
Brief Announcement: A Tight Distributed Algorithm for All
Pairs Shortest Paths and Applications∗

Qiang-Sheng Hua
Services Computing

Technology and System Lab,
School of Computer Science

and Technology,
Huazhong University of

Science and Technology,
China

Haoqiang Fan
The Institute for

Interdisciplinary Information
Sciences,

Tsinghua University, China

Lixiang Qian, Ming Ai,
Yangyang Li,

Xuanhua Shi, Hai Jin
Services Computing

Technology and System Lab,
School of Computer Science

and Technology,
Huazhong University of

Science and Technology,
China

ABSTRACT
Given an unweighted and undirected graph, this paper aims
to give a tight distributed algorithm for computing the all
pairs shortest paths (APSP) under synchronous communi-
cations and the CONGEST (B) model, where each node can
only transfer B bits of information along each incident edge
in a round. The best previous results for distributively com-
puting APSP need O(N +D) time where N is the number
of nodes and D is the diameter [1, 2]. However, there is
still a B factor gap from the lower bound Ω(N/B +D) [1].
In order to close this gap, we propose a multiplexing tech-
nique to push the parallelization of distributed BFS tree
constructions to the limit such that we can solve APSP in
O(N/B+D) time which meets the lower bound. This result
also implies a Θ(N/B + D) time distributed algorithm for
diameter. In addition, we extend our distributed algorithm
to compute girth which is the length of the shortest cycle
and clustering coefficient (CC) which is related to counting
the number of triangles incident to each node. The time
complexities for computing these two graph properties are
also O(N/B +D).

1. INTRODUCTION
Computing all pairs shortest paths (APSP) is a fundamen-

tal problem in computer science. For unweighted graphs,
APSP can be solved by fast matrix multiplication [3] and
the time complexity is O(Nω logN) where N is the number
of nodes and ω is the exponent of the fast matrix multiplica-

∗This paper is partly supported by the NSFC under grant
No. 61572216 and 61433019, International Science & Tech-
nology Cooperation Program of China under grant No.
2015DFE12860, National 863 Hi-Tech Research and Devel-
opment Program under grant 2014AA01A301.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’16 July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935812

tion algorithm1. For weighted graphs, the up-to-date fastest

algorithm [5] can solve APSP in time O(N3/2Ω(
√

log N)).
Whether we can design faster APSP algorithms than the
above time complexities is an open problem.

However, there is another story when it comes to dis-
tributed algorithms. In the distributed algorithms, we con-
sider synchronous communications and each node can only
send a bounded size message to each neighbor in a round.
Typically, if we restrict each node can only send B bits
of information, it’s called the CONGEST (B) model. If we
set B = O(logN), this is the extensively used CONGEST
model used in the distributed computing community [6].

For an undirected and unweighted graph G = (V,E),
where |V | = N and |E| = M , computing APSP boils down
to computing N Breadth-First-Search (BFS) trees. Dis-
tributively computing one BFS tree takes O(D) time where
D is the graph diameter. So a naive way to distributively
computing APSP takes O(ND) time by sequentially com-
puting a distributed BFS tree rooted for each node. Surpris-
ingly, recent elegant results [1, 2] show that APSP can be
done in O(N+D) time by scheduling N parallel distributed
BFS tree constructions under the CONGEST model. This
result is nearly optimal since the lower bound is Ω(N/B +
D) [1]. However, there’s still a B factor gap from the lower
bound. A natural question is: Can we design a distributed
algorithm for APSP that matches the lower bound under the
CONGEST (B) model? In this paper, we give an affirmative
answer to this question.

The basic idea of our distributed algorithm is that we
utilize the multiplexing technique to take full advantage of
the bandwidth B. Our algorithm divides the bandwidth
into multiple channels and divides the nodes into several
groups. The algorithm then performs parallel distributed
Breadth-First-Search (BFS) processes for the nodes in the
corresponding groups on each channel. In order to avoid
message transmission collisions on the same channel (i.e.,
to satisfy the CONGEST (B) model), we will schedule the
starting time of BFS processes in each channel. Since the
distributed BFS processes don’t interfere on different chan-
nels, there will be another dimension of freedom to increase
the parallelism of the distributed BFS processes. Therefore,

1The state-of-the-art fast matrix multiplication shows this
exponent is around 2.372864 [4].

439

we give a tight distributed algorithm for APSP that meets
the lower bound. This algorithm also implies a tight dis-
tributed algorithm for diameter since the lower bound for
distributively computing diameter is also Ω(N/B + D) [7].
In addition, our algorithm can be extended to distributively
compute the girth and the clustering coefficient (CC) whose
time complexities are also O(N/B +D).

2. OUR RESULTS
The main results of this paper are summarized in Table

1. In this paper we mainly focus on distributed algorithms
for exactly computing APSP. Furthermore, we can extend
our distributed APSP algorithm to compute diameter, girth
and clustering coefficient. Our contributions are as follows:

1. We present a distributed algorithm for computing APSP
in time O(N/B + D). This improves previous upper
bound of O(N+D) in [1, 2]. Our distributed algorithm
matches the lower bound Ω(N/B + D) of computing
APSP in [1].

