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Abstract. Given a set of nodes V, where each node has some data value,
the goal of data aggregation is to compute some aggregate function in the
fewest timeslots possible. Aggregate functions compute the aggregated
value from the data of all nodes; common examples include maximum
or average. We assume the realistic physical (SINR) interference model
and no knowledge of the network structure or the number of neighbors
of any node; our model also uses physical carrier sensing. We present a
distributed protocol to compute an aggregate function in O(D+Δ log n)
timeslots, where D is the diameter of the network, Δ is the maximum
number of neighbors within a given radius and n is the total number of
nodes. Our protocol contributes an exponential improvement in running
time compared to that in [18].

Keywords: SINR interference model, data aggregation, physical carrier
sensing.

1 Introduction

In this paper, we concentrate on minimizing latency when performing data aggre-
gation, a fundamental operation in wireless networks. Informally, our problem
is to, given a set of nodes distributed in a two-dimensional Euclidean plane,
compute an aggregate function (e.g. a maximum or average, see below for for-
mal definition) on the input data from all nodes in the network, and let every
node be aware of this value in as little time as possible. A practical, real world
application of data aggregation would be to compute an average temperature in
a wireless sensor network, for example.

To put things into context, we adopt the physical SINR (signal to interference
plus noise ratio) model. In the SINR model, the signal of a message from a sender
propagates through the Euclidean plane continuing on into infinity, but fades
with distance. A transmission is said to be successful if and only if the signal
power at the intended recipient is sufficiently strong against background noise
and the received signal power (seen as interference) of concurrent transmissions.
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Centralized algorithms for data aggregation under the SINR model have been
widely studied [20,17,18,9]; however, more realistic distributed algorithms have
not yet received significant attention. To the best of our knowledge, the only dis-
tributed data aggregation algorithm under SINR is given in [18]. Under stronger
restrictions on the initial knowledge that nodes have and aided by physical carrier
sensing, our protocol offers an exponential improvement in running time over [18].

Our algorithm is deterministic and confines nodes to only one piece of knowl-
edge: a polynomial estimate of the total number of nodes in the network. Our
distributed protocol makes extensive use of physical carrier sensing: the ability
to sense when the shared channel used by all nodes is occupied. Technically, we
develop a novel node election process using physical carrier sensing and make
new use of the maximal independent set algorithm in [27], which may be of
independent interest.

1.1 Our Contribution and Techniques

This paper presents an algorithm that is able to calculate (distributive and alge-
braic) aggregate functions in a deterministic, distributed way under the physical
(SINR) model. When all nodes can perform physical carrier sensing, have access
to a global clock and synchronously wake up, we show that an aggregate function
can be computed in O(D+Δ logn) timeslots. A trivial lowerbound for any data
aggregation protocol is Ω(D + Δ) timeslots [19], so our algorithm is at worst
an O(log n) approximation to an optimal solution. To the best of the authors’
knowledge, the current best distributed data aggregation algorithm is presented
in [18] which has a running time that depends on the logarithm of the ratio of
the longest and shortest links in the network. In the worst case this could require
Ω(n) timeslots; our algorithm can therefore offer an exponential improvement.
Our algorithm makes new use of finding maximal independent sets and we also
present a practical technical novelty of a node election process aided by the use
of physical carrier sensing.

1.2 Related Previous Work

The SINR model is more realistic than graph-based models (e.g. the protocol
interference model), as shown both experimentally and theoretically [6,21,24].
In a seminal work, Moscibroda and Wattenhofer first abstracted and researched
the connectivity problem in wireless networks in the context of the SINR model
[23]. Their work on centralized connectivity algorithms with arbitrary power as-
signments (e.g. non-uniform power) was subsequently expanded on in [25,22,7].
Related to the connectivity problem, i.e. creating a connected spanning tree on a
given set of nodes in a minimal number of timeslots, is that of scheduling : sched-
ule a given a set of communication links in as few timeslots as possible. The
scheduling problem was shown to be NP-complete in [4] (an O(log n) approxi-
mation was given in [5]). Halldorsson et al. proved hardness results for One-Shot
scheduling (i.e. scheduling as many links as possible in a single timeslot) with
uniform power (i.e. where every node transmits with the same, fixed power)
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in [10,11]. Kesselheim extended the result to the power control version of the
problem in [15].

