I are mutually disjoint because 

of the independence of I . Note that all these disks are located inside the extended region R+
l = {w ∈ V : lR I − R

2 ≤
d(u, w) ≤ (l + 1)R I + R

2 }. Thus |I| ≤ Area(R+
l )/Area(disk(R/2)). Then the probabilistic interference caused by nodes inside 

Rl is bounded as follows:

Ψ
Rl

u =
∑
w∈Rl

Ψ w
u ≤ Area(R+

l )

Area(disk(R/2))
· max

i∈I

{ ∑
w∈Ti∩Rl

P M · pw

(lR I )α

}

≤ Area(R+
l )

Area(disk(R/2))
· 64π√

3 · 2ω
· P M

(lR I )α

= π(((l + 1)R I + R/2)2 − (lR I − R/2)2)

π(R/2)2
· 64π√

3 · 2ω
· P M

(lR I )α

= 4(2l + 1)(R2
I + R I R)

R2
· 64π√

3 · 2ω
· P M

(lR I)α

≤ 1

lα−1
· 9π · 27−ω P M R2

I√
3Rα

I R2
. (5)

The second inequality is by Inequality (4) and the last inequality is by R < R I
2 . Then

Ψ
w /∈Iu

u =
∞∑

l=1

Ψ
Rl

u ≤ 9π · 27−ω P M R2
I√

3Rα
I R2

·
∞∑

l=1

1

lα−1

≤ 9π · 27−ω P M R2
I√

3Rα
I R2

· α − 1

α − 2

≤ (1 − 1/c)P C

ρβRα
. � (6)

By the Markov inequality, with probability at least 1 − 1
ρ , the interference at some node u caused by nodes outside Iu

cannot exceed ρΨ
w /∈Iu

u . Then if v is the only sending node in E R I +R
v , i.e., v is the only sending node in Iu for every u ∈ T v , 

by the above Claim, with probability at least 1 − 1 , the SINR at node u can be bounded as follows:
ρ
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PC
d(u,v)α

N + ρΨ
w /∈Iu

u

≥
PC
Rα

PC
cβRα + (1−1/c)PC

βRα

≥ β (7)

Thus u can successfully receive the message sent from v according to the SINR constraint (1), which concludes the 
proof. �

Based on the sufficient condition for a successful transmission in Lemma 4, Lemma 5 in the following lists the successful 
transmissions of messages used in the algorithm in certain given timeslots with high probability. Then Lemma 6 states that, 
with high probability, a leader will not quit the algorithm until all its neighbors have been colored.

Lemma 5. Assume that Property 1 and Property 2 hold. Then with probability at least 1 − 1
n4 , the following results are correct:

(i) After entering state G , a node v can successfully send a StartColoring message to all its neighbors in μ1 log n timeslots.
(ii) A node v in state G can successfully send a Grant message to all its neighbors in μ1 log n timeslots.

(iii) A node v in state G can successfully send a StartTransmit message to all nodes within distance 3R in μ2 log n timeslots.
(iv) A node v in state C2 , after choosing a color, can successfully send a Colorv message to all neighbors in μ1 log n timeslots.

Proof. We prove only (i) here. (ii), (iii), (iv) can be proved in a manner very much similar to (i).

Proof of (i): As shown in Lemma 4, if v is the only sending node in E R I +R
v , with probability 1 − 1

ρ , the StartColoring
message sent by v can be received successfully by all nodes in T v . Let P1 denote the event that v is the only sending node 
in E R I +R

v , then

P1 = 2−ω
∏

u∈E
R I +R
v \{v}

(1 − pu)

≥ 2−ω
∏

u∈E
R I +R
v

(1 − pu)

≥ 2−ω ·
(

1

4

)∑
u∈E

R I +R
v

pu

≥ 2−ω ·
(

1

4

)3·21−ω·χ(R I +R,0.5R)

(8)

The last inequality is by Lemma 1 and Lemma 3. Then the probability Pno that v fails to transmit the StartColoring
message to all nodes in T v is at most

Pno ≤
(

1 − (1 − 1/ρ)2−ω ·
(

1

4

)3·21−ω·χ(R I +R,0.5R))μ1 log n

≤ e−(1−1/ρ)2−ωμ1 log n·( 1
4 )3·21−ω ·χ(R I +R,0.5R) ∈ n−4. (9)

Lemma 6. Assume that Property 1 and Property 2 hold. Then with probability at least 1 − 1
n4 , a node v in state G will not quit the 

algorithm until all its neighbors have been colored.

Proof. Assume that v quits the algorithm in timeslot t when there are still d > 0 neighbors in state C1. Denote the set of 
these d nodes as T . We further assume that v forces dv neighbors join state C1 after transmitting the StartColoringv message. 
Thus before time t , v has transmitted (dv −d) Grant messages. Then by Algorithm 1, v has not received a RequestColor mes-
sage since the timeslot t − ((dv −d) · 5μ1 log n + 3μ1 log2 n +μ1 log n). Next we show that during the interval [t − ((dv −d) ·
5μ1 logn + 3μ1 log2 n + μ1 log n), t), there is at least one node that can successfully transmit a RequestColor mes-
sage to v with high probability. Then v will not quit the algorithm in timeslot t . This contradiction completes the 
proof.

By Algorithm 1, the initial transmission probability of each node in T is assigned as 2−ω−1

n , and each node in T will either 
double its transmission probability every 3μ1 log n timeslots, or receive a Grant message from v and halve the transmission 
probability. Because v received the last RequestColor message before the timeslot t − ((dv − d) · 5μ1 log n + 3μ1 log2 n +
μ1 log n) and v transmits each Grant message for 2μ1 log n timeslots, v has completed the transmission of (dv − d) Grant
messages by the timeslot t − ((dv − d) · 5μ1 log n + 3μ1 log2 n + μ1 log n) + 2(dv − d)μ1 log n − 1. So in timeslot t∗ = t −
((dv − d) · 3μ1 log n + 3μ1 log2 n + μ1 log n), each node in T has transmission probability at least 2−ω−1−dv +d

n . From t∗ , each 
node in T doubles its transmission probability every 3μ1 log n timeslots. In timeslot t − μ1 log n, each node in T has a 
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constant transmission probability of 2−ω−1. Then using a similar argument as in the proof of Lemma 5, we can get that 
with probability at least 1 − n−4, there is at least one node in T that can successfully transmit a RequestColor message to v
by the timeslot t − 1. �
Lemma 7. Assume Property 1 and Property 2 hold. A node v will correctly get a color after waking up for O (Δ log n + log2 n) timeslots 
with probability 1 − O (n−2).

Proof. After waking up for at most 2(μ1 + μ2) log n timeslots, v enters state S or starts executing the MIS algorithm. If v
takes part in the MIS algorithm, by Lemma 2, with probability 1 − O (n−3), it will correctly enter state S or state G after 
O (log2 n) timeslots. Next we bound the time v stays in states C1, C2 and G .

