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Abstract—Rendezvous process plays an important role in
constructing Cognitive Radio Networks (CRNs), through which
a user establishes a link on a common licensed channel for
communication with its neighbors. Generally, the licensed spec-
trum is divided into N channels and most blind rendezvous
algorithms are realized by the “channel hopping” method where
each user repeats a Global Sequence constructed on top of all
the N channels. This global sequence based method may contain
lots of redundant channels resulting in large rendezvous time
especially when the number of available channels each user has
only accounts for a small fraction of all the N channels. In
this paper, we introduce the Local Sequence based rendezvous
algorithms where the local sequence is only constructed on top of
each user’s available channels and different user’s local sequence
could be different. Our first local sequence based algorithm
called LS can guarantee rendezvous in O(N) time slots for
symmetric users (both users have the same set of available
channels) and in O(N2) time slots for asymmetric users, which
matches the best known results [11]. Our major contribution is
the Modified Local Sequence (MLS) based algorithm which can
guarantee an exponentially shorter rendezvous time than the best
known results when the number of available channels each user
has is relatively small. Extensive simulation results comparing
with the state-of-the-art rendezvous algorithms corroborate our
theoretical analyses.

Index Terms—Rendezvous, Time to Rendezvous, Local Se-
quence, Cognitive Radio Network

I. INTRODUCTION

The wireless spectrum has become very precious and scarce

with the increasing demand for wireless services. The unli-

censed spectrum has been overcrowded, while the utilization

of licensed spectrum is pretty low. For example, the Industrial,

Scientific and Medical (ISM) band is free for all users and they

can resolve any interference problems in the band, causing the

ISM band overcrowded with the increasing number of users,

such as cordless phone and Bluetooth [10]. However, several

licensed bands are currently underutilized. For example, fre-

quencies from 470−698 MHz are allocated to TV broadcasting

in the United States but the utilization ranges from 15% to 85%
[8], [25]. Cognitive Radio Network (CRN) is thus proposed to

solve the spectrum scarcity problem where the secondary users

(SUs), i.e. unlicensed devices are allowed to share the licensed

spectrum causing no interference to the primary users (PUs),

i.e. licensed owners. IEEE 802.22 [21] and IEEE 802.11af [9]

are such two ongoing standards in spectrum sharing. Unless

otherwise specified, “users” in this paper refer to SUs.

TABLE I
MTTR COMPARISONS FOR BLIND RENDEZVOUS ALGORITHMS

Algorithms Symmetric Asymmetric

GOS [7] N(N + 1) = O(N2) −

DRSEQ [23] 2N + 1 = O(N) −

Jump-Stay [18] 3P = O(N) 3NP 2 + 3P = O(N3)

CRSEQ [20] P (3P − 1) = O(N2) P (3P − 1) = O(N2)

DRDS [11] 3P = O(N) 3P 2 = O(N2)

AHW [5] 3P logM = O(N logN) 3P 2 logM = O(N2 logN)

LS (this paper) 2(l+ 1)P = O(N) 2(l+ 1)P 2 = O(N2)

Remarks: 1) The comparisons are based on the rendezvous process
between two users; 2)“−” means DRSEQ and GOS are inapplicable to
asymmetric users; 3)P is the smallest prime number P ≥ N , P = O(N);
4) l is a constant defined in Alg. 1.

Many interesting works have been studied in CRN, such

as neighbor discovery [6], [24], data collection [4], broadcast

[13], [22], and routing [12]. The fundamental process of

constructing the CRN is to establish a link on a common

channel for communication, which is referred to as the process

of rendezvous. More specifically, the licensed spectrum is sup-

posed to be divided into N channels and the users are equipped

with cognitive radios to sense the status of these channels. The

users can access an available channel to attempt rendezvous at

any time, where available means the channel is not occupied

by any nearby PU. Rendezvous is assumed to be achieved

once the users access the same channel at the same time for a

period, without considering the practical implementation such

as beaconing and handshaking. Time to rendezvous (TTR) is

used to measure the efficiency of the rendezvous algorithms,

which denotes the time cost during this process. The spectrum

usage of the PUs varies temporally and geographically, each

user may have different available channels. Thus the goal is

to minimize the Maximum Time to Rendezvous (MTTR) for

both symmetric and asymmetric users, where symmetric users

means they have the same available channels and asymmetric

means their available channels are different.

Some previous works use either a central controller or a

Common Control Channel (CCC) [15], [19] to simplify the

problem. However, it incurs a bottleneck with the increasing

number of users and it’s vulnerable to adversary attacks. Blind

rendezvous algorithms are thus proposed with no centralization

or the CCC. Most of these algorithms are based on the

Channel Hopping (CH) method [11], [20], whereby the user

hops among the available channels based on certain pre-

defined sequence. They focus on the rendezvous between978-1-4799-4657-0/14/$31.00 c© 2014 IEEE



TABLE II
MTTR COMPARISONS WITH STATE-OF-THE-ART RENDEZVOUS ALGORITHMS FOR DIFFERENT NUMBER OF AVAILABLE CHANNELS

P
P
P
P

PP
nA

nB
O(1) O(logN) O(Nǫ) O(N)

Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric

O(1)

JS [18] O(N) O(N3) - O(N3) - O(N3) - O(N3)

DRDS [11] O(N) O(N2) - O(N2) - O(N2) - O(N2)

AHW [5] O(N logN) O(N logN) - O(N log2
N
) - O(N1+ǫ logN) - O(N2 logN)