Among results for data aggregation in graph theoretic models, Li et al. studied
the problem in the decentralized setting in [19]: an algorithm whose resulting
schedule was shown to be within a constant factor of the optimal is given. A
number of centralized algorithms have also been proposed [29,28,14].

There have been several results for centralized data aggregation algorithms
under the SINR model. Li et al. studied the problem in [20] using uniform power
with an asymptotically optimal scheduling algorithm of latency O(Δ+R), where
R is the radius of the network and Δ the maximum number of neighbors of any
node. Recently, this work was expanded on in [17], where an asymptotically op-
timal algorithm was produced for geometric minimum latency data aggregation
in the dual power model. In the same paper, the authors show that no algorithm
can have an approximation ratio better than Ω(log n) in metric SINR as well as
the NP-hardness of minimum latency data aggregation under geometric SINR.
Hua et al. study the minimum latency link scheduling problem for arbitrary
directed acyclic networks under both precedence and SINR constraints in [13]
where they show hardness results and give approximation algorithms. In [18], Li
et al. presented an algorithm with latency O(log3 n), assuming that the trans-
mission power of each node is large enough to cover the maximum distance in
the network. Halldorsson et al. very recently presented a centralized algorithm
for scheduling using non-uniform power that gives a constant approximation to
an optimal scheduling [9]. In the same work, he shows that any algorithm that
uses oblivious power assignments will require Ω(n) time slots for connectivity
under certain node distributions.

Under the SINR model, to the best of our knowledge, the only decentralized
data aggregation algorithm was given by Li et al. in [18]. When every node in the
network knows its position, the network diameter, the number of neighbors, and
has access to a global clock, [18] gives a distributed algorithm to perform data ag-
gregation whose running time depends on the logarithm of the ratio of the longest
and shortest links in the network, which may be Ω(n) in the worst case.

2 Model and Related Terminologies

2.1 Model

We consider a set of nodes V := {x1, x2, · · · , xn} distributed arbitrarily in the
Euclidean plane. The Euclidean distance between two nodes xi, xj ∈ V is denoted
by d(xi, xj). A directed link λij represents a communication request from sender
xi to receiver xj , where the length of λij = d(xi, xj).

As in [8], we assume that transmissions are put into synchronized slots of
equal length. All communication among nodes are done in synchronized rounds
and nodes wake up and begin the execution of the algorithm synchronously. In
any given time slot t, a node x can either transmit or receive a message, but not
both. In every time slot, a power assignment is assigned to every node in a time
slot, and is non-zero for node x ∈ V if and only if x is to transmit a message in
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time slot t. Formally, a power assignment Pt is a function Pt �→ R
+. A schedule

S = (P1, P2, · · · , P|S|) is a sequence of |S| power assignments.
Considering a link λsr in the network, with sender xs transmitting at power

Ps(r) to receiver xr, the SINR at xr is:

SINRxr(xs, xr) =

Ps(r)
d(xs,xr)α

N +
∑

xi,xj∈V\{xs}
Pi(j)

d(xi,xr)α

(1)

where N > 0 is the ambient noise, 2 < α ≤ 6 is the path loss ex-
ponent (the amount that the signal from xs degrades over distance), and
∑

xi,xj∈V\{xs}
Pi(j)

d(xi,xr)α
is the total signal strength (viewed as interference at

xr) of other concurrently transmitting senders. Receiver xr is said to have suc-
cessfully received the transmission from xs if and only if the SINRxr(xs, xr)
exceeds a given threshold β ≥ 1.

We consider data aggregation in the unknown neighborhood model, i.e. nodes
have no knowledge of the number of neighboring nodes within any given radius
from themselves. Nodes do, however, have a polynomial estimate (specifically
an upperbound) to the total number of nodes in the network. This assumption
will not affect the asymptotic time bounds of our proposed algorithm compared
to when the exact total number of nodes is known. Each node has a unique ID
from the interval [1, n] using the same number of bits, i.e. each node has a unique
logn bit identifier, where nodes with smaller IDs pad their lower order bits by
a prefix of 0s.