We first bound the time that node v would stay in state C1. Assume that u is the leader of v . By Algorithm 1, during 
every 3μ1 log n timeslots, either v receives at least one new Grant message from u, or it doubles its transmission probability. 
If the received Grant message is not for v , it means that a node in N(u) will join state C2. By Lemma 2, with probability 
1 − O (n−3), when u stays in state M, there would not be another node in E3R

u that is in state M. By the MIS algorithm 
and Lemma 12 in Appendix A, with probability 1 − O (n−4), u can force all other nodes in E3R

u to join state S and not to 
continue competing for joining state M until receiving a StartTransmitu message from u. Thus, with probability 1 − O (n−3), 
there are no other nodes in E3R

u joining state G when u stays in state G . Additionally, only nodes in N(u) and E3R
u \ E2R

u
may join state C1 by receiving a StartColoring message before u quits. Thus all nodes in E2R

u \ N(u) will stay in state S
while u stays in state G . Then after at most (2(Δ − 1) + log n)3μ1 log n timeslots, either v receives a Grantv message and 
joins state C2, or v has transmission probability of 2−1−ω , since v can receive at most Δ − 1 Grant messages not for 
v and each of which would halve v ’s transmission probability. Then by a similar argument to that in Lemma 5, v will 
successfully transmit a RequestColor message to u in 2μ1 log n timeslots with probability 1 −n−4. Furthermore, by Lemma 6, 
with probability 1 − n−4, u did not quit the algorithm before receiving the RequestColor message from v . After successfully 
transmitting message RequestColorv to u, by Algorithm 1 and Lemma 5(ii), with probability 1 − n−4, v will receive a Grantv

message from u in at most 2μ1Δ log n timeslots. So each node will stay in state C1 for at most 8μ1Δ log n + 3μ1 log2 n
timeslots with probability at least 1 − O (n−3). By Algorithm 1, it is easy to see that each node stays in state C2 for μ1 log n
timeslots.

Next we bound the time that a node v stays in state G . By Lemma 5(i), after entering state G for μ1 log n timeslots, 
v will successfully send a StartColoring message to all its neighbors with probability 1 − n−4. Then all nodes in N(v)

without choosing their colors will enter state C1. As shown above, with probability at least (1 − O (n−3))Δ ∈ 1 − O (n−2), 
each node in N(v) will join state C2 after joining state C1 for at most O (Δ log n + log2 n) timeslots. Then by the algorithm, 
v will quit after waiting additionally for O (Δ log n + log2 n) timeslots by noticing that bv is at most Δ. So with probability 
at least 1 − O (n−2), the total time that v stays in state G is at most O (Δ log n + log2 n).

Next we bound the time from when v wakes up to its next entry to state C1 or G . By the algorithm, after waking up 
for at most 2(μ1 + μ2) log n timeslots, either v starts executing the MIS algorithm or there comes a node in E3R

v joining 
state G . If v starts executing the MIS algorithm, by Lemma 2, with probability at least 1 − O (n−3), there will be a node in 
E3R

v joining state G . So after waking up for at most O (log2 n) timeslots, a node in E3R
v will join state G . From then on, by 

Algorithm 1 and the analysis above, with probability at least 1 − O (n−2), after every O (Δ logn + log2 n) timeslots, there will 
be at least one node u in E3R

v joining state G and all nodes in N[u] would quit the algorithm. We can see that all nodes 
joining state G are independent in terms of R . So there are only a constant number of nodes in E3R

v being able to join 
state G , denoted by ĉ. Then after at most ĉ O (Δ log n + log2 n) timeslots, there will be a node in N[v] joining state G . Thus, 
with probability at least 1 − O (n−2), the total time that v spends before entering state C1 or G after waking up is at most 
O (Δ log n + log2 n).

Combining all the above, with probability 1 − O (n−2), every node stays in the algorithm for at most O (Δ log n + log2 n)

timeslots. Finally, we prove that each node can correctly get a color with probability at least 1 − O (n−2). As shown before, 
with probability 1 − O (n−3), when a node v is in state G , there cannot be another node in E3R

v being in state G . By Lemma 6, 
with probability 1 − O (n−4), v will not leave state G until all its neighbors are colored. Thus, with probability 1 − O (n−2), 
all nodes with color 0, i.e., all nodes used to join state G , are independent in terms of R . If v chooses another color, by 
the algorithm, it will choose an available color and broadcast the chosen color to its neighbors as soon as it receives the 
Grant message from its leader. By Property 2(i), there is not a node in N(v) staying in state C2 when v is in state C2. By 
Lemma 5(iv), when staying in state C2, v can successfully send its color to its neighbors with probability 1 − n−4. Note also 
that in the coloring algorithm, by Lemma 12, with probability 1 − n−4, v has been woken up before the first node in its 
neighborhood starts choosing a color. Thus when v chooses a color in state C2, with probability 1 − n−3, v has received 
all the colors chosen by its neighbors and there are no other nodes in N(v) choosing a color at the same time. So v will 
correctly select a color with probability 1 − O (n−2). �
Lemma 8. Property 2 holds with probability 1 − O (n−1).

Proof. We will show that with high probability, none of (i) (ii) and (iii) is the first property to be violated.
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Claim. With probability at least 1 − n−1, Property 2(i) is not the first property to be violated.

Proof. Assume that Property 2(i) is the first one to be violated, and Di is the first disk violating it in timeslot t . We further 
assume that node v ∈ Di joins state C2 in timeslot t and another node u also stays in state C2 in timeslot t . Assume that w
is u’s leader. We can still assume that all properties are correct before t . By Algorithm 1, w starts transmitting Grantu after 
the timeslot t − 3μ1 log n, since w transmits Grantu for 2μ1 log n timeslots and u stays in state C2 for μ1 log n timeslots 
after receiving Grantu . Assume that Grantu is the i-th Grant message transmitted by w . Then the message RequestColoru was 
received by w after the timeslot t − (i −1)2μ1 log n −3μ1 log n, since w transmits a Grant message every 2μ1 log n timeslots 
as long as Q w is not empty. By Algorithm 1, w waits for 5iμ1 log n + 3μ1 log2 n + μ1 log n timeslots to decide whether it 
quits the algorithm after receiving RequestColoru . So w will not quit by timeslot t + Ω(log2 n). Additionally, we can assume 
that all properties are correct before t . By Property 5 and Lemma 12 in Appendix A, after w joins state M, it is the only 
node in E3R

w staying in state M and it will force all nodes in E3R
w to join state S with probability 1 − O (n−4). By Algorithm 1, 

all these nodes will not try to compete for joining state G until they receive a StartTransmitw from w . Then when w stays 
in state G , with probability 1 − O (n−4), there cannot be another node in E3R

w staying in state G . Consequently, w must also 
be v ’s leader with probability 1 − O (n−4). Furthermore, w must have started transmitting Grantv before timeslot t . Hence, 
by Algorithm 1, w must have started transmitting Grantu by timeslot t − 2μ1 log n. Then by Lemma 5(ii), u has received 
Grantu from w by t −μ1 log n −1 with probability at least 1 −n−4. Because u stays in state C2 for μ1 log n timeslots, u must 
have quit the algorithm before t with probability at least 1 −n−4. By this contradiction, Property 2(i) is not the first violated 
property when u stays in state C2 with probability 1 − n−3. Then for Di , Property 2(i) is not the first violated one when 
there is a node in Di staying in state C2 with probability 1 − n−2. And the lemma is correct for every disk with probability 
at least 1 − n−1. �

Claim. With probability at least 1 − n−1, Property 2(ii) is not the first property to be violated.

