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Abstract. Rendezvous is a fundamental process in the operation of a
Cognitive Radio Network (CRN), through which a secondary user can
establish a link to communicate with its neighbors on the same frequency
band (channel). The licensed spectrum is divided into N non-overlapping
channels, and most previous works assume all users have the same label
for the same channel. This implies some degree of centralized coordina-
tion which might be impractical in distributed systems such as a CRN.
Thus we propose Oblivious Rendezvous where the users may have differ-
ent labels for the same frequency band.

In this paper, we study the oblivious rendezvous problem for M users
(ORP-M for short) in a multihop network with diameterD. We first focus
on the rendezvous process between two users (ORP-2) and then extend the
derived algorithms to ORP-M. Specifically, we give anΩ(N2) lower bound
for ORP-2, and propose two deterministic distributed algorithms solving
ORP-2. The first one is the ID Hopping (IDH) algorithm which generates
a fixed length sequence and guarantees rendezvous in O(N max{N,M})
time slots; it meets the lower bound when M = O(N). The second one is
theMulti-Step Hopping (MSH) algorithm which guarantees rendezvous in
O(N2 logN M) time slots by combing ID scaling and hopping with differ-
ent steps; it meets the lower bound if M can be bounded by a polynomial
function ofN , which is true of large scale networks. The two algorithms are
also applicable to non-oblivious rendezvous and the performance is com-
parable to the state-of-the-art results. Then we extend the algorithms to
ORP-M with bounded rendezvous time by increasing the diameterD by a
factor.

1 Introduction

1.1 Rendezvous and Oblivious Rendezvous

Cognitive Radio Network (CRN) is attracting more and more attention in both
academia and industry, which was proposed to solve the spectrum scarcity prob-
lem [1]. A CRN consists of primary users (PUs) which own the licensed spectrum
and secondary users (SUs) which can sense and access the portion of the licensed
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spectrum left unused by the PUs. Unless otherwise specified, ‘user’ in this paper
refers to SU.

There have been many interesting works in the CRN community tackling
such problems as neighbor discovery [10, 27], broadcasting [16, 25], data gath-
ering [7], and routing [15]. All these works assume one fundamental process in
the operation of a CRN, called rendezvous, which establishes a link on some
frequency band (channel) needed for communication between two or more users.
One can imagine that the licensed spectrum is divided into N non-overlapping
channels; each user can sense a channel, and if it is not occupied by any PU,
it is an available channel. For the convenience of our derivations, a CRN over
time is time-slotted and each user can access an available channel in each time
slot. Practical rendezvous processes consist of many detailed steps, such as bea-
coning and handshaking. In this paper, we focus on the step of multiple users
meeting on the same available channel: we say that rendezvous between users
is achieved if they can access the same available channel in the same time slot.
We give distributed algorithms for rendezvous. Time to Rendezvous (TTR) is
used to measure these rendezvous algorithms, which is the time for the users to
(achieve) rendezvous on a common channel.

Previous works use either a central controller (such as a base station) or
a Common Control Channel (CCC) [18, 22] to simplify the process. However,
such centralization could lead to a bottleneck in practical situations when the
number of users increases, is vulnerable to adversary attacks, and is not flexible.
Therefore, many blind rendezvous algorithms have been proposed, where the
word ‘blind’ refers to non-reliance on any central controller or CCC [8,9, 12, 13,
20,21,23,26]. They construct sequences based on the channels’ labels (some also
use the users’ identifiers) and let users hop on the frequency bands according
to the sequences. Obviously, all these blind algorithms assume that the users
see the same labels for these licensed frequency bands (channels). These labels
represent global knowledge that must be communicated, somehow, to all the
participating users. This may imply that there must exist some centralized entity
that maintains and disseminates the knowledge.

To do away with the assumption of existing blind rendezous solutions that
there is a common set of labels shared by all users, we propose the oblivious
rendezvous problem where different users may have different labels for the li-
censed channels. Technically, each user can only assign (local) labels to those
sensed available channels and attempt rendezvous based on such local informa-
tion. Correspondingly, we refer to those other schemes where the users share the
same labels for the frequency bands as non-oblivious rendezvous.

The oblivious rendezvous problem poses several challenges. First of all, be-
cause each user may have different labels for the channels, traditional methods
based on a common set of channel labels cannot be applied at all. Second, each
user can join the network at any time slot, and thus the algorithm needs to
guarantee the rendezvous asynchronously. Third, as the users do not have each
other’s information until they achieve rendezvous and establish a common link
for communication, symmetric algorithms are preferred, which means that all
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Table 1. MTTR Comparison for Two Users’ Scenario

Algorithms Non-Oblivious Rendezvous Oblivious Rendezvous

Jump-Stay [21] 3NP 2 + 3P = O(N3) −
CRSEQ [23] P (3P − 1) = O(N2) −
DRDS [12] 3P 2 + 2P = O(N2) −

Hop-and-Wait [9] O(N2logM) −
MMC [26] ETTR = O(N2) ETTR = O(N2)

IDH (this paper) O(N max{N,M}) O(N max{N,M})
MSH (this paper) O(N2logNM) O(N2logNM)

Remarks: 1) “−” means the method is not applicable to oblivious rendezvous; 2)
ETTR means expected time to rendezvous (note: MMC cannot guarantee bounded
time rendezvous); 3) P is the smallest prime number P > N , P = O(N).

users should execute the same algorithm. Finally, for scenarios with many users
in a large area, two users may not be connected directly, and so multihop com-
munication needs to be considered. In this paper, we present algorithms that
address all these issues.

