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a b s t r a c t

Given a universe N containing n elements and a collection of multisets or sets over N , the
multiset multicover (MSMC) problem or the set multicover (SMC) problem is to cover all
elements at least a number of times as specified in their coverage requirements with the
minimum number of multisets or sets. In this paper, we give various exact algorithms for
these two problems with or without constraints on the number of times a multiset or set
may be chosen. First, we show that theMSMCwithoutmultiplicity constraints problem can
be solved in O∗((b+1)n|F |) time and polynomial space, where b is the maximum coverage
requirement and |F | denotes the total number of given multisets over N . (The O∗ notation
suppresses a factor polynomial in n.) To our knowledge, this is the first known exact
algorithm for the MSMC without multiplicity constraints problem. Second, by combining
dynamic programming and the inclusion–exclusion principle,we can exactly solve the SMC
without multiplicity constraints problem in O((b + 2)n) time. Compared with two recent
results, in [Q.-S. Hua, Y.Wang, D. Yu, F.C.M. Lau, Setmulti-covering via inclusion–exclusion,
Theoretical Computer Science, 410 (38–40) (2009) 3882–3892] and [J. Nederlof, Inclusion
exclusion for hard problems, Master Thesis, Utrecht University, The Netherlands, 2008],
respectively, ours is the fastest exact algorithm for the SMCwithoutmultiplicity constraints
problem. Finally, by directly using dynamic programming, we give the first known exact
algorithm for theMSMC or the SMCwithmultiplicity constraints problem inO((b+1)n|F |)
time and O∗((b + 1)n) space. This algorithm can also be easily adapted as a constructive
algorithm for the MSMC without multiplicity constraints problem.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider exact algorithms for multiset multicover (MSMC) and set multicover (SMC) problems
[27,23,14]. The MSMC problem is a generalization of set cover in which we have multisets instead of sets and an element
may be covered multiple times. Formally, we are given a universe N = {1, . . . , n}, a positive integral coverage requirement
vector B = (bi) for the elements i ∈ N and a collection of multisets Fms over N . Any one of these multisets, S ∈ Fms, may
contain a number of copies of each element. The objective of the MSMC problem is to determine the minimum number of
multisets such that each element i is covered at least bi times. It is similar for the SMC problem, which deals with a collection
of sets Fmc instead of multisets Fms. We use Fsc for the collection of sets in the set cover (SC) problem. For both the MSMC
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and the SMC problems, in order to satisfy the minimization requirement, each multiset or set can be chosen multiple times.
Mathematically, bothproblems canbeposed as special cases of the covering integer programs (CIP) problem [23,25,24,18,19]
as defined by Definition 1.
Definition 1 (CIP: Covering Integer Programs [25]). Let Z+ denote the nonnegative integers. The CIP problem P = (A, B,D, E)
seeks to minimize ET · x subject to Ax ≥ B, x ∈ ZR

+
and x ≤ D, where Aij, bi ∈ B and ej ∈ E for i = 1, . . . , n, j = 1, . . . , R are

all nonnegative integers. Ax ≥ B and x ≤ D, where dj ∈ D is some positive integer, are called the covering constraints and
the multiplicity constraints, respectively.

Now, ifwe take the n rows and the R columns of thematrixA as the n elements in the universeN and theR sets ormultisets
over N = {1, . . . , n}, respectively, then the set or multiset j would contain Aij copies of element i. In the CIP problem, if
we set Aij ∈ [0, c], ej = 1, bi ∈ [1, b] and remove the multiplicity constraints, we have the Multiset Multicover problem
(MSMC). Here the constant values c and bmean themaximumnumber of times any element appears in anymultiset and the
maximum coverage requirement, respectively. For theMSMC problem, if we keep themultiplicity constraints xj ≤ dj, where
max1≤j≤R(dj) = d, we have theMSMC with multiplicity constraints problem. Similarly, if we further require Aij ∈ {0, 1}
and based on whether we remove the multiplicity constraints or not, we have the Set Multicover problem (SMC) and the
SMC with multiplicity constraint problem.

