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Abstract In this paper, we propose efficient distributed algorithms for three holistic aggregation functions

on random regular graphs that are good candidates for network topology in next-generation data centers.

The three holistic aggregation functions include SELECTION (select the k-th largest or smallest element),

DISTINCT (query the count of distinct elements), MODE (query the most frequent element). We design

three basic techniques — Pre-order Network Partition, Pairwise-independent Random Walk, and Random

Permutation Delivery, and devise the algorithms based on the techniques. The round complexity of the

distributed SELECTION is Θ(logN) which meets the lower bound where N is the number of nodes and each

node holds a numeric element. The round complexity of the distributed DISTINCT and MODE algorithms

are O(log3 N/ log logN) and O(log2 N log logN) respectively. All of our results break the lower bounds

obtained on general graphs and our distributed algorithms are all based on the CONGEST model, which

restricts each node to send only O(logN) bits on each edge in one round under synchronous communications.
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1 Introduction

Aggregation functions compute statistics out of data. An aggregation function f is categorized into
non-holistic and holistic according to whether it complies the decomposability, f(A,B) = f(f(A), f(B)).
Non-holistic aggregation functions include MIN, MAX, MEAN and SUM that are decomposable. Holistic
aggregation functions, for example, SELECTION (select the k-th largest or smallest element), DISTINCT
(query the count of distinct elements), MODE (query the most frequent element), which are not decom-
posable, are proved to be harder than non-holistic aggregation functions [1]. While MIN and MAX,
which can be regarded as two special cases of SELECTION, are decomposable, the general SELECTION
cannot be directly solved via combining the corresponding k-th largest (or smallest) elements from its
subsets. Researchers have investigated non-holistic aggregation functions in areas like wireless sensor
networks [2, 3], peer-to-peer networks [4], and smart grid [5]. On the other hand, holistic aggregation
functions can help detect system anomalies. For example, the system can signal the administrator poten-
tial failures if it observes the CPU overhead of 10% percentile exceeds a threshold via the SELECTION
function.

We focus on designing distributed algorithms for computing aggregation functions. Specifically, we
compute aggregation functions in a network consisting of N nodes with each node possessing one (logN)-
bit numeric element and design our algorithms under the CONGEST model [6] where each node in the
network can only send one O(logN)-bit message to each neighbor in every synchronous round. Non-
holistic aggregation functions can be efficiently solved without congestion because intermediate results
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can be merged along the paths. However, holistic aggregation functions are harder to solve in that we
need to collect all raw elements in one node in order to get exact answers. Naively gathering all elements
in one node needs O(N) rounds, where we construct a breadth-first-search (BFS) spanning tree out of the
network, and each node sends its element to its parent along the spanning tree. Upon one node receiving
an element from its children, it transfers the element to its parent until the root node receives all of the
elements. Under the CONGEST model, since one node can at most send O(logN) bits (O(1) elements)
in each round, the number of rounds to finish the algorithm is bounded by the total number of elements
sent. Thus, in distributed systems, gathering all raw elements at one node costs O(N) synchronous
rounds or violates the CONGEST model.

We explore designing efficient distributed algorithms for three holistic aggregation functions, SELEC-
TION, DISTINCT and MODE under the CONGEST model. From state-of-the-art results for holistic
aggregation functions on general graphs under the CONGEST model, for SELECTION, Ref. [1] proposed
a distributed deterministic algorithm running in O(D log2D N) rounds and a distributed randomized algo-
rithm completing inO(D logD N) rounds, and they proved the lower bound for distributed SELECTION is
Ω(D logD N) on general graphs. For DISTINCT and MODE, Ref. [7] proved that the lower bound of exact
computation on general graphs is Ω(N/ logN +D). For DISTINCT, a randomized (ǫ, δ)-approximation

algorithm runs in O(D + log(1/δ)
ǫ2 ) rounds where 0 < ǫ, δ < 1 and Pr{|F̂0 − F0| 6 ǫF0} > 1 − δ (F0 is

the number of distinct elements and F̂0 is the estimated value of F0) [7]. For MODE, Ref. [8] proposed
a randomized algorithm of O(D + F2/m

2
1 · log k) rounds where F2 refers to the second moment of the

elements in the input set, m1 is the number of the occurrences of the most frequent element, and k is
the number of distinct elements. To obtain a high accuracy for DISTINCT, ǫ could be set to N−c where
c is a constant, thus the upper bound of this algorithm is O(N2c) rounds with δ being a constant. By
applying the worst scenario to the MODE where k = N , the MODE finishes in O(N logN +D) rounds.

Yet the upper bounds for both DISTINCT and MODE algorithms are still quite high (polynomial
round complexity). Are there more efficient (in polylog round complexity and even break the lower
bounds on general graphs) and accurate (with small error and even no error) algorithms for these holistic
aggregation functions? In this paper, by utilizing random regular graphs (RRGs), we show the answer is
yes.

RRGs, which are good expanders and have high resilience [9], are good candidates for the next-
generation network topology of ever-growing data centers [10, 11]. There are reasons why we choose
RRGs rather than other topologies investigated in [12, 13]. First, RRGs are easier to scale compared
to network topologies like the fat tree [12] and the hypercubes [13]. In particular, the degree of the
node (the number of direct links one node handles) is universally bounded by a constant, which means
we can expand the network by merely adding nodes and switches of the same make. Second, in [10],
with the problem of wiring RRGs settled, the lack of regular structure brings to RRGs the capability
of retaining characteristics in incremental expansions. Third, recent measurements in [14–16] show that
expander-based networks such as Jellyfish (RRGs) [10] and Xpanders [17,18] outperform other data center
topologies regarding high-performance metrics such as worst-case throughput and cost. We note that
Xpanders could also benefit from our techniques in practice since they bear similar properties, e.g., the
number of edges of each node is bounded by a constant, as RRGs.

In order to design algorithms for holistic aggregation functions, we make use of two properties of RRGs
concluded below:

(1) The diameters of RRGs areO(logN), which means the messages can be delivered efficiently between
any two nodes in the network.

(2) The degree of each node of RRGs is the same constant, showing symmetry which facilitates com-
munications.

