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This dissertation investigates three link scheduling problems under the 

physical interference model, or the SINR model. The first problem is called 

minimum frame length link scheduling for arbitrary link topologies (MFSAT): 

Given a set of arbitrarily constructed links over arbitrarily located nodes on a 

plane, schedule all these links with the minimum number of timeslots such 

that each link appears in at least one timeslot. The requirement for this 

problem is that concurrently scheduled links must satisfy the SINR 

constraints. The second problem is called minimum length link scheduling for 

arbitrary link topologies (MLSAT): Different from the MFSAT problem where 

each link has only a unit traffic demand (one packet to transmit), each link in 

the MLSAT problem may have non-unit traffic demands, namely, we need to 

schedule all the links with the minimum number of timeslots such that each 

link is scheduled at least the number of times as specified by its traffic 

demands. The third problem is called minimum frame length link scheduling 

for a data gathering tree topology (MFSTT): Given a set of arbitrarily located 
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nodes on a plane, connect these nodes as a data gathering tree towards the 

sink node. The objective of this problem is to construct the tree such that all 

the links in this topology can be scheduled using a minimum number of 

timeslots. The requirement for this problem is the same as that for MFSAT.  

We have developed heuristic, exact and approximate link scheduling 

algorithms for the MFSAT problem. For the heuristic algorithm, we have 

designed a novel maximum directed cut based scheduling framework called 

MDCS. Both theoretical analyses and simulation results have shown that the 

MDCS scheduling framework significantly outperforms all the sate-of-the-art 

heuristic link scheduling algorithms in terms of the scheduling lengths. By 

applying an exact algorithm for the set cover problem, we have designed an 

exact algorithm called ESA_MFSAT for the MFSAT problem. Finally, based 

on the ESA_MFSAT algorithm, we give the first polynomial time polynomial 

space approximate link scheduling algorithm for the MFSAT problem with 

approximation ratio ( / log )O n n  where n is the number of the links. 

For the MLSAT problem, we first transform it into the set multi-cover 

problem, and then we give a first known exact algorithm for the set multi-

cover problem. This exact algorithm can solve the MLSAT problem in 

* ((2 ) )nO t time and * (( 1) )nO t + space where t means the maximum traffic 

demand. Based on the proposed exact algorithm, we present the first 

polynomial time polynomial space approximation algorithm for the MLSAT 

problem with an approximation ratio independent of the links’ lengths. 

Finally, for the MFSTT problem, we have generalized a nonlinear power 

assignment based link scheduling algorithm to cover also wideband networks. 

We prove that the asymptotic poly-logarithmic scheduling length is achieved 
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at the expense of the exponential total power consumption in the number of 

the nodes. Then, by using the MDCS scheduling framework, we show that 

connecting the nodes with a minimum spanning tree algorithm rather than an 

iterative nearest component connector algorithm can significantly reduce the 

scheduling length. 

(An abstract of exactly 501 words) 
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Chapter 1 Introduction 

In this thesis, we will investigate three related minimum (frame) length 

wireless link scheduling problems which are to use the minimum number of 

timeslots to schedule all these links such that the simultaneously scheduled 

links must fulfill some interference model. Here by the interference model, we 

mean the criteria for determining the links that can be scheduled in the same 

timeslot. Obviously the interference model plays a fundamental role in the 

minimum length link scheduling problems. So in order to further explore our 

research topics, we need to give a brief survey of the interference models 

that arise in various literatures. 

1.1 Interference Models 

1.1.1 Graph-based interference models 

In this section, we will introduce six graph-based interference models. 

Here by a graph-based interference model, we mean that each constraint 

only involves two wireless links, i.e., it is a binary constraint model. Among 

the six interference models, only the first imposes constraints on a single 

wireless node, while the other five models impose constraints on each pair of 

wireless links. 

The first binary constraint model is called the primary interference model 

[49,111,119], or the node-exclusive interference model [71]. This model 

restricts that a wireless node can not perform two operations at the same 

time, such as receiving from two transmitters, transmitting to two receivers or 

receiving and sending at the same time. These constraints are due to the 
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following two facts: The first is the half-duplex constraint for the single radio 

transceiver and the second is for the point-to-point traffic requirement which 

means that each packet is addressed to a single receiver. In this model, only 

non-adjacent links which form a link matching can be concurrently scheduled. 

The second binary constraint model arises due to the so called 

secondary interference caused by the broadcast nature of the wireless 

medium [111]. Given two single hop wireless transmissions one is from node 

i to node j and the other is from node k to node l, we can tell that these two 

transmissions can not be simultaneously scheduled if at least one of the 

receivers is within the transmission range of another link’s sender. Obviously, 

the secondary interference model prevents the capture effect of the wireless 

transceiver. Here by the capture effect, we mean the ability of the wireless 

transceiver that can correctly receive the strong signal from one transmitter 

despite the interferences caused by the other transmitters. From this we can 

see that capture effect is beneficial in physical reality since it can increase the 

network throughput by allowing more potential transmissions in each timeslot. 

The third binary constraint model we want to introduce is called the 

protocol interference model that is given in [23]. For any wireless 

transmission which is from node i to node j, in order to make the receiver j 

successfully receive the packet from i, the distance from any transmitter k of 

the other simultaneously scheduled links (transmissions) to node j must be at 

least a factor (1+Δ ) higher than the distance from node i to node j (the link’s 

length). Here the positive parameter Δ  is a specified guard zone value to 

prevent the neighboring nodes from transmitting at the same time.  
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Another protocol interference model has been introduced in [64]. In this 

model, in order to make the receiver j  successfully receive the packet from i, 

the distance from any transmitter k of the other concurrently scheduled links 

to node j must be at least a factor (1+Δ ) larger than the distance from node k 

to its corresponding receiver (node l). 

The fifth binary constraint model which has been used in [21] is called the 

transmitter interference model (Tx-model). For two transmissions with 

transmitter i  and j respectively , in order to make sure the intended recipient 

of node i  correctly receive the packet, the distance between i and j must be 

at least a factor (1+Δ ) larger than the sum of the transmission ranges of 

sender i and sender j. 

The sixth binary constraint model is called the Distance-K interference 

model (K is a positive integer) [21,22,112]. This model requires that two links 

must be at least distance-K apart to ensure simultaneous transmissions. 

Here by the distance of two links, we mean the least number of hops between 

an incident node of the first link and an incident node of the second link. 

Depending on different K values, this model can incorporate a large class of 

interference models. For example, when K=1, it becomes the primary 

interference model; when K=2, it becomes the transmitter-receiver 

interference model (Distance-2 interference model) which has been used in 

many network protocols, such as 802.11 DCF (Distributed Coordinated 

Function). 
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1.1.2 SINR models 

In this section, we will discuss the interference models that are based on 

the signal-to-interference-plus-noise ratios (SINR). This means that only all 

the SINR values at the links’ receivers are above some threshold values can 

these links be successfully scheduled in the same timeslot. Different from 

graph-based interference models, since each constraint in the physical 

interference models covers any subset of all the links, they are called global 

constraints models. It is commonly believed that the SINR models are more 

realistic than the graph-based interference models but using these models 

also pose much more challenges on the link scheduling problems due to the 

cumulative interferences effect from all the other transmitters [50-52,54,80]. 

The SINR ratio at the receiver of a link i can be represented as [49,121] 

 

1,

ii i
i

i ij j
j j i

g p
SINR

mn g p

β

= ≠

⋅
= ≥

+ ⋅∑
 (1.1) 

To delve into the details of this model, an explanation of the used 

parameters is in order: ip  denotes the transmission power of link i ’s 

transmitter si ; in  is the background noise at link i ’ s receiver ri ; iig  and ijg  

are the link gain (wireless signal propagation attenuation) from si to ri , and 

that from the transmitter sj of link j to ri , respectively; β is the SINR threshold 

which is larger than or equal to 1; m stands for the processing gain which 

equals the ratio of the chip rate to symbol rate or the information bit rate. 

Here each message or information consists of symbols and each symbol is 

encoded (spreaded) into a pseudorandom sequence of chips. Thus the chip 

rate is normally larger than the symbol rate. The processing gain can be 
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regarded as the signal’s ability to fight the interferences. So the larger the 

processing gain, the more links can be tolerated in the same timeslot. The 

processing gain is larger than 1 in (ultra-)wideband networks, and it equals 1 

in narrowband networks. Throughout this thesis, we assume m=1 

(narrowband networks) except Chapter 6.  

Since we do not consider fading effects and possible obstacles in 

wireless transmissions, the link gain can be represented by an inverse power 

law model of the link length, i.e., 1/ ( , )ii s rg d i iα=  and 1/ ( , )ij s rg d j iα= . 

Here (,)d is the Euclidean distance function, andα represents the path loss 

exponent which is equal to 2 in free space, and varies between 2 and 6 in 

urban areas. By plugging into these equations and the m value, the SINR 

model becomes: 

 

1,

/ ( , )

/ ( , )

i s r
i

i j s r
j j i

p d i i
SINR

n p d j i

α

α
β

= ≠

= ≥
+ ∑

 (1.2) 

This is the same as the physical interference model proposed in [23]. 

1.2 Relationships between Graph-based Interference Models and 

the SINR Model 

In this section, we will discuss some interesting relationships between the 

two protocol interference models and the physical interference model. We will 

use these results in the following chapters. 

We consider two links, one is called link i with transmitter si and receiver ri , 

the other is called link j with transmitter sj  and receiver rj . In order to 

successfully schedule link i, according to inequality (1.2), we have 
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/ ( , )

/ ( , )
i s r

i

i j s r

p d i i
SINR

n p d j i

α

α
β= ≥

+
 

From this inequality, we can obtain 

 
1 1( , )

( )
( , )

js r

s r i

pd j i
d i i p

α αβ> ⋅  (1.3) 

Now if i jp p=  (we call this as constant power assignment), inequality (1.3) 

becomes 

 
1

( , ) ( , )s r s rd j i d i iαβ> ⋅  (1.4) 

This is the same as the first protocol interference model introduced in [23].    

Similarly, if ( , )i s rp d i iαρ= ⋅ and ( , )j s rp d j jαρ= ⋅  (we call this as linear power 

assignment), inequality (1.3) becomes 

 
1

( , ) ( , )s r s rd j i d j jαβ> ⋅  (1.5) 

This is the same as the second protocol interference model introduced in 

[64]. 

1.3 Reasons to Choose the SINR Model 

In this section, we will give some reasons for choosing the physical 

interference model rather than the graph-based interference models. 

The first reason is that, compared with the SINR model, all the graph-

based interference models did not take the cumulative interferences effect 

into account. This can be seen in the following example of Figure 1-1. In this 

example, there are seven links whose lengths are all 1. In addition, all the 

distances from the other six links’ transmitters to the transmitter si and the 

receiver ri of link i are 3 and 4, respectively. We also set the distances of link 
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i ’s transmitter si to all the other six links’ receivers are 2.5. Now according to 

the five graph-based interference models (the secondary interference model, 

the two protocol interference models, the transmitter interference model and 

the Distance-K interference model), these seven links can be simultaneously 

scheduled in the same timeslot (We suppose these seven links are distance-

K apart in the Distance-K interference model). However, if we assume all the 

six links’ (link j,k,l,p,q andh) transmitters employ the same transmission 

power which equals to 6 ip⋅ , and we set the path loss exponentα =3, the 

threshold β =2 and all the background noises values are 0, then the SINR 

value at the receiver ri of link i  is: 

3

3

/ 1
1.78 2

0 6 6 / 4
i

i

i

p
SINR

p
= <

+ ⋅ ⋅
�  

From this we can conclude that link i can not be successfully scheduled. 

This example indicates that the power assignment strategies and the 

aggregate interferences effect of simultaneous transmissions may subvert a 

communication request which might otherwise appear successful under the 

graph-based interference models. 

 

Figure 1-1: An example of seven links centered at link i 
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The second reason to choose the SINR model instead of the graph-

based interference models is derived from an observation in [57]. Specifically, 

the authors in [57] proved that the scheduling algorithm under the SINR 

model can achieve the throughput that can surpass the theoretically 

attainable throughput upper bound under the graph-based interference 

models. The simulation results to compare the throughput by using these two 

kinds of interference models can be found in [10,11]. 

From the above analyses, we can conclude that we should employ the 

physical interference model rather than the simple graph-based interference 

models in terms of both improving the network throughput capacity and 

guaranteeing correct packet receptions for all the wireless transmissions. 

1.4 System Model and Problem Definitions 

1.4.1 System model 

Throughout the thesis, we have the following assumptions of the wireless 

network: (1) All the wireless nodes are arbitrarily located on a plane, and 

each node is equipped with an omni-directional antenna; (2) We assume all 

the nodes are stationary; (3) we assume a single channel which means all 

the simultaneously scheduled links interfere with each other; (4) The wireless 

transceivers work on a half-duplex mode, which means each node can not 

send to or receive from more than one node, nor to receive and send at the 

same time (this corresponds to the primary interference model); (5) we 

assume the link capacity is fixed, which means increasing the transmission 

power only increases the sender’s transmission range but not its capacity; (6) 
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we assume time is slotted with equal durations which means that each packet 

can not be further divided into smaller units to transmit. 