MLS(this paper) O(logN) O(logN) - O(
log3

N

log logN
) - O(N2ǫ) - O(N2)

O(logN)

JS - O(N3) O(N) O(N3) - O(N3) - O(N3)

DRDS - O(N2) O(N) O(N2) - O(N2) - O(N2)

AHW - O(N log2 N) O(N logN) O(N log2
N
) - O(N1+ǫ logN) - O(N2 logN)

MLS - O( log3 N

log logN
) O( log2 N

log logN
) O( log3 N

log logN
) - O(N2ǫ) - O(N2)

O(Nǫ)

JS - O(N3) - O(N3) O(N) O(N3) - O(N3)

DRDS - O(N2) - O(N2) O(N) O(N2) - O(N2)

AHW - O(N1+ǫ logN) - O(N1+ǫ logN) O(N logN) O(N1+ǫ logN) - O(N2 logN)

MLS - O(N2ǫ) - O(N2ǫ) O(Nǫ) O(N2ǫ) - O(N2)

O(N)

JS - O(N3) - O(N3) - O(N3) O(N) O(N3)

DRDS - O(N2) - O(N2) - O(N2) O(N) O(N2)

AHW - O(N2 logN) - O(N2 logN) - O(N2 logN) O(N logN) O(N2 logN)

MLS - O(N2) - O(N2) - O(N2) O(N) O(N2)

Remarks: 1) The comparisons are based on the rendezvous process between two users for both symmetric and asymmetric scenarios; 2) nA and nB

represent the number of available channels for user A and B respectively; 3) ǫ is a constant in (0, 1) ; 4)“−” means these situations can’t be symmetric
since nA 6= nB .

two users, which can be extended to multi-users networks

smoothly [18]. The intuitive idea of these methods is to design

a sequence based on the N channels, which is called Global

Sequence(GS) [11]. By assuming the network is time slotted,

each user accesses the corresponding channel in each time

slot by repeating the same global sequence until rendezvous.

If the user hops to some channel in the global sequence which

is unavailable, the user just randomly selects a replaced one in

its available channel set [11], [18]. Thus, if the user’s available

channels only account for a small fraction of all the channels,

there could be lots of this kind of randomly selected channels

(redundant channels) which do not help rendezvous but greatly

increase the rendezvous time (Fig. 2 as an example).

Thus, in this paper, we aim to design Local Sequences based

rendezvous algorithms, which are constructed based on each

user’s available channels. Compared with the global sequence

based methods, the local sequence based methods could avoid

these redundant channels that do not help rendezvous but just

increase the sequence length and rendezvous time.

Assuming each user has an available channel set C ′ and

a unique identifier (ID) ranging in [1,M ] where M = N c

(c is an arbitrary large constant), we propose two algorithms

to generate different sequences for different users. Local Se-

quence (LS) based algorithm is the first introduced algorithm,

generating a sequence of fixed length T = O(N2) for each

user. This algorithm guarantees rendezvous for two symmetric

users in O(N) time slots, and for two asymmetric users in

O(N2) time slots, which matches the best known results as

Table I. Moreover, we propose a Modified Local Sequence

(MLS) based algorithm to generate sequences of varying

lengths for different users. MLS works significantly better than

all extant algorithms when the number of available channels

is small (exponentially shorter rendezvous time) and it’s also

comparable to state-of-the-art GS based rendezvous algorithms

when the number is large as Table II. We also carry out

extensive simulations to evaluate our proposed algorithms and

the results show that our algorithms outperform the extant

blind rendezvous algorithms.

The remainder of the paper is organized as follows. The

next section gives the related work. Preliminaries are pro-

vided in Section III. We present the Local Sequence (LS)

based algorithm and the Modified Local Sequence (MLS)

based algorithm in Sections IV and V. Extensive simulations

are conducted in Section VI and we conclude the paper in

Section VII.

II. RELATED WORK

Rendezvous algorithm can be divided into two categories:

centralized and decentralized algorithms. Centralized algo-

rithms assume a central controller or a dedicated Common

Control Channel (CCC) exists [15], [19] and each user can

communicate through the the central unit or the CCC. How-

ever, this method is vulnerable to adversary attacks and it’s

inefficient when the number of users is large. Thus decen-

tralized algorithms are proposed without centralization. Some

decentralized algorithms establish local CCCs for communi-

cation [14], [16], but incur too much overhead in constructing

and maintaining them.

Therefore, blind rendezvous algorithms lead the research

direction where no centralization or CCC exists. Many blind

rendezvous algorithms boomed during the past several years

and the main technique involved is Channel Hopping (CH).

Assuming the network is time-slotted and each user can access

an available channel in each time slot. The rendezvous process

is considered as hopping among these available channels

according to some pre-defined sequence. Most works construct



a common sequence for all users based on all the channels’

information, which is called Global Sequence (GS) in [11].

JS [18], CRSEQ [20], DRDS [11] are several state-of-the-

art GS based algorithms. As mentioned, we prefer designing

different sequences for different users to avoid the redundant

channels in global sequence. To the best of our knowledge,

only Alternate Hop-and-Wait (AHW) [5] generates different

sequences by assuming each user has a unique identifier (ID),

but this method still contains a lot of redundant channels.

Generated Orthogonal Sequence (GOS) [7] is a pioneering

work by generating a sequence of length N(N + 1) on the

basis of a random permutation of {1, 2, · · · , N}. However, this

algorithm is limited to the situation all channels are available.