These properties seemly facilitate the design of efficient distributed algorithms, and we can obtain an
O(N/d) round-complexity distributed algorithm for any aggregation function where d is the degree of
the RRG using the above properties. The procedure is the same as on general graphs. Each node sends
its element to the root along a constructed BFS tree. Notice on RRGs each node connects d neighbors,
which means the root can always receive d elements from its children each round. This confirms a
max(O(N/d,O(D))) algorithm for gathering all elements to the root. Even though it is possible to
merge duplicate elements to speed up functions like DISTINCT, yet designing polylog-round complexity
distributed algorithms for holistic aggregation functions under CONGEST model on RRGs is still non-
trivial.
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Table 1 Results on general graphs and random regular graphs

Upper and lower bounds on general graphs

Functions Upper bounds Lower bounds

SELECTION O(D logD N) [1] Ω(D logD N) [1]

DISTINCT O(N2c) [7]∗ Ω(N/ logN + D) [7]

MODE O(N logN + D) [8] Ω(N/ logN + D) [7]

All aggregation functions O(N) (trivial method) − (trivial)

Results on RRGs (random regular graphs)

Functions Existing algorithms Our results

SELECTION O(log2 N/ log logN) [1] Θ(logN)

DISTINCT O(N2c) [7]∗ O(log3 N/ log logN)

MODE O(N logN) [8] O(log2 N log logN)

All aggregation functions O(N/d) (trivial method) –

∗ Obtained by guaranteeing high probability 1 − 1/Nc of accuracy where c is a constant c > 0.

The crux to design low round complexity distributed algorithms for holistic aggregation functions
is to increase parallelism without introducing heavy congestion owing to the increased communication.
Specifically, we manage to divide the problem into small pieces and solve them individually and design
techniques that coordinate communications to avoid congestion. To this end, we design three techniques
as the building blocks, namely Pre-order Network Partition, Pairwise-independent Random Walk, and
Random Permutation Delivery on RRGs, and devise our algorithms based on the techniques.

At the end of this section, we give a comparison between our results and previous results in Table 1 to
give readers a more perceptual intuition about the efficiency of our algorithms. By applying state-of-the-
art solutions to RRGs, SELECTION can be computed inO(log2 N/ log logN) rounds, and the randomized
algorithms for DISTINCT and MODE can finish in O(N2c) and O(N logN) rounds, respectively. Note
that the results for DISTINCT and MODE are both exact while the former results are approximate.
Our algorithm for SELECTION is quadratically faster than the previous one, and our algorithms for
DISTINCT and MODE are exponentially faster. All the results on RRGs break the lower bound obtained
on general graphs.

The rest of the paper proceeds as follows. Section 2 introduces the system model and problem def-
initions. Section 3 describes and analyzes three basic techniques. Based on the techniques, Section 4
proposes the distributed algorithms for SELECTION, DISTINCT, and MODE. Analysis regarding cor-
rectness, round complexity, and message complexity of the algorithms will be presented in Sections 5–7,
respectively. Section 8 concludes this work and discusses future work.

2 System model and problem definitions

2.1 System model

The network is an undirected connected graph G = (V,E), where V is the set of nodes, and E is the set
of edges connecting nodes in the network. The diameter of G, which is the length of the longest shortest
path of G, is denoted by D. Each node represents a processor, and the edges represent point-to-point
connections under CONGEST model, where computations are performed in synchronized rounds. A node
can only directly exchange information limited to O(logN)(N = |V |) bits with its neighbors. Nodes can
perform local computations and decide what to exchange in the next round. For all algorithms, only one
node is required to report the correct answer. Nevertheless, a broadcast suffices for all nodes reporting the
answer. Each node’s local computation time is neglected, and we mainly focus on the round complexity
metric which indicates the maximum number of synchronous rounds needed to complete a distributed
algorithm for any node. We also analyze the message complexity, i.e., the total number of sent messages
of all nodes in our algorithms.

2.2 Problem definitions

Assuming each node v ∈ V holds one numeric element of O(logN) bits, forming a set S. We give the
definitions of our problems distributed SELECTION, distributed DISTINCT and distributed MODE on
set S below.
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Figure 1 Relationships between our ideas, techniques and algorithms.
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Figure 2 Computing the order by broadcast and convergecast. The sizes of subtrees are computed by convergecast. Then labels

are assigned in a top-down manner.

Definition 1 (Distributed SELECTION). For a distributed stored set S and an element k, the dis-
tributed SELECTION problem is to find the k-th largest (smallest) element in S under the CONGEST
model.

Definition 2 (Distributed DISTINCT). For a distributed stored set S, the distributed DISTINCT
problem is to find the count of distinct elements in S under the CONGEST model.

Definition 3 (Distributed MODE). For a distributed stored set S = {s1, . . . , sN}, we denote mi as
the number of occurrences of si in S. The distributed MODE problem is to find the element si with the
maximum mi where 1 6 i 6 N under the CONGEST model.

3 Basic techniques

In this section, we will give a detailed illustration and analysis of the techniques. Figure 1 outlines the
relationship between the techniques and three proposed algorithms. In the SELECTION algorithm, we
use Pre-order Network Partition and Pairwise-independent Random Walk. As for the algorithms for
DISTINCT and MODE, they both benefit from Pre-order Network Partition and Random Permutation
Delivery. Note that we assume the network is based on RRGs in the techniques. We place some of the
proofs in Appendix.

3.1 Pre-order Network Partition

Pre-order Network Partition divides the network into groups of nodes where sub-problems can be solved
individually. It enables high parallelism for three holistic aggregation functions. We denote k as the
number of groups the network is partitioned into. Pre-order Network Partition conducts in two phases
— label and group.

In the label phase, firstly, an O(D) rounds distributed breadth first search (BFS) generates a spanning
tree out of the network. Next, we assign labels to each node in a top-down manner. We assign a label
range (1, N) to the root, and then conduct a second BFS. Each node receives a label range from its
parent. In each synchronous round, upon receiving the range, the node labels itself the left-most number
of the range, and sends remaining labels to its children according to their sizes. After a second O(D)
rounds, all nodes get their labels. We represent this procedure in Figure 2.

In the group phase, we mark each node its group number according to its label and the total number of
groups. We note here that the supported algorithm decides the number of groups. We simply designate
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node i to group ⌊k·i
N ⌋ to balance group sizes. Each node knows the labels of the nodes in the same group

after the group phase.
In the following, we will prove that intra-group message delivery is efficient after partitioning. Lemma 1

shows that each edge is only shared by no more than two groups and we prove it in Appendix A.1.

Lemma 1. Pre-order Network Partition divides the network into groups with every edge of the network
being shared by no more than two groups.

Lemma 1 indicates that each edge of the network is shared by no more than two groups, and thus
efficient intra-group communications are guaranteed. As Pre-order Network Partition only involves BFS
which finishes in O(D) rounds. Each node transmits O(1) messages in the whole process, indicating that
the message complexity is O(N).

Theorem 1. Each node of the network can be pre-order labeled and partitioned into groups in O(logN)
rounds with the message complexity of O(N).

Proof. Pre-order Network Partition involves two phases. The label phase consists of two BFS which
finishes in O(D) rounds. The label phase finishes when the second BFS in the label phase completes.
Considering the diameter D of RRGs is O(logN), the round complexity of Pre-order Network Partition
is O(logN). The BFS conducted in the label phase only requires each node to send O(1) messages in
total. This suggests the message complexity of Pre-order Network Partition is O(N).