1.4.2 Problem definitions 

To begin this section, we first give an explanation of some terms: As 

mentioned earlier, by a wireless link, we mean a wireless transmission 

comprised by a source node (transmitter) and a destination node (receiver); If 

we regard the wireless link as an edge in a graph, then a ‘link matching’ is 

just a matching in the graph; Similarly, a ‘link maximum (maximal) matching’ 

or a ‘maximum (maximal) link matching’ is just a maximum (maximal) 

matching in the graph. For the brevity of presentation, we can also use 

(maximum) (maximal) matching directly since it will not cause any confusion. 

By a link independent set, we mean a set of links that can be concurrently 

scheduled in the same timeslot under some interference model. Also any 

subset of a link independent set is also a link independent set.  

Now we define the minimum length wireless link scheduling (MLS) 

problem. First we assume each link can transmit at most one packet in each 

timeslot. Second, by the scheduling length, we mean the totally used 

timeslots to schedule all the packets. Third, if all the links have the same 

number of packets to be transmitted, we call it uniform traffic (link) demands 

(traffic requirements), otherwise we call it non-uniform traffic (link) demands. 

Now by the minimum length wireless link scheduling problem, we mean that, 

for a set of wireless links with given traffic demands, we need to use the 

minimum number of timeslots to schedule all the packets subject to the 

interference constraints. 
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With the above definitions, we can define the minimum frame length link 

scheduling problem. First, by the frame length T, we mean the scheduling 

length to schedule all the links such that each link has transmitted one packet. 

Then the minimum frame length link scheduling problem is just the minimum 

length link scheduling problem with a unit traffic demand. In the minimum 

frame length link scheduling scenario, we just need to repeat the scheduling 

sequences in the subsequent frames, i.e., , ,i t i t kTX X +=  ( 0 t T< ≤  ; k is a 

positive integer; ,i tX equals 1 if link i transmits in timeslot t and 0 otherwise). 

From these definitions, we can see that minimum frame length link 

scheduling problem is only a special case for the minimum length link 

scheduling problem. In addition, repeating the minimum frame length link 

scheduling results in each frame can not guarantee the minimum length link 

scheduling result with uniform traffic demands. Finally, even iteratively 

applying the minimum frame length link scheduling algorithm to schedule all 

the links with uniform or non-uniform traffic demands can not guarantee the 

minimum length link scheduling results for the given traffic requirements. For 

example, given four links {1,2,3,4} where the maximum link independent sets 

are {1,2,3},{1,2,4} and {3,4}, the minimum frame length link scheduling result 

could be to schedule {1,2} in the first timeslot and then to schedule {3,4} in 

the second timeslot. Now suppose each link has two packets to transmit. 

Repeating the minimum frame length link scheduling results would lead to the 

scheduling length with four timeslots. However, the minimum length 

scheduling result for these eight packets is three timeslots 

{{1,2,3},{3,4},{1,2,4}}. Moreover, we can first apply the minimum frame length 
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link scheduling algorithm to schedule four packets and then to apply this 

algorithm again to schedule the remaining four packets. The results could be 

to use two timeslots ({1,2,3},{4}) in the first minimum frame length link 

scheduling and then to use another two timeslots ({1,2,4},{3}) in the second 

minimum frame length link scheduling. So this result is not optimal for 

minimum length link scheduling, either. 

We now give the definitions of the three studied problems in this thesis. 

The first is called the minimum frame length link scheduling problem for 

arbitrary link topologies (MFSAT); the second is called the minimum length 

link scheduling problem for arbitrary link topologies (MLSAT); the third is 

called the minimum frame length link scheduling problem for a data gathering 

tree topology (MFSTT). 

The MFSAT problem: Given n links which are arbitrarily constructed over 

arbitrarily located nodes on a plane and suppose each link has a unit traffic 

demand, we need to assign each link’s transmitter a power level and a 

timeslot, such that all the links scheduled in the same timeslot satisfy the 

SINR constraints and the total number of used timeslots for transmitting all 

the packets is minimized. 

The MLSAT problem: The only difference between the MLSAT and the 

MFSAT problem is that, each link in the MLSAT problem may have non-unit 

traffic demands. In this case, in order to minimize the totally used timeslots 

for transmitting all the packets, we need to assign each link’s transmitter a set 

of power levels and timeslots such that each power level corresponds to a 

timeslot. 
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The MFSTT problem: Given n nodes arbitrarily located on a plane, we 

need to connect these nodes to form a data gathering tree towards the sink 

node such that the number of timeslots used to schedule all the links under 

the SINR model is minimized. 

From the three problem definitions, we can easily see that: (1) the 

MFSAT problem is a special case for the MLSAT problem; and (2) if the tree 

topology has been constructed, the MFSTT problem becomes a special case 

for the MFSAT problem which has been identified as a prominent open 

problem in [52]. However, as we will see in Chapter 7, how to construct this 

tree topology plays a very important role in the scheduling length. 

1.5 Thesis Organization 

The structure of this thesis is organized as follows. We will first review the 

state-of-the-art heuristic minimum (frame) length link scheduling algorithms 

and analyze their time complexities and inefficiencies in Chapter 2. In 

Chapter 3, we will give a maximum directed cut based scheduling framework 

for the MFSAT problem. Then we will present both exact and approximate 

link scheduling algorithms for the MFSAT problem in Chapter 4. In Chapter 5, 

we give both an exact and an approximate algorithm for the MLSAT problem. 

We then turn to investigating the MFSTT problem in Chapters 6 and 7. 

Specifically, we will discuss an elegant nonlinear power assignment based 

link scheduling algorithm together with its total power consumption analysis in 

Chapter 6, then a joint topology construction and link scheduling algorithm 

using the MDCS scheduling framework is given in Chapter 7. We finally 

conclude this thesis with some future work in Chapter 8.  
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Note that most of the results in this thesis have been published or are in 

press. The details are as follows: Chapters 2, 3 and 7 have been summarized 

as a brief survey chapter in “Handbook of Research on Developments and 

Trends in Wireless Sensor Networks: From Principle to Practice” [138]. 

Chapter 4 has been published in the DIALM-POMC 2008 workshop [50]. 

Chapter 5 is now in press for “Theoretical Computer Science” [139]. Chapter 

6 has been published in MSWiM 2006 [49].  
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Chapter 2  Literature Review 

In this chapter, we will review and analyze state-of-the-art link scheduling 

algorithms whose objectives are to minimize the scheduling lengths. Although 

the objectives of some link scheduling algorithms are not on scheduling 

lengths minimization (throughput maximization), their algorithms can also be 

easily adapted to the minimum length link scheduling problems. So we will 

also cover some of these algorithms. Now we will first discuss the hardness 

of the minimum length link scheduling problems. 

2.1 The Hardness of the MFSAT and the MLSAT Problems 

By regarding the wireless link as an edge in the graph, many researchers 

have claimed that the MFSAT problem is NP-hard through the reduction from 

the graph coloring problem. For example, this kind of reductions have been 

used in [2,14]. All of these reductions assume that the link gains between any 

pair of links are arbitrary values. However this is not true under the physical 

interference model used in most of the link scheduling problems. Since the 

link gains are determined by the distances among different links, thus the 

triangle inequalities must not be violated. So these direct reductions from 

graph coloring problems are problematic under the physical interference 

model. Recently, under the assumption that power control is not allowed, the 

MFSAT problem has been proven to be NP-hard [54]. In addition, even if we 

allow arbitrary power assignment, the MFSAT problem is still NP-hard [137]. 

For the MLSAT problem, until the time we are writing the thesis, there is still 

no rigorous hardness proof. However, some researchers believe that it 
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remains NP-hard [15]. In this case, most of the researchers seek to solve the 

minimum (frame) length link scheduling problems with heuristic algorithms. 

All the existing heuristics can be largely classified as either a top-down or a 

bottom-up approach (cf. Figure 2-1). In a top-down approach, if the given 

links are not a link matching, the heuristic algorithm would first try to pick the 

maximal number of links which do not violate the half-duplex constraint (a 

matching), and then to find a maximal link independent set which does not 

violate the SINR constraints by removing one link at a time. This process will 

continue until all links have been scheduled. In a bottom-up approach, the 

heuristic would pick each link incrementally to see if the union of the selected 

links satisfies the half-duplex and SINR constraints; if not, the link is 

discarded. This process continues until it finds a maximal link independent 

set, and until all the links have been scheduled. Since the top-down approach 

is based on removing one link at each step, it can also be called a link 

removal based scheduling approach; similarly, since the bottom-up approach 

is based on incrementing one link at each step, it can also be called a link 

incremental based scheduling approach. We now first discuss the link 

removal based link scheduling algorithms. 

2.2 The Top-Down Approaches 

To begin this section, we will go to further details in the SINR model. In 

particular, we will discuss the link gain matrix and some useful properties on 

it. Based on the SINR model given in Chapter 1, we define a normalized non-

negative link gain matrix ( )
ij

H h=  such that / ( , ) / ( , )
ij ij ii s r s r

h g g d i i d j iα αβ β= ⋅ = ⋅ , 

for i j≠ , and 0
ij

h = , for i j= . Now if we construct an associated directed 
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graph of matrix H as follows: for each element 0
ij

h > , we add a directed edge 

from node i  to node j . From this we know this directed graph is strongly 

connected. Then by using a theorem in [141, p.20] which asserts that a 

matrix is irreducible if and only if its associated directed graph is strongly 

connected, we know H is an irreducible matrix. We also define a normalized 

noise vector ( )
i

η η=  such that / ( , )
i i ii i s r

n g n d i iαη β β= ⋅ = ⋅ ⋅ . With these 

definitions, we can rewrite the SINR inequality as
1

Q

ji ij j i
p h p η== ⋅ +∑ . Now by 

using the power vector ( )
i

P p=  and the normalized noise vector ( )
i

η η= , the 

SINR inequality becomes P HP η≥ + , or ( )I H P η− ≥ . If there is only one 

transmitting link, i.e., no interferences from other links, the SINR model 

degenerates into the SNR (Signal to Noise Ratio) model, which is shown 

below: 

 ( , )i i s rp n d i iαβ≥ ⋅ ⋅  (2.1) 

Obviously, the right hand side of Inequality (2.1) is the minimum power of 

link i ’s transmitter si to use such that the receiver ri can successfully decode 

the packet. We now define the spectral radius ( )Hρ  of the H matrix 

as ( ) max | ( ) |
i

i
H Hρ λ=  where ( )

i
Hλ stands for the ith eigenvalue of H. Now 

according to the Perron-Frobenius Theorem [92], since H is a non-negative 

irreducible matrix, we know that ( )Hρ  is positive and the corresponding 

eigenvector has strictly positive components. Let ir and jc represent the ith 

row sum and jth column sum of H, and we have: ji ij
r h= ∑ and ij ij

c h= ∑ . The 

following is a compilation of the useful propositions of the H matrix shown in 

[42,46,47,92]: 
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Figure 2-1: Categorization of existing heuristic link scheduling algorithms 

under the SINR model 

Proposition 2.1: ( )Hρ increases when any entry of H increases. 

Since ( , ) / ( , )
ij s r s r

h d i i d j iα αβ= ⋅ , we can see that ( )Hρ can be reduced by 

either reducing the threshold value β , the length of any links or by selecting 

the links which can result in larger ( , )
s r

d j i values. 

Proposition 2.2: ( )Hρ is lower bounded by either the minimum row sum or 

the minimum column sum, and it is upper bounded by either the maximum 

row sum or the maximum column sum. 

min( ) ( ) max( )
i ii i

r H rρ≤ ≤ ;min( ) ( ) max( )
j jj j

c H cρ≤ ≤ . 

Proposition 2.3:  1( ) 0I H −− >  if and only if ( ) 1Hρ < .     
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Proposition 2.4: The power vector * 1( )P I H η−= − ⋅  is Pareto-optimal in the 

sense that *P P≤ component-wise for any other nonnegative P  vector 

satisfying ( )I H P η− ≥ .  

After having introduced the link gain matrix and its useful propositions, 

we will discuss the link removal based scheduling algorithms one by one. 

According to Figure 2-1, we can further partition the top-down approaches 

into two branches: the first is to consider non-adjacent links (a link matching), 

the second is to consider arbitrary link topologies. We first consider the case 

where all the links form a link matching. 

2.2.1 Link removal algorithms for non-adjacent links 

The first link removal based scheduling algorithm called SRA (Step-wise 

Removal Algorithm) is proposed by Zander [43]. For a set of non-adjacent 

links, this algorithm defers the link which has the maximum value max( , )
i i

r c . 