Quorum-based Channel Hopping [1], [2] works efficiently for

only synchronous users (i.e. all users start at the same time),

which generate the global sequence based on the quorum

system. Asynchronous QCH [3] is modified for asynchronous

users (i.e. the users’ start time is different), but only applicable

to two available channels.

Channel Rendezvous Sequence (CRSEQ) [20] is the first

algorithm guaranteeing rendezvous in bounded time. It picks

the smallest prime P > N and generates the global sequence

with P periods, and each period consists of 3P − 1 elements

based on the triangle number and certain modular operation.

However, it works badly when the users are symmetric, i.e.

the users have the same available channels as Table I. Jump-

Stay (JS) [18] can guarantee efficient rendezvous between

symmetric users. The main idea is similar to CRSEQ, which

generates the global sequence of P periods and each period

contains two jump frames and one stay frame (each frame

contains P numbers). However, JS works badly for the worst

scenario of asymmetric users. This result is later improved in

[17]. Disjoint Relaxed Difference Set (DRDS) [11] is the first

algorithm guaranteeing quick rendezvous for both symmetric

and asymmetric users. It reveals the equivalence between

DRDS and global sequence. By constructing an appropriate

DRDS and transforming it into a global sequence, rendezvous

is achieved in O(N2) time slots for asymmetric users and

O(N) time slots for symmetric users.

Alternate Hop-and-Wait (AHW) [5] generates different se-

quences on the basis that each user has a distinct identifier

(ID). Each user’s ID can be represented as a unique binary

string of length logM (M is the maximum ID value) and

different sequences can be designed. AHW guarantees ren-

dezvous between symmetric users in O(N logM) time slots

and asymmetric users in O(N2 logM) time slots. However,

AHW still contains redundant channels and our goal in this

paper is to design local sequence based algorithms without

such redundancy.

III. PRELIMINARIES

A. System Model

Consider a CRN with m users (SUs) coexisting with some

PUs. Each user is equipped with cognitive radios to sense the

licensed spectrum, which is divided into N non-overlapping

channels with labels {1, 2, · · · , N}. Assume each user has a

unique identifier (ID) ranging in [1,M ], where M = N c (c is a

constant) is the upper bound of the ID. A channel is available

to a user if it’s not occupied by any nearby PU and each user

can only access the sensed available channels for rendezvous.

The users with same available channels are called symmetric,

otherwise they are asymmetric.

Assume time is divided into slots of equal length 2t, where

t is the time for establishing a link between users if they

access the same channel. According to IEEE 802.22 [21],

t = 10ms and thus each time slot has a duration of 20ms.

Suppose the network is slot-aligned and each user can access

an available channel in each time slot. (If two users’ time slot

is not aligned, an overlap of t time length exists and thus it can

be transformed to slot-aligned scenario as Fig. 1) Rendezvous

is achieved if the users access the same channel in the same

time slot. Time to rendezvous (TTR) denotes the time cost if

all users have begun the process and we use Maximum TTR
to evaluate the performance of rendezvous algorithms.

Fig. 1. Transform non-aligned slots to aligned ones

B. Problem Formulation

In this paper, we focus on handling rendezvous problem

for two asynchronous users (i.e. the users’ start time may be

different) and these algorithms can be extended to multi-users

networks smoothly [11], [18].

Consider two users A and B, suppose the available channel

sets for them are CA, CB ⊆ C , where C = {1, 2, · · · , N} is

the set of all channels, and the IDs are IA, IB , respectively.

The rendezvous problem between two users is formulated as:

Problem 1: Given a channel set C ′ ⊆ C, I ∈ [1,M ], design

a channel access strategy for each time slot fC′,I(t) ∈ C ′ such

that: ∀CA, CB ⊆ C,CA

⋂
CB 6= ∅ and IA 6= IB , ∀δt:

∃T s.t. fCA,IA(T + δt) = fCB ,IB (T )

The MTTR value of the algorithm f is MTTRf =
max∀δt T .

In the problem formulation, two users are symmetric if

CA = CB , otherwise they are asymmetric. In the paper,

we propose local sequence based algorithms to guarantee

rendezvous quickly for both symmetric users and asymmetric

users.

For example, C = {1, 2, 3}, CA = {1, 2}, IA = 1 and

CB = {2, 3}, IB = 2, suppose user B is δ = 1 time slot later

than user A. Global sequence (GS) based algorithms construct

a unique sequence for all users and replace with an available

channel randomly if the channel in the sequence is unavailable.



As illustrated in Fig. 2, user A replaces channel 3 by channel

1 or 2 randomly, while user B replaces channel 1 by channel

2 or 3. They can achieve rendezvous on the common channel

2 in time slot 9. As illustrated, GS based algorithms have

redundant channels, such as channel 3 in the global sequence

is useless for user A, and we tend to handle this problem

by constructing different sequences for different users on the

basis of available channels.

Fig. 2. An example of global sequence based algorithm (DRDS [11])

Remark 3.1: If user A starts later than user B, δt < 0 in

the description of Problem 1.

IV. LOCAL SEQUENCE BASED ALGORITHM

A. Algorithm Description

In this section, we present our Local Sequence (LS) based

algorithm to design different sequences for different users.

Suppose the user’s identifer (ID) is I ∈ [1,M ] (M = N c, c is a

constant) and denote the available channel set as C ′ ⊆ C. The

intuitive idea is to convert the user’s ID to certain fixed base

number and different IDs have different representations, thus

local sequences could be generated according to the different

bits of the new numbers.