Every node is equipped with the ability to perform physical carrier sensing pro-
vided by a Clear Channel Assessment (CCA) circuit [26]. This is a natural as-
sumption, as physical carrier sensing is widely used in wireless protocols such as
Zigbee and Wi-Fi (IEEE 802.15.4 and 802.11 standards, respectively) [31]. For a
given threshold T , a node can sense if the shared channel is occupied if the power
sensed at that node by a transmitting neighbor is greater than or equal to T . A
carrier sensing range Rs [3] is mapped from the carrier sensing power threshold
T : Rs = (PT )

1/α where P is the transmission power. A node xi can carrier sense a
node xj if and only if the distance between xi and xj is no larger than Rs.

In the absence of other concurrently transmitting nodes, let Rmax = (Pmax

β·N )(1/α)

be the maximum distance that a successful transmission can be from by a sender
transmitting at power Pmax. For a given distribution of nodes, Δ is the maximum
number of nodes that lie within radius Rmax centered around any node. If a node
xj is within the transmission radius of sender xi, we say that the two nodes are
within one “hop” from one another. Let h(xi, xj) be the minimum hop distance
between two nodes xi and xj . We define the diameter D of the network to be
D = maxxi,xjh(xi, xj).

2.2 Related Terminologies

AGGREGATION FUNCTION: In general, there are three classes of aggregation
functions [12]: distributive (e.g. maximum, minimum, sum, count), algebraic
(e.g. variance, average), and holistic (e.g. kth largest/smallest). Our algorithm is
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only concerned with distributive and algebraic aggregate functions, and does not
apply to holistic functions as in [16], Kuhn et al. proved that the decentralized
computation of holistic functions is strictly harder than distributive or algebraic
ones. As in [20], we define an aggregation function f to be distributive if for
every pair of disjoint data sets X1, X2, f(X1 ∪X2) = h(f(X1), f(X2)) for some
function h. For example, when f is sum, h can also be set to sum.

An algabraic aggregation function is defined as a combination of k distributive
functions, k a constant, i.e. f(X) = h(g1(X), g2(X), · · · , gk(X)). For example,
when f is average, then k = 2, g1 and g2 are the distributive functions g1(X) =∑

xi∈X xi, g2(X) =
∑

xi∈X 1 and h(g1, g2) = g1/g2. We assume that an algabraic
function f is given in formula h(g1, g2, · · · , gk), so we can just compute gi(X)
distributively for i ∈ [1, k] and h(g1, g2, ·, gk) at each node once all data has
arrived.

Hereafter, we use the aggregate function maximum as an example for the sake
of intelligibility, but any distributive aggregation function could easily be chosen.

Definition 1. (MAXIMAL INDEPENDENT SET (MIS)): In a graph G =
(V,E), V a set of vertices and E edges, a set S is a maximal independent set if
every edge of graph G has at least one endpoint in S and every vertex not in S
has at least one neighbor in S.

Definition 2. (CONNECTED DOMINATING SET (CDS)): For a graph G =
(V,E), a subset V ′ of V is a dominating set if for all vertices xi ∈ V \ V ′, there
exists an adjacent node xj ∈ V ′. Nodes in V ′ are called dominators, whereas
nodes in V \V ′ are called dominatees. A subset C of V is a connected dominating
set (CDS) if C is a dominating set and C induces a connected subgraph. By
definition, an MIS is a dominating set.

3 Data Aggregation Algorithm

Each node begins with some value. Our protocol will have every node in the
network become aware of the highest value among them. The role of the domi-
nators will be to collect data from their respective dominatee neighbors and then
disseminate the highest value among them to all other nodes in the CDS.

