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Abstract—Rendezvous is a fundamental process in Cognitive
Radio Networks, through which a user establishes a link to
communicate with a neighbor on a common channel. Most
previous solutions use either a central controller or a Common
Control Channel (CCC) to simplify the problem, which are
inflexible and vulnerable to faults and attacks. Some blind
rendezvous algorithms have been proposed that rely on no cen-
tralization. Channel Hopping (CH) is a representative technique
used in blind rendezvous, with which each user hops among the
available channels according to a pre-defined sequence. However,
no existing algorithms can work efficiently for both symmetric
(both parties have the same set of channels) and asymmetric
users. In this paper, we introduce a new notion called Disjoint
Relaxed Difference Set (DRDS) and present a linear time constant
approximation algorithm for its construction. Then based on the
DRDS, we propose a distributed asynchronous algorithm that
can achieve and guarantee fast rendezvous for both symmetric
and asymmetric users. We also derive a lower bound for any
algorithm using the CH technique. This lower bound shows
that our proposed DRDS based distributed rendezvous algorithm
is nearly optimal. Extensive simulation results corroborate our
theoretical analysis.

Index Terms—Rendezvous, Time to Rendezvous, Disjoint Re-
laxed Difference Set, Cognitive Radio Networks

I. INTRODUCTION

The wireless spectrum has become a scarce resource be-

cause of the burgeoning development and deployment of

wireless technologies. The scarceness however occurs mainly

in the unlicensed section of the spectrum where there is often

overcrowding due to the rapidly increasing demand for wire-

less services, whereas the utilization of the licensed spectrum

is very low. Dynamic spectrum access (DSA) through the

use of cognitive radios has been proposed to alleviate the

spectrum scarcity problem in wireless communications. A

cognitive radio network (CRN) consists of secondary users

(SUs) (i.e. unlicensed users) sharing the licensed spectrum

with the licensed primary users (PUs). Each SU is equipped

with cognitive radios that can sense the spectrum for the

opportunity to access the licensed spectrum when it is left

unused by the PUs.1

Because there can be many wireless channels made avail-

able to the SUs by the PUs, the first act of a communication

task in a CRN is to establish a common link on a common

channel between two users, which is referred to as the process

1Unless specified otherwise, “users” in the paper refer to SUs.

of rendezvous. Since the spectrum usage of PUs varies tem-

porally and geographically, the available channels each SU

can access may be different. If two users have exactly the

same set of available channels, we have a symmetric situation;

otherwise asymmetric. In real scenarios, two users who need

to communicate by default cannot tell which situation they

are in, and the algorithm for rendezvous must work efficiently

for either situation. The time for them to establish a link is

called the time to rendezvous (TTR). In this paper, we assume

all users are asynchronous which means that they can start

a rendezvous at any time, and two users may have different

start times, and our goal is to minimize the Maximum Time to

Rendezvous (MTTR) for two such asynchronous users.

Most previous works on rendezvous use either a central

controller [14], [16] or a common control channel (CCC)

[8], [15] to simplify the process. They therefore may suffer

from several problems: the central controller or CCC may

become too overloaded with the increase of users, thus forming

a bottleneck in the CRN; a system with centralization is

not flexible; and the CCC is vulnerable to adversary attacks.

Therefore, blind rendezvous algorithms have been proposed,

which depend on no central controller or dedicated CCC. The

majority of these algorithms are based on Channel Hopping

(CH) techniques [2], [3], [11], [18], [20], whereby each user

would hop from channel to channel based on a pre-defined

sequence.

Nevertheless, no existing algorithms can work efficiently for

both the symmetric and asymmetric scenarios (see Table I).

Jump-Stay [11] is a state-of-the-art algorithm guaranteeing

efficient rendezvous for the symmetric case with two users,

but their MTTR value is unacceptable for asymmetric users.

Channel Rendezvous Sequence (CRSEQ) [18] guarantees effi-

cient rendezvous for two asymmetric users, but their MTTR
value is much larger than Jump-Stay for symmetric users.

Deterministic Rendezvous Sequence (DRSEQ) [21] can guar-

antee efficient rendezvous for symmetric users, while it is not

directly applicable to asymmetric users.

In this paper, we introduce a new notion called Disjoint

Relaxed Difference Set (DRDS) and present a linear time

constant approximation algorithm for its construction. Then

by combining what we call a Common Channel Hopping

Sequence (CCHS), we propose a distributed asynchronous

algorithm based on the DRDS construction. Our algorithm can

guarantee rendezvous in MTTR = O(N) time slots for sym-
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TABLE I
MTTR COMPARISON FOR ALL ALGORITHMS

Algorithms Symmetric Asymmetric

Jump-Stay [11] 3P = O(N) 3NP (P −G) = O(N3)

CRSEQ [18] P (3P − 1) = O(N2) P (3P − 1) = O(N2)

DRSEQ [21] 2N + 1 = O(N) −

GOS [5] N(N + 1) = O(N2) −

Our algorithm 3P = O(N) 3P 2 + 2P = O(N2)

Remarks: 1) “−” means DRSEQ and GOS are inapplicable to asymmetric
users; 2) P is the smallest prime number ≥ N , P = O(N); G is the
number of common channels.

metric users and MTTR = O(N2) time slots for asymmetric

users, where N is the number of all non-overlapping licensed

channels. We also reveal the equivalence of DRDS and CCHS.

Based on the equivalence, we derive a lower bound for any

algorithm using the Channel Hopping technique. This lower

bound shows that our DRDS based asynchronous rendezvous

algorithm is nearly optimal. Extensive simulations show that

our algorithm can achieve better performance than all existing

algorithms.