3.2 Pairwise-independent Random Walk

We propose Pairwise-independent RandomWalk to mix elements in the network, and thus enable uniform
sampling in the SELECTION algorithm. Pairwise-independent Random Walk highly inherits from the
standard random walk. In the following, we denote the degree of RRGs as d.

Assume adjacency matrix G(i,j) presents the given graph G = (V,E) where each entry encodes whether
two nodes i and j are connected. Algorithm 1 outlines this procedure. Node i has a probability of 1/d
to try to swap its element with one of its neighbors. Only when two nodes both choose each other as the
target they exchange their elements. This indicates that for one node, the probability of swapping its
element with one of its neighbors is 1/d2, which suffices the pairwise-independent property as we prove
in Lemma A1.

Algorithm 1 Pairwise-independent Random Walk

1: repeat O(logN/(1 − λ2)) times do

2: for each node u in the network do

3: u randomly chooses a neighbor v;

4: if v also chooses u do

5: u and v swap their numbers;

6: end if

7: end for

8: end repeat

The transition matrix of our random walk is

M = (G/d)/d+ (1 − 1/d)I,

where I is an identity matrix.
Then we analyze the mixing time based on this random walk that focuses on the moving of every single

element and each pair of elements instead of analyzing a random walk of all elements which has a state
space of n!. The rationale behind is that after the mixing time is deducted, the positions of all elements
and all pairs of elements will be uniformly distributed in the network, i.e., the corresponding random
walk converges to a stationary state of uniform distribution. Specifically, we deduce the number of rounds
needed to reach the uniform distribution over all pairs (i, j) ∈ V × V which requires the following.

(1) The final position of each element is uniformly distributed over all nodes. (2) The final position of
any two elements is uniformly distributed over all N(N − 1) node pairs.

The final position of each element must be uniformly distributed over all nodes because M is symmetric
and stochastic which indicates that the stationary distribution is a uniform distribution.

We denote the transition matrix of a pair of nodes as M2 which is thus an N2 ×N2 matrix, and each
entry of M2, (M2)(p,q),(r,s) is the probability of two elements located at p and q going to r and s after one
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step respectively. We compare M2 with the transition matrix M̃2 when the elements are truly pairwise
independently moving. We can see M̃2 is obtained by taking the Kronecker product of M :

(M̃2)(p,q),(r,s) = M(p,r) ⊗M(q,s).

For a random walk with uniform distribution as its stationary state, the mixing time (the rounds
needed to converge to the stationary state) depends on the eigenvalue gap (the difference between the
largest and the second largest eigenvalue). If it is a constant, the distribution of the positions of the
number converges towards uniform distribution exponentially faster [19]. We denote λ2 as the second
largest eigenvalue ofM . The mixing time can be concluded in Theorem 2 with the proof in Appendix A.2.

Theorem 2. After t = O( logN
(1−λ2)/d

) steps of the Pairwise-independent Random Walk, the statistical

distance between the distribution of the position of elements Dt and the uniform distribution over all
pairs {(i, j) ∈ V × V |i 6= j} is

1

2

∑

i6=j

∣

∣

∣

∣

(Dt)(i,j) −
1

N(N − 1)

∣

∣

∣

∣

= O(ǫ),

where ǫ is a positive value depending on t (0 < ǫ < 1).

Theorem 3. After t = O( d logN
(1−λ2)

) steps of the Pairwise-independent Random Walk, the message

complexity is O(dN logN
(1−λ2)

). The message complexity to finish Pairwise-independent Random Walk is

O(dN logN
(1−λ2)

).

Proof. In each round, every node randomly picks one neighbor and sends one message to it. The
algorithm completes in O( d logN

(1−λ2)
) rounds. So the total number of messages is O(dN logN

(1−λ2)
).

It has been proved that the eigenvalue gap of a standard random walk on RRGs is Ω(1) [9], and the
degree of RRGs is also a constant. Consequently, the eigenvalue gap of our random walk is a constant.
We restate the round complexity and message complexity of the Pairwise-independent Random Walk on
RRGs as below.

Corollary 1. After t = O(logN) steps of the Pairwise-independent Random Walk, the statistical
distance between the distribution of the position of an element Dt and the uniform distribution over all
pairs {(i, j) ∈ V × V |i 6= j} is

1

2

∑

i6=j

∣

∣

∣

∣

(Dt)(i,j) −
1

N(N − 1)

∣

∣

∣

∣

= O(N−α),

where α is a constant, and the message complexity is O(N logN).

We conclude the Pairwise-independent Random Walk with a discussion about the gossip protocol [20].
Our technique achieves the pairwise-independency via a procedure of element swapping, which requires
two adjacent nodes to choose each other in the same synchronous round. However, this swap proce-
dure cannot be fulfilled in the gossip protocol where such an agreement cannot be established. As a
consequence, gossip cannot be directly applied to our scenario.

3.3 Random Permutation Delivery

Random Permutation Delivery sends elements to different groups so that problems can be divided and
conquered individually. The problem is how to efficiently coordinate the delivery of data flow. To
understand the problem of how to deliver the packets, we observe two principles in our algorithms.

(1) The original group is divided into new groups. Each element knows which new group it should be
sent to.

(2) It does not matter which specific node in the new group receives the element. Moreover, we want
to randomize the destination to facilitate sampling operations that help reduce computations.

Based on the observations, we formulate the task of the Random Permutation Delivery as three stages
and give an illustration in Figure 3.

(1) The first stage is to generate a random permutation. Each packet independently chooses an
intermediate position randomly among all nodes and goes to it.

(2) In the second stage, each packet goes to a randomly chosen node in its destination interval which
is also a group in our pre-order partition.
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Figure 3 Three stages delivery. Each packet belongs to a group Bi and needs to be sent to a node in [Li, Ri]. In the first stage,

it is sent to a random node in the network. In the second stage, it is sent to a random node in the destination group. In the third

stage, the packets in a group are re-allocated so that each destination receives exactly one packet.

(3) The third stage is a balancing stage to ensure each node finally receives exactly one packet.
To achieve the delivery, we borrow a randomized online algorithm which exploits the shortest paths in

the network to achieve packet delivery in O(C +D′ + logN) time from [21], where C is the congestion
of edges defined as the maximum number of packets transferred along one edge given the paths are the
set of all shortest paths, and D′ is the maximum length of the shortest paths of all pairs of nodes.

Theorem 4.18 in [22] proved that the system congestion CW , the maximum number of paths from the
shortest paths system W (a set of N2 shortest paths through the graph) that pass through the same
node, is O(N log2 N) in RRGs. We reformulate the result in [22] as Theorem 4.

Theorem 4. Assume O(N) independent packets need to be delivered and the i-th packet goes from
ui to vi. Let P be the set of the shortest paths that connect ui and vi. Then the congestion C of P is
O(CW /N + logN) with high probability if the random variables (ui, vi) are independent for each i and

∑

i=1

Pr[ui = x ∧ vi = y] = O(N−1)

for any x, y ∈ V .