Proof. Assume that Property 2(ii) is the first property to be violated, and that Di is the first disk violating the property 
in timeslot t∗ . Before timeslot t∗ , we can still assume that all properties hold. Assume that v is the leader of some nodes 
of Di that stays in C1. Denote Cv1(t) as the set of nodes in N(v) that are in state C1 in timeslot t . By Property 5 in 
Appendix A, we know that in any timeslot before t∗ , all nodes in state M constitute an independent set in terms of 3R . 
By Algorithm 1 and Algorithm MIS, each node in state M will join state G after transmitting a DoNotTransmit message. By 
Lemma 12 in Appendix A, the DoNotTransmitv message sent by v can be received by all nodes in E3R

v with probability at 
least 1 − O (n−4). All these nodes will not restart competing for joining state G until they receive a StartTransmitv message 
from v . Thus, with probability 1 − O (n−4), there is not another node in E3R

v staying state G when v stays in G . Additionally, 
because all properties still hold before t∗ and there are some neighbors of v staying in state C1 by t∗ , by Lemma 6, v will 
not leave the state G by timeslot t∗ − 1 with probability 1 − O (n−4). So v does not start transmitting the StartTransmitv

message before timeslot t∗ − μ2 log n − 1. Also, noticing that each node in E3R
v needs Ω(log2 n) timeslots to join state G by 

executing Algorithm MIS, there will be no other nodes in E3R
v joining state G by timeslot t∗ +Ω(log2 n). Thus in timeslot t∗ , 

with probability at least 1 − O (n−4), all nodes in Di that are in state C1 have the same leader v . Next we prove a slightly 
stronger result: with probability at least 1 − O (n−2), in any timeslot t , the sum of transmission probabilities of all nodes in 
Cv1(t) is at most 2−ω . Then during v ’s stay in state G , there exists no such a timeslot t∗ for Di with probability at least 
1 − O (n−2).

Otherwise, assume that in timeslot t , 
∑

u∈C v1(t) pu > 2−ω . Denote I = [t −3μ1 log n, t). By Algorithm 1, every node in Cv1

doubles its transmission probability at most once during the interval. Furthermore, some nodes in state S may join state 
C1 during the interval. However, the sum of transmission probabilities of newly joined nodes is at most 2−ω−1

n · n = 2−ω−1. 
Hence, it holds that in timeslot t − 3μ1 log n, the sum of transmission probabilities is at least 2−2−ω . Consequently, before 
any violation timeslot, there is an interval I such that 2−2−ω ≤ ∑

u∈C v1
pu < 2−ω . Because Property 2(ii) is the first violated 

one, we can still assume that other properties are correct. So during the interval I , for any disk D j , j �= i, 
∑

v∈D j
pv ≤

3 · 21−ω .
Next we show that with probability at least 1 − n−4, v will successfully send a new Grant message to all its neighbors 

during the interval (t − 3μ1 log n, t). Clearly, if all nodes in C v1(t − 3μ1 log n) join state C2 by t − 1, then 
∑

u∈C v1(t) pu is 
at most the sum of transmission probabilities of newly joined nodes. As discussed above, it is at most 2−ω−1. So in the 
following, it can be assumed that not all nodes in C v1(t − 3μ1 logn) have joined state C2 by time t − 1.

We claim that at least one node in C v1 can send a message RequestColor to v during the interval I1 = [t − 3μ1 log n,

t − 2μ1 log n − 1]. Using a similar argument as in Lemma 4, if a node w ∈ N(v) is the only transmitting node in E R I
v , then v

can receive the message from w successfully with probability at least 1 − 1/ρ . Denote D as a minimum cover of disks with 
radius R for E R I

v . Then in any timeslot during I1, the probability Ponly that there is only one node w ∈ C v1 transmitting is
2
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Ponly =
∑

w∈C v1

pw

∏
w ′∈E

R I
u \{v}

(1 − pw ′)

≥
∑

w∈C v1

pw

∏
D j∈D

∏
w ′∈D j

(1 − pw ′)

≥
∑

w∈C v1

pw

∏
D j∈D

(
1

4

)∑
w′∈D j

pw′

≥
∑

w∈C v1

pw

(
1

4

)χ(R I ,R/2)
∑

w′∈D j
pw′

≥ 2−ω−2 ·
(

1

4

)χ(R I ,R/2)·3·21−ω

. (10)

The last inequality is by Lemma 3. So during I1, the probability P T that there is not any node successfully transmitting 
a RequestColor message to v is at most

P T ≤
(

1 − 1

2

(
1 − 1

ρ

)
· 2−ω−2

(
1

4

)χ(R I ,R/2)·3·21−ω)μ1 log n

∈ O
(
n−4). (11)

Thus with probability at least 1 − O (n−4), v receives a RequestColor message during the interval I1. Denote t1 as the 
first timeslot when v starts broadcasting a new Grant message after t − 3μ1 log n. Because v broadcasts a Grant message 
for 2μ1 logn timeslots and v receives a RequestColor message by t − 2μ1 log n, such a timeslot exists in the interval (t −
3μ1 log n, t − μ1 log n] with probability at least 1 − n−4. Then by Lemma 5(ii), during the interval (t − 3μ1 log n, t − 1], with 
probability at least 1 − n−4, all nodes in Cv1 receive a new Grantw message and halve their transmission probabilities, 
except for w , which enters state C2. Denote t2 as the first timeslot when all nodes in C v1 have received the new Grant
message. By Algorithm 1, all these nodes will not increase the transmission probability until t2 + 3μ1 log n − (t2 − t1) =
t1 + 3μ1 log n > t . Note that before halving the transmission probability, 

∑
u∈C v1

pu ≤ 2−ω . So after halving the transmission 
probability, the sum is at most 2−1−ω for these nodes. Also notice that all newly joined nodes have transmission probability 
sum at most 2−1−ω . So during the interval [t1, t1 + 3μ1 logn), 

∑
u∈C v1

pu ≤ 2−1−ω + 2−1−ω = 2−ω . Thus with probability at 
least 1 − O (n−4), Di will not violate Property 2(ii) in timeslot t .

From the above, we know that in the first O (n2) timeslots when v stays in state G , with probability 1 − O (n−2), there 
is not a timeslot such that Property 2(ii) is the first one to be violated in Di . By Lemma 7, v stays in state G for at most 
O (Δ log n + log2 n) timeslots with probability at least 1 − O (n−2). Thus when v stays in state G , there is not a violation 
timeslot for Di with probability at least 1 − O (n−2). Additionally, when there are nodes in Di which are in state C1, it 

means that there is a node staying in E
3R
2

i in state G . From Algorithm 1, we know that all nodes that joined state G during 

executing the algorithm are independent in terms of R . Hence, there are at most a constant number of nodes in E
3R
2

i which 
can join state G . Thus Di is not the first disk violating Property 2(ii) with probability 1 − O (n−2). Then Property 2(ii) is not 
the first violated property for all disks with probability at least 1 − O (n−1). �
Claim. With probability at least 1 − O (n−2), Property 2(iii) is not the first property to be violated.