2. We introduce three applications of our distributed APSP
algorithm: diameter, girth and clustering coefficient.
All of them can be computed in time O(D +N/B).

Table 1: Previous works and our results
Task Precision Previous Works This Work

APSP exact O(N)[1][2] * Θ(D +N/B)

Girth exact O(N)[1][2] * O(D +N/B)

CC exact O(N)*† O(D +N/B)

Diameter exact O(N)[1][2] * Θ(D +N/B)

* All these works are based on CONGEST model. Our
work is under the CONGEST (B) model. Note that if
B = O(logN), CONGEST (B) model is the same as the
CONGEST model.
† We are unaware of any previous work for computing
this graph property under the CONGEST model. But
we can derive this result based on the O(N) time dis-
tributed APSP algorithm [1].

3. NAME-INDEPENDENT SHORTEST PATHS
In distributed APSP, O(NM) messages have to be ex-

changed to constructN BFS trees. Following the distributed
BFS approach, we cannot avoid a message complexity of
O(NM). But in one time step, at most O(BM) bits can
flow over the edges. So if the message size is B bits, the total
O(NBM) bits need to be exchanged. Thus, the time com-
plexity will be O(D+N). In order to reduce the time com-
plexity to O(D+N/B) and to meet the Ω(D+N/B) lower
bound in [1], the message size can only be O(1) bits such
that we only need to exchange O(NM) bits in the graph. In
this case, the time complexity will be O(D + N/B). How-
ever, if the message size is O(1), we cannot include the node
ID into the message (each node ID will be O(logN) bits)
to distinguish messages from different sources in the BFS
process. Thus, our major concern is to avoid sending nodes’
IDs.

In this section, we present the method to compute name-
independent APSP in O(D+N/B) time. In order to match
this bound, we first relabel the nodes to avoid sending nodes’
IDs in subsection 3.1. That is, the new ID of each node

does not need to be sent any more. For making the best use
of the B bandwidth, we divide the bandwidth into multi-
ple channels and perform BFS processes in each channel in
subsection 3.2. Considering there may be collisions in each
channel (violating the CONGEST (B) model), we present an
algorithm scheduling the starting time of BFS processes to
avoid it.

3.1 Relabel the Nodes
Given a spanning tree, we imagine a pebble [1] traversing

the tree by DFS (Depth-First-Search), and at each step it
records the node it visits. Denote ak the time a pebble k-th
time visits a node. So a0 is the time a pebble enters node v
for the first time and ak is the time a pebble leaves node v
for the last time if v only has k successors. We aim to get
an array that records a0, · · · , ak for each node. Denote this
array as τ where τ(i) = j means node j is visited by the
pebble at time i.

To get array τ efficiently, we first compute the sizes of
subtrees rooted at each node. This allows us to simulate
DFS process by the sizes of subtrees. For a node v, if the
size of its k-th subtree is sk, we have ak = ak−1 + 2sk. It
is easy for the root of the tree to compute ak since a0 is 0,
then the root broadcasts ak−1 to its k-th successor and this
successor takes ak−1 + 1 as its own a0. We formulate this
algorithm below.

• Step 1: Select a node to construct a BFS tree.

• Step 2: Each node in the tree computes its subtrees’
sizes by convergecasting.

• Step 3: The root of the tree computes a0, a1, · · · , ak
where a0 = 0 and ak = ak−1 + 2sk if the root has k
successors, then broadcasting ai−1 to its i-th successor
where 0 < i ≤ k.

• Step 4: The i-th node which receives ai−1 sets a0 =
ai−1 + 1 and does the same operation as Step 3.

• Step 5: After all the leaves of the BFS tree finished
Step 4, each node gets its local array τ .

We use array τ as the new labels of nodes. Since the new
label implies the order of nodes visited in the DFS process,
we get the following LEMMA 1 showing the relationship
between distance and new labels.

Lemma 1. Denote the distance from u to v as d(u, v).
For each node, it maintains a local τ where τ(x) = y means
node y is visited by the pebble at time x so that

d(τ(i), τ(j)) ≤ |i− j|.

Observe that nodes do not need to send the distance value
in the BFS process. They only need to send a bit as a peb-
ble. The problem is sv and ak can be as large as O(N).
We use pipelining to address this problem. That is, each
node divides sv into several messages of size B, then it
sends the number of B bits at a time, from the least signif-
icant bits to the most significant bits. The pipelining takes
O(D + (logN)/B) time. We conclude the time complexity
of relabeling the nodes in LEMMA 2.

Lemma 2. Nodes can be relabeled in O(D + (logN)/B)
time.

440

3.2 Multiplexing
Recall that the basic idea of our algorithm is dividing

the bandwidth into multiple channels and running the dis-
tributed BFS algorithm in each channel. If we divide the
nodes into several groups and put them into different chan-
nels, there is no collision among the groups. So we only
concern the schedule on one channel.