Theorem 4 implies that routing randomly delivered packets need O(log2 N) rounds in RRGs, and we
conclude Corollary 2.

Corollary 2. On RRGs, the round complexity of the Random Permutation Delivery is O(log2 N) with
high probability, and the message complexity is O(N log2 N).

Proof. As proved, the number of rounds needed to finish the Random Permutation Delivery is
O(log2 N). The number of packets transmitted in one round is no more than the number of edges in the
network, which means O(dN) messages transmitted in total in one round. So the message complexity is
O(dN log2 N).

Notice that on RRGs, d is a constant, so the message complexity of the Random Permutation Delivery
is O(N log2 N).

4 Algorithms

In this section, we introduce the procedures of three algorithms. To give readers a clear picture of
how the algorithms work, instead of from each nodes’ perspective, we describe our algorithms from the
network’s point of view, which consists of steps that can be translated directly into a set of techniques;
those techniques are either widely used, e.g., BFS, convergecast and broadcast, or proposed by us (see
Section 3). When analyzing their round complexity, we explicitly detail how each step is translated into
the techniques.
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4.1 Distributed SELECTION

In the distributed SELECTION problem, we want to find the k-th largest (smallest) element in a set
S stored in a distributed network. We base our selection algorithm on the quick-selection algorithm.
Without loss of generality, we assume the elements in set S are distinct. The quick-selection algorithm
proceeds as follows. A candidate set I is initialized as S. In each iteration an element m is randomly
chosen and its rank rS(m) = |{a ∈ S|a < m}| is computed. If the rank is greater than k, discard the
elements greater than m from I; otherwise, discard the elements less than m from I. The algorithm
terminates when |I| = 1.

In the procedure above, the candidate set shrinks at about half after each iteration, so the total
number of iterations is O(logN). To reduce the iterations needed, in a distributed network, the crux is
to sample more elements simultaneously. Ref. [1] sampled O(D) elements in one iteration and proposed
an algorithm of round complexity O(D logD N + D). We show there exists a positive constant c such
that in each iteration we can sample N c elements and sort them on RRGs, and thus reduce the number
of iterations to O(1).

In our algorithm for distributed SELECTION, we maintain L and H as the current lower and upper
bounds of the k-th element, respectively, and update the candidates set I = {a ∈ S|L 6 a 6 H} in each
round. Algorithm 2 frames the procedure of the distributed SELECTION algorithm with a description
as follows.

(1) Initialize lower bound L, upper bound H and candidate set I (line 2).
(2) Randomly sample a subset Ssample from I (line 4).
(3) Sort Ssample, and then shrink the candidate set I by updating L and H and update k (lines

5 and 6).
(4) If I is small enough, sort I and find the k-th element m, return m as the answer. Otherwise, go to

Step 2 (lines 7 and 8).

Algorithm 2 SELECTION

1: Input set S, a number k.

2: Set search range [L,H] initially to the minimum and maximum of the input set S, and candidate set I = S.

3: repeat

4: Randomly sample Nc elements from I as Ssample.

5: Sort Ssample.

6: L = (
k0
|I| |Ssample| − O(

√

|Ssample| logN))-th element of Ssample;

H = (
k0
|I| |Ssample| + O(

√

|Ssample| logN))-th element of Ssample;

k = k − |{a ∈ S|a < L}|, I = {a ∈ S|L 6 a 6 H}.
7: until |I| 6 Nc.

8: Sort I, return the k-th element as the answer.

In each iteration, we reduce the range of k-th element until the size of I is small enough so we can sort
I directly. The problem is how to sort Ssample efficiently. Accordingly, we propose a sort routine where
we estimate the rank of each element in Ssample.

Since we sample N c elements in each iteration, which also represents N c nodes, it is possible to use
remaining nodes to estimate the ranks. We use all nodes in the network in the sort routine. The sort
routine leverages Pre-order Network Partition to divide the network into O(N c) groups with each group
of size O(N1−c), and then estimates the rank of each sampled element in the corresponding group. For
a good estimation, we would like a uniform distribution of elements in each group. Here we resort to
Pairwise-independent Random Walk.

We frame our sort process with Figure 4 and give an illustration with pseudocode in Algorithm 3.
(1) Partition the network into |Ssample| groups (line 2).
(2) Spread sampled elements in its own group (line 3).
(3) Use Pairwise-independent Random Walk to mix all sampled elements (line 4).
(4) Estimate the rank of each sampled element in its own group (line 5).

4.2 Distributed DISTINCT

In the distributed DISTINCT problem, we want to find the number of distinct elements in a set S
stored in a distributed network. Applying the quick-sort principle and our techniques to the distributed
DISTINCT problem, we propose a deterministic algorithm that efficiently solves distributed DISTINCT.
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Figure 4 Sorting a sampled subset. The numbers are first shuffled in the network. Then the network is partitioned into 3 groups

and each group is designated to a number. Each number distributes 5 copies of itself into the group. The copies are shuffled again,

then all the copies are uniformly distributed. Finally, the rank of a number is estimated in the corresponding group.

Algorithm 3 SORT

1: Input sampled set Ssample.

2: Partition the network into |Ssample| groups.
3: Spread sampled elements in its own group.

4: Shuffle elements using Pairwise-independent Random Walk.

5: Estimate rSsample
(s) = (rg(s)/|g|) ·(N/l) in groups, where rg(s) is the rank of s in group g, l is the number of copies distributed

to each group.

Specifically, we randomly sample a set of elements from S and divide S into subsets according to sampled
elements. Then we apply the same procedure to the subsets recursively. During this process, we discard
elements that are equal to sampled ones and count them in the result. Finally, we collect the sub-results
from bottom to top.

The three phases of our algorithm are the following, with an example illustrated in Figure 5.

(1) Sample phase (line 3): Randomly pick l elements from S and denote them as
Ssample = {s0, s1, . . . , sl, sl+1} where s0 = −∞ and sl+1 = ∞.

(2) Divide phase (lines 5 and 6): Broadcast Ssample to all nodes, and divide S into l + 1 subsets with
regard to the values of elements. Then each element goes to its sub-group via the Random Permutation
Delivery. The elements in subset Ii satisfy si−1 6 x 6 si, x ∈ Ii.

(3) Combine phase (lines 7–9): Sum up the results gathered from sub-groups with the number of
distinct elements in the sampled elements together, and return the sum to the group leader.

We give the pseudocode of our algorithm for distributed DISTINCT in Algorithm 4.