The remainder of the paper is organized as follows. The next

section highlights the related work. Preliminaries are provided

in Section III. We introduce Disjoint Relaxed Difference Set

and present its construction in Section IV. Section V gives

an asynchronous algorithm and its performance analysis. We

establish the equivalence of DRDS and CCHS and derive the

lower bound in Section VI. Section VII presents our simulation

experiments. We conclude the paper in Section VIII.

II. RELATED WORK

The existing rendezvous algorithms can be classified into

two categories: centralized and decentralized.

A. Centralized Algorithms

Centralized Algorithms assume there exists a central con-

troller that each user can access directly during the rendezvous

process. Most centralized algorithms use a pre-selected Com-

mon Control Channel (CCC) [16] which is accessible to

all users. This simplifies the rendezvous process since the

communication between the users is much easier. However,

there are several drawbacks: the pre-selected CCC can easily

get congested with the increase of users, and it is vulnerable

to adversary attacks; the cost to maintain CCC is high and

it is impractical in real CRNs. The other class of centralized

algorithms work with no CCC. [14] proposed an exhaustive

search based protocol to achieve rendezvous.

Failure or overloading of the central controller makes it

a weak spot or bottleneck of the CRN, and thus centralized

algorithms generally are not practical.

B. Decentralized Algorithms

Decentralized algorithms without a central controller have

been proposed to avoid the drawbacks of centralized algo-

rithms. Similarly, there are two classes depending on whether

CCC is required.

Some decentralized algorithms assumes the existence of a

global CCC that is known to all users [8], [15]. However,

a global CCC might not be feasible in practice because the

availability of the CCC depends on all PUs’ usage. [10], [22]

focus on establishing local CCCs through which each user

can contact with their neighbors. These algorithms however

incur substantial overhead in establishing and maintaining

local CCCs.

Since CCC has its inherent limitations, some researchers

turned to decentralized algorithms without CCC, which are

called blind rendezvous algorithms. The main technique used

is Channel Hopping (CH). Each user can hop among the avail-

able channels according to a pre-defined hopping sequence and

the rendezvous is achieved when two users happen to hop onto

the same channel at the same time.

Generated Orthogonal Sequence (GOS) [5] is a pioneering

work which generates an N(N + 1) sequence based on a

random permutation of {1, 2, · · · , N} where N is the number

of all channels. Quorum-based Channel Hopping (QCH) [2],

[3] is proposed for synchronized users while Asynchronous

QCH (A-QCH) works for asynchronous scenarios, but it is

only applicable to two channels. Deterministic Rendezvous

Sequence (DRSEQ) of length 2N+1 is proposed in [21] and it

can be expressed as {1, 2, · · · , N, null,N,N−1, · · · , 1}. [20]

proposes the Modular Clock (MC) algorithm and the Modified

Modular Clock (MMC) algorithm to achieve rendezvous. The

basic idea of MC and MMC is that each user chooses a proper

prime number P > N and picks a rate value r < P randomly,

and generates the CH sequence via some modular operations.

GOS, DRSEQ and MC can work only when two users are

symmetric, and MMC is suitable for the asymmetric case but

it cannot guarantee rendezvous in finite time.

Channel Rendezvous Sequence (CRSEQ) [18] is the first

algorithm that guarantees rendezvous when two users are

asymmetric. The basic idea is that each user picks the smallest

prime number P ≥ N and generates the CRSEQ which

consists of P periods, each period containing 3P −1 numbers

based on the triangle number and modular operations.

Jump-Stay [11] is another work guaranteeing rendezvous

for both symmetric users and asymmetric users. It is built on

top of MC: each user finds the smallest prime P > N and

generates the CH sequence as the jump step in MC. In order

to overcome the drawback of MC, the stay step is introduced

where the user stays on a particular channel for P time slots.

However, neither CRSEQ nor Jump-Stay can work efficient-

ly under both symmetric and asymmetric scenarios. CRSEQ

guarantees rendezvous in P (3P − 1) = O(N2) time slots for

both scenarios, while Jump-Stay guarantees 3P = O(N) time

slots for symmetric users and 3NP (P −G) + 3P = O(N3)
time slots for asymmetric users (G is the number of common

channels).

There are some algorithms not based on the CH technique.

[1], [14] elect a leader to discover the neighbors and to assist

the users’ to achieve rendezvous. Cyclostationary signatures

are utilized in [19]. A grid based method is presented in [17]

to guarantee rendezvous with high probability.
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III. PRELIMINARIES

A. System Model

In this paper, we focus on the rendezvous process between

two users and it can be extended to multi-users just like

the method in [6], [11]. Assume the licensed spectrum is

divided into N(N ≥ 1) non-overlapping channels that are

labeled 1, 2, · · · , N uniquely and the labeling is known to all

users. Each user is equipped with cognitive radios to sense the

spectrum for its set of available channels, where a channel is

said to be available if the user can communicate through the

channel with no interference to the PUs.

Assume time is divided into slots of equal length and the

length of each time slot is sufficient for establishing a link

if two users choose the same channel for communication.

(In practice, rendezvous involves a more detailed process

comprising beaconing, handshaking, etc. In this paper, we

focus on the design of CH algorithms and assume the ren-

dezvous is successful if they choose the same channel.) All

users are physically dispersed and the wake-up time of each

user may be different. Therefore, the rendezvous algorithm

needs to be applicable to asynchronous users. When two users

begin the rendezvous process, they will end with a common

channel if their rendezvous succeeds. We refer to the time

used by the second user (who starts the process later than

the other one), from start time to termination, as the Time

to Rendezvous (TTR). In this paper, we use the Maximum

Time to Rendezvous (MTTR) to evaluate the algorithms,

which denotes the longest time for the second user to achieve

rendezvous.