Proof. Assume that (iii) is the first property to be violated, and Di violates it in timeslot t for the first time. Then there 
is a new node u in Di joining state G in timeslot t , while there has been another node v in Di staying in state G in 
timeslot t . Before t , we can still assume that all properties are correct, since Property 2(iii) is the first one to be violated. 
By Property 5 in Appendix A, all nodes in state M constitute an independent set in any timeslot before t∗ . Also, by 
Lemma 12 in Appendix A, after v joins state M, it can successfully transmit a DoNotTransmitv message to all nodes in 
E3R

v with probability 1 − O (n−4). After that, by Algorithm 1, each node in E3R
v will not try to join state G until it receives 

StartTransmitv from v . By Algorithm 1, v has not started transmitting StartTransmitv by the timeslot t − μ2 log n, since 
v still stays in state G in timeslot t . Also notice that each node needs Ω(log2 n) timeslots to join state G by executing 
Algorithm MIS. So there will not exist another node in E3R

v joining state G by timeslot t + Ω(log2 n) with probability 
1 − O (n−4). This contradicts the fact that u joins state G in timeslot t . Thus when v stays in state G , there is not such a 
violation timeslot t with probability 1 − O (n−4). Clearly, each node can join state G for at most once. Then with probability 
1 − O (n−3), there is not a timeslot such that Property 2(iii) is first violated in Di . This is true for every disk with probability 
1 − O (n−2). �
Theorem 1. After waking up for O (Δ logn + log2 n) timeslots, every node v will correctly get a color from {0, 1, . . . , Δv} with prob-
ability at least 1 − O (n−1).
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Proof. Since Properties 1 and 2 have been shown to be correct with probability 1 − O (n−1), by Lemma 7, with probability 
at least 1 − O (n−1), every node v will correctly choose a color after executing Algorithm 1 for at most O (Δ log n + log2 n)

timeslots. Furthermore, when v chooses a color, either v chooses color 0, or it chooses the first available color in its color 
list by Algorithm 1. Because v receives at most Δv − 1 colors from its neighbors (one of its neighbors is a leader), v can 
still choose a color from {0, 1, . . . , Δv}. �
4. Distributed (Δ + 1)-coloring for uniform power assignment

In some multi-hop radio networks, nodes may not be able to adjust their transmission powers. For these networks, 
assuming that nodes adopt uniform power assignment, i.e., all nodes transmit with the same power level, we can obtain a 
distributed (Δ + 1)-coloring algorithm by iteratively carrying out the MIS algorithm. We only need to change the operations 
of the MIS algorithm in the last state M. Each node in state M first chooses an available color that has not been chosen by 
its neighbors, and then transmits a message mC containing its choice to its neighbors for μ1 log n timeslots with constant 
probability after waking up all its neighbors. Then all the nodes having received the message mC delete the received color 
from their color list and resume executing the algorithm. By Lemma 2, we know that with high probability, in any timeslot, 
all nodes in state M form an independent set. Furthermore, similar to the proof of Lemma 5, we can show that with high 
probability, each node can successfully transmit its choice to its neighbors before any neighbor starts choosing a color. These 
two facts ensure the correctness of the computed coloring. We assume that all nodes transmit with power P = cNβRα . Then 
we can get the following lemma, based on which the theorem on the correctness and the time complexity of the proposed 
coloring algorithm can be proved.

Lemma 9. With probability at least 1 − O (n−2), a node v will correctly get a color in O (Δ2R
v log2 n) timeslots after starting executing 

the algorithm, where Δ2R
v is the number of nodes in E2R

v . Furthermore, v will choose a color from {0, 1, · · · , Δv}.

Proof. Using a similar argument to that in the analysis of the MIS algorithm (in Appendix A), we can get that after a node 
v starts or restarts the algorithm for O (log2 n) timeslots, there will be a node in E2R

v joining state M with probability 
1 − O (n−3). Thus after at most O (Δ2R

v log2 n) timeslots, v will join state M with probability at least 1 − O (n−2). Further-
more, in a manner similar to proving Lemma 5, we can show that all neighbors of v which have chosen colors before v
have informed v of their choices with probability 1 − O (n−3). And by Lemma 2, when v is in state M, with probability 
1 − O (n−3), none of v ’s neighbors stay in state M simultaneously. Thus v will correctly choose a color different from all 
its neighbors with probability at least 1 − O (n−3). All together, we know that with probability at least 1 − O (n−2), v will 
correctly get a color in O (Δ2R

v log2 n) timeslots after starting executing the algorithm. Finally, since there are Δv nodes in 
v ’s neighborhood, v has deleted at most Δv different colors from its color list when v chooses a color. Thus v can choose 
a color from {0, 1, · · · , Δv}. �
Theorem 2. If nodes adopt the uniform power assignment, there exists a distributed algorithm such that with probability at least 
1 − O (n−1), each node will correctly get a color after executing the algorithm for O (Δ log2 n) timeslots. Furthermore, the total number 
of colors used is at most Δ + 1.

Proof. By Lemma 9, a node v , with probability at least 1 − O (n−2), will correctly get a color in O (Δ2R
v log2 n) times-

lots after starting executing the algorithm, where Δ2R
v is the number of nodes in E2R

v . Furthermore, v will choose a 
color from {0, 1, · · · , Δv}. Thus the theorem is correct for all nodes with probability 1 − O (n−1) by noting that Δ2R

v ≤
χ(2R, R)Δ ∈ O (Δ).

5. Conclusion

In this paper, we study the distributed (Δ + 1)-coloring problem in unstructured multi-hop radio networks under 
the SINR interference model. Without relying on any knowledge about the neighborhood, our proposed new distributed 
(Δ + 1)-coloring algorithm has time complexity O (Δ log n + log2 n). Our result even matches the O (Δ)-coloring algorithm 
in [4] for large Δ; their algorithm needs a prior estimate of Δ. For networks in which the nodes cannot adjust their trans-
mission powers, we give a (Δ + 1)-coloring algorithm with time complexity O (Δ log2 n). Furthermore, by carefully tuning 
the parameters, we show that the maximal independent set algorithm in [16] still works under the SINR constraint, which 
is of independent interest.
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Appendix A. Analysis of the MIS algorithm

In this appendix, we show that in an asynchronous circumstance, as long as the sum of transmission probabilities of 
nodes in any local region that are executing other algorithms can be upper bounded by a constant, the MIS algorithm 
given in Algorithm 2 is still correct and have the same asymptotically time complexity as that in [16] under the SINR 
model. Here we assume that in any disc with radius Rmis

2 , the sum of transmission probabilities of nodes that are executing 
other algorithms is at most φ, where φ is a constant. By Property 2 and Lemma 1, in the coloring algorithm, φ is at most 
3 · 2−ω · χ( 3R

2 , R
2 ) based on the setting Rmis = 3R .

By the assigned transmission power Pmis = cNβRα
mis and the definition of the transmission range in Section 2, we can get 

that each node’s transmission range is Rmis . Before the analysis, we define a parameter R M as follows whose functionality 
is the same as R I defined in Eq. (3).

R M = Rmis

(
26−ω

√
3πηβ

(
3 · 2−ω + φ

) · 1

1 − 1/c
· α − 1

α − 2

)1/(α−2)

, (12)

where η is chosen such that R M > 2Rmis . Furthermore, in this section, the notations Ti , Di and Ii denote the disks centered 
at node i with radius Rmis , Rmis

2 and R M , respectively. And Er
i still denotes the disk centered at node i with radius r. By Ai

we denote the set of nodes in Di which are in state A. Bi and Wi are defined similarly.
In order to ensure that the MIS algorithm in Algorithm 2 is correct with high probability, We define the constant param-

eters as follows:

ω = 6.4, μ2 = 2ω+2 · 4(3·2−ω+φ)·χ(RM+Rmis,0.5Rmis)

1 − 1/η
, δ = 720eμ2 · 4(3·2−ω+φ)·χ(RM+2Rmis,0.5Rmis)

1 − 1/η
,

λ = 5 · 2ω+2 · 4(3·2−ω+φ)(χ(RM+Rmis,0.5Rmis)+1)

1 − 1
η

, κ = 180e · 4(3·2−ω+φ)·χ(RM+Rmis,0.5Rmis)

1 − 1/η
, τ = κ−1.