For the sake of generality, let b denote the size of messages
used in the BFS process. Since only b bits are needed in one
round when building each BFS tree, we divide the band-
width into R = Θ(min{B/b,N}) channels. We partition
the nodes relabeled in the subsection 3.1 into R groups:

Ui = {τ(j)|b i
R

(2N − 1)c ≤ j < b i+ 1

R
(2N − 1)c},

where Ui denotes the i-th group (0 ≤ i < R), and 0 ≤ j <
2N−1 denotes the index of nodes in τ . Since a node appears
many times in τ , it can be contained in multiple groups. In
order to avoid repeatedly computing the distance between
two nodes, we only allow each node to perform one BFS
process. Note that we only deliver a pebble as the BFS
message instead of sending nodes’ IDs, so b is O(1). The
message’s traveling time between two nodes implies the dis-
tance between them. If each node knows where the messages
originate from, we can figure out the distance by the mes-
sages’ arriving time. Due to the limit of space, we just give
a sketch of the multiplexing technique below.

• Step 1: Divide the nodes into R groups Ui where
0 ≤ i < R. Each group corresponds to a channel.

• Step 2: In one group, the nodes perform BFS one
by one according to their ranks in the group. We set
the time interval between two BFS processes as three
rounds.

• Step 3: The node which receives a BFS message de-
duces where the message originates from. Since this
node could receive duplicated messages from the same
source during three continuous rounds, we ignore mes-
sages in the latter two rounds.

• Step 4: This node computes the distance from the
message’s originating node to itself.

• Step 5: The algorithm is finished if all nodes in the
groups finished their BFS process.

We only concern one channel in Steps 2-4. In Step 3,
a node may receive several messages from its neighbors in
three continuous rounds and these messages originate from
one source. Since we only need the messages which travel
along the shortest paths, the messages which travel along
longer paths must arrive at the latter two rounds and should
be ignored. We set time interval as three rounds to avoid
ignoring messages originating from different sources so that
the messages arriving at different time intervals must orig-
inate from different nodes. That is, the first batch of mes-
sages a node received must originate from the first node in
the group. The second batch of messages which are not ig-
nored must originate from the second node in the group.
This allows us to compute the distance between two nodes
by messages’ arriving time. By using LEMMA 1, we show
that there is no collision in one group in LEMMA 3.

Lemma 3. Denote BFSv as a BFS performed by node v.
When node j and node k are both in the same group, at
no time a node is simultaneously visited by both BFSj and
BFSk.

By using LEMMA 2 and LEMMA 3, we conclude the time
complexity of name-independent APSP in THEOREM 1.

Theorem 1. The name-independent APSP can be solved
in O(D + N/B) time by using Relabeling and Multiplexing
techniques.

4. APPLICATIONS
In this section, we introduce three applications using Re-

labeling and Multiplexing techniques. Due to the limit of
space, we directly give the time complexities of these appli-
cations.

Theorem 2. The diameter can be computed in O(N/B+
D) rounds. This matches the lower bound of computing di-
ameter Ω(N/B +D) in [1].

Theorem 3. Girth can be computed in time O(D+N/B).

Theorem 4. Clustering coefficient of vertices can be com-
puted in time O(D +N/B).

5. CONCLUSION
In this paper, we studied the distributed computation of

APSP on an undirected and unweighted graph under syn-
chronous communications and the CONGEST (B) model.
By dividing the limited B bandwidth into multiple channels
and by utilizing the multiplexing technique, we can push the
parallelization of the distributed BFS processes to the limit
such that the time complexity for distributively computing
APSP can be reduced from O(N+D) to O(N/B+D) which
meets the lower bound Ω(N/B +D). This technique might
be of independent interest to tackle some other problems
under the CONGEST (B) model.

Our distributed algorithm also implies a tight distributed
algorithm for computing diameter whose time complexity is
Θ(N/B + D). In addition, we also extend our distributed
algorithm to compute the girth and the clustering coefficient
in O(N/D +B) time.

6. REFERENCES
[1] Stephan Holzer and Roger Wattenhofer. Optimal

distributed all pairs shortest paths and applications. In
Proc. PODC, 2012.

[2] David Peleg, Liam Roditty, and Elad Tal. Distributed
algorithms for network diameter and girth. In Proc.
ICALP, 2012.

[3] Raimund Seidel. On the all-pairs-shortest-path problem
in unweighted undirected graphs. J. Comput. Syst. Sci.,
51(3):400–403, 1995.

[4] François Le Gall. Powers of tensors and fast matrix
multiplication. In Proc. ISSAC, 2014.

[5] Ryan Williams. Faster all-pairs shortest paths via
circuit complexity. In Proc. STOC, 2014.

[6] David Peleg. Distributed computing: a locality
sensitive approach. SIAM Monographs on discrete
mathematics and applications, 5, 2000.

[7] Silvio Frischknecht, Stephan Holzer, and Roger
Wattenhofer. Networks cannot compute their diameter
in sublinear time. In Proc. SODA, 2012.

441