B. Problem Definition

Consider two users, Alice and Bob, each equipped with

cognitive radios to sense the spectrum. Suppose the available

channel sets for them are CA, CB ⊆ C respectively, where

C = {1, 2, · · · , N} denotes the set of all channels. Both Alice

and Bob know the label of each channel, and thus they can

devise a strategy based on the available channel sets.

For example, C = {1, 2, 3, 4, 5, 6}, CA = {1, 2, 5}, CB =
{3, 4, 5, 6}, and Alice accesses the channels at different time

slots as follows

fCA
(t) =







1 When t ≡ 0 mod 3
2 When t ≡ 1 mod 3
5 When t ≡ 2 mod 3

Bob accesses the channels by repeating the sequence:

{3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6}
If Alice and Bob start at the same time, TTR = 9 when they

both access channel 5 as shown in Fig. 1. However, MTTR =
15 when Bob starts the process at time slot 0 and Alice starts

at time slot 10, as in Fig. 2.

In the example, CA 6= CB and this is an asymmetric case

(the case would be symmetric if CA = CB). Both scenarios

should be considered in order to guarantee rendezvous. Alice

and Bob use different strategies in the example; however,

it is impractical to design different strategies for different

Fig. 1. Alice and Bob start at time 0; rendezvous is achieved at time 8.

Fig. 2. Bob starts at time 0 and Alice starts at time 10; rendezvous is
achieved at time 24.

users, especially when there are many of them. We therefore

assume each user starts the rendezvous process with the same

algorithm.

We formulate the Blind Rendezvous Problem as follows:

Problem 1: Given a channel set C ′ ⊆ C, design a channel

access strategy for different time slots fC′(t) ∈ C ′ such that:

∀CA, CB ⊆ C, ∀δt:
∃T s.t. fCA

(T + δt) = fCB
(T )

The MTTR value of strategy f is MTTRf = max∀δt T .

Our goal is to find a strategy g minimizing the MTTR value

among all strategies: MTTRg = min∀fMTTRf .

Remark 3.1: If Alice starts later than Bob, δt < 0 in the

description of Problem 1.

IV. DISJOINT RELAXED DIFFERENCE SETS

In this section, we first introduce Disjoint Relaxed Dif-

ference Set (DRDS) and show the hardness of finding the

maximum DRDS. And then we present a linear time constant

approximation algorithm to construct a DRDS.

A. Disjoint Relaxed Difference Set

Relaxed difference set is an efficient tool to construct

cyclic quorum system [9], [12]. We give some definitions and

examples here.

Definition 4.1: A set D = {a1, a2, · · · , ak} ⊆ Zn (the set

of all nonnegative integers less than n) is called a Relaxed

Difference Set (RDS) if for every d 6= 0 (mod n), there exists

at least one ordered pair (ai, aj) such that ai − aj ≡ d (mod

n), where ai, aj ∈ D.

RDS is a variation of (n, k, λ)-Difference Set [4], [12]

where exactly λ ordered pairs (ai, aj) satisfying ai − aj ≡ d
(mod n) are required. Given any n, it is proved that any

difference set D must have a cardinality |D| ≥ √n [12]. The

minimal D whose size approximates the lower bound can be

found when n = k2 + k + 1 and k is a prime power. Such a

difference set is called a Singer Difference Set (SDS) [4]. For

example, D = {1, 2, 4} is both an SDS and an RDS under Z7

while it is an RDS, but not an SDS under Z6.

Lemma 4.1: If D is an RDS under Zn, then Dk = {(ai+k)
mod n|ai ∈ D} is also an RDS under Zn.
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The proof of the lemma is straightforward, which we omit.

Definition 4.2: A set S = {D1, D2, · · · , Dh} is called a

Disjoint Relaxed Difference Set (DRDS) under Zn if ∀Di ∈ S,

Di is an RDS under Zn and ∀Di, Dj ∈ S, i 6= j, Di

⋂

Dj =
∅.

For example, S = {{1, 2, 4}, {0, 3, 5}} is a DRDS under

Z6. Such a DRDS can be used to design rendezvous algorithm

and we will give the details later.

B. Hardness of Finding Maximum DRDS

For a given n, there are many DRDSs under Zn. Define

Maximum DRDS Sn to be the set with the largest cardinality.

However, it is hard to find the maximum DRDS.

Lemma 4.2: Given n, the cardinality of the maximum

DRDS under Zn is bounded by |Sn| ≤
√
n.

This lemma is derived easily from the fact any RDS D
should have cardinality |D| ≥ √n [12]. However, it is hard to

find the tight bound for any give n.

For any set D = {D0, D1, · · · , Dh} where Di is an RDS

under Zn and h ≥ √n, it is hard to compute the maximum

DRDS from D because it can be reduced from the Set Packing

Problem2 which is NP-complete [13]. When each set Di ∈ D
satisfies |Di| ≥

√
n, it is equivalent to Maximum

√
n-Set

Packing which cannot be efficiently approximated within a

factor of Ω(
√
n

ln
√
n
) [7].

We compute all RDSs with cardinality in [
√
n,
√
3n] and

use exhaustive search to find the maximum DRDS when n =
2, 3, · · · , 50. The relationship between n and |Sn| is listed in

Table II.