1.2 Related Work

Non-oblivious rendezvous algorithms assume all users share the same labeling for
the licensed channels. There are commonly three types of these algorithms: cen-
tralized algorithms, decentralized algorithms based on Common Control Channel
(CCC), and blind rendezvous algorithms.

Centralized algorithms assume that a central controller or a CCC exists during
the rendezvous process, which substantially simplifies the problem [18, 22]. For
practical deployment, however, the central controller or the CCC could become
a bottleneck and is vulnerable to adversary attacks. There are some decentral-
ized algorithms based on establishing local CCCs through which each user can
communicate with their neighbors [17, 19]. However, these algorithms incur too
much overhead in establishing and maintaining local CCCs.

Blind rendezvous algorithms without CCC have been attractive to many re-
searchers. Several state-of-the-art results are listed in Table 1; they construct
a fixed length sequence for each user to hop through. Generated Orthogonal
Sequence (GOS) [11] is a pioneering work which generates an N(N + 1)-length
sequence based on random permutation of {1, 2, . . . , N}. However, it assumes
that all channels are available to the users. Quorum-based Channel Hopping
(QCH) [4,5] is based on a quorum system for synchronous users. Asynchronous
QCH [6] can work even when two users start in different time slots, but it is only
applicable to two available channels.

Channel Rendezvous Sequence (CRSEQ) [23], Jump-Stay (JS) [21] and Dis-
joint Relaxed Difference Set (DRDS) [12] are three representative efficient blind
rendezvous algorithms. CRSEQ picks the smallest prime P > N and generates
the sequence with P periods, each period containing 3P − 1 numbers based on
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the triangle number (triangle number means Ti = i(i+1)
2 , for any i ∈ [1, N ];

see [23] for details) and the modular operation. Jump-Stay uses the same idea
by picking the prime number P and it generates the sequence with P periods,
where each period contains two jump frames and one stay frame and each frame
is P in length. DRDS is a new method we proposed in [12], through constructing
a disjoint relaxed difference set and transforming it into a CH sequence of length
3P 2; two users can achieve rendezvous in O(N2) time slots.

All these works construct the same sequence for all users, which we call global
sequence. Correspondingly, there are several works constructing different se-
quences for the users, which we call local sequences [13]. Hop-and-Wait (HW) [9]
makes use of each user’s ID to construct a sequence of length 3P 2 logm, where
m is the size of the network. Local sequences based blind rendezvous algorithms
have been presented in some recent works [8,13], which favor the scenario where
each user’s available channels are just a small fraction of all the available chan-
nels. However, their worst case rendezvous time could still be O(N2 log logN)
and O(N2) respectively.

Oblivious rendezvous assumes that different users have different labels for the
licensed channels, which obviates the need to establish, maintain and communi-
cate a global set of labels. Nearly all previous algorithms cannot be applied to
oblivious rendezvous. To our knowledge, Modified Modular Clock (MMC) [26]
is the only one that may work and achieve oblivious rendezvous for two users.
MMC firstly counts the number of available channels (n) and picks a prime num-
ber n ≤ P ≤ 2n randomly. Then the user generates a sequence based on P . It is
claimed that using MMC, two users can achieve rendezvous within O(N2) time
slots with high probability. However, it cannot guarantee bounded rendezvous.
As a step forward, this paper offers deterministic distributed algorithms for
bounded oblivious rendezvous.

1.3 Our Contributions

In this paper, we initiate the study of oblivious rendezvous in Cognitive Radio
Networks. In this problem, each user has a distinct identifier (ID) within the
range [1,M ] where M is the number of number of secondary users. First, we
derive an Ω(N2) rendezvous lower bound for any two asynchronous users by
introducing the Adversary Assignment Graph, where N is the number of all
licensed channels. Then, two deterministic distributed algorithms for the obliv-
ious rendezvous problem for 2 users (ORP-2) are proposed, which subsequently
serve as the building block for the cases with more users in a multihop network.
The first algorithm is called ID hopping (IDH) which generates a sequence of N
frames and each frame consists of 2P elements (P is the smallest prime larger
than both N and M). We show that each user can repeat accessing the chan-
nels by the sequence and rendezvous is guaranteed in O(N max{N,M}) time
slots. The other one, called Multi-Step Hopping (MSH), is more complicated
as it aims at a shorter sequence; it scales the user’s ID and then hops among
the channels with different steps (scaled values). MSH guarantees rendezvous in
O(N2 logN M) time slots, which is much better than IDH, especially when the
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network size is large. These upper bounds match the presented lower bound if
M = O(N) for the IDH algorithm and M = N c (c can be an arbitrary large
constant) for the MSH algorithm. We then extend these algorithms to the mul-
tiuser multihop networks with bounded time to rendezvous. Finally, we compare
our algorithms with the state-of-the-art rendezvous algorithms through extensive
simulations (details are in the full version [14]) which also validate our theoretical
analyses.