We construct a CDS by first conducting an “election” process, where nodes
decide whether or not they are dominators. The collection of these dominators
will “cover” all nodes in the network, i.e. for all non-dominator nodes there
exists a dominator within a certain radius Rcollect. The dominators will be such
that the distance to the closest neighboring dominator will not be more than
three hops away with respect to Rcollect (c.f. Fig. 1). We will ensure that that
the dominating set is connected by allowing dominators to transmit to all nodes
within a range RCDS = 3 ·Rcollect.
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Rcollect
Rcollect

RCDS = 3 ·Rcollect

Rcollect

Fig. 1. An example of a MIS with respect to Rcollect. The nodes at the center of the
disks are dominators.

3.1 Algorithm Overview

We model our network as a “unit” disc graph with respect to an elaborately
chosen scaling factor. When adopting a uniform power assignment, the graph
can be modelled as a “unit” disc graph G = (V,E,RCDS), where an edge λij ∈ E
exists between xi and xj if and only if d(xi, xj) ≤ RCDS. It should be noted that
our model differs from traditional unit disc graphs because contention for access
to the shared wireless channel can cause interferences when trying to receive
messages. Because of this, we adopt the novel MIS algorithm that utilizes a
collision detection based method presented in [27]. The running time of this
algorithm is O(log n), will be denoted by tMIS , and is known by all nodes.

In our algorithm, we find maximal independent sets in order to accomplish
three different goals. The first MIS (performed with respect to Rcollect) is com-
puted to select which nodes will be in the dominating set, i.e. the dominators.
Each node not in this initial MIS, but which lies within a disc of radius Rcollect

around some dominator, will be the dominatee of that dominator.
In order to deal with eventual wireless interferences, we expand on a coloring

method used by Yu et al. in [30]. A second round of MISes (a constant number,
each with respect to Rcollect color) will be used to color the dominators; dominators
of the same color (color1) can successfully send/receive a transmission to/from
one of their dominatees (at a distance Rcollect) in a single timeslot. See Fig. 2(a)
for reference. In order to ensure that only one dominatee of any given dominator
sends in any given timeslot, the dominator will use O(log n) timeslots to perform
a binary search to grant the dominatee with the highest ID permission to send
its data. A logarithmic number of timeslots, then, will suffice for every domina-
tor in the network to successfully receive a message from one of their respective
dominatees.

A third round ofMISes (again, a constant number, but with respect toRCDS color)
will be used to color dominators in such a way that dominators of the same color
(color2) can send messages to neighboring dominators (as far as RCDS away) in
order to disseminate values across the entire network. See Fig. 2(b) for reference.

Because no node knows the value of Δ, we cannot have dominators wait to
collect data from all of their dominatees before disseminating values across the
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Rcollect color

Rcollect

xi
xj

xk

(a) A coloring resulting from a round
of MISes with respect to Rcollect color.
The nodes in the center of the disks
are dominators, the rest dominatees. By
Lemma 2. xi and xk may collect data
from a dominatee at the same time.

RCDS

Rcollect color

RCDS color

Rcollect

RCDS

xi

xj

xk

xl

(b) Completed Preprocessing. By
Lemma 2 and 3, xi and xj can
exchange messages with their domina-
tees. Similarly, by Lemma 2, xi and xl

can successfully broadcast to all other
nodes within radius RCDS at the same
time.

Fig. 2.

network. We therefore carry out the aggregation process in rounds where, in
a single round, dominators first collect data from just one of their respective
dominatees then transmit values to neighboring dominators. The number of
rounds this will take is unknown to the dominators. In our analysis, however, we
bound the number of rounds required. In addition, because, while dominators
are collecting data from their dominatees a logarithmic number of timeslots are
required, it would be disadvantageous for dominators who wish to disseminate
values throughout the CDS to wait for the collecting dominators to finish. We
therefore restrict the dominatee collection process to be performed during even
time slots, allowing dominators to perform the dissemination process during odd
timeslots.