The rationale behind this algorithm is based on Proposition 2.2, i.e., the 

spectral radius of the link gain matrix is bounded by the maximum value of 

the row sum ir or the column sum ic . So the SRA algorithm aims to minimize 

the upper bound of the spectral radius in each removal step. Note that the 

CSCS (Combined Sum Criterion Selection) algorithm presented in [36] is 

actually the same as SRA. Instead of minimizing the upper bound of the 

spectral radius, the SORA (Step-wise Optimal Removal Algorithm) proposed 

by Wu [37] defers the link whose removal can minimize the spectral radius 

directly in each step. However, different from SRA which needs 

only ( )O n eigenvalue computations, the SORA algorithm 
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needs 2( )O n eigenvalue computations wheren is the number of links. Aiming 

at removing the link which can cause the maximum interference, Zander [45] 

proposed another algorithm called LISRA (Limited Information Stepwise 

Removal Algorithm). In this algorithm, assuming all the links employ the 

same transmission powers, the link with the minimum SINR value is excluded 

in each step. For each link in SMIRA (Step-wise Maximum Interference 

Removal Algorithm) [40], the algorithm first computes the larger interference 

value between the received cumulative interferences from other links and the 

interferences it caused to all the other links, and then it postpones the link 

which has this largest interference value. For each link in the WCRP 

algorithm (named with the four initial letters of the four authors’ family names) 

proposed by Wang et al.[39], it first computes a so called MIMSR (Maximum 

Interference to Minimum Signal Ratio) value, and then all the links whose 

MIMSR values exceed some pre-determined threshold is removed in each 

step. 

2.2.2 Link removal algorithms for arbitrary topologies 

Having covered the link removal algorithms for non-adjacent links, we 

now turn to the algorithms for the set of arbitrarily constructed links. To our 

current knowledge, the two-phase link scheduling algorithm in [29,30] is the 

first solution to the joint link scheduling and power control problem for ad-hoc 

networks. In the first phase, this algorithm uses a separation distance to find 

a “valid” link set. This links in the ‘valid’ link set must first guarantee that all 

the links are non-adjacent; second the Euclidean distances between any pair 

of links must be larger than the separation distance (the protocol interference 
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models). From this we can deduce that these links must form a subset of 

some maximal matching of the original links. Here, the larger the separation 

distance, the fewer the number of links in the found ‘valid’ link set. In the 

second phase, this algorithm tries to find an “admissible” link independent set 

satisfying the SINR constraints by using the LISRA algorithm in each link 

removal step. A variation of the two-phase link scheduling algorithm has been 

presented in [34]. This algorithm first defines a link metric which is a 

combination of the link’s queue length and the number of blocked links (the 

number of links sharing either a transmitter node or a receiver node of the 

current link). Then it finds a maximal matching by greedily selecting a link 

with the longest queue length and the fewest blocked links (the lowest link 

metric value). There are two differences between the two-phase scheduling 

and its variation algorithm: the first is that the variation algorithm sets the 

separation distance value as zero, which means it tries to find a maximal 

matching but not its subset; the second difference is that, in order to find an 

admissible link independent set, the variation algorithm defers the link with 

the largest link metric, i.e., the link with the shortest queue length and the 

maximum number of blocked links. So if we do not consider the backlogged 

system, which means we do not consider the links’ queue lengths, the link 

with the maximum number of blocked links rather than the link which has the 

lowest SINR value is removed. 

The PCSA (Power Controlled Scheduling Algorithm) presented in [12] 

behave similarly as the ISPA (Integrated link Scheduling and Power control 

Algorithm) proposed in [14]. Both of these two algorithms first construct a 

(generalized) power-based interference graph. This kind of interference 
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graph is constructed as follows: First, we take all of these links as vertices in 

the interference graph; second, for each pair of links we check the spectral 

radius ( )Hρ  of the link gain matrix consisting of the two links, then according 

to Proposition 2.3, if ( ) 1Hρ ≥ , we add an edge between these two links which 

correspond to two nodes in the interference graph; third, even if ( ) 1Hρ <  but if 

any power component in the Pareto-optimal power vector *P (Proposition 2.4) 

is larger than the maximum allowable power, we need to add an edge 

between these two links. From this we can conclude that the links in this 

graph also form a subset of some maximal matching of the original links. 

When this interference graph is established, by using the minimum degree 

greedy algorithm (MDGA), the ISPA algorithm finds a maximal number of 

links which satisfy the SINR constraints pair-wisely. Finally, they use the 

SMIRA algorithm as the pruning method to find a maximal number of links 

that satisfy the SINR constraints. The difference between the ISPA and the 

PCSA algorithm is that, a “maximality stage” is added after the link removal 

step in the ISPA algorithm. This step is to find more links to be added to the 

link independent set. 

Different from all the previously mentioned link removal based scheduling 

algorithms, the Algorithm A in [31,32] first defines each link’s effective 

interference as the corresponding column sum ( ic ) in the link gain matrix, 

and then it finds a maximum matching of the links directly instead of finding a 

maximal matching or even a subset of the maximal matching. If the maximum 

matching does not satisfy the SINR constraints, the link with the maximum 

effective interference is discarded in each link removal step. This process is 



22 

 

 

repeated until all links have been scheduled. Also for the set of non-adjacent 

links, the heuristic algorithm given in [33] first finds a link matching, not 

necessarily the maximum matching, second it discards the link with the 

maximum row sum value ir in the link gain matrix. 

2.3 The Bottom-Up Approaches 

As mentioned earlier, the bottom-up approach is based on scheduling 

each link incrementally. The main difference between the top-down and 

bottom-up scheduling approaches is that, for a set of non-adjacent links, the 

top-down approach always consists of two phases, i.e., the link matching 

searching phase (either a maximum matching, a maximal matching or even 

just a matching) and the link removal based scheduling phase. The bottom-

up approach, however, can directly schedule the links one by one without first 

finding a link matching. So we can largely classify the bottom-up approach 

into two categories: matching based scheduling and non-matching based 

scheduling. We will first study the non-matching based algorithms since most 

state-of-the-art link incremental based scheduling algorithms directly 

schedule the links one by one without first finding a link matching. 

2.3.1 Non-matching based link incremental scheduling 

The first polynomial time approximated link scheduling algorithm called 

GreedyPhysical is given in [17]. The approximation bound of this algorithm, 

however, is proved under the assumption that the set of nodes are uniformly 

distributed at random in a square of unit area or a disk of unit area. This 

means that the approximation bound can not be generalized to arbitrarily 
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constructed links over arbitrarily located nodes on a plane. Moreover, the 

algorithm does not use packet-level power control, which means that all the 

links in the same timeslot employ the same transmission powers. Since this 

algorithm is designed for links with non-unit traffic demands, i.e., different 

links may have different number of packets to be transmitted, it can be easily 

applied to the unit traffic demand case. Moreover, as we will see, since 

constant power assignment can result in very undesirable scheduling length, 

we can modify this algorithm by allowing power control at the packet-level, 

which means the links scheduled in the same timeslot can employ different 

transmission powers. The original algorithm first sorts all the links in the 

decreasing order of their interference numbers. Here by the interference 

number of a link, it means the number of links which do not share a common 

node with the current link and can not be concurrently scheduled with it under 

constant power assignment (cf. Inequality (1.4)). But since we allow packet-

level power control, we modify the definition of interference degree as the 

number of links which do not share a common node with the current link and 

can not be concurrently scheduled with it SINR model (cf. Proposition 2.3). 

Second, the GreedyPhysical algorithm proceeds as greedily schedules these 

links from the link with the largest interference number to the link with the 

fewest interference number.  

The Primal Algorithm proposed in [15] is designed originally for some 

kind of “superincreasing” link demands, which means when we sort the link 

demands in a non-increasing order, each link with a higher demand is greater 

than or equal to the sum of all the links with lower demands. This algorithm 

first finds the link with the largest link demand, and then all the other links 
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which can be pair-wisely scheduled with the current link under the SINR 

model. After that the algorithm schedules these two link sets with the duration 

of the link with a lower link demand. And then the algorithm checks how many 

packets have not been transmitted for the link with the largest link demand 

and schedules this single link packet by packet. The algorithm repeats these 

steps until all the packets have been transmitted. The authors of this paper 

have proven that this polynomial time greedy algorithm is optimal for these 

‘superincreasing’ link demands. We can adapt the algorithm to general non-

uniform link demands by first sorting the links in a decreasing order of their 

link demands, and then picking each link in order using the bottom-up 

approach. Obviously, this method can not guarantee the optimal scheduling 

length for general non-uniform link demands cases.   

Also designed for non-uniform link demands, the IDGS (Increasing 

Demand Greedy Scheduling) algorithm presented in [36] first sorts the links 

in an increasing order of their link demands; and then in each timeslot it first 

picks the link with the lowest link demand, and then it switches to pick the 

links in a reversed order, i.e., selecting the link with the highest link demand 

using a bottom-up approach. 

We now review the two non-matching based scheduling algorithms 

proposed in [34]. The simplified scheduling algorithm first sorts the links in an 

increasing order of their link metrics, and then picks each link in order while 

giving it a power level which is the smaller value of its linear power 

assignment (a power assignment proportional to its link length to the power of 

the path loss exponent) and its maximum allowable power level. If any SINR 

constraints are violated then it defers it to the next timeslot. The second joint 
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link scheduling and power control algorithm (JSPCA) behaves similarly with 

the simplified scheduling algorithm with the difference that the former one 

assigns the power levels with the values calculated from the Pareto-optimal 

power vector *P (Proposition 2.4) rather than the pre-determined power 

assignments. Compared with the two-phase link removal algorithm and the 

simplified scheduling algorithm, the authors have shown that the JSPCA 

algorithm can greatly improve the network performance in terms of 

throughput and delay. The link scheduling and power control algorithm 

(LSPC) proposed in [35] first constructs a conflict graph which is based on 

the node-exclusive interference model (links sharing a common node can not 

be concurrently scheduled), and then sorts the links either in an increasing 

order or in a decreasing order of the node degrees. Finally it schedules the 

links in order using the bottom-up approach. Note that if we employ the 

increasing order and if we do not consider a backlogged system (without 

considering the links’ queueing lengths), the LSPC algorithm becomes the 

same as the JSPCA algorithm presented in [34]. 

For the throughput maximization problem for single hop links, i.e., to 

compute the maximum number of packets transmitted on these links in a 

fixed frame length, Tang et al. [25] first formulate it as a mixed integer linear 

programming (MILP), and then they relax it as a linear programming. In order 

to generate a link’s ordering for the proposed serial linear programming 

rounding algorithm (SLPR), the authors also relax the SINR requirement. 

Then by solving the linear programming, they sort the links in a decreasing 

order of the fractional values of the scheduling variables. Finally the greedy 

SLPR algorithm incrementally schedules these links using the bottom-up 
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approach. The intuitive idea of this link ordering is that, the larger the 

fractional value of the scheduling variable calculated from the relaxed SINR 

model, the higher the probability of this link satisfying the original SINR 

requirement. Note that although this is a polynomial time algorithm, it suffers 

from an extremely high worst case computational complexity 8( )
LP

MO n ⋅ , 

where n is the number of the links and
LP

M is the number of binary bits 

required to store the data. 

We now turn to reviewing another class of non-matching based 

scheduling algorithms which feature a kind of nonlinear power assignment.  

Informally, nonlinear power assignment is a kind of strategy between 

constant and linear power assignments. This power assignment can 

overpower the short links, which means that on one hand, compared with 

constant power assignment, long links can use larger powers; on the other 

hand, short links can receive relatively larger power compared with linear 

power assignment. The nonlinear power assignment is first introduced in an 

algorithm (we call it NPAN-INFOCOM06) for the MFSTT problem [58] and 

has subsequently been used for the MFSAT problem (Here NPAN stands for 

Nonlinear Power Assignment for Narrowband Networks). The NPAN-

INFOCOM06 algorithm can schedule all the links in a tree topology 

constructed by the nearest neighbor forest algorithm with 4(log )O n timeslots 

where n is the number of the links. Aiming for the MFSAT problem, also by 

using the nonlinear power assignment, the authors present an algorithm (we 

call it NPAN-MOBIHOC06) [59] that studies the relationship between the 

graph-based interference model (called the in-interference degree) and the 
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SINR model. Here by the in-interference degree of a node, we mean the 

number of other transmitters whose transmission ranges cover this node. And 

the largest in-interference degree of a node is called the in-interference 

degree of the topology. This paper concludes that the scheduling length of 

the MFSAT problem is upper bounded by the in-interference degree of the 

topology times the square of the logarithmic function of the number of the 

links. From this, we can see that a lower in-interference degree greatly 

shortens the scheduling length. In a subsequent paper [55], the authors 

propose a low disturbance scheduling algorithm called LDS. This algorithm 

can generate a poly-logarithmic scheduling length for a topology with low 

disturbances. Here low disturbance is characterized by a parameter 

called disturbanceρ − which can also be regarded as the density of the links’ 

distribution. For a link’s disturbanceρ − , the algorithm first computes the 

number of other links’ transmitters (receivers) located in the current link 

transmitter’s (receiver’s) range (the link’s length divided by the value ρ which 

is greater than or equal to 1), and then the larger value is the 

link’s disturbanceρ − . The maximum disturbanceρ − of all the links becomes 

the disturbanceρ − of the topology. With this parameter, the authors prove that 

the scheduling length of the MFSAT problem is upper bounded by 

the disturbanceρ − of the topology times the product of the square of the 

logarithmic function of the number of the links and the square of the ρ value. 