2 Model and Problem Definitions

2.1 System Model

We consider a multihop Cognitive Radio Network (CRN) with M users (SUs)
who coexist with some PUs, and the network diameter is D 1. Each user has
a distinct identifer (ID) I ∈ [1,M ]. Suppose the licensed spectrum owned by
the PUs is divided into N(N ≥ 1) non-overlapping channels where each channel
represents certain frequency band (e.g., 470− 478 MHz in the TV white space).
Each user is equipped with cognitive radios to sense the spectrum for available
channels, where a channel is available if it is not occupied by any nearby PUs.

Through spectrum sensing, each user can obtain a set of available channels
(frequency bands), and all previous blind rendezvous algorithms assume the la-
bels of all these channels are known to all the users. We have already pointed
out in the above some possible disadvantages of imposing a common set of
labels. We propose the oblivious rendezvous problem where each user labels
the sensed channels locally and attempts rendezvous with such local informa-
tion. More specifically, we rewrite the available channel set for user a as Ca =
{ca(1), ca(2), . . . , ca(na)} (similarly for user b, as Cb = {cb(1), cb(2), . . . , cb(nb)})
where na = |Ca|, nb = |Cb|. Channel ca(i) ∈ Ca or cb(i) ∈ Cb represents a certain
frequency band (channel), where i is a local label in these two users, respectively,
but note that ca(i) and cb(i) may or may not be the same frequency band (Fig.
1 is an example).

Time is divided into slots of equal length of 2t, where t is the time duration for
establishing a link for communication. According to IEEE 802.22 [24], t = 10ms
and thus each time slot has a duration of 20ms. Then we can consider the system
slot-aligned because an overlap of t for link establishment exists even if the start
times of different users are not aligned.

In each time slot, the user can access an available channel and attempt ren-
dezvous with its potential neighbors. We use Time to Rendezvous (TTR) to
denote the number of time slots it takes for users to achieve rendezvous once all
users have begun the process. Since all users are physically dispersed and the
wake-up time of each user may be different, the rendezvous algorithm should
be designed to be applicable to both synchronous and asynchronous users. In
this paper, we use Maximum Time to Rendezvous (MTTR) as a measure for
the worst possible situation for the algorithms and we say rendezvous can be
guaranteed if MTTR is bounded.

1 The minimum number of hops between any two users is no larger than D.
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Fig. 1. An example of ORP-2 for different δ values

2.2 Problem Definition

We define the Oblivious Rendezvous Problem (ORP) as follows:
ORP-M: Given a multihop CRN with M users, denote the available channel

set for user i as Ci and its ID as Ii. Let G = ∩iCi, and G �= ∅. Design a strategy
for the users such that they are guaranteed to hop onto the same channel in the
same time slot, no matter when they begin their attempts.

In order to tackle the above problem, we first focus on designing deterministic
distributed algorithms for two users’ (out of the M users) rendezvous (ORP-2),
and then extend these algorithms to the multiuser multihop scenario (ORP-M)
(cf. Section 5).

ORP-2: Given available channel set C and ID set I, design an algorithm over
time slots t : f(t) ∈ [1, |C|] such that for any two users a and b with Ca, Cb,
Ca ∩ Cb �= ∅, Ia, Ib ∈ [1,M ], Ia �= Ib, and ∀δ ≥ 0:

∃T s.t. ca(fa(T + δ)) = cb(fb(T )) ∈ Ca ∩ Cb.

where fa(T ) (or fb(T )) represents the the output when user a (or b) runs the
algorithm.

The TTR value is T and user b starts the process δ time slots later than user
a. The MTTR value of algorithm f is MTTRf = max∀δT . The goal is to find
an algorithm f with bounded MTTR and which guarantees rendezvous.

Remark 1. If user b starts the rendezvous process earlier than user a, set δ < 0
in the description of ORP-2 and TTR = T + δ.

Fig. 1 shows an example of ORP-2. Suppose user a has two available chan-
nels, Ca = {ca(1), ca(2)} and user b has four, Cb = {cb(1), cb(2), cb(3), cb(4)}.
However, only one common channel exists between them, which is ca(1) = cb(4).
Consider a simple algorithm: each user accesses the channels by repeating the
sequence {1, 2, . . . , n} where n is the number of available channels. Thus user
a repeats accessing the channels {ca(1), ca(2), ca(1), ca(2), . . .} until rendezvous,
and similarly for user b. For the asynchronous scenario, supposing that user b
starts the attempt δ = 1 time slot later, rendezvous is achieved as depicted
in Fig. 1(a) at time slot 4 since ca(1) = cb(4). However, it is easy to see that
the above simple algorithm cannot guarantee rendezvous for all scenarios such
as when δ = 2, as in Fig. 1(b). Our goal is to design deterministic distributed
algorithms with bounded MTTR value for all δ values.
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3 Lower Bound for ORP-2

Theorem 1. For any deterministic distributed algorithm solving ORP-2, there
exist Ca, Cb, Ca ∩ Cb �= ∅ such that the MTTR value is Ω(N2).