3.2 Algorithm

The entire data aggregation algorithm is broken up into three separate parts.
Algorithm 1 defines the main data aggregation algorithm. It begins by running
the preprocessing subroutine defined in Algorithm 2 where the dominating set is
defined and colors are given. Algorithm 1 then goes on to ensure that dominators
collect data from their dominatees and disseminate data throughout the CDS.
Algorithm 3 is a subroutine that allows dominators to elect their dominatee of
the highest node ID who has not sent yet to collect data from.
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Algorithm 1

Initially, max val = initial val, sent value = null, dominator = FALSE, elected dominatee = null,
color1 = null, color2 = null, new max = FALSE
1: Run Algorithm 2 to decide if dominator, and if so, get colors
2: loop
3: \\ Even timeslots dominators collects value from dominatees.
4: if Timeslot even then
5: for i = 0 to collector colors do
6: elected dominatee = result of Algorithm 3 on input color = i.
7: if dominator = TRUE and color1 = i and elected dominatee �= null

then
8: Transmit with power Pcollect data request to elected dominatee

and listen for one timeslot. If value received greater than
max val, update max val and set new max = TRUE.

9: else
10: Listen for one timeslot and if receive request for node ID that

matches your own to send value, send at power Pcollect and set
sent val = TRUE.

11: \\ Odd timeslots dominators broadcast their max val
12: if Timeslot odd then
13: for i = 0 to CDS colors do
14: if dominator = TRUE and color2 = i and new max = TRUE then
15: Transmit max val with power PCDS, set new max = FALSE.
16: else
17: Listen for one timeslot. If receive value greater than max val

then update max val and set new max = TRUE.

.

. Data Aggregation

Algorithm 2. Preprocessing Subroutine

1: \\Elect dominators
2: Perform MIS algorithm [27] with power Pdominator

3: if In MIS then
4: dominator = TRUE
5: \\Color dominators for successful dominatee data collection
6: for i = 0 to collector colors do
7: if dominator = TRUE and color1 = null then
8: Use tMIS timeslots to perform MIS algorithm in [27] with power Pcollect color

9: if In MIS then color1 = i
10: else Stay quiet for tMIS timeslots.
11: \\Color dominators for successful CDS transmission
12: for i = 0 to CDS colors do
13: if dominator = TRUE and color2 = null then
14: Use tMIS timeslots to perform MIS algorithm [27] with power PCDS color

15: if In MIS then color2 = i
16: else Stay quiet for tMIS timeslots.
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Algorithm 3. Dominatee Election Subroutine

Require: color
Ensure: elected dominatee
1: L′ = 0, L = �n/2�, R = n− 1, elected dominatee = null
2: if dominator = TRUE and color1 = color then
3: Transmit with power Pcollect request for nodes with node IDs in range [0, n−1]

to reply, then listen for one timeslot. If sense occupied channel via physical
carrier sensing, execute the while loop. Else, stay quiet for 2 log n timeslots
and return null.

4: while L �= R do
5: Transmit with power Pcollect request for nodes with node IDs in range

(L,R] to reply, then listen for one timeslot.
6: if sense node response via physical carrier sense then L′ = L,L = �(L+

R)/2�
7: else R = L,L = �(L′ + L)/2�
8: Return L.
9: else
10: for 2(log n+ 1) timeslots do
11: if dominator = FALSE and sent value = FALSE then
12: Listen. If receive request for ID, then transmit with power Pdominator

if ID in range.
13: else Stay quiet.
14: Return null.

We define many parameters for our algorithm, most of them fairly contrived.
Their intricacy largely stems from a method we use to bound interferences in
Lemma 2. The parameters have been calculated so that our methods will work.
We define the following parameters for our algorithm, and some intuition re-
garding them follows.

1. constants: (i) collector colors = (2[96β(2α−1+ α−1
α−2 )]

1
α +1)2, (ii) CDS colors

= (6[96β(2α−1 + α−1
α−2 )]

1
α + 1)2

2. Radii: (i) Rcollect = min
{

(Nβ/T )(1/α)Rmax

3[96β(2α−1+α−1
α−2 )]

1
α
, 1
3 · (12 )

1
αRmax)

}
(ii) RCDS =

3Rcollect, (iii) Rcollect color = [96β(2α−1 + α−1
α−2 )]

1
αRcollect, (iv) RCDS color =

[96β(2α−1 + α−1
α−2 )]

1
αRCDS

3. Powers: (i) Pdominator = TRα
collect, (ii) Pcollect color = TRα

collect color,
(iii) PCDS color = TRα

CDS color, (iv) Pcollect = 2NβRα
collect, and (v) PCDS =

2NβRα
CDS

collector colors and CDS colors are the number of colors needed to color all dom-
inators for successful dominatee data collection and CDS data dissemination,
respectively.