4.3 Distributed MODE

In the distributed MODE problem, we want to find the most frequent element and its frequency in a set
S stored in a distributed network. Note that if we just modify the Combine phase of the DISTINCT
algorithm to compute a MAX function instead of SUM, we can devise an algorithm to solve distributed
MODE in the same number of rounds. We will call this algorithm Simple MODE in the following.
However, we can develop a more efficient MODE algorithm by analyzing what really happens when it
comes to MODE.
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Figure 5 The procedure is shown from left to right. We first sample Ssample = 2, 5 out of S and broadcast them in the network

(the numbers in the gray nodes). Each node computes the corresponding subset of its element. Discard the numbers in Ssample

and deliver the remaining numbers into corresponding groups (in this example, we discard 2, 5). If the size of a group is greater

than O(logN), run sample and divide phases recursively, otherwise we send the numbers of a group to one node and compute the

DISTINCT locally. The bottom (right) returns the number of distinct numbers to the upper (left) level. The upper level adds this

result by the number of distinct elements in Ssample. In this example, sub-groups in the middle level need not be divided because

they are small enough.

Algorithm 4 DISTINCT

1: Input set S′, which is stored in a group of nodes.

2: if |S′| > O(logN) then

3: Sample a set Ssample with size l = O(logN) from S′.
4: Broadcast Ssample in the group.

5: Divide elements in S into at most l + 1 subgroups according to their ranks in Ssample.

6: Compute DISTINCT in each subgroup.

7: Sum the results of all subgroups and the number of distinct elements and send it to the group leader.

8: else

9: Send all elements to one node and compute r locally.

10: end if

11: Return r.

We observe that either of two things will happen when we sample a subset Ssample from S and divide
S into sub-groups.

(1) MODE m appears many times in the network. Then we have a good chance that Ssample contains
m. We can find it out by estimating the frequencies of the elements in Ssample.

(2) MODE m appears only a few times in the network. In this case, we use a hash function H to break
the problem into sub-problems.

We can see that either situation is related to the frequency of MODE, so we can design our algorithm
by bounding the frequency of MODE denoted by a value M . Formally, we maintain an upper bound of
M . M is decreased recursively until we reach the first case.

Initially, we set M to N . In each iteration, we divide the set S into l = O(max{N/(M logN), 1})
groups g1, g2, . . . , gl using Pre-order Network Partition. Choose a hash function H : S → {1, 2, . . . , l}.
Each element x computes H(x) and moves to the H(x)-th group by Random Permutation Delivery.
After the delivery, each group is further partitioned into l2 = O((N/l)c2) blocks where c2 is a constant
predefined. In each group, each block randomly picks one element and computes its frequency fj in the
block. Let f be the maximum frequency among the blocks. According to how large f is, the algorithm
proceeds in two directions as introduced previously.

(1) If f > Θ(M/l2), which indicates that MODE m may appear many times, we distribute the elements
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Figure 6 Computing MODE. As the upper bound of M shrinks, the number of groups to be partitioned increases. We terminate

this procedure when at some stage the MODE is found out, or M is bounded small enough where we use Simple MODE (the same

procedure as DISTINCT) in each group.

with frequencies larger than Θ(M/l2) to all nodes in the same group and compute the exact frequencies
of them. Report the element with the maximum frequency as MODE.

(2) If f 6 Θ(M/l2), which indicates that MODE m only appears a few times, thus we need to adjust
the upper bound of MODE. In this case, we set M = O(max{fl2, N/(l · l2)}).

When the upper bound M is small enough, we use simple MODE in each group to compute the
exact MODE. At last, we combine our results from the groups. In the first case, the MODE has been
computed at some level and the algorithm terminates. In the second case, each group runs the simple
MODE algorithm at the bottom of the recursion. MODEs of groups are returned and combined to get
the final answer. The pseudocode is outlined in Algorithm 5. We prove that our MODE algorithm is
efficient both in round and message complexities in Section 7. We give an example of the second case in
Figure 6.

Algorithm 5 MODE

1: Set M = N .

2: while M > O(logO(1) N) do

3: Set l = O(max{ N
M log N

, 1}).
4: Choose a hash function H with range [1, l]. Divide the network into l groups using Pre-order Network Partition.

5: Each element x moves to H(x)-th group using the Random Permutation Delivery.

6: for each group do

7: Partition the group into l2 = O((N/l)c2) blocks where c2 is a positive constant.

8: Randomly sample one number and compute its frequency in the block.

9: end for

10: Let f be the maximum of all computed frequencies.

11: if f > Θ(M/l2) then

12: Compute the exact frequency of those sampled numbers whose frequency exceeds Θ(M/l2).

13: Return the maximum of exact frequencies and the corresponding element as MODE.

14: else

15: Set M = O(max{f · l2, N log N
l·l2

}).
16: end if

17: end while

18: Divide the network into l = O(max{ N
M log N

, 1}) groups.

19: Run the simple MODE algorithm in each group and compute the maximum frequency of returned elements.
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5 Analysis of distributed SELECTION

5.1 Correctness

We first give a conclusion that our algorithm for distributed SELECTION can compute an accurate result
with high probability.

Lemma 2 shows that in each round we have an accurate estimation of the ranks of sampled elements
with high probability.

Lemma 2. For each element s in the sampled subset Ssample ⊂ I, we define rSsample
(s) = |{a ∈

Ssample|a < s}|. After each sampled element s distributes l = O(N/|Ssample) copies of itself into its
group, we can estimate the rank of s in Ssample with high probability:

rSsample
(s) ≈ rg(s)

|g| · N
l
,

where rg(s) is the rank of s in its group and |g| is the number of elements in the group of s.

Proof. Let g also denote the set of elements in the group that s belongs to. Let Xi denote whether a
copy of i ∈ Ssample that is smaller than s is shuffled to g. So the estimation of rank of s in Ssample is

r̃Ssample
(s) =

∑

iXi

|g| · N
l
.

Let X =
∑

iXi. After a Pairwise-independent Random Walk, the probability of every copy shuffled to g

is E[Xi] =
|g|
N , so we have

E[X ] = rSsample
(s) · l · |g|/N.

The variance of X is

Var[X ] =
∑

i

Var[Xi] +
∑

i6=j

(E[XiXj ]− E[Xi]E[Xj ]).

After the Pairwise-independent Random Walk, we have

E[XiXj ]− E[Xi]E[Xj] = ǫ+

(|g|
2

)

(

N
2

) −
( |g|
N

)2

= O(N−1),

where ǫ is a negligible quantity corresponding to the imperfectness of the random walk. So

Var[X ] =
∑

i

Var[Xi] +O(N) = O(N).

Then we prove with high probability that the deviation of r̃Ssample
(s) and rSsample

(s) is bounded by 1/2.
Suppose rSsample

(s)− r̃Ssample
(s) > 1/2, we have

X − E[X ] = Ω

(

1

2
(|g| · l)/N

)

= Ω(N1−2c),

where N c is the number of sampled elements per round.
By Markov inequality, we have

Pr[|X − E[X ]| > Ω(N1−2c)] 6
Var[X ]

Ω(N2−4c)
= O(N4c−1).