To begin with, the user’s ID is scaled into l =
⌊logP−1 M⌋ + 1 bits as in Alg. 1, where P is the smallest

prime number P ≥ N (Bertrand-Chebyshev Theorem shows

that P < 2N ). From the scaling steps, it’s obvious that

∀i ∈ [0, l), 1 ≤ d(i) < P , and different IDs have different

representations. For example, when N = 4,M = 16, I = 1
is scaled as {1, 1, 2} and I = 16 is scaled as {2, 1, 1}.
Another preprocessing is to expand the available channels

into −→e consisting of P numbers. For example, N = 6 and

C ′ = {2, 4, 5} is expanded as −→e = {2, 2, 2, 4, 5, 5, 5}.
Building on the preprocessing, Alg. 1 designs a sequence

of length T = 2(l + 1)P 2 for the user. It can be thought of

constructing P periods of length L = 2(l+ 1)P . Each period

has a base number x as Line 8, for example the i-th period

has base number x = i and it stays the same for the first

2P time slots, which is called base stage. The following 2lP
numbers are generated on the basis of the ID’s scaled bits and

it’s called hop stage. This stage consists of l frames of length

2P and each frame relates to the scaled bit. For example, the

j-th frame is generated as (i + k · d(j)) mod P, ∀0 ≤ k <
2P , here d(j) is called hopping step. Then the corresponding

channel can be accessed as Line 15 based on the expansion of

C ′. In order to guarantee rendezvous for asynchronous users,

each frame contains 2P numbers and this is from the idea of

transforming non-aligned time slots into aligned ones in Fig. 1.

Moreover, base stage is designed to accelerate the algorithm.

Algorithm 1 Local Sequence Based Algorithm

1: Find the smallest prime number P ≥ max{N, 3};
2: l := ⌊logP−1 M⌋+ 1;

3: ID Scale on I to get
−→
d = {d(0), d(1), · · · , d(l − 1)};

4: Expansion on C ′ to get −→e = {e(0), e(1), · · · , e(P − 1)};
5: T := 2(l + 1)P 2, t := 0, L := 2(l + 1)P ;

6: while Not rendezvous do

7: t′ := t mod T ;

8: x := ⌊t′/L⌋, y := t′ mod L;

9: if y < 2P then

10: z := x;

11: else

12: y1 := ⌊(y − 2P )/(2P )⌋, y2 := (y − 2P ) mod 2P ;

13: z := (x+ y2 · d(y1)) mod P ;

14: end if

15: Access channel e(z);
16: t := t+ 1;

17: end while

ID Scale on I

1: for i = l − 1 to 0 do

2: d(i) := I mod (P − 1) + 1;

3: I := ⌊I/(P − 1)⌋;
4: end for

Expansion on C ′

1: Order the channels in C ′ as c1 < c2 < · · · < c|C′|;

2: Construct −→e = {e(0), e(1), · · · , e(P − 1)};
3: e(j) := c1, ∀0 ≤ j ≤ c2 − 2;

4: for i = 2 to |C ′| − 1 do

5: e(j) := ci, ∀ci − 1 ≤ j ≤ ci+1 − 2;

6: end for

7: e(j) := c|C′|, ∀c|C′| − 1 ≤ j ≤ P − 1;

For example, N = 3,M = 9, I = 5, the scaled bits are
−→
d = {1, 2, 1, 2} and three periods are constructed as Fig.

3. Then the corresponding channels can be accessed on the

expansion of the available channel set.

Fig. 3. An example of Local Sequence based algorithm

B. Algorithm Performance

Lemma 4.1: Every P continuous time slots in the same

frame of the hop stage correspond to P different z values

(Line 13 of Alg. 1), i.e. these corresponding z values compose

a permutation of {0, 1, . . . , P − 1}.



Proof: Consider the j-th frame of period i, the 2P num-

bers are generated as: zk = i+k ·d(j) mod P , ∀0 ≤ k < 2P .

For any 0 ≤ k1, k2 < 2P satisfying |k1 − k2| < P ,

zk1
− zk2

= (k1 − k2) · d(j) 6= 0 mod P since k1 − k2 6= 0
mod P and 0 < d(j) < P . Thus every P continuous z
values generated in the same frame of the hop stage are

different from each other and they compose a permutation of

{0, 1, . . . , P − 1}.
Consider two users A and B with CA

⋂
CB 6= ∅, IA 6= IB ,

denote the variables used in Alg. 1 as: (
−→
dA,

−→eA, tA, x(A),

y1(A), y2(A)) and (
−→
dB ,

−→eB , tB , x(B), y1(B), y2(B)), respec-

tively.

Theorem 1: Alg. 1 guarantees rendezvous in MTTR =
2(l + 1)P = O(N) time slots for two symmetric users.

Proof: Two symmetric users (A and B) means CA = CB ,

thus −→eA = −→eB can be verified easily. Since IA 6= IB , there

exists 0 ≤ i < l such that dA(i) 6= dB(i). Without loss of

generality, suppose user B is δ ≥ 0 time slot later than user

A. Define δT = δ mod T and δL = δ mod L. According to

different δ values, we prove the theorem from six cases.

Fig. 4. Illustrations of Theorem 1’s proof

Case 1: 0 ≤ δL < 2P and 0 ≤ δT < 2P . User B can

achieve rendezvous with user A in the first time slot as Fig.