1.1. Approximation algorithms for multicovering problems and their application

For the MSMC and SMC with multiplicity constraints problems, the multiplicity constraints limit the number of copies
of each multiset or set. These constraints in reality can be capacity limits, security goals, or due to fault tolerance reasons
[18,25]. Chuzhoy et al. [7] and Gandhi et al. [9] have studied the capacitated vertex cover with hard capacities problem,
i.e., each vertex can cover only a limited number of edges and each vertex can only be used a restricted number of times.
Besides the multiplicity constraint, we also need to emphasize that the MSMC and SMC problems are different from the
fractional covering problem [22], which can be formulated by requiring xj in the CIP definition to be nonnegative real values
instead of integer values. Thus the fractional covering problem can be solved exactly using standard LP solvers, whereas
solving theMSMC and SMC problems optimally is NP-hard [27]. There has been a long line of research in designing heuristic
and approximation algorithms for these problems since the 1980s [10,27]. There are also many (parallel) approximation
algorithms for CIP problemswith or withoutmultiplicity constraints [19,18,24,25,23] whichmay also be applied to SMC and
MSMC problems. Besides the general CIP problem, Hochbaum and Levin [11] have studied cyclical scheduling and multi-
shift scheduling problems which are special cases of the SMC with multiplicity constraints problem. For more related work
on these various covering problems, please refer to [12].
Many problems in the real world can be cast as either an SMC or an MSMC problem. For example, the minimum length

wireless link scheduling problem [16] with non-unit traffic demands can be interpreted as an SMC problem. Many other
problems in different areas can be formulated as anMSMC problem, such as the total late ordersminimization problem [20],
the traffic grooming problem inWDMnetworks [3], thememory reduction problem in general paging scenarios [1], a special
case of the proposed deal splitting with packages problem [26] and the minimum cost cell planning problem in 4G cellular
networks [2].

1.2. Exact algorithms for various covering and multicovering problems

Besides approximate algorithms, recently there have been some efforts in understanding how fast we can exactly solve
these covering or multicovering problems. By using the inclusion–exclusion principle and a fast zeta transform technique,
Björklund et al. [5] have shown that the set cover problem can be exactly solved in O∗(2n) time using O∗(2n) space. Here, the
O∗ notation omits a polynomial factor in n. Based on this observation, they also proposed a family of exact algorithms for set
partitioning problems such as graph coloring, which outperform all the previous algorithms. Subsequently they showed that
similar faster algorithms can also be obtained by using the so-called fast subset convolution [6]. To our knowledge, the first
exact algorithms for the SMCproblemwere given independently byHua et al. [14] andNederlof [21]. As shown in [14], the set
multicover problem can be exactly solved in O∗((2b)n) time with O∗((b+ 1)n) space or in O∗(2O(bn

2)) time with polynomial
space. In [21], based on a novel counting formulation, the set multicover problem can be solved in O∗((b + 1)n|Fmc |) time
with polynomial space, where |Fmc | is the total number of given sets. Although this result outperforms the polynomial space
exact algorithm given by Hua et al. in [14], as discussed in [15], Hua et al.’s algorithm can also exactly count the number
of set multicovers that satisfy the coverage requirements. We are not aware of any known exact algorithms for the MSMC
problem, the MSMC with multiplicity constraints problem and the SMC with multiplicity constraints problem.

1.3. Our results

In this paper, we give (1) the first known polynomial space exact algorithm for the MSMC problem (Section 3); (2) the
fastest exact algorithm for the SMC problem (Section 4); and (3) the first known exact algorithms for the SMC and MSMC
with multiplicity constraints problems (Section 5). A compendium of results of previous papers and this paper is given in
Table 1.
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Table 1
Summary of exact algorithms for covering and various multicovering problems.