When c is small enough, the probability is N4c−1 × N c = o(1) by union bound. Every computed
rank has an additive error smaller than 1/2 and we can find the exact rank by rounding rSsample

(s) =
⌊r̃Ssample

(s) + 0.5⌋ w.h.p. (with high probability).
Let k0 = k − |a ∈ S|a < L|. The k-th element in S will be the k0-th element in I. Lemma 3 proves

that right lower bound and upper bound of the k0-th element of I in each iteration are computed w.h.p.
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Lemma 3. In the SELECTION algorithm, with every element sampled with a predefined probability
of p ≈ |Ssample|/|I|, the rank of k0-th element of I in Ssample is bounded by the interval

[

k0
|Ssample|

|I| −O

(

√

|Ssample| logN
)

, k0
|Ssample|

|I| +O

(

√

|Ssample| logN
)]

,

w.h.p.

Proof. Let t be the k0-th element in I. For each i ∈ S, i < t, we associate a random variable Xi

indicating whether i ∈ Ssample. So the rank of t in Ssample is
∑

iXi. By Hoeffding’s inequality, we have

Pr

[

|X − E[X ]| > Ω

(

√

|Ssample| logN
)]

6 2 exp

(

−2
(
√

|Ssample| logN)2

|Ssample|

)

< 2 · 2−2 log2 N
6 O(N−Ω(1)).

This implies that the rank of the k0-th element in Ssample is bounded by the interval [k0
|Ssample|

|S| −
O(
√

|Ssample| logN), k0
|Ssample|

|S| +O(
√

|Ssample| logN)] w.h.p.

5.2 Round complexity and message complexity

In the algorithm for distributed SELECTION, the size of candidate set in each iteration is narrowed by
O(
√

|Ssample|/ logN) = O(N c/2/ logN), which means after a constant number of rounds, the range will
be small enough (less than O(N c)) as we conclude in Lemma 4.

Lemma 4. The number of iterations needed to compute the k-th element of S is bounded by O(1).

Theorem 5. Our algorithm for distributed SELECTION can compute accurate k-th element of set S
in O(logN) rounds with high probability with message complexity O(N logN).

Proof. In each iteration, the main work lies in the sort routine and the rank estimation. The sort
routine leverages Pre-order Network Partition and Pairwise-independent Random Walk technique, which
costs O(logN) rounds. Estimating the rank in each subgroup also introduces O(logN) rounds because
a convergecast suffices to get all elements that are less (greater) than the estimated one.

Lemma 4 indicates the number of iterations needed to finish the algorithm is O(1). The round com-
plexity of SELECTION is O(logN).

Pre-order Network Partition introduces O(N) messages in each iteration, and Pairwise-independent
Random Walk transmits O(N logN) messages in total in each iteration. The rank estimation involves a
convergecast which is the same as Pre-order Network Partition. As there are O(1) iterations in total, the
message complexity of the algorithm for SELECTION is O(N logN).

6 Analysis of distributed DISTINCT

6.1 Correctness

We prove that our algorithm can compute the correct result by induction.

Theorem 6. Our algorithm for distributed DISTINCT computes correct DISTINCT.

Proof. Suppose we can compute the DISTINCT of all groups with a size less than k accurately. When
the size of a group is less than O(logN), the result is correct because DISTINCT is computed locally in
the one leader node.

If the size of the group is less than k, the result must be correct. Otherwise, the group will be divided
into l + 1 groups with a size less than k. Correct results from the sub-groups are sent to the leader and
combined with the sampled set, which suffices the correctness of the final result.

6.2 Round complexity and message complexity

We now show how quick our algorithm for distributed DISTINCT can achieve and analyze the message
complexity by phases.

Lemma 5. The round complexity of each iteration of our algorithm for DISTINCT is O(log2 N).
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Proof. Firstly, O(logN) elements are sampled and broadcast inside a group. This procedure can be
implemented using pipelining, which takes O(D+logN) = O(logN) rounds. Then Random Permutation
Delivery is used to divide the problem and form sub-groups, which is proved to cost O(log2 N) rounds.
Finally, results are sent to the leader, which takes at most O(D) = O(logN) rounds.

In summary, each iteration of the algorithm needs O(log2 N) rounds to complete.

Lemma 6. The recursion depth of our algorithm for distributed DISTINCT is O(logN/ log logN)
w.h.p.

Proof. We first prove that the size of a sub-group shrinks at least by O(
√
logN) on average. Consider

a group g with N numbers and g is divided to gi, 0 < i < l subgroups. Without loss of generality, we
assume N > l = O(logN). Set s to the size of a sub-group and t = Ω(N/

√
logN). The probability that

s is greater than t is

Pr[s > t] =
∑

s>t

(N − s− 1)

(

N−s−2
l−2

)

(

N
l

)

=
(N − t− 1)

(

N−t−2
l−2

)

(

N
l

) + · · ·+
(l + 1)

(

l−2
l−2

)

(

N
l

)

6 N2

(

l

N − l

)2(
N − t

N

)l−2

.

Using the inequality (1 − a)b 6 e−a(b−1), we get that

Pr[s > t] 6 N2

(

l

N − l

)2

e−
t
N

(l−3)
6 2−(l−3)/

√
logN

6 O(2−Ω(
√
logN)).

Now define a good iteration as an iteration with every subgroup shrinks by more than Ω(
√
logN).

Clearly, there are at most O(logN/ log logN) “good” iterations. Suppose there are totally
m = Θ(logN/ log logN) iterations to finish the algorithm. We bound the probability of at least m/2
iterations is bad by

P =

m
∑

i=m/2

(

m

i

)

Pr[s > t]i(1− Pr[s > t])m−i
6 2mPr[s > t]m/2 = O(2−Ω(log1.5 N/ log logN)).

Notice that this probability is O(N−α) for any constant α. By union bound, with high probability this
kind of events never occur in the execution. Therefore, the recursion depth is O(logN/ log logN).

Theorem 7. The round complexity of our algorithm for distributed DISTINCT is O(log3 N/ log logN)
w.h.p., and the message complexity is O(N log3 N/ log logN).

Proof. The recursive depth of the algorithm is O(log / log logN) with each iteration costs O(log2 N)
rounds as proved. The round complexity of the algorithm for DISTINCT is O(log3 N/ log logN).

In each iteration, Pre-order Network Partition and Random Permutation Delivery send O(N) and
O(N log2 N) messages, respectively. The broadcast and converge procedure send O(N logN) in total for
O(logN) elements are broadcast to the corresponding group. The message complexity for distributed
DISTINCT is O(N log3 N/ log logN) in total.

