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Abstract. In a multiple-message broadcast, an arbitrary number of
messages originate at arbitrary nodes in the network at arbitrary times.
The problem is to disseminate all these messages to the whole net-
work. This paper gives the first randomized distributed multiple-message
broadcast algorithm with worst-case performance guarantee in wireless
ad-hoc networks employing the SINR interference model which takes
interferences from all the nodes in the network into account. The net-
work model used in this paper also considers the harsh characteristics
of wireless ad-hoc networks: there is no prior structure, and nodes can-
not perform collision detection and have little knowledge of the net-
work topology. Under all these restrictions, our proposed randomized
distributed multiple-message broadcast protocol can deliver any message
m to all nodes in the network in O(D + k + log2 n) timeslots with high
probability, where D is the network diameter, k is the number of mes-
sages whose broadcasts overlap with m, and n is the number of nodes in
the network. We also study the lower bound for randomized distributed
multiple-message broadcast protocols. In particular, we prove that any

uniform randomized algorithm needs Ω(D+ k+ log2 n
log log log n

) timeslots to
deliver k messages initially stored at k nodes to all nodes in the network.

1 Introduction

In wireless networks, how to achieve efficient communications is one of the most
extensively studied problems. The main challenge is to deal with interferences.
Hence, the modeling of wireless interferences will play a fundamental role in
designing efficient network protocols. Previous work mostly adopted the graph
based or the protocol interference model. In the graph based interference model,
it is assumed that only nodes within d (a small constant) hops from a receiver
can interfere with the transmission. The protocol model assumes that a trans-
mission can be successful if and only if there is only one transmitter within a
certain range centered at the receiver. A shortcoming of these two types of mod-
els is that they treat interference as a localized phenomenon, which is not likely
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the case in practice. In real wireless networks, the interference is cumulative, be-
ing contributed to by all simultaneously transmitting nodes. Because of the lack
of the ability to capture the cumulative property of interference, the protocols
designed under the graph based or protocol model display a dramatically differ-
ent performance from the expectation in practice. In this paper, we adopt the
SINR model (also known as the physical interference model since it reflects the
physical reality more accurately), which defines a global interference function
and takes into account the cumulative property of interference. Besides interfer-
ence, some other important aspects in wireless ad-hoc networks should also be
considered when modeling the network. For instance, when the network begins
operation, no built-in infrastructure or MAC layer is available to the nodes to
facilitate communication between neighboring nodes, and the nodes are clueless
about the network topology. Furthermore, the nodes may not be able to perform
any type of collision detection because they may be just tiny sensors with limited
capabilities and energy [15].

In the multiple-message broadcast problem, an arbitrary number of messages
arrive at arbitrary nodes from the environment at arbitrary times. The problem
is to deliver all these messages to all the nodes. A multiple-message broadcast
protocol can be used as a building block for many applications, e.g., update
of routing tables, topology learning of the underlying network, and aggregating
functions in sensor networks.

Different from most previous work, in this work, we do not assume that all
messages are initially stored at their nodes. In addition, we adopt the realis-
tic global SINR interference model and assume the imposition of such rigorous
restrictions as no prior structure, no collision detection and nodes have little
knowledge about the network topology; all these add to the challenge of de-
signing an efficient distributed protocol. Under all these rigorous but practical
restrictions, we present a randomized distributed multiple-message broadcast al-
gorithm for wireless ad-hoc networks, and show that, with high probability, any
message m can be broadcast to all nodes in O(D+ k+ log2 n) timeslots after its
arrival, whereD is the diameter of the communication graph defined by the max-
imum transmission range RM (refer to Section 3), k is the number of messages
whose broadcast overlap m (refer to Section 3) and n is the number of nodes in
the network.1 To the best of our knowledge, this work is the first one that studies
time efficient distributed multiple-message broadcast algorithms in wireless ad-
hoc networks under the SINR model. Our result significantly surpasses the best
known results of max{O(k logn logΔ+(D+n/ logn) logn logΔ), O((kΔ log n+
D) logΔ)} [1,8] under the graph based interference model, and breaks the ex-
pected Ω(k+D log(n/D)) lower bound [4,10] for randomized solutions under the
graph-based radio network model. Note that the previous results are obtained

1 We define the running time of a multiple-message broadcast algorithm as the max-
imum number of timeslots to disseminate a message to the whole network. If all
messages are initially stored at their nodes, our defined performance measurement
is equivalent to that in previous work [1], which is the number of timeslots needed
to broadcast all messages to all nodes.
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with knowledge of some network parameters, e.g., Δ and D; In contrast, our
algorithm does not assume any prior information concerning such parameters.
The trivial Ω(D+k) lower bound indicates that our algorithm is asymptotically
optimal for networks with diameter D ∈ Ω(log2 n).