Problem Time complexity Space complexity Reference

Set cover (SC) O∗(2n|Fsc |)a Polynomial [5]
Set cover (SC) O∗(2n) O∗(2n) [5]
Set multicover (SMC) O∗((2b)n) O∗((b+ 1)n) [14]
Set multicover (SMC) O∗(2O(bn

2)) Polynomial [14]
Set multicover (SMC) O∗((b+ 1)n|Fmc |)a Polynomial [21]
Set multicover (SMC) O((b+ 2)n) See noteb This paper
Multiset multicover (MSMC) O∗((b+ 1)n|Fms|)a Polynomial This paper
Multiset multicover (MSMC) O((b+ 1)n|Fms|) O∗((b+ 1)n) This paperc
SMC with multiplicity constraints O((b+ 1)n|Fmc |) O∗((b+ 1)n) This paperc
MSMC with multiplicity constraints O((b+ 1)n|Fms|) O∗((b+ 1)n) This paperc

a It is easy to see that |Fsc | = |Fmc | ≤ 2n, |Fms| ≤ (c + 1)n =
∑n
m=0

(n
m

)
cm .

b max{
( n
m1

)
(b+ 1)n−m1 ,

( n
m2

)
(b+ 1)n−m2 }, wherem1 = b n+1b+2 c andm2 = d

n+1
b+2 e.

c This improves the corresponding result in the preliminary version of this paper [13].

2. Preliminaries

2.1. The inclusion–exclusion principle

This basic principle of combinatorics has been frequently used in recent literatures [5,6,14,21]. Let B be a finite set with
subsets A1, A2, . . . , An ⊆ B, and with the convention that ∩i∈∅Ai = B, then we know the number of elements in Bwhich lie
in none of the Ai is∣∣∣∣∣ n⋂

i=1

Ai

∣∣∣∣∣ =∑
X⊆N

(−1)|X | ·

∣∣∣∣∣⋂
i∈X

Ai

∣∣∣∣∣. (1)

2.2. Solving the set cover problem via counting set covers

We define ck(Fsc) as the number of k-tuples 〈s1, . . . , sk〉 over Fsc such that the union of the sets
⋃k
i=1 si without removing

duplicate elements satisfies the coverage requirements. Given this definition, in order to find the minimum number of sets
that satisfy the coverage requirements, we just need to find the minimum k value that satisfies ck(Fsc) > 0 using binary
search. This is a standard technique which has been used in [5,14] for exactly solving set cover and set multicover problems.
By using the inclusion–exclusion principle (Eq. (1)), Björklund et al. [5] prove that the number ck(Fsc) of set covers can be
computed by Eq. (2). Here asc(X) denotes the number of sets in Fsc that avoid (do not cover) any element in the set X ⊆ N .

ck(Fsc) =
∑
X⊆N

(−1)|X |asc(X)k. (2)

Based on Eqs. (1) and (2), we summarize the complexity results for counting k-set covers in the following Lemma 2. For
their detailed proofs please refer to [5].
Lemma 2 ([5]). (1) ck(Fsc) can be immediately solved with O∗(2n|Fsc |) time and polynomial space by using Eq. (2); (2) By using
fast zeta transform [5], ck(Fsc) can be solved with O∗(2n) time and O∗(2n) space.

3. A polynomial space exact algorithm for the MSMC problem

Similar to what is done in [21], we will not directly count the number of multiset multicovers. Instead, we will first
transform the multiset multicover problem into the multiset cover problem.