7 Analysis of distributed MODE

7.1 Correctness

For the correctness of our MODE algorithm, we have to address two failure cases below.
(1) One group is over-populated by numbers with the same H(x).
(2) M is set below the real frequency of MODE.

Theorem 8. Set M to the current upper bound on the maximum frequencies and divide the network
into l = O( N

M/ logN ) groups. Choose an independent hash function H : S → {1, 2, . . . , l − 1, l}, and then

the number of elements mapped to each group is O(N/l) with high probability.
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Proof. For a group t, we define a random variable Xt on each element x, such that

Xt =

{

frequency(x), H(x) = t,

0, H(x) 6= t,

where x is an element in S. Then the number of elements mapped to group t can be computed as
∑

x Xt

and we have

E

[

∑

x

Xt

]

=
N

l
.

Here we import a mathematical tool named Chernoff bound to help us for a further proof.

Theorem 9. If n variablesX1, X2, . . . , Xn are independent and have range {0, 1}, their sum X =
∑

iXi

cannot be too far from the expectation. Concretely,

Pr[X > (1 + δ)E[X ]] <

(

eδ

(1 + δ)1+δ

)E[X]

,

Pr[X < (1 − δ)E[X ]] <

(

e−δ

(1− δ)1−δ

)E[X]

.

By setting δ = logN
E[X] in Theorem 9, we have the following.

Corollary 3. If n variables X1, X2, . . . , Xn are independent and have range {0, 1}, we have

Pr[X > E[X ] + logN ] < O(1 −N−α),

Pr[X < E[X ]− logN ] < O(1 −N−α),

where α is a constant.

Since N
l = M logN = Ω(logN), and by Chernoff bound,

Pr[X > E[X ] + logN ] 6 N−α,

we have

∑

x

Xt = M ·O
(

E

[

∑

x

Xx/M

]

+ logN

)

= M · O
(

N

lM
+ logN

)

= O(N/l)

with high probability (1−Nα).

From the above analysis, we do not have to worry about over-populating a group. Notice that to
simplify the presentation we assume that the hash function is fully independent. In order to avoid more
distribution stages and fit in CONGEST model, we can invoke Newman’s Theorem [23] to reduce the
length of the random bits to O(logN).

Theorem 10. M is the upper bound on the maximum frequency with high probability.

Proof. We have proved that each group contains O(N/l) elements with high probability. Each group is
partitioned into l2 blocks, so each block has O(N/(l · l2)) elements. Let Yi indicate whether an element y
is sampled in the i-th block. Without loss of generality, we assume that the frequency of y is Ω(N logN

l·l2 ).
So

Yi =

{

1, y is sampled in the i-th block,

0, y is not sampled in the i-th block.

If the maximum frequency M ′ > Ω(N logN
l·l2 ), we have

E[P[Yi = 1]] = M ′/O(N/l) = Ω(logN/l2).
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Let Y =
∑l2

i=1 Yi be the sum of the random variable Yi, and then the expectation of Y is

E[Y ] = E

[

l2
∑

i=1

Yi

]

=

l2
∑

i=1

E[Yi] > Ω(logN).

By Chernoff bound, we get

P[Y 6 1] 6 P[Y 6 (1− δ)E[Y ]] 6 e−δ2E[Y ]/2
6 N−Ω(1),

where δ = 1/2. So the real maximum frequency M ′ is sampled in one of the blocks and the computed
frequency is at least Ω(M ′/l2) with high probability. If we set the hidden constants in the big O in line 15
in Algorithm 5 large enough, M is the upper bound on the maximum frequency w.h.p.

7.2 Round complexity and message complexity

Lemma 7. The number of iterations needed to shrink M to O(logO(1) N) in MODE is O(log logN)
w.h.p.

Proof. At the end of each iteration of decreasing M , M is set to O(max{fl2, N logN
l·l2 }). We examine

the decrease of M in two directions.
(1) If f · l2 is greater than O(N logN

l·l2 ), we set M = O(f · l2). This means that we reach the tight bound
of the frequency of MODE.

(2) Otherwise, in each iteration we shrink M by

N logN

l · l2
= O(M1−c2 · log2 N),

where c2 is a constant. Thus we get that, after O(log logN) iterations, M shrinks to O(logO(1) N).

Lemma 8. The recursion depth of Simple MODE is O(log logN) w.h.p.

Proof. To compute MODE, when M is bounded by O(logO(1) N), many instances of simple MODE

are conducted. Each instance handles O(logO(1) N)) elements independently. We know that an iteration
which can shrink the size of the group by half is a good iteration. Let l be the number of sampled
elements and s be the size of the resulting group. We have

Pr[s < N/2] = 1− Pr[s > N/2] = 1−
∑

s>t

(N − s− 1)

(

N−s−2
l−2

)

(

N
l

)

> 1−
(

N −N/2

N

)l−2 (
l

N − l

)2 l+1
∑

i=N−t−1

i

> 1−N2

(

l

N − l

)2(
1

2

)l−2

= 1−N−Ω(1).

Notice that we can adjust the hidden constant in l = O(logN) so that the quantity above is 1−O(N−α).
Then we can use a union bound to claim that every iteration of partition reduces the candidate group’s
size by at least a factor of 2. So w.h.p., the maximum recursion depth is

O(log(logO(1) N)) = O(log logN).

Theorem 11. The round complexity of the algorithm for MODE is O(log2 N log logN) w.h.p., and the
message complexity is O(N logN log logN).

Proof. The number of iterations needed to bound M to O(logO(1) N) is bounded by O(log logN). In
each iteration, Pre-order Network Partition takes O(logN) rounds, and Random Permutation Delivery
needs O(log2 N) rounds. The frequency computation requires converging results to leaders only and
needs O(logN) rounds. We proved that the recursion depth of the Simple MODE is O(log logN) with
each iteration taking O(logN) rounds. So the round complexity is (log2 N log logN).
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There are O(N logN) messages transferred in total for all nodes in the network in each main itera-
tion. The Simple MODE finishes in O(log logN) iterations with O(N logN) messages in total for all
groups transferred in each iteration. In summary, the message complexity of our algorithm for MODE is
O(N logN log logN).

8 Conclusion

In this paper, we propose three techniques including Pre-order Network Partition, Pairwise-independent
RandomWalk, and Random Permutation Delivery. Based on the techniques, we further design distributed
algorithms for three representative holistic aggregation functions SELECTION, DISTINCT, and MODE
on Random Regular Graphs (RRGs). We prove our algorithms are efficient in both round complexity and
message complexity. We believe the efficient algorithm will find their applications in RRGs or expanders
based next-generation data centers, and our proposed techniques and their variants will have applications
in designing other distributed algorithms for different network topologies.