Rcollect is the radius in which dominators are intended to collect data from their
respective dominatees. RCDS is the radius with respect to which our graph is
connected and also the furthest distance any dominator is to its closest neighbor-
ing dominator.Rcollect color (resp. RCDS color) is the minimum distance between two
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dominators that share the same color1 (resp. color2); that is, it is the “buffer” dis-
tance between two simultaneously collecting (resp. disseminating) dominators.

All our power assignments are static. Pdominator is the power level used when
electing domintators; it is also used by dominatees for the physical carrier sensing
binary search. Pcollect color (resp. PCDS color) is the power level used when coloring
dominators (i.e. performing an MIS) with respect to Rcollect color (resp. RCDS color).
Pcollect is the power level used when exchanging messages between domina-
tors/dominatees. PCDS is the power level used when dominators are transmitting
to neighboring dominators that compose the CDS. Strictly speaking, we define
our powers in relation to Pmax. Formally, we let max{PCDS color, PCDS} = Pmax,
so RCDS will be a constant fraction of Rmax.

1

Lastly, we define the following node attributes: dominator, a Boolean to define
if node is a dominator (TRUE) or dominatee (FALSE). color1 (resp. color2),
all nodes that have the same color can simultaneously broadcast within radius
Rcollect (resp. RCDS). initial val is the initial value that the node begins with
(e.g. initial temperature). max val is the current maximum value thus received
by the node. sent val is a Boolean used by dominatees to keep track of whether
they have sent their initial val to their respective dominator.

4 Analysis

In this section we will give a detailed analysis of our algorithm, show its correct-
ness and bound its running time.

Lemma 1. ([27])The total time to compute a MIS in each stage is tMIS =
O(log n) and each node computing it knows whether or not they are in it.

Recall that tMIS is knownby all nodes in advance of their execution ofAlgorithm1.

Lemma 2. Dominators that have the same color1 (resp. color2) can successfully
broadcast a message to all nodes within the disc of radius Rcollect (resp. RCDS)
centered around them in the same timeslot.

Proof. We have a set of dominators that all share the same color1. Let xi be
some such dominator and xj one of its dominatees. Recall d(xi, xj) ≤ Rcollect.
We claim that no matter how many other dominators of color1 transmit, that
xj can successfully receive a message sent by xi.

Using a method first developed by Moscibroda et al. in [23], and expanded on
in [30], we use a “ring method” to show that interferences are bounded. Because
all simultaneously transmitting dominators lie at distance at least Rcollect color

from each other, then discs of radius Rcollect color/2 centered at each such domi-
nator do not overlap. Let Rl = {xk : lRcollect color ≤ d(xi, xk) ≤ (l+1)Rcollect color}.
Notice now, that all discs of radius Rcollect color/2 in Rl around the dominators
are completely contained within the extended ring R+

l = {xk : lRcollect color −
Rcollect color/2 ≤ d(xi, xk) ≤ (l + 1)Rcollect color + Rcollect color/2}. See Fig. 4 for
reference.
1 We assume that graph G(V,E,RCDS) is connected.
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xi

xj

Rcollect

Rcollect color

R+
1 =

R1 = Rcollect color

Rcollect color/2

x′
k

xk

Rcollect color

Rcollect color+
2 ·Rcollect color/2

Fig. 3. A simple layout the rings R1 and R+
l surrounding a dominator xi. The disks

surrounding dominators of the same color1 of radius Rcollect/2 do not overlap, e.g. with
dominator xi and xk. By Lemma 2, xj can successfully receive a transmission from
dominator xi, despite simultaneously transmitting dominators of the same color1 as xi

(like xk and x′
k).