TABLE II
RELATIONSHIP BETWEEN n AND |Sn| WHEN 2 ≤ n ≤ 50

The number: n Maximum DRDS: |Sn|

2 ≤ n ≤ 5 1

6 ≤ n ≤ 14 2

15 ≤ n ≤ 23 3

24 ≤ n ≤ 30, 32 ≤ n ≤ 34 4

n = 31, 35 ≤ n ≤ 47 5

48 ≤ n ≤ 50 6

C. DRDS Construction

In this section, we present a linear time algorithm to

construct a DRDS under Zn where n = 3P 2, P ≥ 3 and

P is a prime number.

Alg. 1 constructs a DRDS S = {D0, D1, · · · , DP−1}. We

explain how each RDS Di is constructed:

When n = 3P 2, divide Zn into P disjoint subsets Zn =
U0

⋃

U1

⋃ · · ·⋃UP−1, where Uj = Z3P (j+1) \ Z3P ·j . Let

Di = Ti0

⋃

Ti1

⋃ · · ·⋃Ti,P−1 where Tij ⊆ Uj . For each

Uj , let qj = j2 and pij =
(i−qj)(P+1)

2 mod P . Choose the

2Given a finite set U and a list of subsets of U , the problem asks if some
k subsets in the list are pairwise disjoint.

Algorithm 1 DRDS Construction of Zn when n = 3P 2

1: S := ∅;
2: for i = 0 to P − 1 do

3: Di := (Z(3Pi+P ) \ Z3Pi);
4: for j = 0 to P − 1 do

5: qj := j2, pij :=
(i−qj)(P+1)

2 mod P ;

6: tj0 := 3Pj + P + pij ;

7: tj1 := 3Pj + 2P + pij ;

8: Di := Di

⋃{tj0, tj1};
9: end for

10: S := S
⋃{Di};

11: end for

(P +pij)-th and (2P +pij)-th number of Uj to compose Tij .

They are tj0 and tj1 in Lines 6,7. Then Tij is constructed:

Tij =

{ {tj0, tj1} when j 6= i

{tj0, tj1}
⋃

(Z(3Pi+P ) \ Z3Pi) when j = i

The intuitive idea of constructing Di is: in order to have

some ordered pairs (aj , ak) satisfying aj − ak ≡ d (mod n)

when d is small from 1 to P , choose the first P numbers in set

Ui, i.e. Z(3Pi+P )\Z3Pi. When d becomes much larger, choose

two numbers from each set Uj at some appropriate positions

according to the modular operations in Line 5. Below is an

example of n = 27 and three RDSs are constructed:

D0 = {0, 1, 2, 3, 6, 13, 16, 22, 25};
D1 = {5, 8, 9, 10, 11, 12, 15, 21, 24};
D2 = {4, 7, 14, 17, 18, 19, 20, 23, 26}.

It is easy to verify that D0, D1, D2 can compose a DRDS.

We prove Alg. 1 can indeed construct a DRDS formally.

Theorem 1: The set S = {D0, D1, · · · , DP−1} constructed

in Alg. 1 is a DRDS.

We give an important lemma before the proof.

Lemma 4.3: Each set Di constructed in Alg. 1 is a RDS.

Proof: From the definition, we need to show for any d 6=
0 (mod n), there exists at least one ordered pair (aj , ak) such

that aj − ak ≡ d (mod n). Consider the following four cases:

• When 0 < d < P : From Alg. 1, Line 3, P consecutive

numbers are chosen, i.e. 3Pi, 3Pi+1, · · · , 3Pi+P−1 ∈
Di; thus we can find such a pair (3Pi+ d, 3Pi) to meet

the requirement.

• When P ≤ d < 3P 2 and 0 ≤ d (mod 3P ) < P : Assume

d = 3Pj1 + b1, 0 < j1 < P, 0 ≤ b1 < P ; we want to

find one pair (aj , ak) such that

aj = 3Pj2 + b2 mod n

ak = 3Pj3 + b3 mod n

where P ≤ b3 < 2P . aj − ak ≡ d (mod n) implies

3Pj2 + b2 ≡ 3P (j1 + j3) + b1 + b3 (mod n), and thus

P ≤ b2 < 3P and both b2, b3 satisfy the equality from
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Lines 6, 7 of Alg. 1. Therefore:

b2 ≡ (i− j22)(P + 1)

2
mod P

b3 ≡ (i− j23)(P + 1)

2
mod P

Thus we have:






j2 ≡ (j1 + j3) mod P

(i− j22)(P + 1)

2
≡ (i− j23)(P + 1)

2
+ b1 mod P

Combining them:

2j1j3 ≡ −(2b1 + j21) mod P (1)

Since P is a prime number and j1, b1 are constant values

when d is given, j3 has one unique solution in ZP

[4] which we write as j∗. Plugging j∗ into the above

equalities, we can find out the values of aj and ak.

For example P = 3, n = 27, when d = 11 = 3Pj1 + b1,

then j1 = 1, b1 = 2. Consider set D1 and plug j1, b1 into

Equation (1) as:

2j3 ≡ −5 ≡ 1 mod 3

So j3 = 2 and thus j2 = 0, b3 ≡ 0 (mod 3). Since

3 ≤ b3 < 6, b3 = 3 and then b2 = 5. Therefore, aj =
3Pj2+ b2 = 5 and ak = 3Pj3+ b3 = 21. When d = 11,

we can find such a pair (5, 21) from D1 to meet the

requirement.

• When P ≤ d < 3P 2 and P ≤ d (mod 3P ) < 2P .