Proof. For any deterministic distributed algorithm F on the basis of C, I : f 
→
[1, n] (n = |C|), suppose users a and b have different IDs Ia �= Ib and let |Ca| =
|Cb| = �N/2, |Ca ∩ Cb| = 1. Equivalently, denote the only common channel
between the users as c∗ and there exists 1 ≤ i, j ≤ �N/2 such that ca(i) =
cb(j) = c∗.

user a

user b

1 2 3 n-1 n

1 2 3 n-1 n

t0 t1t2 t3 t4

Fig. 2. Adversary Assignment Graph

We introduce the Adversary Assignment Graph (AAG), as in Fig. 2. There are
two rows of nodes in the graph and the number of nodes in each row is n = �N/2.
The upper row represents user a’s local labels of the available channels with
indices {1, 2, . . . , n} and the bottom row represents user b’s labels. Let at, bt be
the outputs of the algorithm in time slot t, respectively, thus:

at = f(a1, a2, . . . , at−1, n, Ia)

bt = f(b1, b2, . . . , bt−1, n, Ib)

Without loss of generality, suppose user b begins δ slots later; accordingly, we
connect node at+δ in the upper row with bt in the other row with an edge having
the label t (if the two nodes are already connected, then we just update the label
on the edge). For example, (1, 1) is connected in t0 as depicted in Fig. 2 and
(2, n), (1, 2), (3, 1), (n, n− 1) are also connected.

Supposing there exists an adversary who can assign licensed channels from
the set U = {u1, u2, . . . , uN} to Ca and Cb, rendezvous will not be achieved if
the common channel c∗ in the upper row is not connected to c∗ in the lower row.
Since the inputs to the algorithm F are fixed (for example, the inputs for user a
are Ia and |Ca|), the lower bound of MTTR is the smallest T such that (c∗, c∗)
is connected in every adversary assignment.

Let δa be the smallest degree of the upper nodes. If δa < n, the adversary
can find a node i in the upper row and j in the lower row such that (i, j) is
not connected, and then assigns c∗ to them, which implies that rendezvous is
not achieved. (Then it is easy to assign the other non-intersecting channels to
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other nodes.) We can verify that δa < n exists if T < n2 and thus the lower
bound of MTTR is n2 = Ω(N2). Thus such Ca and Cb can be constructed by
the adversary, which implies MTTR = Ω(N2). �

4 Algorithms for ORP-2

In this section, we propose two deterministic distributed algorithms for ORP-2,
which can meet the lower bound under certain conditions. The first one is based
on the channel hopping method where the hopping step is based directly on the
ID. The second method scales the user’s ID and hops among the channels using
different values.

4.1 ID Hopping Rendezvous

Alg. 1 generates a sequence of length T = 2NP̂ , which is composed of N frames
and each frame contains 2P̂ elements, where P̂ is the smallest prime number
larger than both N and M . For the i-th frame (0 ≤ i < N), the 2P̂ elements are
constructed as follows (Lines 5–6): set i + 1 to the 0-th element and (i + j · I)
mod P̂ + 1 to the j-th element. This procedure can be thought of as picking
numbers from a cycle with labels {0, 1, · · · , P̂ − 1}, where the first one (the 0-th
element) is i+1 and the second one is I steps later under the modular operation.
We refer to this number as the hopping step and I is the hopping step in Alg. 1.
Since only n available channels exist, elements in [n+1, P̂ ] are mapped to [1, n]
to accelerate the process, as in Line 7.

Algorithm 1. ID Hopping Algorithm

1: Find the smallest prime P̂ such that P̂ > max{N,M};
2: T := 2NP̂ , t := 0, n = |C|;
3: while Not rendezvous do
4: t′ := t mod T ;
5: x := � t′

2P̂
�, y := t′ mod 2P̂ ;

6: z = (x+ yI) mod P̂ + 1;
7: z′ = (z − 1) mod n+ 1, access channel c(z′) in C;
8: t := t+ 1;
9: end while

For users a and b, the available channel sets are Ca, Cb and their IDs are
Ia, Ib respectively. Denote the sequences generated in Alg. 1 (before mapping) as
Sa = {a0, a1, . . . , aT−1} and Sb = {b0, b1, . . . , bT−1} where T = 2NP̂ . Without
loss of generality, suppose user b is δ ≥ 0 time slots later than user a:

Lemma 1. Consider sequences Sa, Sb: ∀δ ≥ 0 and ∀i, j ∈ [1, P̂ ]; there exists
t < T such that:

a(δ+t) mod T = i and bt = j.
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Proof. The users repeat the generated sequence every T time slots, and thus we
only need to consider 0 ≤ δ < T . Let x1 = � δ