From this, we know that a sparse link topology with a lower disturbanceρ − can 

significantly reduce the scheduling length. Similar to the NPAN-INFOCOM06 

algorithm [58], the algorithm proposed in [56] (we call it NPAN-IPSN07) is 
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also aimed for the MFSTT problem. This algorithm also employs the 

nonlinear power assignment, but it can reduce the scheduling length for all 

the links in a tree topology constructed by the nearest component connector 

algorithm to 2(log )O n where n is the number of the links. 

The cross-layer latency minimization problem (CLM) and throughput 

maximization problem (TM-SINR) for multi-hop flows have been studied in 

[20,19]. Here a multi-hop flow consists of several links where each packet is 

passed from the first link in the flow to the last link in the flow. The algorithms 

proposed in these two papers also belong to the Bottom-Up approach 

category since they all schedule each link one by one. These algorithms take 

the routing issues into account, but their scheduling parts behave similarly 

with the nonlinear power assignment based link incremental scheduling 

algorithms in [55,56,58,59] except that they use either constant power 

assignment or linear power assignment. 

2.3.2 Matching based link incremental scheduling 

In this section, we will introduce a link incremental scheduling algorithm 

which is based on first finding a link matching. This algorithm is called 

Algorithm B [31,32], and it is the only matching based link incremental 

scheduling algorithm we’ve found in the literature. The Algorithm B, however, 

is originally designed for minimizing the total power consumption, but it can 

be adapted for the minimum length link scheduling problem with a few 

modifications. Similar to Algorithm A given in the same paper which uses a 

top-down approach, the Algorithm B first finds a maximum matching of the 

unscheduled links; second, it sorts all the links in the maximum matching in a 



29 

 

 

decreasing order of their effective interferences; third, the algorithm can then 

be adjusted to pick each link in order using the bottom-up approach. The 

authors have shown that Algorithm B can schedule more links in a timeslot 

than the top-down approach based Algorithm A. 

2.4 Time Complexities of the Heuristic Link Scheduling 

Algorithms 

In this section, we will briefly summarize the time complexities of the 

various scheduling algorithms just reviewed. First based on Proposition 2.3, 

since most of the heuristic link scheduling algorithms reduce the problem of 

finding whether there are positive power assignments that satisfy the SINR 

constraints to the spectral radius checking problem, the time complexities of 

these algorithms are dominated by the matrix eigenvalue computation. The 

time complexity for the n n× matrix eigenvalue computation and matrix 

inversion problem is 3( )O n [95]. Based on this result, we then briefly review 

the worst case time complexities for all the link removal and link incremental 

based algorithms which need matrix eigenvalue computations.  

We first review the time complexities for the link removal based 

algorithms. In the worst case, any link removal based algorithms can only 

schedule one link in each timeslot. This means that these algorithms will do 

( )O n eigenvalue computations in each timeslot (Heren means the number of 

links). Since there are n timeslots, the total numbers of engenvalue 

computations is 2( )O n . Now since each eigenvalue computation takes 

time 3( )O n , we know the overall time complexity is 5( )O n . Most of the current 
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link removal based algorithms, including SRA, SMIRA, LISRA, WCRP, the 

PCSA algorithm and the ISPA algorithm belong to this group (cf. Section 2.2).  

However, as mentioned in Section 2.2.1, the SORA algorithm is an exception 

which needs more eigenvalue computations in each timeslot. Specifically, 

each link removal in the SORA algorithm needs 2( )O n eigenvalue 

computations. Thus in the worst case, the SORA algorithm needs 3( )O n total 

eigenvalue computations. As a result, the overall time complexity for any link 

removal based algorithm which uses SORA as a link removal algorithm 

takes 6( )O n time.  

Second, we review the time complexity of the link incremental based 

scheduling algorithms. Similarly, in the worst case, any link incremental 

based algorithms can only schedule one link in each timeslot. This means 

that these algorithms will do ( )O n eigenvalue computations in each timeslot. 

Since there aren timeslots, the total numbers of engenvalue computations 

is 2( )O n . Now since each eigenvalue computation takes time 3( )O n , we know 

the overall time complexity is 5( )O n . The link incremental based scheduling 

algorithms, including the GreedyPhysical, JSPCA, LSPC, IDGS and the 

simplified scheduling algorithms belong to this category (cf. Section 2.3).  

Now we review the time complexities of the scheduling algorithms which 

do not need costly eigenvalue computations. All the nonlinear power 

assignment based link incremental scheduling algorithms belong to this 

category. Similarly, in the worst, these algorithms can only schedule one link 

in each timeslot. Thus the overall time complexities of all the nonlinear power 
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assignment based algorithms, including NPAN-INFOCOM06, NPAN-

MOBIHOC06, NPAN-IPSN07 and LDS, are 2( )O n . 

2.5 Algorithms Inefficiency Analyses 

In this section, we will give some inefficiency results for both top-down 

and bottom-up based link scheduling algorithms. These results generalize the 

wireless link scheduling algorithms inefficiency results in [55]. Before giving 

more details, we need to give a theorem for any link scheduling algorithm 

which employs either constant or linear power assignment. The proof of this 

theorem was first given in our published paper [49]. 

2.5.1 Inefficiency of constant and linear power assignments 

We first give an exponential node chain which is shown in Figure 2-2. In 

this chain, there are n nodes ( X ) starting from the leftmost node 1x  and end 

at the rightmost node nx . All the nodes are placed on a straight line with 

exponentially increasing distances between them. For every node ix X∈ , we 

require it can successfully send at least one packet to its nearest neighbor. 

Now we want to prove a theorem for the scheduling length to schedule all of 

these n links for any scheduling algorithms which employ either constant or 

linear power assignments. We have given the mathematical formulations of 

the constant and linear power assignments in Inequality 1.4 and Inequality 

1.5, and here we first formally define the constant and linear power 

assignments.    
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Constant (Uniform) Power Assignment: If all the concurrently scheduled 

links employ the same transmission power, we call it a constant (uniform) 

power assignment. 

Linear Power Assignment: If each link in the concurrently scheduled links 

employs the transmission power which is proportional to the corresponding 

link’s length (the distance from the transmitter to the receiver) to the power of 

the path loss exponent, we call it a linear power assignment. 

THEOREM 2.1: Under the SINR model given in Inequality 1.1, for both 

constant and linear power assignments, no matter what link scheduling 

algorithm we use, the scheduling length for all the links in the exponential 

node chain is at least / ( 2 ) ( / )n m n mαβ β⋅ ⋅ + ∈Ω , even in the absence of 

ambient noise, where n is the number of the nodes, and m is the processing 

gain. 

•           •           •           •           •          •           •    …    •  

                         02         12          22          32        42          52             2n       

Figure 2-2: Exponential node chain, where 2i is the distance between 

nodes 1ix − and ix  

PROOF: a) Constant power assignment 

In this case, for all nodes, transmission power iP = kP =P. Now consider 

the example in Figure 2-2; we assume there are at most L simultaneous 

transmissions in a scheduling timeslot. Suppose node sx is the right-most 

transmitter in this timeslot, and node rx is its receiver. The other (L-1) 

simultaneous transmissions will cause aggregate interferences to node rx . 
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According to the property of the exponential node chain, if node rx is on the 

left side of node sx , the distance from every other simultaneous transmitter to 

the receiver rx is d( ix , rx )≤d( sx , rx ); and if node rx is on the right side of 

node sx , the distance from every other simultaneous transmitter to the 

receiver rx is d( ix , rx )≤ 2 ⋅ d( sx , rx ). Therefore the aggregate interferences 

caused by these (L-1) simultaneous transmitters are at least 

( 1) (2 ( , ))s rL P d x x α− ⋅ ⋅ . According to the SINR inequality 1.1 and by 

plugging in the link gain values, we have: 

( , )

( 1) (2 ( , ))
s r

s r

P d x x
N L P d x x m

α

α

β
≥

+ − ⋅ ⋅
 

From the above inequality, it follows that the maximum number of 

simultaneous transmissions L in each timeslot is ( 2 ) /m αβ β+ ⋅ . Therefore, 

the constant power assignment method requires at least 

/ ( 2 )n m αβ β⋅ + ⋅ timeslots to schedule all nodes at least once. 

b) Linear power assignment 

With linear power assignment, the sender sx will send to its 

receiver rx with power sP = ρ ⋅ ( , )s rd x x α , where ρ denotes the minimum 

received power to decode the message. Similar to the constant power 

assignment analysis, we assume there are at most L simultaneous 

transmissions in a scheduling timeslot. According to the property of the 

exponential node chain, for all nodes ix , it will cause at least the interference 

2αρ to its left side nodes [58]. Now suppose rx is the left-most receiver, 
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and sx is some transmitter in the L simultaneous transmissions. The other (L-

1) simultaneous transmissions will cause at least the aggregate interferences 

(L-1) 2αρ⋅  to this left-most receiver rx . According to the SINR inequality 1.1, 

we have 

( , ) / ( , )

( 1) 2    
s r s rd x x d x x

N L m

α α

α

ρ β
ρ

⋅
≥

+ − ⋅
 

From the above inequality, it follows that the maximum number of 

simultaneous transmissions L in each timeslot is ( 2 ) /m αβ β+ ⋅ . And 

therefore the linear power assignment method requires also at least 

/ ( 2 )n m αβ β⋅ + ⋅ timeslots to schedule all nodes at least once.  

By combining the two results for constant and linear power assignments, 

we finish the proof for Theorem 2.1. Now if we consider narrowband networks, 

i.e., the processing gain m=1, we have the following corollary. Note that this 

result has been proved separately in [58]. 

COROLLARY 2.2: For both constant and linear power assignments in 

narrowband networks, no matter what link scheduling algorithm we use, the 

scheduling length for all the links in the exponential node chain is ( )nΩ , 

where n is the number of the nodes. 

Now in order to show the inefficiency for both constant and linear power 

assignment, we give another theorem which states that the links constructed 

over the exponential node chain can be scheduled in 2(log )O n . 

THEOREM 2.3: In narrowband networks, all the links in the exponential 

node chain can be scheduled in 2(log )O n with a nonlinear power assignment 

algorithm proposed in [55]. 
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PROOF: The algorithm in [55] proves that the scheduling length for any 

arbitrary link topologies is 2(( ) log (log ))O disturbance n nρ ρ ρ− ⋅ ⋅ ⋅ +  . Since 

each node sends a packet to its nearest neighbor in the exponential node 

chain topology, if we set ρ =1, then disturbanceρ − is a constant value (cf. p27 

for the definition of disturbanceρ − ). Thus we complete the proof. 

By comparing Theorem 2.1 and Theorem 2.3, we can see that any link 

scheduling algorithm which employs either constant or linear power 

assignments are inefficient since it leads to exponentially longer scheduling 

length than the scheduling algorithm based on a nonlinear power assignment. 

2.5.2 Inefficiency of top-down based scheduling algorithms 

THEOREM 2.4: The following top-down based link scheduling algorithms, 

i.e., the two phase scheduling algorithm [29,30], the variation of the two 

phase scheduling algorithm [34],  the PCSA and the ISPA algorithms [12,14], 

the Algorithm A [31,32] and the heuristic link scheduling in [33] have a worst 

case scheduling length lower bound of ( )nΩ .  

PROOF: Since the two phase scheduling algorithm, the PCSA and the 

ISPA algorithm use either LISRA or SMIRA as their link removal algorithms, 

the inefficiency results of the four link removal algorithms (SRA, SMIRA, 

LISRA and WCRP) (Theorem 5.2 in [55]) can be directly applied here. For the 

other three scheduling algorithms, we can also take the same co-centric 

exponential node chain given in that paper as a worst case link topology. In 

this topology, all the links’ transmitters and receivers are located on the same 

line with link i ’s transmitter coordinate as ( 1)( 2 ,0)i −−  and link i ’s receiver 
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coordinate as ( 1)(2 ,0)i − (i is from 1 to n). In this case, the associated link gain 

matrix of this link topology is 1 1(2 (2 2 ))i i j
ijh αβ − −= ⋅ + if i j≠ and 0ijh = if i j=  

(cf. Section 2.2, p15). Similarly we can also set the path loss exponent 3α = , 

the background noise 0in = and the threshold 2β = . For the variation of the 

two phase scheduling algorithm, since all the links have the same number of 

blocked links (zero), the links removed in each step is link 1 to link n-1, so 

only one link (link n) can be scheduled in the first timeslot. These removal 

steps will be repeated in the following n-1 timeslots.  For the Algorithm A and 

the heuristic link scheduling, since they either use the link gain matrix column 

sum or row sum as their link removal metrics, the links removed in each step 

are either in an increasing order of their links’ lengths or in a decreasing order 

of their links’ lengths. However, both orders will result in ( )nΩ scheduling 

lengths. This completes the proof. 