Furthermore, θ is the size of a maximum independent set in terms of R in a disk with radius 2R . By Lemma 1, we can get 
that θ ≤ 25.

In the sequel, we will show the following three properties are correct with high probability. Property 3 states that the 
sum of transmitting probabilities by nodes in state A is bounded by a constant which helps to bound the probabilistic 
interference at some node. Property 4 states that the number of nodes in state B in a certain area of the network is 
bounded. Property 5 states that in any timeslot, the nodes in state M form an independent set.

Property 3. For any disk Di and in any timeslot t throughout the execution of the algorithm, 
∑

v∈Ai
qv(t) ≤ 2−ω .

Property 4. For any disks Di and in any timeslot t throughout the execution of the algorithm, |Bi| ≤ κ log n.

Property 5. In any timeslot during the execution of the algorithm, all nodes in state M constitute an independent set.

Based on the above three properties, Property 1 can be easily obtained, since Rmis > R and nodes in state W do not 
transmit. Furthermore, we can bound the sum of transmission probabilities of nodes in any disk Di . In the following, we 
use pv to denote the transmitting probability of node v .

Lemma 10. Assume that Properties 3, 4 and 5 hold. For any disk Di and in any timeslot t throughout the execution of the algorithm, 
the sum of transmission probabilities can be bounded as 

∑
v∈Di

pv ≤ 3 · 2−ω + φ.

Using a similar method as in proving Lemma 4, we can get a similar sufficient condition for successful transmissions.

Lemma 11. Assume Properties 3, 4 and 5 hold. If node v is the only sending node in E R M+Rmis
v , with probability 1 − 1

η , the message 
sent by v will be received successfully by all nodes in T v .

Similar to the proof of Lemma 5(i), the following lemma can be obtained which states that a node in state M can 
successfully transmit a message to all nodes in T v in μ2 log n timeslots.

Lemma 12. Assume that Properties 3, 4 and 5 hold. Then after node v joins state M, it will successfully transmit a waking-up message 
and the DoNotTransmitv message to all nodes in T v in 2μ2 log n timeslots with probability 1 − n−4 .

Proof. As shown in Lemma 11, if v is the only sending node in E R M +Rmis
v , with probability 1 − 1

η , the message sent by v

will be received successfully by all nodes in T v . Let P1 denote the event that v is the only sending node in E R M +Rmis
v , then
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P1 ≥ qC

∏
u∈E

RM +Rmis
v \{v}

(1 − pu) ≥ 2−ω
∏

u∈E
RM +Rmis
v

(1 − pu)

≥ 2−ω ·
(

1

4

)∑
u∈E

RM +Rmis
v

pu

≥ 2−ω ·
(

1

4

)(3·2−ω+φ)·χ(RM+Rmis,0.5Rmis)

(13)

The last inequality is by Lemma 1 and Lemma 10. Then the probability Pno that v fails to transmit a message to all 
nodes in T v in μ2 log n timeslots is at most

Pno ≤
(

1 − (1 − 1/η)2−ω ·
(

1

4

)(3·2−ω+φ)·χ(RM+Rmis,0.5Rmis))μ2 log n

≤ e−(1−1/η)2−ωμ2 log n·( 1
4 )(3·2−ω+φ)·χ(RM +Rmis,0.5Rmis) ∈ n−4. � (14)

Based on the sufficient condition for successful transmissions in Lemma 11, the remaining analysis of the MIS algorithm 
is very similar to that in [16].

Lemma 13. Assume that Properties 3, 4 and 5 hold. Let tv be the timeslot when v joins state B. Then during the interval 
[tv − 2μ2 log n, tv + 2δ log2 n], with probability at least 1 − O (n−4), there will be a node in E2Rmis

v joining state M.

Proof. If v receives a message DoNotTransmitu during the interval, by Lemma 12, u entered state M after the time tv −
2μ2 logn, since otherwise, with probability at least 1 − O (n−4), v would have received the message before tv and would 
not join state B, which contradicts the definition of tv . In the following, we suppose that v does not receive messages 
DoNotTransmit during the interval.

First, we define some notations that will be used in the proof. A node in state B is called active if its step is larger 
than 2μ2 log n. For node v , we call a timeslot active if there is at least one active node in T v . Otherwise, the timeslot 
is called inactive. Then we bound the number of active timeslots before an active node in T v can send successfully, i.e., 
the message sent by this node can be successfully received by all nodes in its transmission range. Denote P as the event 
that an active node w ∈ T v sends successfully in an active timeslot. By Lemma 11, if a node w ∈ T v is the only sending 
node in E R M+2Rmis

v , with probability at least 1 − 1
η , the message mB(countw) sent by w will be received successfully by all 

nodes in T w . Then using a similar argument in Inequality (13), by Lemma 10, we can obtain that P ≥ (1 − 1/η) τ
2ω log n ·

( 1
4 )(3·2−ω+φ)·χ(R M+2Rmis,Rmis/2) .

Then the probability P f that there is no active node sending successfully in δ
2 log2 n active timeslots is at most

P f ≤
(

1 − (1 − 1/η)
τ

2ω logn
·
(

1

4

)(3·2−ω+φ)·χ(RM+2Rmis,Rmis/2))

≤ e
−(1−1/η) δ

2 log2 n· τ
2ω log n

·( 1
4 )(3·2−ω+φ)·χ(RM +2Rmis,Rmis/2) ∈ O

(
n−4). (15)

Thus with probability at least 1 − O (n−4), the number of active timeslots before an active node in T v can send success-
fully is at most δ

2 log2 n.
Next we bound the number of inactive timeslots before an active node in T v can send successfully. In a timeslot t , by 

Lemma 11, the probability P1 that there is an active node w ∈ T v transmitting successfully is lower bounded as follows

P1 ≥ (1 − 1/η)n(t)qB

∏
u∈E

RM +2Rmis
v \{w}

(1 − pu)

≥ (1 − 1/η)n(t)qB

∏
u∈E

RM +2Rmis
v

(1 − pu)

≥ (1 − 1/η)n(t)qB ·
(

1

4

)∑
u∈E

RM +2Rmis
v

pu

≥ (1 − 1/η)n(t)qB ·
(

1
)(3·2−ω+φ)·χ(RM+2Rmis,Rmis/2)

, (16)

4
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where n(t) is the number of active nodes in T v . Then the conditional probability P [suc|send] which means an active node 
in T v sends successfully when at least one active nodes in T v sends is at least

P [suc|send] = P [suc ∩ send]
P [send] = P1

P [send] ≥ (1 − 1/η) ·
(

1

4

)(3·2−ω+φ)·χ(RM+2Rmis,Rmis/2)

, (17)

Thus if at least one active node in T v transmits, there is a node sending successfully with constant probability. Then 
if v resets its count, which means that there is at least one active node in T v sending message mB (count), with constant 
probability, an active node in T v sends successfully. Then we upper bound the probability Pm that the number of timeslots 
with non-successful transmissions which reset v ’s count is more than δ

4μ2
log n as follows

Pm ≤
(

1 − (1 − 1/η) ·
(

1

4

)(3·2−ω+φ)·χ(RM+2Rmis,Rmis/2)) δ
4μ2

log n

≤ e
δ

4μ2
log n·(1−1/η)·( 1

4 )(3·2−ω+φ)·χ(RM +2Rmis,Rmis/2) ∈ O
(
n−4). (18)

Furthermore, by Algorithm 2, after v resets its counter, there are at most 2μ2 log n inactive timeslots for T v . Thus 
with probability 1 − O (n−4), the number of inactive timeslots before an active node in T v sends successfully is at most 

δ
4μ2

log n · 2μ2 log n = δ
2 log2 n.