2P̂
�, y1 = δ mod 2P̂ . Two situations

are analyzed on the basis of y1:
Case 1: 0 ≤ y1 < P̂ . Consider t = x2 · 2P̂ + y2, 0 ≤ x2 < N, 0 ≤ y2 < P̂ . Let

x2 + y2Ib + 1 ≡ j mod P̂ , and thus:

y2 = (j − x2 − 1)I−1
b mod P̂ . (1)

Here I−1
b (IbI

−1
b ≡ 1 mod P̂ ) exists because Ib and P̂ are co-primes. We enu-

merate x2 from 0 to N − 1; y2 can be computed from Eq. (1) and we de-
note the value as yh2 when x2 = h. Then these N values comprise the set
Y = {y02, y12 , . . . , yN−1

2 }, and denote the set of corresponding time slots as

TB = {t0, t1, . . . , tN−1} where th = h · 2P̂ + yh2 .
It is clear that ∀th ∈ TB, 0 ≤ h < N , th < T and bth = j. Let TA =

{t′0, t′1, . . . , t′N−1} where t′h = (th + δ) mod T . Then we show that there exists
g ∈ [0, N) such that at′g = i. Considering any two time slots t′g, t′h ∈ TA where
user a accesses different channels:

at′g = (x1 + g) + (y1 + yg2)Ia mod P̂ + 1

at′h = (x1 + h) + (y1 + yh2 )Ia mod P̂ + 1

Plugging in the expression of yg2 , y
h
2 as in Eq. (1), we can derive:

at′g − at′h ≡ (g − h)(IaI
−1
B − 1) �= 0 mod P̂ .

Here Ia �= Ib, Ia, Ib < P̂ implies IaI
−1
b �= 1. So at′g �= at′

h
. As |TA| = |TB| = N ,

there are N different values for the N time slots in TB, and thus there exists t′g
such that at′g = i, which concludes the lemma.

Case 2: P̂ ≤ y1 < 2P̂ . Consider t = x2 · 2P̂ + y2 where 0 ≤ x2 < N and
P̂ ≤ b2 < 2P̂ . Using the same technique as in Case 1, we can find t < T such
that a(δ+t) mod T = i and bt = j. Thus the lemma holds. �

Theorem 2. Alg. 1 guarantees rendezvous between two asynchronous users of
ORP-2 in MTTR = 2NP̂ time slots, where P̂ ≤ 2max{N,M}.
Proof. Since Ca ∩ Cb �= ∅, and supposing channel c∗ ∈ Ca ∩ Cb, there exists i ∈
[1, na] and j ∈ [1, nb] such that ai = c∗ and bj = c∗, where na = |Ca|, nb = |Cb|.
Without loss of generality, and supposing user b is δ time slots later than user
a, from Lemma 1, there exists t < T such that they both access channel c∗, and
thus rendezvous can be guaranteed in T = 2NP̂ time slots no matter when they
start the process. �

Remark 2. P is shown to be P̂ ≤ 2max{M,N}2, and thus MTTR =
O(N max(N,M)). If M = O(N) in Alg. 1, MTTR = O(N2), which meets
the lower bound.
2 Bertrand-Chebyshev Theorem : ∀k > 1, at least one prime p exists such that k < p <
2k.
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4.2 Multi-Step Channel Hopping Rendezvous

Alg. 1 works well whenM = O(N). However, when the number of users increases,
this algorithm becomes inefficient (for example, when M = N3). The reason is
that the user’s ID is used as the hopping step and it enlarges the TTR when
M is large. Therefore, we propose a new algorithm which is more efficient for
large scale networks, by combining two techniques: ID scaling and hopping with
different steps.

Algorithm 2. ID Scale Function

1: Input: I ;
2: Output: d = {d(1), d(2), . . . , d(l)};
3: l := �logN M� + 1, i := 1, cur(0) := I ;
4: while i ≤ l do
5: d(i) := cur(i− 1) mod N + 1;
6: cur(i) := �cur(i− 1)/N�
7: i := i+ 1;
8: end while

As shown in Alg. 2, the ID is scaled to �logN M�+1 bits and each bit ranges
from 1 to N3. For example, for N = 8,M = 100, I = 30, the scaled values are
d = {7, 4, 1}. The scale function plays a key role in the rendezvous algorithm
design and the scaled values are used as the hopping steps in Alg. 3.