Besides the proposed algorithm, we also study the lower bound of the time
needed by randomized distributed algorithms to accomplish multiple-message
broadcast. Specifically, we show that if all the nodes use the same transmission
power, any uniform randomized algorithm in which all awaken nodes transmit a
message with the same probability (independent of the communication history)

in every timeslot [3] needs Ω(D+k+ log2 n
log log log n ) timeslots to accomplish multiple-

message broadcast even under the assumption that all messages are initially
stored at their nodes.

2 Related Work

Although the SINR model (or the physical interference model) poses great chal-
lenges for designing efficient distributed algorithms due to its global interference,
there have been some attempts in recent years. In [14], with the assumption that
all nodes can perform physical carrier sensing, an O(log n) time randomized dis-
tributed algorithm for computing a constant approximate dominating set was
presented. The local broadcasting problem was first considered in [5]. In this
paper, based on whether each node knows the number of nodes in its prox-
imity region or not, the authors gave two randomized distributed algorithms
with approximation ratios O(log n) and O(log3 n), respectively. The latter re-
sult was improved by some recent papers [19,16], the latter of which achieves
an approximation ratio of O(log n). By assuming that nodes can perform phys-
ical carrier sensing, the authors of [19] also gave two distributed deterministic
local broadcasting algorithms both having an approximation ratio of O(log n)
for asynchronous wake-up and synchronous wake-up scenarios. The distributed
(Δ + 1)-coloring (Δ is the maximum network degree) was studied in [18] and
an O(Δ log n+ log2 n) time randomized distributed algorithm was given. There
are also recent papers on finding efficient distributed algorithms for the mini-
mum latency aggregation scheduling problem [12,13] and the wireless scheduling
problem [11,6].

The multiple-message broadcast problem is also called the the Many-to-All
communication problem [4]. All previous work assumes the standard graph-
based radio network model. In this model, there is a link existing between any
pair of nodes that can communicate with each other. A transmission is suc-
cessful iff there is only one neighbor transmitting a message to the receiver.
Additionally, except [8,9], all work assumes that all messages are stored at
their nodes at the beginning of the algorithm. The authors of [1] first initiated
the study of this problem. They designed a randomized algorithm accomplish-
ing multiple-message broadcast in O(k logn logΔ + (D + n/ logn) logn logΔ)
rounds in expectation. Assuming nodes receive messages at arbitrary times from
the environment, the authors of [8] proved that their modular approach can
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broadcast a message to all nodes in O((kΔ log n + D) logΔ) rounds with high
probability when there are at most k concurrent messages. How to use net-
work coding techniques to accelerate the multiple-message broadcast has been
studied in [7], in which the proposed randomized algorithm achieves a time
complexity of O(k logΔ + (D + logn) logΔ logn). All the above work assume
that nodes know some or all network parameters, e.g., Δ and D. The best
known lower bound for randomized solutions under the graph-based radio net-
work model is Ω(k + D log(n/D)) in expectation [4,10]. In the paper [9], by
introducing an abstract MAC layer providing reliable local broadcast commu-
nication, the authors gave a multiple-message broadcast protocol for regional
networks and showed that the protocol can broadcast a message to all nodes in
O((D + k)Fprog + (k − 1)Fack) rounds, where Fprog and Fack are progress and
acknowledgement bounds respectively.