4(a), because user A is accessing channel eA(0) in the base

stage of Period 0 and user B’s first attempt is eB(0) = eA(0).
Case 2: 0 ≤ δL < P and δT ≥ 2P . Different from case 1,

this situation means although user A is in base stage when user

B starts, user A is accessing eA(k) 6= eB(0), k > 0, thus they

don’t rendezvous during this stage. Since there exists 0 ≤ i < l
such that dA(i) 6= dB(i), they can achieve rendezvous in the

i-th frame of the hop stage as Fig. 4(b). When tB ∈ [2(i +
1)P, (2i+3)P ) for user B, from Line 8 and Line 12 of Alg. 1:

x(B) = 0, y1(B) = i and 0 ≤ y2(B) < P . The corresponding

z values are generated as Line 13:

zt(B) = [0 + y2(B) · dB(i)] mod P

For user A, tA = tB + δ, from Line 8 and Line 12 of Alg.

1, x(A) = ⌊(tB + δ)/L⌋ = ⌊δT /L⌋, y1(A) = i and 0 ≤
y2(A) = y2(B)+ δL < 2P . Thus, the corresponding z values

are generated as:

zt(A) = [x(A) + y2(A) · dA(i)] mod P

Let zt(A) = zt(B) i.e. they access the same channel, we can

derive:

[dB(i)− dA(i)] · y2(B) = x(A) + δL · dA(i) mod P (1)

As dB(i) 6= dA(i), such y2(B) exists and rendezvous is

guaranteed in tB ≤ (2i+ 3)P ≤ (2l + 1)P time slots.

Case 3: P ≤ δL < 2P and δT ≥ 2P . Similar as case 2, user

B cannot achieve rendezvous with user A both in hop stage.

However, it’s obvious that when tB ∈ [2P − δL, 3P − δL),
user B is in base stage accessing channel eB(0), while user

A is in the 0-th frame of the hop stage (in some period).

From Lemma 4.1, the P continuous zA numbers compose

a permutation of {0, 1, . . . , P − 1}. Thus rendezvous can be

guaranteed in tB ≤ 2P time slots when zA = 0 and user A

accesses channel eA(0) = eB(0) as Fig. 4(c).

Case 4: There exists i′ ∈ [0, l) such that (2i′+2)P ≤ δL <
(2i′+3)P . As illustrated in Fig. 4(d), user B accesses channel

eB(0) for the first P time slots, while user A is in the same

frame of the hop stage. Thus from the analysis of case 3, they

can achieve rendezvous in tB ≤ P time slots.

Case 5: There exists i′ ∈ [0, l − 1) such that (2i′ + 3)P ≤
δL < (2i′ + 4)P . Different from case 4, when tB ∈ [0, P ),
user A isn’t in the same frame, but rendezvous can be achieved

when tB ∈ [P, 2P ) as Fig. 4(e) (the corresponding P time

slots tA are in the same frame).

Case 6: 2lP ≤ δL < (1 + 2l)P . The situation is different

from case 5 because when tB ∈ [P, 2P ), user A is in base

stage and rendezvous may not happen. It’s akin to case 2 that

they can achieve rendezvous in the i-th frame where dA(i) 6=
dB(i) in tB ≤ 2(l + 1)P time slots as Fig. 4(f).

Combining these situations, rendezvous for symmetric users

can be achieved in 2(l + 1)P = O(N) time slots.

Theorem 2: Alg. 1 guarantees rendezvous in MTTR =
2(l + 1)P 2 = O(N2) time slots for two asymmetric users.

Proof: Two users A and B are asymmetric, and thus

CA 6= CB , IA 6= IB . After the ID Scale and Expansion, the

representations are different, i.e.
−→
dA 6=

−→
dB and −→eA 6=

−→eB . So

there exists 0 ≤ i < l such that dA(i) 6= dB(i). As they share

at least one common channel, there exists 0 ≤ j < P such

that eA(j) = eB(j). The theorem can be proved based on the

six cases in symmetric scenario.

Case 1: 0 ≤ δL < 2P and 0 ≤ δT < 2P . Different

from symmetric users, eA(0) may not equal to eB(0), thus

rendezvous is not guaranteed in the base stage of the 0-th

period. However, when time counts to the j-th period, it’s

clear that when tB ∈ [2(l + 1)P · j, 2(l + 1)P ·+P ), user A

and B are both in base stage, accessing eA(j) = eB(j). Thus

MTTR = tB ≤ 2(l + 1)P 2 time slots.

Case 2: 0 ≤ δL < P and δT ≥ 2P . When tB ∈ [k · L +
2(i + 1)P, k · L + (2i + 3)P ), user B is in the i-th frame of

the k-th period (0 ≤ k < P ), thus the corresponding zt(B)
can be generated from Line 13:

zt(B) = [k + y2(B) · dB(i)] mod P (2)

From tA = tB + δ, we can derive the zt(A) values as:

zt(A) = [x(A) + k + y2(A) · dA(i)] mod P (3)

where x(A) = ⌊δT /L⌋ is similar with case 2 of Theorem 1.

Let zt(A) = zt(B) to conclude the same result as Eqn. (1).

Denote θ = dB(i) − dA(i), λ = x(A) + δL · dA(i), it can



be figured out y2(B) = λ · θ−1, where θ−1 · θ = 1 mod P
exists. Plugging y2(B) into Eqn. (2), the corresponding zt(B)
is computed. As k ranges in [0, P ), it’s obvious that there

exists 0 ≤ k∗ < P such that k∗+ y2(B) · dB(i) = j mod P ,

which implies users A and B both access channel eB(j) =
eA(j) at the same time. Thus rendezvous is guaranteed in

tB ≤ 2(l + 1)P 2 time slots.