Algorithm 3. Multi-Step Channel Hopping Algorithm

1: Find the smallest prime P such that P > N ;
2: T := 2NP , t := 0, n = |C|, l := �logN M�+ 1;
3: Invoke Alg. 2 on the user’s ID and get the output d = {d(1), d(2), . . . , d(l)};
4: while Not rendezvous do
5: if t < T then
6: z := �t/2P � + 1;
7: else
8: t′ := (t− T ) mod (2lT );
9: x := �t′/2T �+ 1, y := t′ mod 2T ;
10: y1 := y mod (2P ), y2 := (�y/(2P )� mod N + 1;
11: z := (y2 + y1 · d(x)− 1) mod P + 1;
12: end if
13: z′ := (z − 1) mod n+ 1, access channel c(z′) in C;
14: t := t+ 1;
15: end while

Alg. 3 can be thought of as generating two types of sequences. The first one is
a Scale Sequence (SS) which is composed of 0 and repetitions of l scaled values

3 Here, ‘bit’ does not mean 0 or 1, but represents a value in [1, N ].
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(since two users can start the rendezvous process asynchronously, bit 0 is added
as a special flag to represent the start of the user):

SS = {0, d(1), d(2) . . . , d(l)
︸ ︷︷ ︸

l

, d(1), d(2), . . . , d(l)
︸ ︷︷ ︸

l

, . . . . . .}

The other one is a Channel Hopping Sequence which is composed of different
frames based on SS, as shown in Fig. 3. There areN+1 different types of frames,
F (0), F (1), . . . , F (N), and each type of frame is composed of N segments. For
example, F (i) has N segments and each segment contains 2P elements. The 0-th
element of the j-th segment is j and the k-th element is (j + ki− 1) mod P + 1
(the construction of each segment of F (i) can be seen as accessing channel in
[1, P ] by hopping i steps). For example, F (0) and F (1) are constructed as follows:

F (0) = 1, 1, . . . , 1
︸ ︷︷ ︸

2P

, 2, 2, . . . , 2
︸ ︷︷ ︸

2P

, . . . , N,N, . . . , N
︸ ︷︷ ︸

2P

F (1) = 1, 2, . . . , P
︸ ︷︷ ︸

2P

, 2, 3, . . . , P, 1
︸ ︷︷ ︸

2P

, . . . , N,N + 1, . . . , N − 1
︸ ︷︷ ︸

2P

As shown in Fig. 3, the first element 0 is special because it does not appear in
other positions of SS and it corresponds to F (0) once, while the other elements
in SS correspond to each type of frames twice.

Fig. 3. Construction of Channel Hopping Sequence

Supposing users a and b run Alg. 3 with their local information (Ca, Ia)
and (Cb, Ib) where Ca ∩ Cb �= ∅, Ia �= Ib, let na = |Ca|, nb = |Cb|, denote
da = {da(1), da(2), . . . , da(l)}, db = {db(1), db(2), . . . , db(l)} as the outputs of ID
Scale function, denote SSa, SSb as the scale sequences (as constructed above),
and denote Sa = {a0, a1, . . . , at, . . .}, Sb = {b0, b1, . . . , bt, . . .} as the Channel
Hopping Sequences. Without loss of generality, suppose user b starts the process
δ ≥ 0 time slots later than user a. we have the following Lemmas 2, 3 and 4.
Due to the lack of space, the proofs are included only in the full version [14].

Lemma 2. Consider SSa, SSb: ∀δ′ ∈ Z, there exists i ≥ 0, i+ δ′ ≥ 0 such that:

SSa(i) �= SSb(i+ δ)
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Lemma 3. Consider Sa, Sb; for any pair (i, j) where 1 ≤ i ≤ na, 1 ≤ j ≤ nb, if
0 ≤ δ < T ,

∃t ≤ 2lT s.t. a(δ+t) = i and bt = j.

Lemma 4. Consider Sa, Sb, for any pair (i, j) where 1 ≤ i ≤ na, 1 ≤ j ≤ nb, if
δ ≥ T ,

∃t ≤ T s.t. a(δ+t) = i and bt = j.

Theorem 3. Alg. 3 guarantees rendezvous between two asynchronous users of
ORP-2 in MTTR = 4lNP = O(N2 logN M) time slots, where P ≤ 2N .

Proof. As assumed, G = Ca ∩ Cb �= ∅, supposing c∗ ∈ G and there exists
1 ≤ i ≤ na, 1 ≤ j ≤ nb such that ca(i) = c∗, cb(j) = c∗. Without loss of
generality, suppose user b starts the process δ time slots later. If δ < T , from
Lemma 3, rendezvous is guaranteed in 2lT time slots; if δ ≥ T , rendezvous is
guaranteed in T time slots. Thus MTTR ≤ 2lT = 4lNP = O(N2 logN M). �

Generally speaking, if M is (bounded by) a polynomial function of the total
number of licensed channels N , the length of scaled bits is a constant and two
users can be guaranteed to rendezvous in O(N2) time slots, which meets the
lower bound of ORP-2. Moreover, this result is also comparable to even state-
of-the-art non-oblivious rendezvous algorithms as shown in Table 1.

5 Algorithm for ORP-M

The algorithms for ORP-2 can be smoothly extended to handle ORP-M. We use
the basic idea in [9,12,21]: once every two users achieve rendezvous on a common
channel successfully, they can exchange their information over the channel and
the local information such as the user’s ID and the labels for the frequency
bands (channels) can be synchronized. Therefore, they would generate the same
sequence afterwards. We extend Alg. 3 to the multiuser multihop scenario as an
example.