Now since the co-centric exponential node chain topology can be 

scheduled in (log )O n timeslots by a nonlinear power assignment based link 

scheduling algorithm in [55], we can see that the top-down based link 

scheduling algorithms shown in Theorem 2.4 are inefficient. 

2.5.3 Inefficiency of bottom-up based scheduling algorithms 

THEOREM 2.5: The two bottom-up based link scheduling algorithms, i.e., 

the simplified scheduling algorithm in [34] and the GreedyPhysical algorithm 

in [17] have a worst case scheduling length lower bound ( )nΩ . 

PROOF:  We can also take the co-centric exponential node chain as an 

example (cf. the proof in Theorem 2.4). Since all the links form a matching, 
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the algorithm can schedule the links in a decreasing order of their lengths. So 

depending on the value of maximum allowable transmission power, the 

corresponding power assignments can be either linear power assignments, 

constant power assignments, or the long links employing constant power 

assignments while the remaining short links employing linear power 

assignments. According to Theorem 2.1, we can complete the proof for the 

simplified scheduling algorithm. Similarly since the GreedyPhysical algorithm 

does not employ packet-level power control, which means that all the links in 

the same timeslot use the same transmission powers (the links in different 

timeslots may use different powers), Theorem 2.1 can be directly applied 

here. This completes the proof for the GreedyPhysical algorithm. 

Now before we introduce the inefficiency results for some other link 

incremental scheduling algorithms, we need to introduce a pair-wise link 

conflict (infeasible) graph. This graph is based on the following theorem and 

is similar to the (generalized) power based interference graph introduced in 

the PCSA scheduling algorithm and in the ISPA scheduling algorithm (cf. 

Section 2.2.2).  

THEOREM 2.6: In narrowband networks, for any two transmissions 

( sx , rx ) and ( sy , ry ), if d( sx , ry ) ⋅d( sy , rx )≤  2/αβ ⋅  d( sx , rx ) ⋅d( sy , ry ), then 

there exists no feasible power assignment for simultaneous transmissions 

(infeasible link independent set); otherwise, there always exists a feasible 

power assignment to have a simultaneous schedule.          

PROOF: If the two transmissions can be successfully scheduled, based 

on SINR model (inequality 1.1) with processing gain equal to 1, the following 

two inequalities must follow: 
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From these inequalities, we have 
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Therefore, if
( , ) ( , )1

( , ) ( , )
s r s r
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d x x d x y
d y x d y y

α α

α α
β

β
⋅ ≥ ⋅ , there is no feasible power 

assignment for simultaneous scheduling; otherwise, there always exists a 

feasible power assignment to schedule these two transmissions in parallel. 

According to this theorem, we construct the pair-wise link conflict 

(infeasible) graph as follows: We first take each link as a node in the graph, 

second we add an edge between any two links which satisfy the inequality 

given in Theorem 2.6. 

PROPOSITION 2.7: Let’s suppose there is a link topology whose pair-

wise link conflict (infeasible) graph is as shown in Figure 2-3, then any link 

incremental scheduling algorithms which schedule the links in the order of 

[1..n] will result in a scheduling length of ( )nΩ  (Similar to the worst case 

behavior of some graph coloring algorithms analyzed in [88]). However, a 

much fewer or even a constant number of timeslots is possible if we schedule 

the links in the upper and lower parts of this conflict graph respectively.  

 

Figure 2-3: A Pair-wise Link Conflict (Infeasible) Graph 
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From this proposition, we have the following three corollaries. 

COROLLARY 2.8: The link incremental scheduling algorithms which use 

the node degree in the pair-wise link conflict graph as the scheduling metric 

(the criterion for scheduling the next link, i.e., the ordering of links), such as 

the adjusted GreedyPhysical algorithm (GreedyPhysical algorithm with 

packet-level power control), has a worst case lower bound of ( )nΩ . 

COROLLARY 2.9: Since all the links have the same link demands in 

MFSAT, the link incremental scheduling algorithms which use the link 

demands as a scheduling metric, such as the Primal Algorithm in [15] and the 

IDGS algorithm in [36], have a worst case lower bound of ( )nΩ . 

COROLLARY 2.10: Let’s further suppose all the links in this link topology 

are non-adjacent or have the same number of blocked links, then the link 

incremental scheduling algorithms which use the number of blocked links as 

the scheduling metric, such as the JSPCA algorithm in [34] and the LSPC 

Algorithm in [35], have a worst case lower bound of ( )nΩ . 
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Chapter 3  MDCS-Maximum Directed Cut based 

Scheduling Framework for the MFSAT Problem 

In this chapter, we will present a maximum directed cut based scheduling 

framework (MDCS) for the MFSAT problem. This framework is also a two 

phase scheduling algorithm, and there is a fundamental difference between 

MDCS and the heuristic link scheduling algorithms reviewed in Chapter 2. 

This difference is, in the first phase, we choose a maximum directed cut of 

the links after finding a maximum matching. In addition, for all the links in 

each directed cut, we choose to use a link incremental scheduling algorithm 

instead of a link removal scheduling algorithm. Now before delving into the 

details of the MDCS framework, we first discuss the insufficiency of using a 

maximal matching in the first phase of two-phase scheduling algorithms for 

arbitrary link topologies. 

3.1 Insufficiency of Using Maximal Link Matching 

We have introduced many state-of-the-art two-phase link scheduling 

algorithms for arbitrary link topologies in Chapter 2, but most of them either 

employ a link removal algorithm in the second phase for finding a link 

independent set or choose to find a maximum (maximal) matching or even a 

subset of the maximal matching in the first phase. There is only one two-

phase link scheduling algorithm which first finds a maximum matching in the 

first phase and then employs a link incremental algorithm in the second 

phase (cf. Section 2.3.2). Compared with finding a maximal matching or even 

a subset of the maximal matching in the first phase, since a maximum 



41 

 

 

matching can offer more potential links to be covered in the same timeslot in 

the second phase, finding a maximum matching in the first phase (This only 

takes time 1.5( )O n since there are only n links [96]) is obviously much better. 

But is this sufficient for our link incremental scheduling algorithm? Now we 

give an example to answer this question. The link topology is shown in Figure 

3-1.  

 

Figure 3-1: An arbitrary link topology with 3m+1 number of links 

Now suppose the first maximum matching of this arbitrary link topology 

comprises link 1 and links from link 2m+2 to link 3m+1. But this maximum 

matching becomes somewhat inefficient if any link in link 2 to m+1 except link 

1 can be simultaneously scheduled with any links in 2m+2 to 3m+1. The 

reason is that: if any links in link 2 to m+1 can be simultaneously scheduled 

with the links in the maximum matching, less links will be left in the next 

phase. Thus the scheduling length could be potentially shortened. In order to 

solve this problem and to provide more potential links to be scheduled in the 

same timeslot, we choose to find a maximum directed cut containing this 

maximum matching. Here by a maximum directed cut, we mean to partition 

all the nodes into two disjoint node sets so that we can maximize the number 

of directed edges from one node set to another node set. In this case, we can 
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avoid adding a link such that one link’s transmitter (receiver) becomes 

another link’s receiver (transmitter), since this will lead to an infinity value in 

the link gain matrix H which makes eigenvalue computation impossible and 

also inefficient for comparisons for scheduling metrics based on H.  So now 

the key here is how to construct this maximum directed cut. Here we note that, 

a simple maximum directed cut does not work for our scheduling problem, 

because this maximum directed cut may miss the maximum matching and 

may comprise too many links that are adjacent to some transmitters or 

receivers which is very undesirable. 

3.2 Maximum Directed Cut with Maximum Link Matching 

In order to show the importance of the maximum directed cut construction 

with maximum matching problem in our scheduling framework, we also take 

the link topology in Figure 3-1 as an example. Also suppose we first find a 

maximum matching consisting of link 1 and links from link 2m+2 to link 3m+1. 

Now the first maximum directed cut we find is to add links from link 2 to link 

m+1, and the second maximum directed cut we find is to add links from link 2 

to link m and the links from link m+2 to link 2m+1. For the first maximum 

directed cut construction, the total number of timeslots we need to schedule 

all the links is at least 2m+1 since the maximum directed cut found in the next 

phase comprises the links from link m+2 to link 2m+1 which needs at least m 

timeslots to schedule, but for the second maximum directed cut construction, 

a total number timeslots m+1 to schedule all the links is possible. So now we 

give our algorithm to find this better maximum directed cut.     
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Before we elucidate the algorithm, we need to clarify some notions. First, 

by an unmatched link, we mean this link is not included in the maximum 

matching; second, by an unmatched node, we mean this node is not incident 

to any links in the maximum matching. 

 

Figure 3-2: An illustrating example for adding an unmatched node in the 

directed cut  

We now give the maximum directed cut construction with maximum 

matching algorithm in the following. Here the key to this heuristic algorithm is 

step 4, which is to add an unmatched node into set S1 or S2. We now give an 

illustrating example of this step in Figure 3-2. Here S1(vi) denotes the number 

of directed edges (links) from vi to the nodes in S2 and S2(vi) denote the 

number of directed edges (links) from the nodes in S1 to vi . (Note that a 

similar method for maximum cut can be found in [90], but their algorithm can 

not be applied in our scenario). We now give a theorem to show the worst 

case performance guarantee of our heurist algorithm for finding this 

maximum directed cut. 

Maximum Directed Cut Construction with Maximum Matching Algorithm: 

1: Find a maximum matching; 

2: Label the set of transmitters for all the links in the maximum matching as 
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the set S1, and label the set of receivers for all the links in the maximum 

matching as the set S2; And we called all the links in the maximum matching 

as a directed cut from S1 to S2. 

3: For all the unmatched links which don’t have an unmatched node, check 

whether they can be added to the directed cut; This means that the addition 

of this new link would not make any node in set S1 (S2) as a receiver (a 

transmitter); 

4: For each unmatched node in the link topology, if S2(vi) ≥  S1(vi), we put this 

node in S2, otherwise we put it in S1; Note that in this step, the set S1 and S2 

are dynamically updated; 

5: Return all the directed links whose transmitters are located in S1 and the 

corresponding receivers are located in S2. 

 

THEOREM 3.1: For the proposed maximum directed cut with maximum 

matching problem, the proposed heuristic algorithm can add at least a half of 

the optimal number of links that can be added to the already existed directed 

cut (the directed cut derived from step 2 to step 3). 

PROOF: Since we first find a maximum matching, we know there are no 

edges (links) between the unmatched nodes since otherwise it is not a 

maximum matching. Suppose there are m unmatched nodes (v1,v2,…,vm), 

then we know that, by using step 4, the number of directed links that can be 

added to the already existed directed cut is 1max( 1( ), 2( ))m
i S v S vi i=∑ . Now we know 

the optimal number of new links that can be added to the already existed 

directed cut is equal to or less than 1( 1( ) 2( ))m
i S v S vi i=∑ + . From this we can prove 

this theorem. 
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With the help of the maximum directed cut searching algorithm, we now 

present a maximum directed cut based scheduling (MDCS) framework for 

arbitrary link topologies. 

3.3 Maximum Directed Cut based Scheduling Framework 

3.3.1 Pair-wise link conflict graph 

In this section, we will briefly review the pair-wise link conflict (infeasible) 

graph introduced in Section 2.5.3. We call this graph pairG , and this graph will 

be used by an exact scheduling algorithm in the next Chapter 4. From 

Theorem 2.6, we can build pairG by just adding an edge between any two 

infeasible links. This is done in time 2( )O n wheren means the number of links. 

And for each link i, let ( )N i denote the number of links which conflict with i, 

i.e., the number of neighbors of node i in pairG . 

3.3.2 The MDCS scheduling framework 

MDCS Scheduling Framework: 

Input: A set of arbitrarily distributed wireless links {1,..., }N n= . 

Output: The number of used timeslots T to successfully schedule all the links 

under the SINR model. 

1: T=0; 

2: While not all links have been scheduled do 

3: Call the Maximum Directed Cut Construction with Maximum Matching 

Algorithm in Section 3.2. 