3 Network Model and Problem Definitions

We assume there are n processors; they are the nodes of the network. During
the protocol execution, the time is divided into slots. Processors have synchro-
nized clocks and they have access to a global clock. We also assume that all
processors wake up at the beginning of the protocol. We do not assume any
placement distribution for nodes, i.e., nodes are arbitrarily placed on the plane.
At the beginning, the network is completely unstructured. Nodes have very little
information about the network topology. They have no knowledge about their
neighbors, even the number of nodes in their proximity range. Only a polyno-
mial estimate n of the number of nodes in the network is given to the nodes.
Nodes have no collision detection mechanism. In other words, nodes can not
distinguish between the occurrence of a collision and the case that there are no
transmissions. We also assume that each node has a unique ID. The IDs need
not be in the interval [1, n], which are only used for a receiver to identify its
sender. Furthermore, we assume that there is only one channel available and
nodes operate in half-duplex mode, i.e., in a timeslot, a node can only carry out
either one of the two operations: receive and transmit.

We adopt the SINR interference model. In this model, a message sent by node
u to node v can be correctly received at v iff

Pu

d(u,v)α

N +
∑

w∈V \{u,v}
Pw

d(w,v)α

≥ β, (1)

where Pu (Pw) is the transmission power of node u (w); α is the path-loss ex-
ponent whose value is normally between 2 and 6; β is a hardware determined
threshold which is greater than 1; N is the ambient noise; d(u, v) denotes the
Euclidean distance between u, v and

∑
w∈V \{u,v}

Pw

d(w,v)α is the accumulated in-

terference experienced by the receiver v caused by all other simultaneously trans-
mitting nodes in the network.

Given transmission power P for v, the transmission range RT of a node v is de-
fined as the maximum distance at which a node u can receive a clear transmission
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from v (SINR ≥ β) when there are no other simultaneous transmissions in the
network. According to (1), RT ≤ ( P

β·N )1/α. We further define RT = (P/cNβ)1/α,
where c > 1 is a constant determined by the environment. Based on the trans-
mission ranges of nodes, we define a communication graph G = (V,E), where V
is the set of nodes in the network, and a link (u, v) ∈ E if and only if d(u, v) is
not larger than the transmission range of u. Furthermore, if all nodes have the
same transmission range RT , the obtained communication graph is denoted as
GRT . Obviously, in this case, GRT can be seen as an undirected graph. We say a
network is connected in terms of R if the communication graph GR is connected.
Let PM and RM be the maximum transmission power and the corresponding
maximum transmission range of nodes respectively. Denote D as the diameter
of the communication graph GRM .

Given a distance d, we say two nodes are independent if the distance between
them is larger than d. An independent set I in terms of d is defined as a set of nodes
such that any pair of nodes in I are independent. An independent set I is maximal
in terms of d if for any node v in the network, either v ∈ I, or there is a node in I
that is within distance d from v. A dominating set S in terms of d is defined as that
for any node v, either v ∈ S, or there is a node in S that is within distance d from
v. DenoteGS

d as the subgraph ofGd induced by S. A dominating set S is said to be
connected in terms of d ifGS

d is connected. Note that a maximal independent set is
a dominating set, but not a connected dominating set.

For a messagem, denote arrive(m) as the event that the messagem arrives at
the network, i.e.,m is received by some node v. Denote clear(m) as the event that
thenetworkhas completed thebroadcast ofmessagem, i.e., all nodes in thenetwork
have receivedm. ThenK(m) is used to denote the set ofmessageswhose processing
overlapswith the interval between arrive(m) and clear(m). In other words,K(m)
is the set ofmessagesm

′
such that an arrive(m

′
) event precedes the clear(m) event

and the clear(m
′
) event follows the arrive(m) event. Let k = |K(m)|.

4 Algorithm

4.1 Algorithm Description

The proposed multiple-message broadcast algorithm adopts a clustering strategy,
which encompasses four processes: leader election, leader coloring, local informa-
tion collection and broadcast. The whole algorithm is divided into three stages.
The first stage works as a pre-stage in which a CDS (Connected Dominating Set)

in terms of distanceR is computed, whereR = min{ 1
2 , (

48cβ(2α−1+α−1
α−2 )

c−1 )−
1
α }·RM .