We bound the interference by dominators in these rings on xi’s dominatee xj .
Denote the interference received by unwanted dominator xk on xj as Ikj . Then

the interference IRl

j on xj by all unwanted senders of the same color1 as xi in
ring Rl is at most:

I
Rl
j =

∑

xk∈Rl with given color1

Ikj

≤ Area(R+
l )

Area(Disc(Rcollect color/2))
· Pcollect

(lRcollect color −Rcollect)α

=
π((l + 1)Rcollect color +Rcollect color/2)

2 − π(lRcollect color −Rcollect color/2)
2

π(Rcollect color/2)2
· Pcollect

(lRcollect color −Rcollect)α

=
8(2l + 1)Pcollect

(lRcollect color −Rcollect)α
<

48Pcollect

(l − 1/2)α−1Rα
collect color

(2)
The last inequality comes from the fact that Rcollect color > 2Rcollect (recall that

Rcollect color = [96β(2α−1 + α−1
α−2 )]

1
αRcollect). We can now bound the total inter-

ference at a dominatee xj of xi by simultaneously transmitting domintators:

Ij =

∞∑

l=1

48Pcollect

(l − 1/2)α−1Rα
collect color

≤ 48Pcollect

Rα
collect color

∞∑

l=1

1

(l − 1/2)α−1

=
48Pcollect

Rα
collect color

(2(α−1) +

∞∑

l=2

1

(l − 1/2)α−1
) ≤ 48Pcollect

Rα
collect color

(2(α−1) +
α− 1

α− 2
) ≤ N

(3)
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By the value of Pcollect, the SINR at xj from its transmitting dominator xi is:

SINRxj(xi, xj) ≥ Pcollect/R
α
collect

Ij+N ≥ β. Therefore, all simultaneously transmitting

dominators of the same color1 can successfully broadcast a message to their
respective dominatees.

The proof for successful transmission of dominators with color2 is similar, and
is omitted for brevity. 	

Lemma 3. Dominatees within the disc of radius Rcollect centered around their
respective dominators (of the same color1) can transmit a message to those dom-
inators successfully in the same timeslot.

Proof. This lemma is the converse of Lemma 2. That is to say, all dominators of
color1 are now receievers and one of their respective dominatees is now the sender.

If there are two dominators of the same color1 xi and xk with respective
dominatees xj and xl (c.f. Fig. 3), then we know by Lemma 2 that both xj and
xl can both successfully receive a message from their dominator. The interference
received by a dominatee xj by sending dominator xk is equal to the amount of
interference at xk when their roles are reversed.

Formally, the interference received by a dominatee xj received by a foreign
dominator xk is Pk

d(xj,xk)α
. Clearly, if xj sends at power Pj = Pk, then the inter-

ference received at xk will be identical. 	

Lemma 4. Dominators performing a binary search in Algorithm 3 can success-
fully sense responses from dominatees using physical carrier sensing.

Proof. This proof is omitted for brevity.

Lemma 5. The number of dominators contained in a disc of radius Rcollect color

(resp. RCDS color) is a constant no more than collector colors = (2[96β(2α−1 +
α−1
α−2 )]

1
α + 1)2 (resp. CDS colors = (6[96β(2α−1 + α−1

α−2 )]
1
α + 1)2).

Proof. The proof follows from a simple area argument is omitted for brevity.

Lemma 6. Each dominator can elect a dominatee with the highest ID that has
not sent yet and then collect a message from it in O(log n) timeslots.