4:  t=0 and set all the links in the outputted direct cut unchecked and 

unscheduled; 

5:  While not all the links in the outputted direct cut have been scheduled do 
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6: Construct a pair-wise link conflict graph of all the unscheduled links, and 

then sort these unscheduled links in a decreasing order of the number of their 

neighbors in the pair-wise link conflict graph; 

7: Schedule the first link and update the remaining links’ ordering; 

8: Check the next link to see if these links satisfy the SINR constraints; 

9: If not satisfied, go back to step 8; otherwise schedule this link and update 

the ordering of the unchecked links; 

10: Repeat step 8 to step 9 until all links have been checked; 

11: t=t +1 and set all the unscheduled links unchecked;  

12: End While; 

13: T=T+t ; 

14: End While. 

 

Now we analyze the time complexity of the MDCS scheduling framework. 

First, we know the time of the maximum directed cut construction with 

maximum matching algorithm relies on the maximum matching finding time. 

And we know finding a maximum matching only takes time 1.5( )O n since there 

are only n links [96]. Then we analyze the time complexity of scheduling all 

the links in each outputted directed cut. As we’ve mentioned in Section 2.4, 

we know the worst case time complexity of a link incremental scheduling 

algorithm is 5( )O n , then the total time of the MDCS scheduling framework 

is 5( )O n  where n denotes the number of links. 
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3.4 Comparisons of MDCS and other Six Heuristic Link 

Scheduling Algorithms 

3.4.1 Simulation settings 

We first give the simulation settings. For any n arbitrarily located nodes 

on a 2000 2000m m×  plane (Here m means meters), we randomly select a 

link’s transmitter and receiver subject to the constraint that they are different 

nodes on the plane. We then repeat this process until a number of n different 

links (either with different transmitters or receivers) have been constructed. 

So in this topology construction, some nodes may not be used (Figure 3-3 

gives an example of an arbitrary link topology constructed over 20 arbitrarily 

located nodes on a plane). In this simulation, since (1) all the arbitrarily 

constructed link topologies are dense link topologies; and (2) many links 

share a common node, if we set a very small path loss exponent value or a 

very high threshold value, no matter what kind of scheduling algorithms we 

will use, we can only schedule almost one link in each timeslot. The reasons 

are as follows: (1) If the path loss exponent is very low, say only around 2, all 

the wireless signals do not rapidly attenuate. Thus all the links generate very 

large cumulative interferences which could lead to a very small SINR value at 

each link’s receiver. If the SINR threshold is still very high, many links can not 

be simultaneously scheduled. (2) If many links share a common node, due to 

the half-duplex constraint, these links can only be scheduled in one by one. 

From these observations, we set the path loss exponent 5α = . But we will 

test on different SINR threshold values, including 1β = , 2β =  and 3β = .  
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Figure 3-3: An arbitrary link topology constructed over 20 arbitrarily located 

nodes on a plane 

3.4.2 Performance comparisons 

We implemented six bottom-up based scheduling algorithms (please 

refer to Chapter 2 for some of the algorithms descriptions): the proposed 

MDCS scheduling framework, the bottom up Algorithm B [31,32], the 

GreedyPhysical algorithm in [17] with packet level power control, the JSPCA 

algorithm in [34], the LDS algorithm in [55] and the first fit based link 

increment scheduling algorithm. Here by first fit based link incremental 
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scheduling algorithm, we mean that we just greedily schedule the links in its 

unsorted order with the bottom up approach. There are two nonlinear power 

assignment based link incremental scheduling algorithms for arbitrary link 

topologies, one is NPAN-MOBIHOC06 [59] and the other is LDS [55]. We 

have tested that the LDS algorithm can generate smaller scheduling lengths 

than the NPAN-MOBIHOC06 algorithm, so we use LDS as a representative 

for nonlinear power assignment based link scheduling algorithm. Note that for 

the LDS algorithm, since its scheduling length relies on the parameter ρ , we 

have tested different ρ values and find that LDS can achieve the shortest 

scheduling length when 1ρ =  , so we set 1ρ =  in our simulation.  Besides the 

link incremental based scheduling algorithms, we also implement SORA as a 

representative for link removal based scheduling algorithms. But since now 

we are targeted for arbitrary link topologies, we first find a maximum matching 

in each scheduling phase; then we employ SORA as the link removal 

algorithm. In addition, for all the scheduling algorithms except LDS, we use 

the Pareto-optimal power assignment (cf. Proposition 2.4) with no maximum 

allowable power limitations (In this case we don’t care the background noise 

powers). This assumption, however, can be removed if we set the same 

maximum allowable power for all the scheduling algorithms. Note that, we 

have tested these scheduling algorithms over ten sets of link topologies with 

the number of links ranging from 20 to 110. And for each set of topology, we 

compute the average scheduling length over 10 different instances.  

The final scheduling results can be seen in Figure 3-4, Figure 3-5 and 

Figure 3-6. According to the three figures, we can draw the first conclusion: 

the smaller of the SINR threshold value, the fewer timeslots we need to 
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schedule all the links. More conclusions from the scheduling lengths in the 

three figures are as follows. First, we can sort these eight scheduling 

algorithms in an increasing order of their scheduling lengths: MDCS, the 

bottom up Algorithm B, SORA, first fit, JSPCA, the GreedyPhysical with 

power control and LDS. We have the following observations from this 

ordering. (1) In matching based link scheduling algorithms, adding more links 

to the maximum matching in each scheduling phase can significantly reduce 

the scheduling length.  This can be seen from the scheduling lengths of 

MDCS, the bottom up Algorithm B and the matching based link removal 

algorithm SORA. (2) Matching based link scheduling algorithms greatly 

outperform the non-matching based link scheduling algorithms in terms of 

their scheduling lengths. This can be seen from the scheduling lengths of 

bottom up Algorithm B and the other three non-matching based scheduling 

algorithms (first fit, JSPCA and GreedyPhysical). This observation is further 

strengthened through the result that even the matching based link removal 

algorithm SORA can generate fewer scheduling lengths than the non-

matching based link incremental scheduling algorithms (GreedyPhysical and 

LDS). (3) Compared with the top down and bottom up based scheduling 

algorithms, although the SORA algorithm can generate relatively shorter 

scheduling lengths with small SINR threshold values ( 1β =  and 2β = ) than 

some link incremental based scheduling algorithms, such as JSPCA and 

GreedyPhysical, it’s obtained by paying more time (cf. Section 2.4). (4) Since 

our generated arbitrary link topologies bear large disturbanceρ −  values 

(Figure 3-3 is an example whose disturbanceρ − value could be as large as 
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the number of links when 1ρ = ), the low disturbance scheduling (LDS) 

generates the longest scheduling lengths at every topology instance (it 

almost schedules one link in each timeslot!). In Chapter 7, we will see how 

LDS performs in the link topologies with much smaller disturbanceρ − values. 

 

Figure 3-4: Link scheduling results comparisons ( 5, 1α β= = ) 
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Figure 3-5: Link scheduling results comparisons ( 5, 2α β= = ) 
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Figure 3-6: Link scheduling results comparisons ( 5, 3α β= = )
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Chapter 4  Exact and Approximate Link 

Scheduling Algorithms for the MFSAT Problem 

Having discussed the heuristic link scheduling algorithms for the MFSAT 

problem, we turn to study the exact and approximate link scheduling 

algorithms in this chapter. Specifically, we propose two classes of exact and 

approximate link scheduling algorithms, one based on the relatively 

straightforward set covering, and the other on counting the number of 

different set covers. Throughout this chapter, we let ( )p n denote the time of 

checking whether the spectral radius of an irreducible non-negative matrix is 

smaller than 1 or not (Note that according to [95], 3( ) ( )p n O n= , but according 

to [93,94], faster algorithms maybe possible); then the time complexity for the 

counting based exact link scheduling algorithm called ESA_MFSAT 

is 2(3 log ( ))nO n n p n⋅ ⋅ ⋅ with polynomial space, which represents a substantial 

improvement over the set covering based exact scheduling which needs 

time
max( )

(2 )
n
iiO . If exponential space is allowed, using either the fast zeta 

transform [101] or the fast subset convolution [99], the time complexity can be 

reduced to 2(2 log ( ))nO n n p n⋅ ⋅ ⋅ . Then based on the exact coloring and the 

maximum link independent set finding algorithms, we present three 

approximate link scheduling algorithms with approximation ratios ( log )O n n , 

( log )kO n n and (1 )ε+⎡ ⎤⎢ ⎥ , respectively. Here ε is an arbitrary positive value 

independent of n .The time complexity of the first approximation algorithm 

is 2( log( ))O n poly n with polynomial space, the time complexity for the second 
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algorithm is
11 log3 log( log( ))

k nO n poly n
−+ ⋅ with polynomial space, and the time 

complexity for the third algorithm is /2((( ) 3 log ) log ( ))n e n
nO n n n p n

ε−

+ ⋅ ⋅ ⋅ ⋅  with 

polynomial space.  

The remainder of the chapter is organized as follows. We give a new 

formulation of the MFSAT problem in Section 4.1. In Section 4.2, we present 

some exact and approximate link scheduling algorithms based on link 

independent set covering. In Section 4.3, based on the inclusion-exclusion 

principle, we give the exact coloring algorithm ESA_MFSAT through counting 

the number of k-set coverings. Building upon these results, we present three 

approximate link scheduling algorithms in Section 4.4. Finally we conclude 

this chapter with some possible research directions in Section 4.5. Note that 

we will use the terms scheduling and coloring interchangeably throughout this 

chapter. 

4.1 New Formulation for the MFSAT Problem 

In this section, we will give a new formulation of the MFSAT problem, but 

first some related concepts need to be introduced.  

DEFINITION 4.1: A set of non-adjacent links are called a link 

independent set if there exist a positive power vector *P (cf. Proposition 2.4) 

satisfying all the SINR constraints; otherwise it is an infeasible link 

independent set. 

DEFINITION 4.2: A maximal link independent set is a link independent 

set that is not a proper subset of any other link independent set. 

DEFINITION 4.3: The largest maximal link independent set is called a 

maximum link independent set. 
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PROPOSITION 4.4: Any superset of an infeasible link independent set is 

an infeasible link independent set; each subset of a link independent set is a 

link independent set. 

Based on these definitions, we can rewrite the MFSAT problem as 

follows: 

The MFSAT Problem:  Givenn arbitrarily distributed single-hop wireless 

links {1.. }N n= , select a minimum number of link independent sets such that 

each link has at least one successful transmission under the SINR constraint. 

4.2 Set Covering based Exact and Approximate Colorings 

From the new formulation of the MFSAT problem we can see that it can 

be viewed as a kind of set covering problem. So in this section, we give some 

relatively straightforward exact and approximate link scheduling algorithms 

based on some traditional techniques such as the generation and test 

method, the backtracking search and the greedy set covering . Compared to 

the counting based exact and approximate link scheduling algorithms given in 

Sections 4.3 and 4.4, we will see that these traditional methods are inferior in 

terms of either the running time or the approximation ratio. 

LEMMA 4.1: The number of maximal link independent sets in arbitrary 

link topologies is at most 1 1
2 2

max( ) max(( ),( ))n n

n n n
ii

+ +⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥
= . 

PROOF: According to Proposition 4.4, we know that the maximum 

number of maximal link independent sets equalsmax( )n
ii

. Then by observing 

1( ) / ( ) 1n n
i i − ≥ , we know that 1 1

2 2

max( ) max(( ),( ))n n

n n n
ii

+ +⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥
= . This ends the proof. 
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4.2.1 Set covering based exact coloring 

Since there are at most (2 )nO link independent sets, a naive brute force 

optimal covering (such as the generation and test method) takes time 2(2 )
n

O . 

An improvement is to consider only the maximal link independent sets, but 

some post processing is needed since some links may then be scheduled 

more than needed. All the maximal link independent sets can be found 

in (2 ( ))nO p n⋅ , and from Lemma 4.1, the optimal set covering takes 

time
max( )

(2 )
n
iiO . 

4.2.2 Set covering based approximate coloring 

This approximation algorithm proceeds as follows: In each timeslot, we 

find a maximum link independent set among the unscheduled wireless links; 

then we delete the maximum link independent set and continue until all the 

links have been scheduled. Actually, this is equivalent to the standard greedy 

set covering algorithm which is to select a set to maximize the uncovered 

elements, and the approximation ratio is (log )O n . The decision version of the 

maximum link independent set finding problem in arbitrary link topologies has 

been shown to be NP-complete in [41], and an obvious brute force algorithm 

takes time (2 ( ))nO p n⋅ . For example, we can just enumerate all the k-

combinations (k is from n  to 1) of then  links, and then check whether they 

are link independent sets. If yes, we just stop there and output the k links [43]. 