3.1. Transforming counting multicovers into counting covers

We transform the set or multiset multicover problem into the corresponding set or multiset cover problem, as follows.
For each element i ∈ N with bi coverage requirement, we replace this element with bi copies. This augments the universe N
with n elements to give a new universe N ′ with at most bn elements. Accordingly, the collection of (multi)sets Fmc or Fms will
be expanded into a new collection of (multi)sets F ′mc or F

′
ms, respectively. As an example, if bi = 2 and bj = 1, the element

i will be replaced by elements i1 and i2; similarly, the element j will be replaced by element j1 or we may just say that it
remains unchanged. Then the set {i, j} will be replaced by two sets {i1, j1} and {i2, j1}. Accordingly, the multiset {i, i, j} will
be replaced by three multisets, {i1, i1, j1}, {i1, i2, j1} and {i2, i2, j1}. Then we can count the number ck(F ′mc) of set covers for
the set multicover problem and can count number ck(F ′ms) of multiset covers for the multiset multicover problem.
A straightforward formulation for ck(F ′mc) or ck(F

′
ms) is to directly apply the ck(Fsc) formula given in Eq. (2). By using amc(X)

or ams(X) to denote the number of sets or multisets in F ′mc or F
′
ms that do not cover any element in X , respectively, we can
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Table 2
Some notations for counting the transformed (multi)set covers.

Notations Definitions

Y (X) = (Y (1), . . . , Y (i))a Y is a nonnegative integer function on the set X ⊆ N .
Y (X) � B(X) For each i ∈ X , we have Y (i) ≤ bi .
F Ymc (F

Y
ms)
b A new collection of (multi)sets constructed on Fmc (Fms), where each element i ∈ N is replaced by Y (i) elements.

If Y (i) = 0, then any (multi)set S ∈ Fmc (Fms)which covers element iwill be deleted.
a We use Y instead of Y (X)when it is clear from the context.
b For example, if we set Y = B = (b1, . . . , bn), then F Ymc = F

B
mc = F

′
mc and F

Y
ms = F

B
ms = F

′
ms .

give similar formulations for counting the transformed (multi)set covers, by Eqs. (3) and (4).

ck(F ′mc) =
∑
X⊆N ′

(−1)|X |amc(X)k (3)

ck(F ′ms) =
∑
X⊆N ′

(−1)|X |ams(X)k. (4)

It is easy to see that, however, the straightforward formulations for calculating ck(F ′mc) and ck(F
′
ms) are very inefficient

in terms of time. For instance, based on Lemma 2, ck(F ′mc) (Eq. (3)) is computed in either O
∗(|F ′mc |2

bn) time and polynomial
space or O∗(2bn) time and O∗(2bn) space. It will be even worse when coming to calculating ck(F ′ms) since |F

′
ms| could be much

larger than |F ′mc | (see Inequalities (9) and (10) in Section 3.2 for the maximum |F
′
ms| and |F

′
mc | values). In the next section,

we will briefly explain a more efficient formulation for counting ck(F ′mc)which was first given by Nederlof in [21], and then
extend it to the multiset multicover problem.

3.2. A new formulation for computing ck(F ′ms)

We introduce some necessary notations in Table 2.
The new formulation for calculating ck(F ′mc) is given in Eq. (5) [21].

ck(F ′mc) =
∑
Y�B

(−1)

∑
1≤i≤n

Y (i)
( ∏
1≤i≤n

(
bi
Y (i)

))
(|F B−Ymc |)

k. (5)

This new formulation is obtained by taking advantage of the symmetry information behind Eq. (3). By analyzing all the
subsets X used in this equation, since the augmented universe N ′ is composed of many replicated elements for each single
element with non-unit coverage requirement, we can see that there are many symmetric subsets X ⊆ N ′ in the sense that
this family of subsets {X} have the same amc(X) values. As a result, in order to lower the time complexity, it is not necessary
to calculate the amc(X) value anew for each subset X ⊆ N ′ (see Eq. (3)). Instead, we can just calculate the amc(X) value once
for all symmetric subsets X ⊆ N ′. As shown in Eq. (5), for each Y (N) � B(N), these symmetric subsets are represented by
F B−Ymc , which is constructed on Fmc , where each element i ∈ N is replaced by bi − Y (i) elements.
This new formulation for calculating ck(F ′mc) can be easily extended for computing ck(F

′
ms), as in Eq. (6).

ck(F ′ms) =
∑
Y�B

(−1)

∑
1≤i≤n

Y (i)
( ∏
1≤i≤n

(
bi
Y (i)

))
(|F B−Yms |)

k. (6)

Now the remaining question is: given Fms, how do we calculate |F Yms| for each Y (N) � B(N)? We need to first give a
helping lemma. (For an application of this lemma, please refer to the first paragraph of Section 3.1.)