Proof. In line 3 of Algorithm 3, one timeslot is used for all dominators of color1
to transmit a message to see if any dominatees respond; by Lemma 2, this will
be successfully received by their respective dominatees. Another timeslot is used
to wait for a reply; by Lemma 4, any reply will be sensed. If there is none, then
dominators wait for 2 logn timeslots for others to finish. In the ith iteration of the
while loop on line 4 of Algorithm 3, dominators that sensed a response broadcast
a message requesting dominatees with a range covering 1/2i of all total node IDs
to respond. This takes one timeslot to accomplish, and because only dominators
of the same color1 perform this broadcast, by Lemma 2, all of their respective
dominatees will successfully receive it. These dominators listen for one timeslot
to allow the dominatees to respond; dominatees within the ID range who have
not sent their information yet use this timeslot to reply with a message at power
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Pdominator and by Lemma 4, the dominatees respective dominators will be able
to sense this response. The range is then halved and the process repeated. After
logn iterations of this process (each taking two timeslots), the dominatee with
the highest ID will be discovered by each corresponding dominator. This binary
search, then, takes a total of 2 logn+ 2 timeslots.

Another combined two timeslots are used in line 8 and 10 of Algorithm 1 for
dominators of the same color1 to collect the actual data value of their respec-
tive elected dominatees. By Lemma 2 (resp. Lemma 3), each dominatee (resp.
dominator) is able to receive the message successfully.

For the set of dominators of the same color1 to successfully receive a message
from a dominatee, then, uses 2 logn+4 timeslots. The for loop in line 5 of Algo-
rithm 1 has dominators of all (constantly many) colors perform this collection.
Thus, O(log n) timeslots are sufficient for each dominator to successfully collect
data from one of their respective dominatees. 	

Theorem 1. For all placements of nodes in the plane, there exists a schedule
using O(D+Δ logn) timeslots for the highest value in the network to be known
by all nodes.

Proof. Each node knows in advance the amount of time required (tMIS =O(logn))
to perform the MIS algorithm in [27]. By Lemma 1, The election of dominators
takes tMIS timeslots. A constant number of executions, collector colors (resp.
CDS colors), of the MIS algorithm in [27] are needed to color the dominators with
their color1 (resp. color2) for the dominatee data collection (resp. data dissemina-
tion) process by Lemma 5. By Lemma 1, each coloring needs O(log n) timeslots.
The total running time of the preprocessing subroutine in Algorithm 2 is therefore
O(log n).

In each iteration of the loop in line 2 of Algorithm 1, by Lemma 6, each dom-
inator will be able to successfully collect a data item from one of its dominatees
in O(log n) timeslots. After Δ iterations of this loop, the maximum value of any
node in the network will be contained in the dominating set, requiring a total of
O(Δ log n) timeslots.

In the same iteration of the loop, by Lemma 2, eachdominator of the same color2
will be able to broadcast its current highest value to neighboring dominators, and
by Lemma 5 the number of colors to iterate through is constant. Because domina-
tors disseminating data do not have to wait for dominators collecting data to per-
form their binary search (as they occur during different timeslot intervals), each
dominator will be able to successfully broadcast a message to all nodes in the disc
of radius RCDS surrounding them in a constant number of timeslots. At this point
becauseRCDS is a constant fraction ofRmax, at mostO(D) timeslots are needed for
the highest value to be disseminated throughout the network.

The entire execution time required for the aggregate function to be computed
and known by all nodes in the network is therefore O(D + Δ log n) and the
theorem follows. 	
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5 Conclusions

In this paper, under the SINR interference model aided by physical carrier sens-
ing, we present a distributed, deterministic algorithm for computing (distribu-
tive and algabraic) aggregate functions in wireless networks. With no knowledge
beyond a polynomial estimate of the number of nodes in the network, our de-
centralized protocol computes an aggregate function and ensures the result is
obtained by every node in the network using only O(D +Δ logn) timeslots. In
particular, aided by the use of physical carrier sensing, our protocol can outper-
form the distributed data aggregation technique used in [18] by an exponential
factor despite the fact our protocol is more limited in its initial knowledge of
the network. As a future work, the study of distributed data aggregation using
non-uniform powers could be particularly meaningful as they have been shown
to have significant effects on reducing time complexity in some cases [2,23]. An-
other natural future direction would be to investigate distributed data aggrega-
tion algorithms under SINR computing holistic aggregate functions. Extending
our work to cases without physical carrier sensing abilities and/or under the
asynchronized communication model, when nodes do not share a global clock,
would also be beneficial directions of future study.
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