Assume d = 3Pj1 + b1, 0 ≤ j1 < P,P ≤ b1 < 2P ;

let c = (i−(i+j1)
2)(P+1)

2 mod P , b = b1 mod P (both

c, b ∈ [0, P )), and we find the pair (aj , ak) as:

aj =

{

3P (i+ j1) + P + c mod n if c ≥ b

3P (i+ j1) + 2P + c mod n if c < b

ak =

{

3Pi+ c− b if c ≥ b

3Pi+ P + c− b if c < b

It can be verified that aj , ak ∈ Di and aj −ak ≡ d (mod

n).

• When P ≤ d < 3P 2 and 2P ≤ d (mod 3P ) < 3P .

Assume d = 3Pj1 + b1, 0 ≤ j1 < P, 2P ≤ b1 < 3P .

Find (aj , ak) as in the second case:

aj = 3Pj2 + b2 mod n

ak = 3Pj3 + b3 mod n

The difference with the second case is 2P ≤ b3 < 3P ;

then P ≤ b2 < 3P and we can find out the appropriate

j2, j3 values. Then apply the above equalities to derive

aj and ak.

Based on the four cases above, we claim that ∀d 6= 0 (mod

n), we can find at least one ordered pair (aj , ak) such that

aj − ak ≡ d (mod n).

Now we prove Theorem 1 in two aspects:

Proof: First, each set Di ∈ S is an RDS from Lemma 4.3.

Then, we claim that ∀Di, Dj ∈ S, i 6= j, Di

⋂

Dj = ∅.

From Alg. 1: Di = Ti0

⋃

Ti1

⋃ · · ·⋃Ti,P−1 and Dj =
Tj0

⋃

Tj1

⋃ · · ·⋃Tj,P−1, it is clear that ∀k1 6= k2,

Ti,k1

⋂

Tj,k2
= ∅. Thus, we need to show ∀0 ≤ k <

P, Tik

⋂

Tjk = ∅. If k 6= i, k 6= j, two numbers from

Uk are chosen for Tik, Tjk respectively according to pik and

pjk. From Lines 6, 7 of Alg. 1, pik = (i−qk)(P+1)
2 mod P ,

pjk = (j−qk)(P+1)
2 mod P , when 0 ≤ i, j < P, i 6= j; we

can conclude pik 6= pjk, and thus Tik

⋂

Tjk = ∅. If k = i or

k = j, the first P numbers of Uk will be chosen, while the

other two numbers 3Pk+P+pik and 3Pk+2P+pik will not

intersect with the first P numbers, and thus Tik

⋂

Tjk = ∅.
So ∀k1, k2, Ti,k1

⋂

Tj,k2
= ∅ and it implies Di

⋂

Dj = ∅.
Combining the two aspects, S = {D0, D1, · · · , DP−1} is a

DRDS.

Alg. 1 constructs a DRDS with cardinality
√

n
3 in O(n)

time, and the approximation ratio compared to the bound in

Lemma 4.2 is:
√
n√
n/3

=
√
3 when n = 3P 2, P ≥ 3 and P is

a prime number.

Remark 4.1: We are unable to find a general method to

construct a DRDS S under any Zn such that |S| is comparable

to the bound in Lemma 4.2. However, if there exists some

construction for arbitrary Zn, we can transform it to a good

rendezvous protocol as in Section VI-A.

V. DRDS BASED RENDEZVOUS

In this section, we first introduce the Common Channel

Hopping Sequence (CCHS) which is based on the CH tech-

nique. And then we present the DRDS based algorithm and

its performance analysis.

A. Common Channel Hopping Sequence

Channel Hopping (CH) technique is commonly used in

blind rendezvous algorithms [2], [3], [11], [18], [20]. The

intuition is: in order to guarantee rendezvous for asynchronous

users, the rule to access channels should be periodic. Thus, we

construct a fixed length sequence HS = {s0, s1, · · · , sT−1}
where si is an available channel and the user hops among the

channels by repeating the sequence, i.e. they access st mod T at

time t. Since the available channel sets for asymmetric users

are different, we design a common sequence for all users and

each user can design its own hopping sequence based on it.

Definition 5.1: We call HS = {s0, s1, · · · , sT−1} a Com-

mon Channel Hopping Sequence (CCHS) if si is chosen from

the whole channel set C = {1, 2, · · · , N}.
Based on the CCHS, each user with available channel set

C ′ ⊆ C can access channel st mod T at time t if the channel is

in C ′; otherwise it can choose randomly from C ′ or according

to some fixed rule. The advantage of constructing such a

CCHS is: rendezvous can be guaranteed for any two users

asynchronously and asymmetrically when the CCHS is good;

here good means the following requirement is satisfied:

Requirement 1: For a CCHS HS = {s0, s1, · · · , sT−1},
∀δt ≥ 0 and ∀i ∈ C, there exists t such that st mod T = i
and s(t+δt) mod T = i.
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If a CCHS is good, any two users repeating it will eventually

achieve rendezvous on some common available channel when

one user is δt time slots later.

B. DRDS Based Rendezvous Algorithm

We present the asynchronous rendezvous algorithm based

on the DRDS construction. Suppose the whole channel set is

C = {1, 2, · · · , N} and the available channel set for the user

is C ′ ⊆ C.