Lemma 3. If an element a is replaced by r copies, the multiset which contains s number of elements a will be expanded into(r+s−1
r−1

)
number of new multisets.

Proof. Let xi (1 ≤ i ≤ r) denote the number of times that the new element i appears in this specific multiset; then the
problem is equivalent to finding the number of different combinations of the set {xi} that satisfy xi ≥ 0 and

∑r
i=1 xi = s.

If we set yi = xi + 1, then the problem is changed to finding the number of different combinations of the set {yi} that
satisfy yi ≥ 1 and

∑r
i=1 yi = s + r . Consider a line formed by s + r elements; each possible combination of the set {yi}

then corresponds to the r − 1 cuts among the s+ r − 1 possible cutting places. From this observation, the total number of
different combinations of the set {yi} is equal to

(r+s−1
r−1

)
. �

With Lemma 3, we can give the formula for calculating |F Yms| in Eq. (7), where S denotes a multiset belonging to Fms and
t(S) is a set composed by distinct elements in the set S; cj denotes the number of times that the element j appears in a
multiset S.

|F B−Yms | =
∑
S∈Fms

∏
j∈t(S)

(
cj + bj − Y (j)− 1
bj − Y (j)− 1

)
. (7)
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Table 3
Some notations for calculating |F Ymc |.

Notations Definitions

XY Replace each element i ∈ X with Y (i) copies.
XY (i)−1 The same as XY , except that the element i is replaced by Y (i)− 1 copies.
c(X1, (N\X)Y ) The number of sets in F Y

′

mc that include all the elements in X . Here the new collection of sets F
Y ′
mc is constructed on Fmc

as follows: each element i ∈ X remains unchanged and each element i ∈ N\X is replaced by Y (i) copies.

If for all j ∈ t(S)we set cj = 1, we can obtain the same formula given in [21] for calculating |F Ymc | in Eq. (8).

|F B−Ymc | =
∑
S′∈Fmc

∏
j∈S′

(bj − Y (j)). (8)

Since |F ′ms| = |F
B
ms| and each element i ∈ N can appear at most c times in each multiset, according to Eq. (7), we can give

an upper bound for |F ′ms| in the following Inequality (9).

|F ′ms| ≤
n∑
m=0

(
n
m

)( c∑
t1=1

· · ·

c∑
tm=1

m∏
i=1

(
ti + bi − 1
bi − 1

))
. (9)

If we set c = 1, we can obtain an upper bound for |F ′mc | in Inequality (10).

|F ′mc | ≤
n∑
m=0

(
n
m

)
bm = (b+ 1)n. (10)

Based on Eqs. (6) and (7), by directly computing |F Yms| for each Y � B, we have Theorem 4.

Theorem 4. The multiset multicover problem can be solved in O∗((b+ 1)n|Fms|) time using polynomial space.

Proof. First, according to Eq. (7), since, for all j ∈ t(S), both cj and bj are constant values,
(cj+bj−Y (j)−1
bj−Y (j)−1

)
can be calculated in

O(1) time. Then for all i ∈ N , since Y (i) varies from 0 to at most b, we obtain the claimed time complexity. We only used
polynomial space. �

Asmentioned in the last paragraph of Section 3.1, calculating ck(F ′ms) using Eq. (4) takesO
∗(2bn|F ′ms|) time and polynomial

space. Comparing with Theorem 4, using our new ck(F ′ms) formulation (Eq. (6)) is much better for the MSMC problem.