Nodes in the computed connected dominating set are called leaders. Other nodes
are called non-leaders, each of which chooses the first leader that successfully
transmits a dominating message to it as its leader. A cluster is composed of a
leader and its dominated non-leaders. The parameter R is chosen to guaran-
tee that if there is only one sender in each disk with radius RM , each sender
can successfully transmit a message to all nodes within distance R. The second
stage is used to get a TDMA-like scheduling scheme for nodes to perform the
local information collection process and the broadcast process in the next stage
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by performing a coloring. In the third stage, each leader first collects messages
that are received from the environment by its dominated non-leaders. Then the
messages are disseminated to the whole network through the backbone network
composed by the leaders. During the execution of the protocol, each leader v
is assigned a queuing set Qv to store received messages. Next we describe the
algorithm in more details.

Stage 1 Leader Election: This stage is to compute a connected dominating
set in terms of R, the nodes of which form a backbone network for performing
the broadcast in the Stage 3. As shown in [2], for a graph G, if we find connectors
such that any pair of MIS (Maximal Independent Set) nodes within three hops
are connected by these connectors, the MIS nodes and the connectors constitute
a CDS. In this stage, the nodes first execute the MIS algorithm in [18] to compute
an MIS in terms of R/3. Any two nodes within three hops in the computed MIS
have distance at most R, so they are connected in terms of R. This stage takes
O(log2 n) timeslots. By the end of this stage, a CDS in terms of R is correctly
computed with high probability2. Furthermore, we will show that the computed
CDS satisfies the property that in any disk with radius RM , there are only a
constant number of leaders. Denote χ as a constant upper bound for the number
of leaders in a disk with radius RM . The value of χ will be given later.

Stage 2 Leader Coloring: In this stage, we want to find a coloring for leaders
in the computed connected dominating set, such that for any two leaders, if the
distance between them are not larger than RM , they get different colors. Since
for any leader, there are at most χ − 1 other leaders within distance RM , χ
colors are enough to color all the leaders. We use a greedy coloring algorithm
to accomplish the coloring process. The MIS algorithm in [18] is iteratively
executed to get an MIS in terms of RM from leaders that have not been colored.
In the i-th execution, an MIS in terms of RM is obtained from the remaining
uncolored leaders and its nodes are assigned the color i. Finally, each leader gets
a color from {1, 2, . . . , χ}. After the coloring is computed, there are χ timeslots
for the leaders to inform their dominated non-leaders of their colors. Since each
execution of the MIS algorithm needs O(log2 n) timeslots, this stage takes at
most O(χ log2 n) ∈ O(log2 n) timeslots.

Stage 3 Local Information Collection and Broadcast: This stage is for
leaders to collect the messages that arrive at their dominated non-leaders and then
disseminate the received messages to the whole network. The stage is divided into
iterative substages, each ofwhich consists ofχ phases. In each substage, the i-phase
is for leaders with color i to accomplish information collection and broadcast. Each
phase has three timeslots. This TDMA-like scheduling makes sure that in each
phase, any two leaders that are active have distance larger than RM , so that each
leader can successfully transmit an acknowledgement message to its dominated
non-leaders and send the received message to all nodes within distance R. During
the execution of this stage, all nodes use the same transmission power

2 We assume that the network is connected in terms of R/3, i.e., the communication
graph GR/3 is connected.
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PB = cNβRα, which leads to the same transmission range R (refer to Section 3).
Next we describe the detailed operations in the i-th phase of a substage.

The i-th Phase: In this phase, leaders with color i and non-leaders in their
clusters execute a three-timeslot scheme as described in Algorithm 1. The first
two timeslots are used for local information collection and the third is for the
leaders to broadcast the received messages. In particular, in the first timeslot,
each non-leader that has received a message from the environment endeavors
to transmit the message to its leader with a specified transmission probability.
Here the transmission probability is initially set as a small value λ

n , where λ is
a constant to be given later. After Stage 3 has started, every non-leader u that
is performing the local information collection process updates its transmission
probability at every 9χλ−142(λ+1) logn-th timeslot as shown in Algorithm 1. The
updating principle is set to guarantee that on one hand, nodes can increase the
transmission probability, by which they can finally get a large enough transmis-
sion probability ensuring a successful transmission; on the other hand, the sum of
transmission probabilities of nodes in any local region will not exceed a constant
which is the base of obtaining a sufficient condition for successful transmissions.
Furthermore, while a non-leader transmits the message, it also adds its ID and
its leader’s ID into the transmitted packet such that its leader can distinguish
whether the received message is for it or not. In the second timeslot, if a leader
v receives a message from one of its dominated non-leaders u, it stores the re-
ceived message into Qv and transmits an Ackv(u) message to inform u that it
has received the message. A leader v also adds the messages received from other
leaders into Qv. After receiving the Ackv(u) message, u will stop transmitting
and quit the local information collection process. In the third timeslot, for each
leader v with color i, if Qv is not empty, it transmits the first message in Qv to
all nodes within distance R and deletes it from Qv.