Algorithm 2 DRDS Based Rendezvous Algorithm

1: Find the smallest prime P such that P ≥ N ;

2: if P = 2 then

3: T := 6, t := 0;

4: S = {D0, D1}, D0 = {1, 2, 4}, D1 = {0, 3, 5};
5: else

6: T := 3P 2, t := 0;

7: Construct the DRDS S = {D0, D1, · · · , DP−1} under

ZT as Alg. 1;

8: end if

9: while Not rendezvous do

10: if 0 ≤ t < 2P then

11: Access the channel with smallest label in C ′;
12: else

13: d := (t− 2P ) mod T ;

14: Find Di ∈ S such that d ∈ Di;

15: if Channel (i+ 1) ∈ C ′ then

16: Access channel (i+ 1);
17: else

18: Access an available channel in C ′ randomly;

19: end if

20: end if

21: t := t+ 1;

22: end while

In Alg. 2, the first 2P time slots for the user is to access

a fixed channel, which resembles the listening period when

a user wakes up in many asynchronous protocols; we call

this the Listening Stage. Afterwards, it is the Accessing Stage

which repeats a length T = 3P 2 CCHS based on the DRDS

construction under ZT from Alg. 1 (if P = 2, the CCHS

length is 6 and the DRDS is given as Line 4). Given any time

t, compute d = (t − 2P ) mod T and find the RDS Di that

contains d. The user accesses channel (i+1) if it is available;

otherwise, it accesses an available channel randomly. Fig. 3

is an example when N = 2 and C ′ = {1, 2}. The first four

time slots are the listening stage, and in the accessing stage,

the user repeats the sequence with length T = 6.

Fig. 3. An example of Alg. 2

C. Performance Analysis

Theorem 2: For two users Alice and Bob with available

channel sets CA, CB ⊆ C, whenever they start Alg. 2,

rendezvous can be guaranteed within MTTR = 3P time slots

if CA = CB , and MTTR = 3P 2+2P time slots if CA 6= CB .

Proof: It is easy to verify when N ≤ 2, the theorem

holds. For any N ≥ 3, without loss of generality, suppose

Alice starts earlier at time 0 and Bob starts at time δt ≥ 0.

If CA = CB , the best scenario for rendezvous is 0 ≤ δt <
2P because they are both in the listening stage accessing the

same channel. If 0 ≤ (δt − P ) (mod 3P ) < 2P , rendezvous

occurs in the first 2P time slots when Bob is listening, while

Alice is accessing. If 2P ≤ (δt−P ) (mod 3P ) < 3P , Bob can

achieve rendezvous in time [2P, 3P ) while keeping accessing

some fixed channel and the P numbers in [δt + 2P, δt + 3P )
for Alice are in P different RDSs; so they achieve rendezvous

in the accessing stage. Thus: MTTR ≤ 3P .

If CA 6= CB , we claim that rendezvous is guaranteed in

T +2P time slots. Let d = δt (mod T ). They may not achieve

rendezvous in the listening stage even when δt < P . For any

channel i ∈ CA

⋂

CB , we can find an ordered pair (aj , ak)
from RDS Di−1 such that aj − ak ≡ d (mod T ) (Def. 4.1).

So when Bob’s time ticks ak + P , they both access channel

i, which implies rendezvous is guaranteed within P + ak ≤
T + 2P time slots.

Remark 5.1: The smallest prime P ≥ N has been proved3

to be ≤ 2N , and thus MTTR = O(N) for symmetric users

and MTTR = O(N2) for asymmetric users.

Remark 5.2: We assume the start time of any user is aligned

to certain time slot, and doubling the length of each time slot

can solve the problem when time is not aligned [11].

Remark 5.3: Alg. 2 can be extended to the multi-user multi-

hop scenario through the basic idea in [6], [11]. Suppose D is

the diameter of the CRN in terms of hop count, rendezvous is

achieved in MTTR = 3PD time slots for symmetric scenar-

ios and MTTR = (3P 2 + 2P )D time slots for asymmetric

scenarios. Because of the lack of space, we omit the details.

VI. LOWER BOUND OF GOOD CCHS

In this section, we first show the equivalence of DRDS and

good CCHS, and then derive the lower bound on good CCHS

length. This lower bound also holds for any algorithm based

on the Channel Hopping technique.

A. Equivalence of DRDS and good CCHS

Lemma 6.1: Any DRDS corresponds to a good CCHS.

Proof: Consider a DRDS S = {D0, D1, · · · , Dh−1}
under Zn; we construct CCHS HS = {s0, s1, · · · , sn−1} as:

si = j + 1 if there exists Dj such that i ∈ Dj . If i does

not belong to any set in S, assign any value in [1, h] to si.
We claim HS is good. Suppose Alice and Bob are repeating

HS to access channels from [1, h] and Bob is d time slots

after Alice, if d ≡ 0 (mod n), they access the same channel at

3Bertrand-Chebyshev Theorem: ∀n > 1, at least one prime p exists such
that n < p < 2n
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every time slot, and so Requirement 1 is satisfied. Let d′ = d
mod n; thus 1 ≤ d′ < n, for any common available channel

i, and there exists a pair (aj , ak) where aj , ak ∈ Di−1 and

aj − ak ≡ d′ (mod n). Therefore, HS is good.

Lemma 6.2: Any good CCHS corresponds to a DRDS.

The lemma can be verified easily and we omit the proof.

The two lemmas show the equivalence between a good

CCHS and a DRDS. We use the equivalence to derive the

lower bound of any good CCHS length.

B. Lower Bound of Good CCHS

Lemma 6.3: Suppose D is an RDS under ZT where T =
N(N + 1) and |D| = N + 1, then N ≤ 3.

Proof: Consider all pairs (aj , ak) where aj , ak ∈ D, j 6=
k, and define djk = (aj − ak) mod T which we call a

difference value. ∀d ∈ {1, 2, · · · , T − 1}, there exists at least

one difference value djk = d. Since there are N(N + 1)
difference values, there exists two pairs (aj , ak) and (a′j , a

′
k)

such that djk = dj′k′ and the other difference values are

all distinct. However, dkj = T − djk = T − dj′k′ = dk′j′

implies there exists another two pairs (ak, aj), (a
′
k, a

′
j) sharing

a common difference value. The situation can happen only

when aj = a′k, ak = a′j . Then aj−ak ≡ ak−aj mod T means

aj−ak ≡ T
2 mod T . From Lemma 4.1, construct another RDS

D′ = {(a− aj) mod T |a ∈ D}, thus 0, T
2 ∈ D′.