4. A dynamic programming based algorithm for the SMC problem

According to Eq. (5), which is for computing ck(F ′mc), since directly calculating the |F
Y
mc | values for each Y � B would

necessitate checking each set in Fmc , in this section, we give a dynamic programming based algorithm that avoids this
problem. Some necessary notations are given in Table 3. We can then compute all |F Ymc | values using Algorithm 1.

Algorithm 1 Calculating |F Ymc | using Dynamic Programming

Input: - Fmc and the coverage requirement vector B
Output: The |F Ymc | values for all Y � B
1: For each X ⊆ N do
2: If X is not empty, we set c(X1, (N\X)0) = Fmc(X)where Fmc(X) is the indicator function which equals 1 if X ∈ Fmc and
0 otherwise; if X is an empty set, we set c(∅1,N0) = 0.

3: Store the c(X1, (N\X)0) value into a look-up table.
4: End For
5: For t from n downto 0 do
6: For each X ⊆ N and |X | = t do
7: For each Y (N\X) � B(N\X)where Y (N\X) is from (0, . . . , 0)|N\X | to (b1, . . . , b|N\X |) (using lexicographic order) do
8: for some i ∈ N\X where Y (i) 6= 0, we calculate c(X1, (N\X)Y ) using the recursion c(X1, (N\X)Y ) =
c(X1, (N\X)Y (i)−1)+ c((X ∪ {i})1, (N\(X ∪ {i}))Y ) and then store it into a table

9: End For
10: End For
11: Remove all c(Z1, (N\Z)Y ) values from the table where |Z | = |X | + 1
12: End For
13: Return all the |F Ymc | values and for each Y � Bwe have |F

Y
mc | = c(∅

1,NY ).

The time and space complexities of Algorithm 1 are given in Lemma 5.
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Table 4
Some notations used in Algorithm 2 (DMCM).

Notations Definitions

D = (dSi ) The multiplicity constraints vector indicating the maximum number of times that each multiset (set) Si ∈ Fms (Fmc)
can be chosen.

v = (S[i], y1, . . . , yn) A covering state vertex showing that, by only choosing some multisets (sets) from {Sj : |1 ≤ j ≤ i}, each element
i ∈ N has been covered at least yi times.

w(u, v) The weight of the edge between vertex u = (S[i−1], z1, . . . , zn) and vertex v = (S[i], y1, . . . , yn).
H(v) The minimum number of multisets (sets) from {Sj : |1 ≤ j ≤ i} that satisfy the coverage requirements in v, i.e.,

(y1, . . . , yn).
P(v) A vector that records the shortest path for obtaining H(v), i.e., each chosen multiset (set) Sj (1 ≤ j ≤ i) together with

its number of copies.

Lemma 5. For all Y � B, the |F Ymc | values can be calculated in O((b+ 2)
n) time usingmax{

( n
m1

)
(b+ 1)n−m1 ,

( n
m2

)
(b+ 1)n−m2}

space, where m1 = b n+1b+2 c and m2 = d
n+1
b+2 e.

Proof. First, both the time and space used from Step 1 to Step 4 equal O(2n). The total time used for Steps 5–12 can be
calculated through the formula

∑n
m=0

(n
m

)
(b + 1)n−m = (b + 2)n. Due to Step 11, the total space used for these steps is

max0≤i≤n{
(n
i

)
(b+ 1)n−i)}. By observing that (ni)(b+1)

n−i

( ni−1)(b+1)
n−i+1 ≥ 1, we obtain the space complexity. Summing up the time and

space used for these two parts, we have the result. �

When all the |F Ymc | values have been stored into a table, according to Eq. (5) and Lemma 5, we can see that the time and
space complexities for calculating ck(F ′mc) are dominated by Algorithm 1. Thus we have Theorem 6.