But according to Proposition 4.4, with the help of binary search, we can give 

an exact maximum link independent set finding algorithm which takes 

time /2(( ) log ( ))n
nO n p n⋅ ⋅ . From the Stirling’s approximation for large factorials, 
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the above complexity becomes (2 log ( ))nO n n p n⋅ ⋅ . This algorithm works 

as follows: we first check whether there exists a link independent set in all the 

/ 2n -combinations of then  links; if yes, we check the 3 / 4n -combinations, 

otherwise we check / 4n  -combinations. This continues until we find the 

maximum combination. In Section 4.4, we will give another exponential time 

approximation algorithm with a much better approximation ratio and without 

increasing the running time. 

4.3 Counting based Exact Coloring 

4.3.1 The Inclusion-Exclusion Principle 

[folklore]: Let B be a finite set with subsets 1 2, ,..., nA A A B⊆ , and with the 

convention that i iA B∈∅ =∩ , then we know the number of elements in B which 

lie in none of the iA is 

 | |

{1,..., }1

| | ( 1) | | .
n

X
i i

X ni i X

A A
⊆= ∈

= − ⋅∑∩ ∩  (4.1)                      

Now let’s define n

1 2{ , ,..., ,...} where i 2iS S S S= ≤  as the set of the link 

independent sets, B as the set of k-tuples 1,..., kS S< > , and iA B⊆ as the set 

of those k-tuples whose union does not include link i ; then the left hand side 

of Equation (4.1) can be interpreted as the number of k-tuples in B which 

cover all the links from {1,..., }N n= . On the right hand side of Equation (4.1), 

for each X, | |i
i X

A
∈
∩ means the number of k-tuples whose union does not 

include all the links in X.  
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4.3.2 Counting the number of k-set-coverings 

Here we define a k-set-covering as a set covering in which each covering 

consists of k link independent sets. Also we use ( )kc S to denote the number 

of different k-set-coverings. We define ( )S X S⊆ as the set of the link 

independent sets whose union does not include the links in X , which 

means i
i

S N X= −∪ , where ( )iS S X∈ . And we use 

( ) | { : } |i is X S S S X= ∈ = ∅∩ to denote the number of link independent sets 

in ( )S X . Then the following lemma holds. 

LEMMA 4.2: The number of different k-set coverings satisfies 

 | |( ) ( 1) ( ( ))X k
k

X N
c S s X

⊆
= − ⋅∑  (4.2) 

PROOF:  With ( )s X denoting the number of link independent sets 

in ( )S X , ( ( ))ks X stands for the number of different ways to choose k link 

independent sets from ( )S X . (Note that the link independent sets in a k-set-

covering may be non-distinct and non-disjoint.) Now combining the analyses 

in Section 4.3.1, we have ( )kc S =
1

| |
n

i
i

A
=
∩ , which is the left hand side of 

Equation (4.1), and( ( ))ks X =| |i
i X

A
∈
∩ , which is the right hand side of Equation 

(4.1). This completes the proof. 

THEOREM 4.3: Counting k-set coverings can be solved in (3 ( ))nO p n⋅  

time and polynomial space. 

PROOF: According to Equation (4.2), we can see that the computational 

complexity is dominated by computing ( )s X , i.e., to count the number of link 
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independent sets in ( )S X . For each X , we can enumerate all the 

combinations of the links in setN X− , which will take time | |2 ( | |)n X p n X− ⋅ − , 

because each testing of the link independent set takes time ( )p n . Now 

combining with Equation (4.2) and the binomial theorem, the running time of 

counting k-set coverings is
0

( ( )) ( ) 2 ( ) (3 ( ))
n

n n m n
k m

m
T c S p n m O p n−

=
= ⋅ ⋅ − = ⋅∑ . 

Here ( )p n  subsumes the time of raising each ( )s X to the k-th power. For the 

space complexity, since we compute ( )s X anew for each X, the occupied 

space is definitely polynomial. This finishes the proof. 

THEOREM 4.4: Counting k-set coverings can be solved in 

(2 ( ))nO p n⋅ time and 2(2 )nO n⋅ space. 

PROOF: We need to introduce the zeta transform of a function f, where f 

is an indicator function of the link independent set. Specifically, the zeta 

transform [101] �f on the subset lattice (2 , )N ⊆ of f is defined by 

 �( ) ( ) .
S X

f X f S for X N
⊆

= ⊆∑  (4.3)                 

Now since �( ) ( ) ( )
S X

s N X f S f X
⊆

− = =∑ , we can compute a table 

containing ( )s N X−  for all X N⊆ , and using a fast zeta transform introduced 

in [101], we can compute all �( )f X with time (2 ( ) 2 ) (2 ( ))n n nO p n n O p n⋅ + = ⋅ .  

So according to Equation (4.2) and by subsuming the time of raising each 

( )s X to the k-th power into ( )p n  , the time complexity of computing ( )kc S  is 

reduced to (2 ( ))nO p n⋅ . For the space complexity, since we have 

stored (2 )nO n⋅  number of interim values for calculating �( )f X (including 
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all ( )s X ), and since the value of ( )s X can be up to 2n , the space complexity 

is 2(2 )nO n⋅ . The proof is heavily relied on the fast zeta transform. For more 

details of this technique, please refer to lemma 2 in [101]. This ends the proof. 

4.3.3 Computing the minimum number of colors 

LEMMA 4.5: The MFSAT problem can be solved with k colors if and only 

if ( ) 0kc S > . 

PROOF: On one hand, if all the links can be scheduled with k colors, 

there must exist a valid k-set covering, which means ( ) 0kc S > ; on the other 

hand, if ( ) 0kc S > , there must exist a coloring such that all the links can be 

scheduled at least once in k timeslots (colors). This finishes the proof. 

Now we use ( )Nχ to denote the minimum number of colors to schedule all 

the {1,..., }N n= links. Combining with Lemma 4.5, we have the following 

corollary. 

COROLLARY 4.6: ( )Nχ =min{ : ( ) 0}.kk c S >  

With the help of binary search, the time for 

computing ( )Nχ becomeslog ( ( ))kn T c S⋅ . So according to Theorems 4.3 and 

4.4, we have the following corollaries. 

COROLLARY 4.7: If we only allow polynomial space, the minimum 

number of colors ( )Nχ can be computed in time (3 log ( )).nO n p n⋅ ⋅  

COROLLARY 4.8: If exponential space is allowed, the minimum number 

of colors ( )Nχ can be computed in time (2 log ( ))nO n p n⋅ ⋅ . 
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4.3.4 The exact scheduling algorithm: ESA_MFSAT 

Although we have computed the minimum number of colors to schedule 

all the links, we have not constructed a practical schedule yet. In this section, 

we present an algorithm called ESA_MFSAT for scheduling each link at least 

once while guaranteeing the minimum number of colors. (To demonstrate the 

use of this algorithm, we will give a detailed illustrating example in Section 

4.3.6). 

ESA_MFSAT: Exact Scheduling Algorithm for the MFSAT Problem 

Input: A set of arbitrarily distributed single-hop wireless links {1,..., }N n= . 

Output: A successful scheduling of all the links under the SINR constraint 

such that the number of colors is minimized. 

1:  Construct the pair-wise link conflict graph pairG onN ; // (cf. Section 3.3.1) 

2:  Compute ( )Nχ , i.e., the minimum number of colors of N. 

3: Pick the most constrained link i which has the maximum node degree in 

the conflict graph, and list all the links in pairG not incident oni . These links 

form a set 1 2{ , ,..., }mj j j  . We construct new pair-wise conflict graphs called 

( )pairG k (1 k m≤ ≤ ) on top of pairG by adding the edges between link i  and 

links kj where 1 k m≤ ≤ . Let ( )pairV G and ( )pairE G denote all the nodes and 

edges in pairG , then ( ( )) ( )pair pairV G k V G= and 1( ( )) ( ) { ,..., }pair pair kE G k E G ij ij= ∪ ; 

4:  Let ( )S k ,1 k m≤ ≤ denote the set of all the link independent sets inN  but 

excluding any link independent set containing link pairs incident on link i  

in ( )pairG k ; similar to Corollary 4.6, we have ( ( ))pairG kχ =min{ : ( ( )) 0}kk c S k′′ > ; 

and from Proposition 4.4, we have 

( ( 1)) ( ( )) ( ( 1)) 1pair pair pairG k G k G kχ χ χ− ≤ ≤ − + ; 

5:  If ( ) ( ) ( ( ))pair pairG N G mχ χ χ= = , then we know the color of link i  must be 

different from those of all the other links in some optimal coloring.  So we give 

it a new color number and assign the sender of this link (or the senders of all 



63 

 

 

the actual links if i is a virtual link) based on the Pareto-optimal power vector 
*P (cf. Proposition 2.4), then we removei fromN . Otherwise, we can find the 

smallest k using binary search such that ( ( )) ( ) 1pair pairG k Gχ χ= + .                         

In this case, we can deduce that link i  must have the same color with 

link kj in some optimal coloring (otherwise ( ( )) ( )pair pairG k Gχ χ= ).  We now 

replace link i  and link kj  with a new virtual link
kijp , and the neighbors of

kijp in 

the conflict graph become ( ) ( ) ( )
kij kN p N i N j= + . 

6:  Repeat step 2 to step 5 until all links have been scheduled (colored). 

 

4.3.5 Correctness and time complexity analysis 

We call step 2 to step 5 in the ESA_MFSAT algorithm a scheduling round. 

In each scheduling round, we remove one link, either directly giving it a new 

color or “contracting” two links (step 5). Since in each scheduling round, our 

link removals are based on the computed minimum number of colors of all 

the remaining links, and combining with the analyses in step 4 and step 5, we 

can guarantee the output is optimal, i.e., the number of colors we actually 

obtain is minimized. 

Also, we need to emphasize the computation of the minimum number of 

colors ( ( ))pairG kχ . Unlike the computation of ( )Nχ , which is based on the set 

of all the link independent sets (e.g., the set S in Sections 4.3.1 and 4.3.2), 

the computation of ( ( ))pairG kχ is based on ( )S k (the set of the link 

independent sets in step 4). In addition, we must note that, if there are some 

virtual links in the conflict graph, due to the aggregate interference effect, all 

the actual links in these virtual links must be taken into account for checking 

whether the supersets of these links are link independent sets.         
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We now analyze the time complexity of the ESA_MFSAT algorithm. First 

let some exponential function ( ( ))T nχ denote the time of computing the 

minimum number of colors of schedulingn links. Since each scheduling round 

causes at most (log )O n computations of computing the minimum number of 

colors, and there are n scheduling rounds, the overall optimal scheduling 

takes time ( ( ( )) log )O T n n nχ ⋅ ⋅ . So from Corollaries 4.7 and 4.8, if only 

polynomial space is allowed, the time complexity 

becomes 2(3 log ( ))nO n n p n⋅ ⋅ ⋅ , and if exponential space is allowed, the time 

complexity of the exact scheduling algorithm is 2(2 log ( ))nO n n p n⋅ ⋅ ⋅ . 

4.3.6 An illustrating example for ESA_MFSAT 

As shown in Figure 4-1, suppose there is a link topology with five 

linksN {1,2,3,4,5}= , and all the maximal link independent sets have been 

computed: {{1,3},{2,4},{3,5},{1,2,5}}. Recall that X stands for any subset of N, 

and ( )S X represents the set of all the link independent sets 

inN X− and ( )s X means the number of link independent sets in ( )S X . For 

clarity of presentation, we use a simpler notation to denote the link 

independent sets in ( )S X S⊆ (Table 4-1); for example, we use 1 to denote 

the link independent set {1}, and 125 to denote the link independent set 

{1,2,5}. 

The 1st step of the ESA_MFSAT algorithm is to construct the pair-wise 

conflict graph pairG , which is shown in Figure 4-2(a). The 2nd step is to 

compute the minimum number of colors ( )Nχ . According to Table 4-1, we 

have S={1,2,3,4,5,12,13,15,24,25,35,125}, and we can calculate 
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that 1 2( ) ( ) 0c S c S= = , and | | 3

3 ( ) ( 1) ( ( )) 96 0X

X N
c S s X

⊆
= − ⋅ = >∑ , and so we know 

that ( )Nχ =3. In the 3rd step we pick the most constrained link 4 and add new 

edges (additional constraints) between link 4 and all the other links which are 

not incident on it. In this example, only one link 1j 2= (link 2) is not incident 

on link 4, so we add a new edge between them ( (1)pairG as shown in Figure 

4-2 (b)). In the 4th step, by removing all the link independent sets containing 

link pair 4 and 2, we can achieve (1)S {1,2,3,4,5,12,13,15,25,35,125}= , and 

since 1 2( (1)) ( (1)) 0c S c S= = and 3( (1)) 30 0c S = > (based on Table 4-2), we 

conclude that ( (1)) 3pairGχ = . Then we go to the 5th step, since we have known 

that ( ) ( ) ( (1)) 3pair pairG N Gχ χ χ= = = , we can deduce that, in some optimal 

coloring, link 4 must have a different color with all the other links, and so we 

give it a new color number and remove it from N. Now we have finished the 

first scheduling round; we then repeat step 2 to step 5 until all links have 

been colored. We now briefly give the following scheduling rounds below. 
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Figure 4-1: A link topology with five links 
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Figure 4-2: a) The original pair-wise conflict graph pairG for the five links 

N={1,2,3,4,5};  b) A new conflict graph (1)pairG constructed on pairG ; c)  A new 

conflict graph (2)pairG constructed on the remaining linksN {1,2,3,5}= ; d) A 

new conflict graph (1)pairG constructed on the remaining links 25N {1,p ,3}= . 