Denote S1 = {0 < a < T
2 |a ∈ D′}, S2 = {T2 < a < T |a ∈

D′, and let d1 = |S1| and d2 = |S2|; thus d1+d2 = |D|−2 =
N−1. We count the number S3 = {0 < a < T

2 |a /∈ D′} from

two sides: Since |S1

⋃

S3| = T
2 −1, thus d1+ |S3| = T

2 −1⇒
|S3| = T

2 − 1 − d1. From the analysis above, all other pairs

(aj , ak) 6= (0, T
2 ) or (T2 , 0) should have a distinct difference

value; we construct S3 as follows:

• ∀a ∈ S1, let a′ = T
2 − a ∈ S3; otherwise (a, 0) and

(T2 , a
′) share the same difference value;

• ∀a ∈ S2, let T − a ∈ S3 and a− T
2 ∈ S3;

• ∀a1 < a2 ∈ S1, define δ = a2 − a1, and let T
2 − δ ∈ S3

and δ ∈ S3; otherwise we can find two pairs sharing a

common difference value;

• ∀a1 < a2 ∈ S2, define δ = a2 − a1, 0 < δ < T
2 , and

then let T
2 − δ and δ belong to S3.

• ∀a1 ∈ S1, ∀a2 ∈ S2, define δ = a2 − a1, if δ > T
2 ;

rewrite δ = T −δ, and then let δ ∈ S3 and (T2 −δ) ∈ S3.

It is easy to verify that when we choose one value a or

two values a, T
2 − a to compose S3, they cannot belong to S3

before the step. (If a = T
2 − a, we only add the value once

and this special situation happens at most once.) Thus:

|S3| ≥ d1+2d2+2 · d1(d1 − 1)

2
+2 · d2(d2 − 1)

2
+2d1d2−1

So T
2 −1−d1 ≥ (d1+d2)

2+d2−1; plugging d1+d2 = N−1,

we can derive N2 ≤ 3N ⇒ N ≤ 3.

Theorem 3: Any good CCHS HS = {s0, s1, · · · , sT−1}
based on N channels satisfies:

T ≥







N2 +N If N ≤ 2

N2 +N + 1 If N ≥ 3 and N is a prime power

N2 + 2N Otherwise

Proof: When N = 1, it is clear that T ≥ 2. Sup-

pose N ≥ 2; from Lemma 6.2, we can construct a DRDS

S = {D0, D1, · · · , DN−1} under ZT . From Lemma 4.2,

N ≤
√
T ⇒ T ≥ N2.

Let h = minDi∈S |Di|; if h ≤ N , the set Di, where |Di| =
h, has exactly h(h−1) ordered pairs (aj , ak) implying at most

h(h− 1) ≤ N(N − 1) difference values for d exist such that

aj − ak ≡ d (mod T ). When N ≥ 2, N(N − 1) < N2 − 1 ≤
T − 1, Di cannot be a RDS. Thus h ≥ N + 1.

Assume h = N + 1, from D0

⋃

D1

⋃ · · ·⋃DN−1 ⊆ ZT ,

T ≥ ∑N−1
i=0 |Di| ≥ Nh = N(N + 1). Three cases are

analyzed.

Case 1: If T = N(N+1), from Lemma 6.3, N ≤ 3. When

N = 2, {{0, 1, 3}, {2, 4, 5}} is a DRDS under Z6. However,

when N = 3, we cannot find a DRDS with three disjoint RDS

through exhaustive search;

Case 2: If T = N2+N+1, suppose Di suits |Di| = h; since

(N + 1)N = T − 1, Di is a (T, h, 1)-Difference Set. In [4],

this is called a Singer Difference Set and it can be constructed

only when N is a prime power. Thus when N ≥ 3 and N is

a prime power, T ≥ N2 +N + 1.

Case 3: If T ≥ N2+N+2 and N is not a prime power, and

suppose an RDS Di suits |Di| = h; there are at most h(h−1)
ordered pairs (aj , ak) and the difference values aj − ak ≡ d
(mod n) cannot cover {1, 2, · · · , T − 1} since h(h − 1) =
N(N+1) < N2+N+1 ≤ T −1, implying Di is not an RDS

under Zn, and so h ≥ N+2. From D0

⋃

D1

⋃ · · ·⋃DN−1 ⊆
ZT , we conclude T ≥∑N−1

i=0 |Di| ≥ Nh ≥ N(N + 2).
The lower bound is not always tight. Finding the minimum

good CCHS length is equivalent of finding the maximum

DRDS. As discussed in Section IV-B, it is hard to find the

maximum DRDS, and thus it is also hard to find the tight

lower bound for good CCHS. From Table II, the lower bound

is tight when N = 1, 2, 5, 6. However, when N = 3, 4, the

lower bound for T is 13, 21 respectively from the theorem,

but the maximum DRDS |Sn| = 2, 3 under Zn, implying the

lower bound is not always tight.

Corollary 1: Any blind rendezvous algorithm based on

the Channel Hopping technique cannot guarantee rendezvous

within T time slots, where T is the expression in Theorem 3.

Consider any blind algorithm based on the CH technique,

if two asymmetric users can rendezvous asynchronously, Re-

quirement 1 should be satisfied because the user does not

know on which channel they will achieve rendezvous. Thus

the sequence can be thought of as a variation of good CCHS,

which implies the lower bound should be T as in Theorem 3.