Theorem 6. The set multicover problem can be solved in O((b+ 2)n) time usingmax{
( n
m1

)
(b+ 1)n−m1 ,

( n
m2

)
(b+ 1)n−m2} space,

where m1 = b n+1b+2 c and m2 = d
n+1
b+2 e.

Since our former exponential space exact algorithm can solve the set multicover problem in O∗((2b)n) time [14], and
since directly using Eq. (5) immediately yields an O∗((b + 1)n|Fmc |) time polynomial space exact algorithm, our dynamic
programming based algorithm presented in this section gives the fastest exact algorithm so far for the set multicover
problem.
In the next section, by using an idea similar to the Viterbi algorithm [8], which is to compute the maximum a posteriori

probability in the hidden Markov model, we will design a dynamic programming based algorithm for set or multiset
multicover with multiplicity constraints problems. And this algorithm can be easily adapted for the multiset multicover
withoutmultiplicity constraints problem. Comparedwith the dynamic programming based exact algorithm for themultiset
multicover without multiplicity constraints problem (Section 3 of [13]) and the shortest path based exact algorithm for set
or multiset multicover withmultiplicity constraints problems (Section 4 of [13]), our algorithm can greatly reduce the space
complexities without sacrificing time.

5. A dynamic programming based algorithm for set or multiset multicover with multiplicity constraints problems

In this section, we focus on the SMC or MSMC with multiplicity constraints problem (see Section 1). Some necessary
notations and their definitions are given in Table 4.
With these notations, we now give a dynamic programming based algorithm called DMCM (Algorithm 2) to exactly solve

the SMC or MSMC with multiplicity constraints problem.
The correctness of the DMCMalgorithm is obvious. Nowwe give the time and space complexities of the DMCMalgorithm

in Theorem 7.

Theorem 7. The DMCM algorithm can solve the multiset multicover (set multicover) with multiplicity constraints problem with
O∗((b+ 1)n|Fms|) (O∗((b+ 1)n|Fmc |)) time and O∗((b+ 1)n) (O∗((b+ 1)n) space.

Proof. In each iteration, Steps 4–13 construct a directed bipartite graph on level i− 1 and level i vertices. There are at most
d outgoing edges for each vertex in this bipartite graph. According to Step 3, there are |Fms| (|Fmc |) iterations. So the claimed
time complexity can be easily obtained. For the space complexity, since we only store a directed bipartite graph on level
i− 1 and level i vertices in each iteration and the occupied space will be reused in the subsequent iterations (Step 13), and
since the length of the P(v) vector for each vertex v equals O(n), we have the space complexity equal to O∗((b+ 1)n). �

Remark. Since the polynomial space exact solution for the MSMC without multiplicity constraints problem given in
Section 3 is a non-constructive algorithm, the proposed DMCM algorithm can be easily adapted as a constructive algorithm
for the SMC or the MSMC without multiplicity constraints problem. The reason: for the SMC or the MSMC without
multiplicity constraints problem, each set or multiset in Fmc or Fms will be used at most b times. The difference is that,
without the multiplicity constraints, we can always find a multicover that satisfies the coverage requirements.
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Algorithm 2 DMCM: Dynamic Programming Based Algorithm for Set or Multiset Multicover with Multiplicity Constraints
Problem
Input: Fms or Fmc , the coverage requirement vector B and the multiplicity constraints vector (dSi)
Output: The minimum number of (multi)sets that satisfy B and respect (dSi)
1: Set an initial vertex v with label (S0, 0, . . . , 0) and we call this vertex as level 0 vertex.
2: Initialize H(v) = 0 and P(v) = ∅.
3: For i = 1 to |Fms| (|Fmc |) do
4: For (multi)set Si ∈ Fms (Fmc)we define (b+ 1)n vertices with labels from (S[i], 0, . . . , 0) to (S[i], b, . . . , b); we call all the
vertices constructed on Si as level i vertices.