In order to ensure that the above described multiple-message broadcast al-
gorithm is correct with high probability, we set the parameters as follows: λ =
(1−1/c)
192β · (2α−1 + α−1

α−2 )
−1, and χ = (6RM

R + 1)2.

4.2 Analysis

In this section, we prove that with probability 1−O( 1
n ), for any message m, the

proposed multiple-message broadcast algorithm can disseminate m to the whole
network after arrive(m) occurs for at most O(D + k + log2 n) timeslots. Before
starting the analysis, we first define some notations. We use Tv and Iv to denote
the disks of radii R and RM centered at node v, respectively. The notation Ed

v

denotes the disk of radius d centered at v. Without confusion, we also use these
notations to denote the nodes in the corresponding disks.

The following lemma is proved in [18], which states the correctness and effi-
ciency of the MIS algorithm.
Lemma 1. After executing the MIS algorithm for O(log2 n) timeslots, a maxi-
mal independent set can be correctly computed with probability at least 1−O(n−1).

In the following, we assume that the MIS is correctly computed, and the error
probability will be summed up in the proof of the main theorem (Theorem 1).
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Using a standard area argument, we can give a constant bound on the number
of leaders in any disk Ii as shown in Lemma 2 which follows. For the detailed
proof of the lemma, please refer to the full version [17].

Lemma 2. In a disk Ii with radius RM , the number of leaders is at most χ.

Algorithm 1. 3-Timeslot Scheme

Initially, pu = λ
2n

; Qv = ∅;
3-timeslot scheme for a leader v
1: listen
2: if v received a message from a non-leader u in its cluster then transmit Ackv(u)

end if
3: if Qv is not empty then transmit the first message in Qv and delete the message

from Qv end if
Message Received
4: if v received a message that has not been received then add the message into Qv

end if
3-timeslot scheme for a non-leader u
5: if u has a message received from the environment then transmit the message with

probability pu
end if

6: listen
7: if u received Ackv(u) then stop transmitting and quit the local information col-

lection process end if
Update pu
8: while

t = i · 9χλ−142(λ+1) log n for some integer i > 0
9: if u has taken part in the local information collection process and received less

than 12 log n Ack messages from its leader in the past 9χλ−142(λ+1) log n timeslots
then pu = 2pu

10: else pu = pu/2
11: end if
12: end while

Lemma 3. In Stage 2, the coloring process only needs to execute the MIS algo-
rithm for at most χ times, and each leader can get a color from {1, 2, . . . , χ}.
Proof. By Lemma 2, for each leader v, there are at most χ − 1 leaders within
distance RM . From the coloring process, we know that after executing the MIS
algorithm once, for each leader v, either v joins the computed MIS and gets a
color, or a leader in Iv joins the MIS and gets a color. Thus after executing
the MIS algorithm for at most χ − 1 times, either v has chosen its color, or all
leaders in Iv have been colored. For the second case, v will join the MIS in the
next execution of the MIS algorithm and will get a color from {1, 2, . . . , χ}. ��
By Lemma 1 and Lemma 3, we have the following corollary which states the
time needed for executing Stage 1 and Stage 2.

Corollary 1. With probability 1−O(n−1), the coloring computed in Stage 2 is
correct, and the number of timeslots needed for Stage 1 and Stage 2 is O(log2 n).
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Next we analyze the correctness of Stage 3 and the number of timeslots needed
for implementing Stage 3. We first state in the following Lemma 4 that making
use of the TDMA-like scheduling as shown in Stage 3 can guarantee successful
local broadcast within distance R for a leader v. Due to the space limitation,
the proof is given only in the full version [17].