We conclude the paper with a short discussion on its deployment. A viable deployment is on an
SDN-enabled data center, where the routing algorithm, i.e., the Pre-order Network Partition and the
Random Permutation Delivery, can be enforced by the control plane. Specifically, the control plane
injects forwarding rules to the flow tables in the OpenFlow-enabled switches. Other functionalities
including the Pair-wise Random Walk can be realized in each node that runs our protocols. To deploy
on the WSNs (wireless sensor networks), a possibility is to adapt to the protocol suggested in [2], which
investigated the SELECTION problem under synchronous communication. We shall leave the deployment
on asynchronous communications as future work.
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Appendix A Proof of techniques

Appendix A.1 Proof of Lemma 1

Proof. Consider a network with N nodes where the nodes are pre-order labeled by s1, s2, . . . , sN . The labels of nodes in the same

group are contiguous. Without loss of generality, select three groups [sa, sb], [sc, sd], [se, sf ] with sa < sb < sc < sd < se < sf ,

and suppose that there is one edge (su, sv) that is used by all three groups.

If sa < su < sv < sb, because (su, sv) is also shared by [sc, sd], we know that node sc must be a descendants of sa, and node

sd must be a predecessor of sb and a successor of sa. Accordingly, se and sf hold the same relative position to sa and sb with sc
and sd, which means se < sd. This contradicts with our previous assumption.

If sc < su < sv , (su, sv) must not be used by [sa, sb] because sa < sb < sc < su < sv . This also contradicts the assumption.

Appendix A.2 Proof of Theorem 2

Lemma A1. For any vector x, we have

‖M2x − M̃2x‖2 6 ‖x‖2 · O(1/d2),

where the norm ‖·‖ is the ℓ2 norm.

Proof. Consider the difference between (M2)(p,q),(r,s) and (M̃2)(p,q),(r,s). We aim at showing that the sum of the absolute value

of any row in M2 − M̃2 is bounded by O(d−2). This is done by enumerating the cases in which two matrices are different.

(1) p wants to swap with q and q wants to swap with p. The probability that both swaps succeed is 1/d2 in our random walk

M2, and 1/d4 in M̃2. The probability that only one swap succeeds is 0 in M2, and 2/d3(1 − 1/d) in M̃2. The total amounts of

differences are bounded by 1/d2 − (1/d4 + 2/d3(1 − 1/d)) = O(1/d2).

(2) p wants to swap with q but q wants to swap with another node s. The probability of p successfully swapping with q is 0 in

M2, and 1/d2 in M̃2. The probability of q sucessfully swapping with s is both 1/d2 in M2 and M̃2 for all s. The total amounts of

differences are bounded by O(1/d2).

(3) p and q both want to swap with the same node r. The probability that both swaps are successful is 0 in M2 and 1/d4 in

M̃2. The probability of single swap succeeding is both 1/d2. As p and q share at most d neighbors, total amounts of this kind of

differences in one row are bounded by O(d) · O(1/d4) = O(1/d3).

Above all, the sum of the absolute value of any row in M2 − M̃2 is bounded by O(1/d2), that is, ‖M2 − M̃2‖1 = O(d−2). So we

have

‖M2x − M̃2x‖2 6 ‖x‖2‖M2 − M̃2‖2

6 ‖x‖2‖M2 − M̃2‖1

6 ‖x‖2 · O(1/d2).

With Lemma A1, we deduce the eigenvalue gap of M2.

Lemma A2. The eigenvalue gap of M2 is Ω((1 − λ2)/d).

Proof. For a standard random walk, the rounds needed to a converge to a stationary state are bounded by O( log N
1−λ2

)1). Notice in

our random walk M , an element changes its position with probability 1/d. Thus the eigenvalue gap of M shrinks to Ω(1 − λ2)/d.

As the second largest eigenvalue of M̃2 is the same as M , the eigenvalue gap of M̃2 is also Ω(1 − λ2)/d.

Let u1, u2 and µ1, µ2 be the first and second largest eigenvalue of M2 and M̃2 respectively. By using Weyl’s inequality and

Lemma A1, we have |u1 − µ1| 6 ‖M2 − M̃2‖2 and |u2 − µ2| 6 ‖M2 − M̃2‖2. Then we get

u1 − u2 > −2‖M2 − M̃2‖2 + µ1 − µ2

= Ω((1 − λ2)/d)− O(1/d
2
)

= Ω((1 − λ2)/d).

Then we can prove Theorem 2.

Proof. Matrix M2 is symmetric and its eigenvalues satisfy λ′
1 > λ′

2 > · · · > λ′
N2 . It has orthonormal eigenvectors v1, . . . , vN2

such that any distribution D can be expressed as D = ΣN2

i=1civi = π + ΣN2

i=2civi, where ci = DTvi, π is a stationary distribution

and DMt
2 = π + ΣN2

i=2ciλ
′t
ivi. Thus,

‖DMt
2 − π‖1 =

∥

∥

∥

∥

∥

∥

N2
∑

i=2

ciλ
′t
ivi

∥

∥

∥

∥

∥

∥

1

6
√
N

∥

∥

∥

∥

∥

∥

N2
∑

i=2

ciλ
′t
ivi

∥

∥

∥

∥

∥

∥

2

6
√
Nλ′t

2

√

√

√

√

√

N2
∑

i=2

c2
i

6
√
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We denote 1(i,j) as the indicator vector for any pair of elements (i, j), such that 1(i,j),(i,j) = 1 and 1(i,j),(p,q) = 0 where

(p, q) 6= (i, j). We define δ(i,j)(t) = 1
2

∑

i6=j
|1(i,j)M

t
2 − π|, and then we have

δ(i,j)(t) =
1

2
‖1(i,j)M

t
2 − π‖1 6

√
N

2
λ
′t
2.

For any x > 0, lnx 6 x − 1. So

δ(i,j)(t) 6

√
N

2
e−t(1−λ′

2).

That is, ǫ = O(
√

N
2 e−t(1−λ′

2)). Note that 1−λ′
2 is the eigenvalue gap of M2 and we have proved it is Ω((1−λ2)/d) in Lemma A2.

By setting t = Θ(d logN/(1−λ2)), for any fixed α, we can make ǫ = O(N−α) and thus ǫ is negligible. So after O(d logN/(1−λ2))

steps, the positions of any pair of elements are uniformly distributed over all N(N − 1) nodes.


	Introduction
	System model and problem definitions
	System model
	Problem definitions

	Basic techniques
	Pre-order Network Partition
	Pairwise-independent Random Walk
	Random Permutation Delivery

	Algorithms
	Distributed SELECTION
	Distributed DISTINCT
	Distributed MODE

	Analysis of distributed SELECTION
	Correctness
	Round complexity and message complexity

	Analysis of distributed DISTINCT
	Correctness
	Round complexity and message complexity

	Analysis of distributed MODE
	Correctness
	Round complexity and message complexity

	Conclusion
	Proof of techniques
	Proof of Lemma 1
	Proof of Theorem 2