For the other four cases discussed in Theorem 1, they can

be proved in the similar way as case 1 or case 2. Thus we

conclude that rendezvous for two asymmetric users is bounded

by 2(l + 1)P 2 = O(N2) time slots.

From Theorem 1 and Theorem 2, the LS based algorithm

matches the best known results of Global Sequence based

algorithms shown in Table I.

V. MODIFIED LOCAL SEQUENCE BASED ALGORITHM

Although the LS based algorithm guarantees rendezvous

between two users in short time, it seems inefficient as the

length of each frame in Alg. 1 is fixed to be 2P . (The users’

IDs are converted to fixed base numbers and the length of each

frame is related to the base.) When the number of available

channels n is small, we could convert the specific user’s ID

to a new base number where the base and the length of each

frame relate to n directly. The challenge is that different IDs

may have same representations in different base systems, such

as (12)6 = 8 but (12)4 = 6. Thus refined improvement

should be made and the Modified Local Sequence (MLS)

based algorithm is described in Alg. 2.

A. Algorithm Description

Different from Alg. 1, Alg. 2 counts the number of available

channels as n = |C ′| and finds the smallest prime number

p ≥ n. The preprocessing of ID Scale is similar to Alg. 1, the

difference is that the ID is scaled by p − 1 where p relates

to the number of available channels. Different users may have

different p values, thus the number of scaled bits for different

users may be different since l := ⌊logp−1 M⌋+1. For example,

N = 5,M = 25, the scaled bits for the user with n = 3, I = 5

is
−→
d = {1, 1, 2, 1, 2}, but for the user with n = 4, I = 5 is

−→
d = {1, 2, 2}.

Another preprocessing is extraction on C ′, which is differ-

ent from expansion procedure in Alg. 1. Extraction procedure

constructs −→e with p numbers by ordering the available chan-

nels as c1 < c2 < · · · < cn. For example, N = 7 and channels

{1, 2, 4, 7}, and the extraction result is −→e = {1, 2, 4, 7, 1}. The

number of −→e is related to the number of available channels

n, not all channels N .

Building on the preprocessing, Alg. 2 constructs a sequence

of length T = 2(l + 1)p2, which also can be thought of

constructing p periods of length L = 2(l + 1)p. There are

also two stages in each period like LS based algorithm, base

stage consists of 2p base values x = i for the i-th period

as Line 9, and hop stage contains p frames. The 2p numbers

of the j-th frame are generated as z = (i+ k · d(j)) mod p,

∀0 ≤ k < 2p. Then the corresponding channel e(z) is accessed

as Line 16. Alg. 2 is a modified version of Alg. 1, but it could

Algorithm 2 Modified Local Sequence Based Algorithm

1: Count the number of available channels n = |C ′|;
2: Find the smallest prime number p ≥ max{n, 3};
3: l := ⌊logp−1 M⌋+ 1;

4: ID Scale on I to get
−→
d = {d(0), d(1), · · · , d(l − 1)};

5: Extraction on C ′ to get −→e = {e(0), e(1), · · · , e(p− 1)};
6: T := 2(l + 1)p2, t := 0, L := 2(l + 1)p;

7: while Not rendezvous do

8: t′ := t mod T ;

9: x := ⌊t′/L⌋, y := t′ mod L;

10: if y < 2p then

11: z := x;

12: else

13: y1 := ⌊(y − 2p)/(2p)⌋, y2 := (y − 2p) mod 2p;

14: z := (x+ y2 · d(y1)) mod p;

15: end if

16: Access channel e(z);
17: t := t+ 1;

18: end while

ID Scale on I

1: for i = l − 1 to 0 do

2: d(i) := I mod (p− 1) + 1;

3: I := ⌊I/(p− 1)⌋;
4: end for

Extraction on C ′

1: Order the channels in C ′ as c1 < c2 < · · · < cn;

2: Construct −→e = {e(0), e(1), · · · , e(p− 1)};
3: for j = 0 to p− 1 do

4: i := j mod n+ 1;

5: e(i) := ci;
6: end for

be more efficient as the length of each user’s sequence may

be different. When the user has less available channels, the

corresponding sequence is shorter.

B. Correctness and Efficiency

Consider two users A and B with CA

⋂
CB 6= ∅ and

IA 6= IB . Denote the number of available channels for

two users as nA = |CA|, nB = |CB | in the first line

of Alg. 2. Similarly, denote the other variables during Alg.

2 as (pA, lA,
−→
dA,

−→eA, TA, LA, tA, x(A), y1(A), y2(A), zt(A))

and (pB , lB ,
−→
dB ,

−→eB , TB , LB , tB , x(B), y1(B), y2(B), zt(B)),
respectively. Similar with Lemma 4.1, every pA continuous

time slots for user A in the same frame of the hop stage

generate pA different zA values in [0, pA) (the same situation

for user B).

Theorem 3: Alg. 2 guarantees rendezvous in MTTR =
2(lA + 1)pA = O(lAnA) time slots for two symmetric users.

Proof: Two symmetric users (CA = CB) implies nA =
nB , pA = pB , lA = lB ,

−→eA = −→eB . From the scaling on ID,

there exists 0 ≤ i < lA, such that dA(i) 6= dB(i). The length

of two sequences are the same (TA = TB) and from the proof

details of Theorem 1, it can be concluded similarly.