Lemma 4. In Stage 3, during executing the three-timeslot scheme, a leader v
can successfully transmit a message to all its neighbors within distance R in the
second and third timeslots.

Before analyzing the timeslots needed for Stage 3, we first present the following
property which gives a constant bound on the sum of transmission probabilities
of non-leaders in any disk Tv centered at some leader v. The idea of the proof is
to show in any disk Tv, when the sum of transmission probabilities of non-leaders
is about to break the declared bound, with high probability, every non-leader
in Tv must have received at least 12 logn Ack messages from the leader in the
past 9χλ−142(λ+1) logn timeslots. Then by the algorithm, these nodes will halve
their transmission probabilities, which gurantees that the declared bound will
not be broken during the execution of the algorithm with high probability. For
the detailed proof, please refer to [17].

Property 1. In any timeslot during the execution of Stage 3, for any leader v,
the sum of transmission probabilities of non-leaders in Tv is at most 2λ.

Based on the above property, we give an upper bound on the number of timeslots
needed for the local information collection process in the following Lemma 5.
Denote Δv

k as the number of messages in K(m) that arrive at nodes within
distance R from v. Let Δk = max{Δv

k} for all nodes v. Clearly, Δk ≤ k.

Lemma 5. Assume that Property 1 holds. For a non-leader u, it can transmit
its message to the leader after starting transmission for O(Δk+log2 n) timeslots
with probability 1−O(n−2).

Proof. We first give a sufficient condition for a successful transmission from a
non-leader u to its leader v in the following claim whose proof can be found in
the full version [17].

Claim. If a non-leader u is the only transmitting node in Tv, v can successfully
receive the message sent by u with probability at least 1

2 .

Next we bound the number of timeslots for u to successfully transmit its message
to the leader. After Stage 3 has started, once a non-leader u receives a message
from the environment, it transmits its message to the leader v in the correspond-
ing phases by executing the three-timeslot scheme. As shown in Algorithm 1,
after u starts executing the three-timeslot scheme, in every 9χλ−142(λ+1) logn
timeslots, either u receives at least 12 logn Ack messages from v and halves its
transmission probability, or u doubles its transmission probability. Thus, after
6χλ−142λ+1Δk +9χλ−142(λ+1) log2 n timeslots, if u does not receive an Ackv(u)
message, it must have a constant transmission probability λ/2, since u halves
its transmission probability for at most Δk

12 logn times, and therefore it needs
Δk

12 log n · 9χλ−142(λ+1) logn = 3χλ−142λ+1Δk timeslots to increase the transmis-
sion probability to the initial value. Then based on the sufficient condition for
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a successful transmission in the above claim, we will show that the probability
Pno that u can not send its message to v in the subsequent 6χλ−142λ+1 logn
timeslots is at most O(n−2). Let Ponly denote the probability that u is the only
transmitting node in Tv, and we have

Ponly ≥ pu
∏

w∈Tv\{u}
(1− pw) ≥ pu ·

(
1

4

)∑
w∈Tv\{u} pw

≥ λ

2

(
1

4

)∑
w∈Tv

pw

≥ λ

2

(
1

4

)2λ

.

(2)

The last inequality is derived by Property 1. So the probability that u can not
send its message to v in the subsequent 2λ−142λ+1 logn transmissions is at most

Pno ≤ (1− 1
2 · λ

2

(
1
4

)2λ
)2λ

−142λ+1 logn ≤ e−
λ
4 (

1
4 )

2λ·2λ−142λ+1 log n ≤ n−2.
Therefore, after starting transmission for 6χλ−142λ+1Δk +

9χλ−142(λ+1) log2 n + 6χλ−142λ+1 logn timeslots, with probability 1 − n−2,
u must have successfully transmitted its message to v, since each non-leader
transmits once in every 3χ timeslots. ��

The following Lemma 6 is given in [9], which analyzes the pipelining effect of the
multiple-message broadcast process. Let Fprog denote the maximum number of
timeslots needed for a successful transmission. For a graph G, define dG(u, v) as
the number of edges in the shortest path from u to v in G.