Algorithm 4. Algorithm for Multiuser Multihop Scenario

1: while Not terminated do
2: Run Alg. 3 with local information (I,C);
3: if Rendezvous with user - (I ′, C′) then
4: I := min(I, I ′);
5: C := C ∩ C′;
6: Synchronize labels for the channels as the user with smaller ID;
7: end if
8: end while

In Alg. 4, the user runs Alg. 3 with local information (I, C). Once rendezvous
is achieved with another user with (I ′, C′), they exchange their information and
three operations are executed:



Oblivious Rendezvous in Cognitive Radio Networks 177

– Change I to be the smaller value between I, I ′;
– Change C to be the intersection of C and C′;
– Synchronize the labels for the available channels with the user with smaller

I value such that ∀i ∈ [1, |C|], c(i) = c′(i).

After these three steps, the local information of the two users are the same and
they access the channels with the same sequence until rendezvous with others.
Supposing that the network diameter of the CRN in ORP-M is D, the MTTR
value can be guaranteed as in Theorem 4 (pleas refer to [14] for the proof).

Theorem 4. Alg. 4 guarantees that all users can achieve rendezvous inMTTR =
4lNPD = O(N2D logN M) time slots, where D is the diameter of the CRN.

6 Oblivious Rendezvous Applications

Oblivious rendezvous is not only practical in a Cognitive Radio Network (CRN),
but also suitable for several other (theoretical) problems. For example, the tele-
phone coordination problem [2]: there are n telephones in each of two rooms,
where the telephones are connected pairwisely by some unknown rules. Each
room has a player who can pick up one telephone and say ‘hello’ in each time
slot until they hear each other. They do not have any common labels of the tele-
phones by which they can coordinate, and the aim is to minimize the time slots
required for the players to meet. This problem only considers two synchronous
users and each has exactly n telephones. In our settings, once each user is as-
signed a distinct identifier, a deterministic algorithm for this problem can be
designed even for asynchronous users and some of these telephones are broken.
Another problem is rendezvous search on the graph [3], where different users are
placed on the graph and they attempt to meet each other as quickly as possible.
Our oblivious rendezvous problem is a little different as we can consider the
users in the CRN being restricted to walk in a given clique (the set of available
channels), and thus the time to rendezvous can be easily extended. For other
more general rendezvous search problems, the method in this paper could be
used as a basis for their study.

7 Conclusion

We introduce the oblivious rendezvous problem which is believed to be more
practical in constructing Cognitive Radio Networks. In contrast to existing, non-
oblivious rendezvous problem, the users in our setting have different labels for
the licensed frequency bands (channels), and we derive rendezvous algorithms
that is based on each user’s local information.

For oblivious rendezvous, we first derive an Ω(N2) rendezvous time lower
bound. Then we propose two deterministic distributed algorithms: the ID Hop-
ping (IDH) algorithm which can achieve rendezvous between two users in
O(N max(M,N)) time slots, where M is number of users in the network; and
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the Multi-Step channel Hopping (MSH) algorithm which guarantees oblivious
rendezvous in O(N2 logN M) time slots. The IDH algorithm works efficiently
when M is small, while the MSH algorithm performs much better for larger M ,
which implies large scale networks with many users. The upper bounds of two al-
gorithms match the presented lower bound if M = O(N) for the IDH algorithm
and if M = N c (c is a constant) for the MSH algorithm. Third, we extend these
two algorithms to multiuser multihop networks. We have conducted extensive
simulations for both two-user rendezvous and multihop multiusers rendezvous
using our algorithms (details in the full version [14]).

Although our algorithms are designed for oblivious rendezvous, the simula-
tion results show that they are comparable to the state-of-the-art non-oblivious
rendezvous algorithms and they even perform much better under some circum-
stances. For oblivious rendezvous, our two proposed algorithms also outperform
the MMC algorithm, and the MSH algorithm performs the best as the number
of rendezvous users increases.

N,M are the number of licensed channels and users in the network respec-
tively; one future direction is to design fully distributed rendezvous algorithms
without knowing these values. We also want to explore randomized distributed
algorithms which can achieve bounded rendezvous time with high probability.

Acknowledgement. We thank the anonymous reviewers for their very helpful
comments which helped improve the presentation of this paper. This work was
supported in part by the National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61103186, 61033001, 61361136003, Hong Kong RGC-GRF grant
714311, and the Shu Shengman Special Research Fund.

References

1. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: NeXt Generation/Dynamic Spec-
trum Access/Cognitive Radio Wireless Networks: A Survey. Computer Net-
works 50(13), 2127–2159 (2006)

2. Alpern, S., Pikounis, M.: The Telephone Coordination Game. Game Theory
Appl. 5, 1–10 (2000)

3. Anderson, E.J., Weber, R.R.: The Rendezvous Problem on Discrete locations. Jour-
nal of Applied Probability 28, 839–851 (1990)

4. Bian, K., Park, J.-M., Chen, R.: A Quorum-Based Framework for Establishing
Control Channels in Dynamic Spectrum Access Networks. In: Mobicom (2009)

5. Bian, K., Park, J.-M.: Asynchronous Channel Hopping for Establishing Rendezvous
in Cognitive Radio Networks. In: IEEE INFOCOM (2011)