By the time tv + δ log2 n, either the number of active timeslots or the number of inactive timeslots is at least δ
2 log2 n. 

From above, we know that in either case, there will be an active node in T v sending successfully with probability 1 − O (n−4). 
Assume such a node is w . By time tv + δ log2 n, w has informed all nodes in T w about its count and makes these nodes 
reset their count. After that there are no neighbors being able to reduce w ’ count. The only way to prevent w from entering 
state M by the time tv + 2δ log2 n is that some node in state M sends a message to w . Thus by the time tv + 2δ log2 n, 
w or one of its neighbors will join state M with probability at least 1 − O (n−4). �
Lemma 14. Assume that Properties 3, 4 and 5 hold. For a node v, let tv be a timeslot that v joins state B. Then after 4θδ log2 n +
2μ2 log n timeslots, v will join state M or S with probability at least 1 − O (n−4).

Proof. After tv , by repeatedly using Lemma 13, with probability 1 − O (n−4), there will be a node in E2Rmis
v entering state 

M in every internal [tv + 2rδ log2 n − 2μ2 log n, tv + 2(r + 1)δ log2 n] for r ≥ 0. Thus by the time tv + 4θδ log2 n, there will be 
at least θ nodes in E2Rmis

v joining state M with probability at least (1 − O (n−4))θ ∈ 1 − O (n−4), since every such node can 
cover at most two adjacent intervals. Furthermore, by Lemma 12, every such node w will force all nodes in T w to join state 
S with probability at least 1 − O (n−4). Thus all nodes joining state M constitute an independent set in E2Rmis

v . Because the 
size of an independent set in E2Rmis

v is at most θ , one of these θ nodes is in T v . If it is not node v , by Lemma 12, with 
probability 1 − O (n−4), v will receive the message DoNotTransmit from this node in 2μ2 logn timeslots after this node joins 
state M. Hence, by the time tv + 4θδ log2 n + 2μ2 log n, v will have joined state M or state S with probability at least 
1 − O (n−4). �

Based on Lemma 11 and using a similar idea as that in [16], the following lemma can be obtained. Before that, a clear-
ance is defined as follows.

Definition 2. Let t be a timeslot in which a message mA is sent by a node v ∈ Ai and received by all nodes w ∈ Di \ {v}
without collision. Such a timeslot is called a clearance of Di .

Lemma 15. Properties 3, 4, 5 hold with probability at least 1 − O (n−3).

Proof. The idea of proving Lemma 15 is similar to that in [16]. However, our analysis is under the SINR model, which is 
therefore more challenging. By showing that none of Properties 3, 4, 5 is the first one to be violated, we complete the proof 
of Lemma 15.

Claim. Assume Property 3 is the first property to be violated and let t1 be the first time-slot in which the violation occurs. 
The probability that there exists such a time-slot t1 during the execution of the algorithm is at most Pfail ∈ O (n−3).

Proof. By assumption, at time t1, the first violation occurs in a disk Di , which means that 
∑

v∈Ai
qv(t1 − 1) ≤ 2−ω and ∑

v∈Ai
qv(t1) > 2−ω . Consider the interval I = [t1 − λ log n, . . . , t1]. By the definition of the algorithm, every node v ∈ Ai

doubles its sending probability qv exactly once during the interval I . Furthermore, some node that were previously in Wi

may join the set Ai , but the total sending probabilities of these nodes is at most n · 2−ω−1

n = 2−ω−1 according to the initial 
probability setting. Then the sum of sending probabilities at time t1 − λ log n is at least
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∑
v∈Ai

qv(t1 − λ log n) ≥ 1

2

(
2−ω − 2−ω−1) = 2−ω−2. (19)

Consequently, if Property 3 is violated, there must be an interval I preceding the violation during which the sum of 
sending probabilities is in the range

2−ω−2 ≤
∑

v∈Ai

qv(t) ≤ 2−ω ∀t ∈ I. (20)

Since t1 is the first time-slot violating Property 3, in all disks D j ∈ E R M+0.5Rmis
i , the sum of sending probabilities is

0 ≤
∑

v∈A j

qv(t) ≤ 2−ω ∀t ∈ I. (21)

Next we show that with high probability, a clearance occurs in the interval I . Let Pno denote the probability that in a 
given time-slot t ∈ I no node in E R M+0.5Rmis

i \ Di sends. By Pone we denote the probability that exactly one node v ∈ Ai

sends in t . Clearly, for each node u in Di , Iu ∈ E R M+0.5Rmis
i . Similar to that in proving Lemma 4, the probabilistic interference 

caused by nodes outside E R M +0.5Rmis
i is at most (1−1/c)P

βRα with probability at least 1 − 1/η. Then if only one node in Di sends 

and no node in E R M+0.5Rmis
i \ Di sends, the SINR at node u is at least

Pmis
Rα

mis

N + (1−1/c)Pmis
βRα

mis

=
Pmis
Rα

mis

Pmis
cβRα

mis
+ (1−1/c)Pmis

βRα
mis

≥ β (22)

Let Pclear be the probability that v can generate a clearance at time t . Based on the above analysis, Pclear ≥ (1 − 1/η)Pno ·
Pone . By C we denote a minimum cover of E R M+0.5Rmis

i by some discs D j . Since we can still assume that Properties 4 and 5
hold before time t1, and Property 3 is also true before t1, then the total sending probabilities of nodes in any disc D j ∈ C
at time t is at most 3 · 2−ω + φ by Lemma 10. Then Pno and Pone can be bounded as follows:

Pno =
∏

u∈E
RM +0.5Rmis
i \Di

(1 − pu)

≥
∏

u∈E
RM +0.5Rmis
i

(1 − pu)

≥
∏

D j∈C

∏
u∈D j

(1 − pu)

≥
∏

D j∈C

(
1

4

)∑
u∈D j

pu

≥
(

1

4

)(3·2−ω+φ)·χ(RM+0.5Rmis,0.5Rmis)

(23)

Pone =
∑

v∈Ai

(
qv ·

∏
u∈Di\{v}

(1 − pu)

)

≥
∑

v∈Ai

(
qv ·

∏
u∈Di

(1 − pu)

)

≥
∑

v∈Ai

qv

(
1

4

)∑
u∈Di

pu

≥
∑

v∈Ai

qv

(
1

4

)3·2−ω+φ

≥ 2−ω−2
(

1

4

)3·2−ω+φ

(24)
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Thus the probability of t ∈ I being a clearance is at least

Pclear ≥
(

1 − 1

η

)
·
(

1

4

)(3·2−ω+φ)·χ(RM+0.5Rmis,0.5Rmis)

· 2−ω−2
(

1

4

)3·2−ω+φ

≥
(

1 − 1

η

)
· 2−ω−2 ·

(
1

4

)(3·2−ω+φ)·(χ(RM+0.5Rmis,0.5Rmis)+1)