Corollary 2: Our DRDS based algorithm can achieve con-

stant approximation as compared to the lower bound Ω(N2)
of any algorithm based on the CH technique. Thus, it is a

nearly optimal asynchronous rendezvous algorithm.

VII. SIMULATION

A. Symmetric Scenarios

For the symmetric scenario, we select three representative

algorithms: Jump-Stay (JS) [11], DRSEQ [21] and CRSEQ

[18] for comparison. We evaluate all these algorithms using
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Fig. 4. MTTR and Average TTR as N increases
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Fig. 5. N = 50, MTTR and Average TTR as θ increases

two metrics: MTTR and Average TTR. For a sequence with

length T , we compute the TTR values Td when one user

is d time slots later than the other (d = 0, 1, · · · , T − 1);

then Average TTR is defined to be
∑T−1

i=0
Td

T . Both metrics

are meaningful because small MTTR value means two users

can achieve rendezvous quickly even in the worst case, while

small Average TTR means two users can achieve rendezvous

quickly on average.

Suppose all N channels are available to the users; when

N goes from 10 to 100, Fig. 4 shows both MTTR and

Average TTR values increase for all the algorithms because

the probability to rendezvous decreases as more channels can

be accessed. (Fig. 4(a) does not plot CRSEQ because its

MTTR value is very large. When N = 20, MTTR = 1381;

when N = 100, MTTR = 26070). Fig. 4(a) shows that

both DRSEQ and our DRDS based algorithm have much

smaller MTTR values and Fig. 4(b) shows our DRDS based

algorithm has the smallest Average TTR value.

Fix N = 50 and suppose there are K available channels;

we define available ratio as θ = K
N , and when θ ranges from

[0.1, 1], Fig. 5(a) shows both DRSEQ and our algorithm work

better than the others with MTTR ≃ 100 (the plot of DRSEQ

and that of our algorithm are almost the same); Fig. 5(b) shows

our algorithm works with the smallest Average TTR value.

From the two aspects, DRSEQ and our algorithm perform

better than CRSEQ and JS in guaranteeing rendezvous for

symmetric users.

Remark 7.1: In Fig. 5(a), JS cannot guarantee rendezvous
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Fig. 7. N = 50, θA = 0.5, MTTR, and Average TTR as θB increases

in 3P time slots (when θ = 0.9 as in the plot, MTTR = 782).

Because when θ < 1, two users may achieve rendezvous

on some unavailable channel, while JS accesses available

channels randomly for the situation, implying 3P is not

enough to guarantee rendezvous. When θ = 1, all channels

are available and 3P time slots can guarantee rendezvous, as

proved in [11]. Therefore, there is a sudden drop from θ = 0.9
to θ = 1 in Fig. 5(a).

B. Asymmetric Scenarios

As DRSEQ is inapplicable to asymmetric users, we select

CRSEQ and JS for comparison. We also evaluate these algo-

rithms by MTTR and Average TTR. Suppose the available

channel sets for two users are CA, CB respectively. Define

θA = |CA|
N , θB = |CB |

N .

Fix θA = 0.8, θB = 0.8; when N increases from 10 to

100, Fig. 6 shows both MTTR and Average TTR values

increase for all three algorithms. Fig. 6(a) shows our algorithm

achieves the smallest MTTR value among them, and Fig. 6(b)

shows our algorithm is slightly worse than JS in average TTR
comparison.

Fix N = 50, θA = 0.5; when θB ranges from 0.5 to

1, Fig. 7(a) shows our algorithm has the smallest MTTR
value and fluctuation exists since the channels are randomly

generated. Fig. 7(b) shows that the average TTR for both

JS and CRSEQ did not change much, while our algorithm

improves when θB ≥ 0.8 because large θB increases the

probability to rendezvous in the listening stage.
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Fig. 8. |CA
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CB | = 20, MTTR and Average TTR as N increases from

30 to 100
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Fig. 9. N = 30, MTTR and Average TTR when |CA

⋂
CB | ranges from

10 to 30

Fix |CA

⋂

CB | = 20; when N ranges from 30 to 100,

Fig. 8(a) shows our algorithm has the smallest MTTR value

as N increases, while the average TTR values for the three

algorithms do not differ much from Fig. 8(b).

Fix N = 30, and define K = |CA

⋂

CB |; when K ranges

from 10 to 30, Fig. 9(a) shows our algorithm has the smallest

MTTR value among the three algorithms. Fig. 9(b) shows that

the average TTR of both JS and our algorithm will decrease as

K increases. When K ≃ 16, our algorithm achieves a smaller

average TTR value than JS.

From the simulation results, our algorithm performs the best

with the smallest MTTR value among the three algorithms.

The average TTR value changes according to θA, θB ,K,N
and our algorithm can also achieve good performance.

VIII. CONCLUSION

In this paper, we present a new method for designing blind

rendezvous algorithms. We construct a DRDS consisting of

P disjoint sets under Zn where n = 3P 2 and P is a prime

number. Then we extend the construction to design an efficient

blind rendezvous algorithm, which can guarantee rendezvous

within MTTR = O(N) time slots for symmetric users and

MTTR = O(N2) time slots for asymmetric users. Common

Channel Hopping Sequence (CCHS) is introduced in the

algorithm analysis, and subsequently we show the equivalence

of DRDS and a good CCHS. Based on the equivalence, for

the first time in the literature, we derive a lower bound for

any blind rendezvous algorithm using the Channel Hopping

technique. Extensive simulations have been conducted and the

results validate our analytical results.
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