6. Bian, K., Park, J.-M.: Maximizing Rendezvous Diversity in Rendezvous Protocols
for Decentralized Cognitive Radio Networks. IEEE Transactions on Mobile Com-
puting 12(7), 1294–1307 (2013)

7. Cai, Z., Ji, S., He, J., Bourgeois, A.G.: Optimal Distributed Data Collection for
Asynchronous Cognitive Radio Networks. In: ICDCS (2012)

8. Chen, S., Russell, A., Samanta, A., Sundaram, R.: Deterministic Blind Rendezvous
in Cognitive Radio Networks. In: ICDCS (2014)



Oblivious Rendezvous in Cognitive Radio Networks 179

9. Chuang, I., Wu, H.-Y., Lee, K.-R., Kuo, Y.-H.: Alternate Hop-and-Wait Channel
Rendezvous Method for Cognitive Radio Networks. In: INFOCOM (2013)

10. Dai, Y., Wu, J., Xin, C.: Virtual Backbone Construction for Cognitive Radio Net-
works without Common Control Channel. In: INFOCOM (2013)

11. DaSilva, L., Guerreiro, I.: Sequence-Based Rendezvous for Dynamic Spectrum Ac-
cess. In: DySPAN (2008)

12. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Nearly Optimal Asynchronous Blind
Rendezvous Algorithm for Cognitive Radio Networks. In: SECON (2013)

13. Gu, Z., Hua, Q.-S., Dai, W.: Local Sequence Based Rendezvous Algorithms for
Cognitive Radio Networks. In: SECON (2014)

14. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Oblivious Rendezvous in Cognitive
Radio Networks, http://i.cs.hku.hk/~qshua/sirocco2014full.pdf

15. Huang, X., Lu, D., Li, P., Fang, Y.: Coolest Path: Spectrum Mobility Aware Rout-
ing Metrics in Cognitive Ad Hoc Networks. In: ICDCS (2011)

16. Ji, S., Beyah, R., Cai, Z.: Minimum-Latency Broadcast Scheduling for Cognitive
Radio Networks. In: SECON (2013)

17. Jia, J., Zhang, Q., Shen, X.: HC-MAC: A Hardware-Constrained Cognitive MAC
for Efficient Spectrum Management. IEEE Journal on Selected Areas in Commu-
nications 26(1), 106–117 (2008)

18. Kondareddy, Y., Agrawal, P., Sivalingam, K.: Cognitive Radio Network Setup with-
out a Common Control Channel. In: MILCOM (2008)

19. Lazos, L., Liu, S., Krunz, M.: Spectrum Opportunity-Based Control Channel As-
signment in Cognitive Radio Networks. In: SECON (2009)

20. Lin, Z., Liu, H., Chu, X., Leung, Y.-W.: Enhanced Jump-Stay Rendezvous Algo-
rithm for Cognitive Radio Networks. IEEE Communications Letters 17(9), 1742–
1745 (2013)

21. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Jump-Stay Rendezvous Algorithm for
Cognitive Radio Networks. IEEE Transactions on Parallel and Distributed Sys-
tems 23(10), 1867–1881 (2012)

22. Perez-Romero, J., Salient, O., Agusti, R., Giupponi, L.: A Novel On-Demand Cog-
nitive Pilot Channel enabling Dynamic Spectrum Allocation. In: DySPAN (2007)

23. Shin, J., Yang, D., Kim, C.: A Channel Rendezvous Scheme for Cognitive Radio
Networks. IEEE Communications Letters 14(10), 954–956 (2010)

24. Stevenson, C.R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S.J., Caldwell, W.:
IEEE 802.22: The First Cognitive RadioWireless Regional Area Network Standard.
IEEE Communications Magazine 47(1), 130–138 (2009)

25. Song, J., Xie, J., Wang, X.: A Novel unified Analytical Model for Broadcast Proto-
cols in Multihop Cognitive Radio Ad Hoc Networks. IEEE Transaction on Mobile
Computing (2013)

26. Theis, N.C., Thomas, R.W., DaSilva, L.A.: Rendezvous for Cognitive Radios. IEEE
Transactions on Mobile Computing 10(2), 216–227 (2011)

27. Zhang, D., He, T., Ye, F., Ganti, R., Lei, H.: EQS: Neighbor Discovery and Ren-
dezvous Maintenance with Extended Quorum System for Mobile Sensing Applica-
tions. In: ICDCS (2012)

http://i.cs.hku.hk/~qshua/sirocco2014full.pdf

	Oblivious Rendezvousin Cognitive Radio Networks
	1 Introduction
	1.1 Rendezvous and Oblivious Rendezvous
	1.2 Related Work
	1.3 Our Contributions

	2 Model and Problem Definitions
	2.1 System Model
	2.2 Problem Definition

	3 Lower Bound for ORP-2
	4 Algorithms for ORP-2
	4.1 ID Hopping Rendezvous
	4.2 Multi-Step Channel Hopping Rendezvous

	5 Algorithm for ORP-M
	6 Oblivious Rendezvous Applications
	7 Conclusion
	References