(25)

Then the probability that none of the λ log n time-slots t ∈ I is a clearance is at most (1 − (1 − 1
η ) · 2−ω−2 ·

( 1
4 )(3·2−ω+φ)·(χ(R M+0.5Rmis,0.5Rmis)+1))λ log n ∈ O (n−5). Note that the reason for defining ω = 6.4 is that this value maxi-

mizes Pclear .
Finally, each clearance means that a node in Di joins state B. For each node w , by Lemma 13, after w joins state B, 

there will be a node in E2Rmis
w joining state M. Since there can be at most constant number of nodes in E2Rmis

w that may join 
state M, w joins state B for at most constant times and then joins state M or S . Then there are at most O (n) clearances 
in Di . The probability that in the first O (n) such intervals I in Di , there is at least one without a clearance is at most 
O (n−4). Thus with probability at least 1 − O (n−4), there is not a violating time-slot t1 in Di . Since the same argument is 
also adaptive for other discs D j , the claim holds for all discs with probability 1 − O (n−3). �
Claim. Assume that Property 4 is the first property to be violated and let t2 be the first time-slot in which the violation occurs. The 
probability that there exists such a time-slot t2 during the execution of the algorithm is at most Pfail ∈ O (n−3).

Proof. For a disc Di , assume that Tc is an interval either between (i) two subsequent clearances, or (ii) between a clearance 
and time-slot t2, or (iii) between a clearance and the end of the algorithm, depending on which comes first. Furthermore, 
let tc denote the time in which the clearance initiating Tc occurs. Next we show that the probability that Property 4 is 
violated in this interval is at most 1 − O (n−5). By Algorithm 2, after a clearance, no node v ∈ Di is in state A for the next 
4θδ log2 n +2μ2 log n time-slots. So there is no node entering state B in Di in the interval [tc, . . . , tc +4θδ log2 n +2μ2 log n]. 
Therefore we only need to consider the interval I = [tc + 4θδ log2 n + 2μ2 log n, . . . , tq], where tq is the time-slot of (i) the 
subsequent clearance, (ii) time-slot t2, (iii) the end of the algorithm.

Let a f ailure be a time-slot in which a new node joins state B in Di without occurring a clearance. In the following, we 
show that there are no more than 1

6e κ log n failures in Di in the interval [tc + 4θδ log2 n + 2μ2 log n, . . . , tq] with probability 
1 − n−5.

By showing that before 1
6e κ log n failures occur, there is at least one clearance with high probability, the claim can be 

proved since tq takes place before or at the time of such a clearance.
First we define some random events. Eb(t) denotes the event of a clearance occurring in Di at time-slot t and E0(t)

denotes the event of no node in Ai sending in time-slot t . Clearly, Eb(t) is true only if E0(t) is false. In the following, we 
will find a bound on the probability Pr[Eb(t)|E0(t)]. From the analysis for Inequality (22), we know that if only one node 
in Di sends and no node in E R M+0.5Rmis

i \ Di sends, there will be a clearance with probability at least (1 − 1/η). Hence 
Pr[Eb(t)|E0(t)] ≥ (1 − 1/η) · Pr[Ee(t)] · Pr[E1(t)|E0(t)], where E1(t) and Ee(t) denote the event that only one node in Di sends 
and the event that no nodes in E R M +0.5Rmis

i \ Di send, respectively. Additionally, denote E+(t) as the event that at least two 
nodes in Ai send. Then

Pr
[
Eb(t)|E0(t)

] ≥ (1 − 1/η) · Pr
[
Ee(t)

] · (1 − Pr
[
E1(t)|E0(t)

])
= (1 − 1/η) · Pr

[
Ee(t)

] · (1 − Pr
[
E+(t)|E0(t)

])

= (1 − 1/η) · Pr
[
Ee(t)

] ·
(

1 − Pr[E+(t)]
Pr[E0(t)]

)
(26)

The last equation is due to the fact Pr[E0(t)|E+(t)] = 1. By the definition of tq (which is t2 or earlier), we can still assume 
that Properties 3, 4, 5 hold. Thus we can use some results established under the assumption of these three properties in 
the previous proofs. By Inequality (23), we obtained a bound for Pr[Ee(t)] as follows,

Pr
[
Ee(t)

] ≥
(

1

4

)(3·2−ω+φ)·χ(RM+0.5Rmis,0.5Rmis)

(27)

We can obtain the following lower bound for Pr[E0(t)].

Pr
[
E0(t)

] = 1 −
∏

v∈Ai

(1 − qv) ≥ 1 − (1/e)
∑

v∈Ai
qv . (28)

Finally, we consider Pr[E+(t)],
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Pr
[
E+(t)

] = Pr
[
E0(t)

] − Pr
[
E1(t)

]

≤ 1 −
∏

v∈Ai

(1 − qv) −
∑

v∈Ai

(
qv ·

∏
u∈Ai\{v}

(1 − qv)

)

≤ 1 −
(

1

4

)∑
v∈Ai

qv

−
∑

v∈Ai

(
qv ·

(
1

4

)∑
v∈Ai

qv )

= 1 −
(

1 +
∑

v∈Ai

qv

)(
1

4

)∑
v∈Ai

qv

. (29)

Putting everything together, the probability that there is a clearance if a node in Di enters B is at least

Pr
[
Eb(t)|E0(t)

] ≥ (1 − 1/η) ·
(

1

4

)(3·2−ω+φ)·χ(RM+0.5Rmis,0.5Rmis)

·
(

1 − 1 − (1 + ∑
v∈Ai

qv)( 1
4 )

∑
v∈Ai

qv

1 − (1/e)
∑

v∈Ai
qv

)
(30)

Since Property 3 still holds, 
∑

v∈Ai
pv ≤ 2−ω . Additionally, the function in the right hand of the above inequality is mini-

mized at the point 2−ω for 
∑

v∈Ai
qv in the range [0, 2−ω]. Hence we have

Pr
[
Eb(t)

∣∣ E0(t)
] ≥ 0.23 · (1 − 1/η) ·

(
1

4

)(3·2−ω+φ)·χ(RM+0.5Rmis,0.5Rmis)

(31)

Finally, the probability P f that there are more than 1
6e κ log n failures in Di in the interval [tc + 4θδ log2 n + 2μ2 log n, . . . , tq]

is

P f ≤ (
1 − Pr

[
Eb(t)

∣∣ E0(t)
]) 1

6e κ log n ≤ n−5 (32)

by the definition of κ . Thus, with probability 1 − O (n−5), if as many as 1
6e κ logn failures had occurred before tq , there 

would have been another clearance before tq , which contradicts the definition of tq .
Next we claim that there are only a constant number of new nodes joining B in Di per failure time-slot. Let B(t) be 

the number of nodes in Ai sending at time t and denote E f (t) as the event of a failure. Since if there are two nodes in 
Ai sending at t , E f (t) must be true, and each node in Ai decides to send independently, the conditional expectation of 
B(t) given a failure is E[B(t)|E f (t)] ≤ E[B(t)] + 2 ≤ ∑

v∈Ai
qv + 2, which is at most 2−ω + 2 under the assumption that 

Property 3 still holds.
Let nI be the number of nodes joining B during the interval I = [tc + 4θδ log2 n + 2μ2 log n, . . . , tq]. By Lemma 14, all 

nodes that have joined B by the time tc would have joined state M or S by the time tc +4θδ log2 n +2μ2 log n. Furthermore, 
by Algorithm 2 and the definition of clearance, there is no node in Di joining B during the interval [tc, . . . , tc + 4θδ log2 n +
2μ2 logn]. So the lemma can be proved by only bounding nI .