When the number of available channels is small, MLS

algorithm performs much better than LS algorithm. It’s clear

that lA = O(logN/ log nA) and thus the MTTR value

could be small. Such as nA = O(1),MTTR = O(logN);
nA = O(logN),MTTR = O(log2 N/ log logN); nA =
O(N ǫ)(0 < ǫ < 1),MTTR = O(N ǫ). When it comes to

asymmetric users, the situation is much more complicated.

Lemma 5.1: For two asymmetric users (CA 6= CB), ren-

dezvous is guaranteed in MTTR = 2(lB +1)p2B = O(lBn
2
B)

time slots if pA = pB .

Proof: Two asymmetric users CA 6= CB implies −→eA 6=
−→eB . Since pA = pB , IA 6= IB , the number of scaled bits

lA = lB and there exists 0 ≤ i < lA such that dA(i) 6=
dB(i). From CA

⋂
CB 6= ∅, there exist 0 ≤ j1, j2 < pA

suit eA(j1) = eB(j2). The situation is similar with Theorem

2. For cases 1, 3, 4, 5 in the proof of Theorem 1, user B can

achieve rendezvous in base stage by accessing channel eB(j2)
in tB ∈ [2(1 + lB)pB · j2, 2(1 + lB)pB · j2 + 2pB) . For the

other two cases, rendezvous happens in the users’ hop stage.

The difference is in Eqn. (2) and Eqn. (3), let zt(A) = j1
and zt(B) = j2, it can be verified similarly that such tB <
2(lB + 1)p2B exists.

Without loss of generality, suppose pB > pA and the

following lemmas are concluded.

Fig. 5. Example of Lemma 5.2 when pB ≥ 2pA

Lemma 5.2: Rendezvous is guaranteed in MTTR =
2(lB + 1)p2B = O(lBn

2
B) time slots if pB ≥ 2pA.

Proof: Since CA

⋂
CB 6= ∅, there exists 0 ≤ j1 <

pA, 0 ≤ j2 < pB such that eA(j1) = eB(j2). No matter who

starts the algorithm firstly, user B can achieve rendezvous in

the base stage of period j2. This is because the base stage

contains 2pB > 4pA numbers, which is large enough to cover

pA continuous numbers from a same frame of user A’s hop

stage as illustrated in Fig. 5. Thus such j1 ∈ [0, pA) exists and

the MTTR value is bounded by 2(1B + 1)p2B time slots.

Fig. 6. Example of Lemma 5.3 when pA < pB < 2pA

Lemma 5.3: Rendezvous is guaranteed in MTTR =
2(lB + 1)p2BpA = O(lBn

2
BnA) time slots if pA < pB < 2pA.

Proof: Different from Lemma 5.2, 2pB time slots are not

large enough to assure any pA continuous numbers for the

same frame of the hop stage exist. Thus we analyze the worst

situation for two users. Suppose 0 ≤ j1 < pA, 0 ≤ j2 < pB
exist such that eA(j1) = eB(j2). Consider the base stage of

the j2-th period of user B (i.e. tB ∈ [δB , δB + 2pB), where

δB = 2(lB + 1)pB · j2). Denote the corresponding time for

user A as δA and as illustrated in Fig. 6, the only situation

that user B cannot rendezvous in the base stage is: LA−pA <
(δA mod LA) < LA and 0 < (δA + 2pB mod LA) < pA.

Only when the two conditions are satisfied, user B may not

achieve rendezvous in the base stage. Then user B repeats

the sequence and we can figure out how many times needed

to rendezvous. Denote ǫ = TB mod LA and it’s clear that

ǫ 6= 0. Only when ǫ ∈ (0, pA) or ǫ ∈ (LA − pA, LA), they

may not rendezvous as user B repeats the sequence for the

second time. However, if ǫ ∈ (0, pA), after at most pA

ǫ
times,

(δA+ pA

ǫ
·TB) mod LA ∈ [0, P ) and rendezvous happens. If

ǫ ∈ (LA−pA, LA), rendezvous is also guaranteed after pA

LA−ǫ

times. Thus MTTR = 2(lB + 1)p2BpA time slots.

Lemma 5.3 reveals an extreme situation for the MTTR
values and it rarely happens. Thus we show the MTTR values

on the basis of nA, nB for most cases in Table II. Concluding

from Lemmas 5.1-5.3:

Theorem 4: Alg. 2 guarantees rendezvous in MTTR =
O(lBn

2
B) time slots if pB ≥ 2pA or pB = pA and in

MTTR = O(lBn
2
BnA) time slots if pA < pB < 2pA.

Combing Theorem 3 and Theorem 4, the MLS based

algorithm is significantly better than the best known results in

Table I when the number of available channels is small. Specif-

ically, the MLS based algorithm can guarantee rendezvous

in O(lAnA) time slots for symmetric users, which is much

smaller than O(N) when nA = o(N). It also guarantees

rendezvous for asymmetric users in less time than O(N2) time

slots for most combinations in Table II.

VI. SIMULATION

We evaluate the performance of our proposed algorithms

under different circumstances and compare the results with

several state-of-the-art algorithms. We choose Jump-Stay (JS)

[18], DRDS [11] and AHW [5] for the MTTR comparisons

with our LS and MLS based algorithms.

Define θA = nA

N
, θB = nB

N
, nG = |CA

⋂
CB | and

θG = nG

N
. In each simulation, the starting time of each user is

random and the identifers (IDs) for the users are randomly

generated in [1,M ]. Based on different circumstances, the

available channels are also generated randomly. Detailed pa-

rameters are described for the corresponding figures and the

results provided are the means of 5000 separate time.