5: For j = 0 to dSi do
6: For each vertex (S[i−1], y1, . . . , yn)with non-empty incoming edges (except the level 0 vertex) we add the (j+ 1)th
directed edge with edge weight j to (S[i], y1 + j ∗ q1, . . . , yn + j ∗ qn). Here qi means (multi)set Si contains qi element i.
Note that if yi + j ∗ qi ≥ b then we just set yi + j ∗ qi = b.

7: End For
8: For each level i vertex v = (S[i], y1, . . . , yn)with non-empty incoming edges do
9: First, denote by U all the (S[i−1], z1, . . . , zn) vertices that have outgoing edges to vertex v. Then we use the following
recurrence to calculate H(v).

10: H(v)=min
u∈U

(H(u)+ w(u, v)).

11: P(v) = (P(argmin
u

(H(u) + w(u, v))), (Si, w(argmin
u

(H(u) + w(u, v)), v))). This means that we append the

(multi)set Si together with its number of chosen copies in the P(v) vector.
12: End For
13: Remove all the level i− 1 vertices and their incident edges together with the corresponding H(v) and P(v) values.
14: End For
15: Return H(v) and P(v) values for the vertex v = (S[|Fms|], b1, . . . , bn) or v = (S[|Fmc |], b1, . . . , bn). Otherwise, we know
that we can not find a multicover that satisfies both the coverage requirement B = (b1, . . . , bn) and the multiplicity
constraints (dSi).

6. Future work

Comparing with the dynamic programming based exact algorithm for the MSMC without multiplicity constraints
problem in [13], although the DMCM algorithm (Algorithm 2) can greatly reduce the space complexity, the time complexity
is still considerably high. It should be possible to devise amore efficient algorithmwhich uses O((b+c+1)n) time. It should
also be interesting to design an exact multiset multicover algorithmwith O∗((b+1)n) time; that is, the time is independent
of the number of times that any element appears in a multiset.
We must emphasize that counting the number of transformed set covers for multiset multicover, i.e., the ck(F ′ms) value,

is different from directly counting the number of multiset multicovers, i.e., the ck(Fms) value. Although there is now an exact
algorithm for calculating ck(Fms) [15], it requires exponential space. So it is worthwhile to try to devise polynomial space
efficient algorithms for computing ck(Fms).
It would be worthwhile also to apply our results to some practical scenarios. For example, the minimum length wireless

link schedulingwith non-unit traffic demands problem [16] can be cast as a setmulticover problem. Similarly, theminimum
cost cell planning problem in 4G cellular networks [2] can be interpreted as a multiset multicover problem.
Finally, besides the multicovering problems studied in this paper, similar to the set partition problem studied in [5],

exact algorithms for the partition versions of set or multiset multicover problems, i.e., we need to cover all elements exactly
the number of times as specified in their coverage requirements with the minimum number of sets or multisets, would be
interesting to design. A natural application of this kind of partitioning algorithm is the graph multicoloring problem [4]. A
straightforward method for solving the graph multicoloring problem is to first transform it into a graph coloring problem.
This is realized by simply replacing each vertex vwith b(v) coloring demands as a clique of b(v) copies of the vertex v, where
each copy of v is adjacent to all the copies of the neighbors of v in the original graph. Then by applying the fastest exact graph
coloring algorithm proposed in [5], we can exactly solve the graphmulticoloring problem in O∗(2bn) time and O∗(2bn) space
since there are at most bn vertices in the transformed graph. This appears to be a tremendously time- and space-consuming
method. We are currently working on more efficient exact algorithms for the graph multicoloring problem, including the
non-preemption based version, i.e., the colors assigned to each node need to be contiguous, as well as the preemption based
version. In addition, we are also working on exact algorithms for the sum multicoloring problem [4] and various machine
scheduling problems [17] which can be cast as either a graph multicoloring problem or a sum multicoloring problem [4].
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