Let f denote the number of failures in I . Define a random variable X v
j for each node v ∈ Ai and j = 1, . . . , f . X v

j has 

value 1 if v sends (and enters state B) in the jth failure and 0 otherwise. Then define X = ∑ f
j=1

∑
v∈Ai(t j)

X v
j . Thus X is 

an upper bound for nI . Note that X v
j cannot be seen as independent Bernoulli trials because all X v

j for a node v are not 
independent. More precisely, X v

j = 1 ⇒ X v
j′ = 0 for all j′ > j since after sending at time t j , v joins B. These dependencies 

make it an upper bound for X if we take X v
j as independent Bernoulli trials. In the following we compute the upper bound 

of nI under this assumption. Then the expectation E[X] is

E[X] =
f∑

j=1

E

[ ∑
v∈Ai(t j)

X v
j

]

=
f∑

j=1

E
[

B(t j)
∣∣ E f (t j)

]

≤ (
2−ω + 2

) 1

6e
κ logn

<
1

κ logn. (33)

2e + 1
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The first inequality is assuming there are at most 1
6e κ log n failures. Then by the Chernoff bound, the probability that X is 

larger than κ log n is at most

P [X > κ log n] ≤
(

e2e

(1 + 2e)1+2e

) κ log n
2e+1

∈ O
(
n−5). (34)

As discussed before, assuming X v
j to be randomly and independently distributed Bernoulli variables yields an upper bound 

for nI . Thus P [nI > κ log n] ≤ P [X > κ log n] ∈ O (n−5). That is if there are at most 1
6e κ log n failures, then at most κ log n

nodes join state B during the interval I with probability at least 1 − O (n−5). From above, this assumption is true with 
probability 1 − O (n−5). Thus, the probability that in an arbitrary interval TC after a clearance, Property 4 is not violated 
before the next clearance is at least 1 − 2O (n−5) ∈ 1 − O (n−5).

In each Di , there are at most O (n) clearances during the execution of the algorithm as shown in the above Claim. So the 
probability that there are more than κ log n nodes in state Bi during the execution of the algorithm is at most 1 − O (n−4). 
That is, with probability 1 − O (n−4), Property 4 is not the first violated property. Consider all discs, Property 4 is not the 
first property to be violated with probability 1 − O (n−3). �
Claim. Assume that Property 5 is the first property to be violated and let t3 be the first time-slot in which the violation occurs. The 
probability that there exists such a time-slot t3 during the execution of the algorithm is at most Pfail ∈ O (n−3).

Proof. We prove the claim by showing that when any node joins state M, the count values of all its neighbors in state 
B are at most δ log2 n − 2μ2 log n with probability at least 1 − O (n−2). Then after a node joins state M, there will be 
no neighboring nodes join state M in the subsequent 2μ2 log n timeslots. By the algorithm, all nodes in state M in any 
timeslot constitute an independent set, since each node will stay in state M for 2μ2 log n timeslots.

Assume that v is the node that violates Property 5 at time t3. Let u be a neighbor of v which joins state M at time 
tu ≤ t3. Since v violates Property 5, t3 − tu < 2μ2 log n. Thus at time tu , v ’ count is larger than δ log2 n − 2μ2 log n. By the 
algorithm, u has started increasing its count since the time tu − δ log2 n and will not reset the count’s value. Every node 
(e.g., v) in u’s neighborhood with count larger than δ log2 n − 2μ2 log n at time tu has started increasing its count since 
the time tu − δ log2 n + 2μ2 logn. Because v is the first node which violates Property 5 and Property 5 is the first violated 
property, we can still assume that all three properties are still correct before t3. Using a similar analysis in the proof of 
Lemma 12, we can prove that u will successfully transmit the message mB (countu) to all its neighbors in δ

2 log2 n timeslots 
with probability at least 1 − O (n−4). Thus u can successfully send a message mB (countu) to all its neighbors during the 
interval [tu − δ log2 n + 2μ2 log n, tu − 1]. Then by Algorithm 2, all its neighbors in state B, including v , reset their count
values to be away from m’ count by at least 2μ2 log n. Then v is impossible to join state M at time t3. In other words, when 
u joins state M, there will be no such a timeslot t3 with probability at least 1 − O (n−4). Since each node only joins state 
M for at most once, the claim is correct during the execution of the algorithm with probability at least 1 − O (n−3). �

Finally, combining all above, we give the proof of Lemma 2.

Proof of Lemma 2. We first bound the time v spends in executing the algorithm. If v does not receive a message mA or 
DoNotTransmit from a neighbor node for 4θδ log2 n + 2μ2 log n time-slots after entering state W , it will join state A. Then 
unless it receives a message mA or DoNotTransmit, its sending probability will increase to 2−ω−2 after (log n − 1)λ log n
time-slots. If v still does not receive mA or DoNotTransmit in the subsequent λ log n time-slots, the probability that v does 
not send during these λ log n time-slots is at most (1 − 2−ω−2)λ log n ∈ O (n−4). Thus after v starts the algorithm for at most 
4θδ log2 n + λ log2 n + 2μ2 log n timeslots, there will be three cases for v: (i) v joins state B; (ii) v receives a message 
mA from a neighbor and restarts the algorithm; (iii) v receives a message DoNotTransmit from a neighbor. For case (i), by 
Lemma 14 and Algorithm 2, with probability at least 1 − O (n−4), there will be one node in T v joins state M and quits the 
MIS algorithm after at most 4θδ log2 n + 2μ2 log n timeslots. For case (ii), it means that one of v ’s neighbors joins state B. 
Similarly, by Lemma 14 and Algorithm 2, there will be a node in E2Rmis

v joins state M and quits the algorithm after at 
most 4θδ log2 n + 2μ2 log n timeslots with probability 1 − O (n−4). For case (iii), it means that one of v ’s neighbors joins 
state M. Combining the above analysis, after v starts or restarts the algorithm for 8θδ log2 n +λ log2 n + 4μ2 log n timeslots, 
there will be a node in E2Rmis

v joins state M and quits the MIS algorithm with probability at least 1 − O (n−4). Using a 
similar argument as in Lemma 14, after at most θ(8θδ log2 n + λ log2 n + 4μ2 log n) timeslots, there will be a node in T v

joining state M. From then, by Lemma 12, if v is not the node, it will be forced joining state S in O (log n) timeslots with 
probability at least 1 − O (n−4). Thus, with probability at least 1 − O (n−4), it takes at most O (log2 n) timeslots in executing 
Algorithm MIS.

Furthermore, as stated in Lemma 12, with probability 1 − O (n−4), a node v in state M can send the DoNotTransmit
message to all nodes in T v before any of them joining state M, which means that with probability 1 − O (n−4), there is not 
any node in N(v) staying in state M when v is in state M. By Algorithm 1, each node joins state M for at most once. 
Hence, with probability at least 1 − O (n−3), in any timeslot t , the independent set computed by Algorithm MIS is correct.
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Note that all above analysis is based on Properties 3, 4 and 5. By Lemma 15, these three properties are correct with 
probability 1 − O (n−3). Then we prove the lemma. �
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