Since AHW and our proposed algorithms involve the users’

IDs, we firstly evaluate the impact of the ID’s maximum

value M . Fix N = 10, nA = 5, nB = 5, when two users

are asymmetric and nG = 1, Fig. 7(a) shows our proposed

algorithms don’t increase too much as M increases, moreover,

the MLS based algorithm is as good as DRDS algorithm.

When they are symmetric, i.e. CA = CB , Fig. 7(b) reveals

that both LS and MLS based algorithms are stable and their

performance is comparable to DRDS and JS. Although AHW
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Fig. 7. MTTR comparison as M increases from 1000 to 10000 when
N = 10, nA = 5, nB = 5: (a) nG = 1; (b) CA = CB .
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Fig. 8. MTTR comparison for symmetric users when N increases from
10 to 100. M = 100, (a) θA = θB = 0.2; (b) θA = θB = 0.8
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Fig. 9. MTTR comparison when N increases from 10 to 100. M = 100,
(a) θA = θB = 0.5, nG = 1; (b) θA = θB = 0.3, nG = 1

algorithm also uses the users’ ID, it’s affected by the increasing

of M and it’s unstable. In the following scenarios, we set

M = 100.

We evaluate these algorithms for two symmetric users. As

shown in Fig. 8(a), when θA = θB = 0.2, the MLS based

algorithm outperforms the others and LS based algorithm

works well as JS and DRDS. When the number of available

channels is larger, such as θA = θB = 0.8, when N increases

from 10 to 100, DRDS algorithm works best and the LS and

MLS based algorithms are better than AHW as Fig. 8(b). It’s

because the MLS based algorithm suits the users with small

number of available channels, as described in Table II.
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Fig. 10. MTTR comparison for asymmetric users when N increases from
10 to 100. M = 100, (a) θA = θB = 0.2, θG = 0.1; (b) θA = θB = 0.8
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Fig. 11. MTTR comparison for asymmetric users. N ∈ [10, 100], M =
100, (a) θA = 0.5, θB = 0.2, θG = 0.1; (b) θA = 0.5, θB = 0.8
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Fig. 12. MTTR comparison for asymmetric users when θB increases from
0.1 to 1. M = 100, N = 50, (a) θA = 0.2; (b) θA = 0.5

In order the evaluate the MTTR values for some extreme

situations, set θA = θB = 0.5 (and 0.3) with only one common

channel, i.e. nG = 1. When N increases from 10 to 100, Fig.

9 shows that the MLS based algorithm works best for the two

extreme situations. JS and AHW algorithms work badly since

JS algorithm can only guarantee rendezvous in O(N3) time

slots for the worst case, while AHW algorithm is influenced

by both N and M values.

For the comparison of two asymmetric users, we set θA =
θB = 0.2 (and 0.8) in Fig. 10. In Fig. 10(a), θG = 0.1 and

it shows the MLS based algorithm has much smaller MTTR
values than others, while the LS based algorithm is as good



as JS and DRDS algorithms. Fig. 10(b) reveals that the LS

based algorithm performs better when the number of available

channels is large and it corroborates our theoretical analyses.

We also evaluate the these algorithms’ performance when

the number of available channels for two users are different.

In Fig. 11(a), set θA = 0.5, θB = 0.2 and θG = 0.1, the MLS

based algorithm is much better than other algorithms. In Fig.

11(b), when θA = 0.5, θB = 0.8, the MLS based algorithm

also outperforms others. We also find that the LS based

algorithm is comparable to both JS and DRDS algorithms.

In Fig. 12, we fix N = 50 and evaluate the MTTR values

when θB increases from 0.1 to 1. When θA = 0.2, i.e. the

number of available channels is small enough, the MLS based

algorithm improves the previous best results significantly as

Fig. 11(a). When θA = 0.5, the MLS based algorithm also

works best and the LS based algorithm has smaller MTTR
values than AHW algorithm.

Concluding from the extensive simulation results, our pro-

posed LS and MLS based algorithms are less affected by

the increasing M values. For both symmetric and asymmetric

comparisons, the LS and MLS based algorithm is comparable

to the state-of-the-art rendezvous algorithms (JS and DRDS).

Moreover, when the number of available channels is small, the

MLS based algorithm works significantly better than others,

which corroborates our theoretical analyses.

VII. CONCLUSION

In this paper, we study the rendezvous problem in Cognitive

Radio Networks from a new aspect. Most extant works design

Global Sequences (GS) on the basis of N channels and the best

results guarantee rendezvous for two symmetric users in O(N)
time slots and two asymmetric users in O(N2) time slots. In

this paper, we propose two algorithms based on the intuitive

idea that different users have different local sequences building

on the available channels and distinct identifiers (IDs). The

first one is Local Sequence (LS) based algorithm which scales

the user’s ID and constructs sequences on the expansion of

the available channels. The other is Modified Local Sequence

(MLS) based algorithm which generates shorter sequences for

the users with less available channels. The LS based algorithm

guarantees rendezvous in O(N) and O(N2) time slots for two

symmetric and asymmetric users respectively, which matches

the state-of-the-art GS based results. Our main contribution is

the MLS based algorithm that guarantees rendezvous in O(ln)
time slots for two symmetric users, where n is the number

of available channels and l = O(logN/ log n). Moreover, it

also guarantees rendezvous in shorter time as Table II for

two asymmetric users. Through extensive simulations, these

results also show that the LS based algorithm is comparable

to the state-of-the-art algorithms and the MLS based algorithm

is significantly better (exponentially shorter rendezvous time)

when the number of available channels is small.
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