Lemma 6. Assume that in timeslot t0, a node u receives a new message m.
Let v be a node at distance d = dG(u, v) from v. For integers l ≥ 1, we define
td,l = t0 + (d + 2l − 2)Fprog. Then for all integers l ≥ 1, at least one of the
following two statements is true:

(i) v received the message m by the time td,l;
(ii) there exists a set M ⊆ K(m), |M | = min{l, k}, such that for every

m
′ ∈ M , v has received m

′
by the timeslot td,l.

Theorem 1. With probability 1 − O(n−1), any message m can be broadcast to
all nodes in the network after the event arrive(m) occurs for O(D+ k+ log2 n)
timeslots.

Proof. By Corollary 1, Stage 1 and Stage 2 need O(log2 n) timeslots. So if m
arrives at the network before Stage 3 starts, it waits for O(log2 n) timeslots
before Stages 1 and 2 complete. Next we analyze the timeslots needed for m to
be broadcast to the whole network in Stage 3.

As proved in Lemma 5, in Stage 3, if m arrives at a non-leader u, with prob-
ability 1−O(n−2), u can send m to its leader in O(Δk + log2 n) timeslots. And
after that, m will be broadcast by each leader that received m to all its neigh-
bors within distance R in the corresponding phases. If m arrives at a leader, the
broadcast process starts after its arrival. By Algorithm 1, each leader broadcasts
one message for one timeslot in every χ phases. And by Lemma 4, a leader can
successfully transmit the message to all its neighbors within distance R. So it
only takes a constant number of timeslots for m to be propagated for one hop in
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the communication graph GR. Note that R is constant fraction of RM , the diam-
eter of GR is O(D). Then by Lemma 6, after O(D+2k− 2) timeslots, either all
nodes have received m, or all nodes have received k messages. By the definition
of K(m) and k = |K(m)|, m must have been received by all nodes. Combining
all these, with probability 1−O(n−2), m can be broadcast to the whole network
after arriving at the network for O(D+ k+ log2 n) timeslots. Since k is at most
O(n), this is true for any message with probability 1−O(n−1).

Note that all the above discussions are based on Property 1 and the assump-
tion that the connected dominating set and the coloring are correctly computed.
Property 1 is shown to be correct with probability 1 − 1

n (refer to [17]). Further-
more, by Lemma 1 and Corollary 1, we have known that in Stages 1 and 2, the
connected dominating set and the coloring is correctly computed with probabil-
ity 1−O(n−1). Thus with probability 1−O(n−1), anymessagem can be broadcast
to all nodes after the event arrive(m) occurs for O(D + k + log2 n) timeslots.

5 Lower Bound

In this section we give a lower bound on the time needed for a uniform random-
ized distributed algorithm to accomplish multiple-message broadcast. Recall that
a randomized algorithm is called uniform if all awake nodes transmit a message
with the same probability (independent of the communication history) in every
timeslot. The proof of Theorem 2 can be found in [17].

Theorem 2. Assume that all nodes use the same transmission power. Then,
any uniform randomized multiple-message broadcast algorithm requires Ω(D +

k + log2 n
log log log n ) timeslots to disseminate all messages to the whole network with

probability 1− 1
n .

6 Conclusion

In this paper, assuming a practical network model for wireless ad-hoc and sensor
networks as well as the SINR interference model, we propose the first random-
ized distributed multiple-message broadcast algorithm for networks with arbi-
trary message arrivals. In particular, we show that the proposed algorithm can
disseminate any message m to the whole network in O(D+ k+ log2 n) timeslots
if there are at most k overlapping messages. We also show that any uniform

randomized algorithm needs at least Ω(D + k + log2 n
log log logn ) timeslots to accom-

plish multiple-message broadcast. Our algorithm outperforms all previous best
known results [1,8], and breaks the Ω(k + D log(n/D)) lower bound [4,10] un-
der the graph based radio network model. An important feature of the proposed
algorithm is that, in contrast with the previous work, it does not need any neigh-
boring information, e.g., an estimate on Δ. Based on the trivial Ω(D+ k) lower
bound, our algorithm is optimal for networks with diameter D ∈ Ω(log2 n).
Therefore an obvious research direction is to design a faster multiple-message
broadcast protocol for networks with diameter D = o(log2 n). Another direc-
tion is to consider deterministic distributed algorithms for the multiple-message
broadcast problem under the SINR model.
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