Table 4-1: For each subset X of N {1,2,3,4,5}= , the number of link 

independent sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X  
∅  {1,2,3,4,5,12,13,15,24,25,35,125} 12 
{1} {2,3,4,5,24,25,35} 7 
{2} {1,3,4,5,13,15,35} 7 
{3} {1,2,4,5,12,15,24,25,125} 9 
{4} {1,2,3,5,12,13,15,25,35,125} 10 
{5} {1,2,3,4,12,13,24} 7 
{1,2} {3,4,5,35} 4 
{1,3} {2,4,5,24,25} 5 
{1,4} {2,3,5,25,35} 5 
{1,5} {2,3,4,24} 4 
{2,3} {1,4,5,15} 4 
{2,4} {1,3,5,13,15,35} 6 
{2,5} {1,3,4,13} 4 
{3,4} {1,2,5,12,15,25,125} 7 
{3,5} {1,2,4,12,24} 5 
{4,5} {1,2,3,12,13} 5 
{1,2,3} {4,5} 2 
{1,2,4} {3,5,35} 3 
{1,2,5} {3,4} 2 
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{1,3,4} {2,5,25} 3 
{1,3,5} {2,4,24} 3 
{1,4,5} {2,3} 2 
{2,3,4} {1,5,15} 3 
{2,3,5} {1,4} 2 
{2,4,5} {1,3,13} 3 
{3,4,5} {1,2,12} 3 
{1,2,3,4} {5} 1 
{1,2,3,5} {4} 1 
{1,2,4,5} {3} 1 
{1,3,4,5} {2} 1 
{2,3,4,5} {1} 1 
{1,2,3,4,5}} ∅ 0 

 

Table 4-2: For each subset X of (1)pairG whereN {1,2,3,4,5}= , the number of 

link independent sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X  
∅  {1,2,3,4,5,12,13,15,25,35,125} 11 
{1} {2,3,4,5,25,35} 6 
{2} {1,3,4,5,13,15,35} 7 
{3} {1,2,4,5,12,15,25,125} 8 
{4} {1,2,3,5,12,13,15,25,35,125} 10 
{5} {1,2,3,4,12,13} 6 
{1,2} {3,4,5,35} 4 
{1,3} {2,4,5,25} 4 
{1,4} {2,3,5,25,35} 5 
{1,5} {2,3,4} 3 
{2,3} {1,4,5,15} 4 
{2,4} {1,3,5,13,15,35} 6 
{2,5} {1,3,4,13} 4 
{3,4} {1,2,5,12,15,25,125} 7 
{3,5} {1,2,4,12} 4 
{4,5} {1,2,3,12,13} 5 
{1,2,3} {4,5} 2 
{1,2,4} {3,5,35} 3 
{1,2,5} {3,4} 2 
{1,3,4} {2,5,25} 3 



68 

 

 

{1,3,5} {2,4} 2 
{1,4,5} {2,3} 2 
{2,3,4} {1,5,15} 3 
{2,3,5} {1,4} 2 
{2,4,5} {1,3,13} 3 
{3,4,5} {1,2,12} 3 
{1,2,3,4} {5} 1 
{1,2,3,5} {4} 1 
{1,2,4,5} {3} 1 
{1,3,4,5} {2} 1 
{2,3,4,5} {1} 1 
{1,2,3,4,5}} ∅ 0 

       

The 2nd scheduling round:  In the 2nd step, similar to Table 4-1, we can 

construct another Table 4-3 for N {1,2,3,5}= , and we have 

S={1,2,3,5,12,13,15,25,35,125}. Then we can calculate 

that 1( ) 0c S = and 2( ) 10 0c S = > , and so we know that ( ) ( ) 2pairN Gχ χ= = . In 

the 3rd step, we pick link 2 as the most constrained link, and add new edges 

between link 2 and links 1j 1=  and 2j 5= ( (2)pairG  as shown in Figure 4-2(c)). 

Note that by reducing the edge between links 2 and 5 from (2)pairG , we can 

get (1)pairG . In the 4th and 5th steps, we have (2)S {1,2,3,5,13,15,35}= and 

since 2( (2)) 0c S = and 3( (2)) 36 0c S = > (based on Table 4-4), we 

know ( (2)) 3 ( )pairG Nχ χ= > , and then we continue to find 

that (1)S {1,2,3,5,13,15,25,35}= and since 2( (1)) 2 0c S = > (based on Table 

4-5), we get ( (1)) 2 ( )pairG Nχ χ= = . So in this case, we conclude that 

2k = (corresponding to link 2j ) is the smallest k to 

satisfy ( ( )) ( ) 1pair pairG k Gχ χ= + . We then deduce that link 2 must have the 
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same color with link 5 in this optimal coloring. So we contract these two links 

into a new link 25p . Then we go to the 3rd scheduling round. 

Table 4-3: For each subset X of N {1,2,3,5}= , the number of link 

independent sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X  
∅  {1,2,3,5,12,13,15,25,35,125} 10 
{1} {2,3,5,25,35} 5 
{2} {1,3,5,13,15,35} 6 
{3} {1,2,5,12,15,25,125} 7 
{5} {1,2,3,12,13} 5 
{1,2} {3,5,35} 3 
{1,3} {2,5,25} 3 
{1,5} {2,3} 2 
{2,3} {1,5,15} 3 
{2,5} {1,3,13} 3 
{3,5} {1,2,12} 3 
{1,2,3} {5} 1 
{1,2,5} {3} 1 
{1,3,5} {2} 1 
{2,3,5} {1} 1 
{1,2,3,5} ∅ 0 

 

Table 4-4: For each subset X of (2)pairG whereN {1,2,3,5}= , the number of 

link independent sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X
∅  {1,2,3,5,13,15,35} 7 
{1} {2,3,5,35} 4 
{2} {1,3,5,13,15,35} 6 
{3} {1,2,5,15} 4 
{5} {1,2,3,13} 4 
{1,2} {3,5,35} 3 
{1,3} {2,5} 2 
{1,5} {2,3} 2 
{2,3} {1,5,15} 3 
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{2,5} {1,3,13} 3 
{3,5} {1,2} 2 
{1,2,3} {5} 1 
{1,2,5} {3} 1 
{1,3,5} {2} 1 
{2,3,5} {1} 1 
{1,2,3,5} ∅ 0 

 

Table 4-5: For each subset X of (1)pairG whereN {1,2,3,5}= , the number of 

link independent sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X  
∅  {1,2,3,5,13,15,25,35} 8 
{1} {2,3,5,25,35} 5 
{2} {1,3,5,13,15,35} 6 
{3} {1,2,5,15,25} 5 
{5} {1,2,3,13} 4 
{1,2} {3,5,35} 3 
{1,3} {2,5,25} 3 
{1,5} {2,3} 2 
{2,3} {1,5,15} 3 
{2,5} {1,3,13} 3 
{3,5} {1,2} 2 
{1,2,3} {5} 1 
{1,2,5} {3} 1 
{1,3,5} {2} 1 
{2,3,5} {1} 1 
{1,2,3,5} ∅ 0 

 

The 3rd scheduling round: In the 2nd step, also similar to Table 4-1, we 

can construct another Table 4-6 for 25,N {1,p 3}= , and we 

have 25, 25S {1 p ,3,1p ,13}= , and then we can calculate 

that 1( ) 0c S = and 2( ) 6 0c S = > , and so we know that ( ) ( ) 2pairN Gχ χ= = . In the 

3rd step, we pick link 25p as the most constrained link, and add a new edge 
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between link 25p and link 1j 1= ( (1)pairG as shown in Figure 4-2(d)). In the 4th 

and 5th steps, we have 25(1) ,S {1,p 3,13}= and since 2( (1)) 2 0c S = > (based on 

Table 4-7), we obtain ( (1)) 2 ( )pairG Nχ χ= = , and so we conclude that 

link 25p must have a different color with link 1 and link 3 in this optimal coloring. 

Then we give it a new color and remove it from N. Now we finish the 3rd 

scheduling round and can proceed to the 4th scheduling round. 

      The 4th scheduling round: We can easily find that links 1 and 3 must have 

the same color in this optimal coloring (the interested reader can do the 

checking). So we give them a new color and we finish the scheduling of all 

the links. Also the transmission powers of all the links are based on the 

Pareto-optimal power vector *P (cf. Proposition 2.4). The final result is we 

have used three colors for the link independent sets {4},{2,5} and {1,3}.  Of 

course, this is only one of the optimal colorings. By choosing different 

coloring strategies or through choosing different orders of the links in step 3 

of the ESA_MFSAT algorithm, we may obtain different optimal colorings.  

Table 4-6: For each subset X of 25,N {1,p 3}= , the number of link independent 

sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X
∅  {1, 25p ,3,13,1 25p } 5 
{1} { 25p ,3} 2 

{ 25p } {1,3,13} 3 
{3} {1, 25p ,1 25p } 3 

{1, 25p } {3} 1 
{1,3} { 25p } 1 

{ 25p ,3} {1} 1 

{1, 25p ,3} ∅ 0 
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Table 4-7: For each subset X of (1)pairG where 25,N {1,p 3}= , the number of 

link independent sets ( )s X in ( )S X =N X−  

X  ( )S X ( )s X
∅ {1, 25p ,3,13 } 4 
{1} { 25p ,3} 2 

{ 25p } {1,3,13} 3 
{3} {1, 25p } 2 

{1, 25p } {3} 1 
{1,3} { 25p } 1 

{ 25p ,3} {1} 1 

{1, 25p ,3} ∅ 0 
   

4.4  Counting based Approximate Colorings 

4.4.1  Polynomial time approximation   

This approximation algorithm is implemented by clustering. We first 

partition all the n links into logn n groups, each group containing logn links. 

Then we use the exponential space version of the ESA_MFSAT algorithm to 

compute the minimum number of colors of each group. LetOpt stand for the 

minimum number of colors, then the actual number of colors we get is at 

most logn n Opt⋅ , and so the approximation ratio is ( log )O n n . Since the 

time complexity of our exact scheduling algorithm is 2(2 log ( ))nO n n p n⋅ ⋅ ⋅ , 

and the space complexity is 2(2 )nO n⋅ , the time complexity of our 

approximate scheduling algorithms is bounded by 2( log( ))O n poly n⋅ . The 

space complexity is 2( log )O n n⋅ . 
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4.4.2 Quasi-polynomial time approximation 

Obviously, we can also partition all then links into logkn n groups, each 

group containinglogk n links. Then we use the polynomial space version of 

the ESA_MFSAT algorithm to compute the minimum number of colors of 

each group. The approximation ratio is ( log )kO n n . But the time complexity 

becomes
11 log3 log( log( ))

k nO n poly n
−+ ⋅ , which is a quasi-polynomial time 

complexity, i.e., the complexity with the form (1)(exp((log ) )OO n . The space 

complexity is still polynomial. 

4.4.3 Exponential time approximation 

We have given an exponential time approximate link scheduling 

algorithm in Section 4.2.2, which is based on repeatedly finding the maximum 

link independent set on the remaining links. This is equivalent to a standard 

greedy set covering method with approximation ratio (log )O n . In this section, 

we will present another exponential time approximation algorithm which is 

also based on finding the maximum link independent set. But in this algorithm, 

when the number of the remaining links equals e nε− , we do not repeat the 

maximum link independent set finding algorithm. Instead we use our 

polynomial space version of the exact link scheduling algorithm ESA_MFSAT 

since the number of the remaining links has become small enough. 

THEOREM 4.9: The approximation ratio of this polynomial space 

approximate link scheduling algorithm is (1 )ε+⎡ ⎤⎢ ⎥ , and the time complexity of 

this algorithm is /2((( ) 3 log ) log ( ))n e n
nO n n n p n

ε−

+ ⋅ ⋅ ⋅ ⋅ . 
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PROOF: The proof is adapted from [100,101]. 

Let Opt be the minimum number of colors for scheduling all the links. 

And let s be the number of maximum link independent sets we have removed. 

If we use ( )e nεχ − to denote the minimum number of colors we have obtained 

to schedule the remaininge nε− links, then the total number of colors we have 

used is ( )e n sεχ − + . Since ( )e n Optεχ − ≤ , we only need to prove 

thats Optε≤ ⋅⎡ ⎤⎢ ⎥ . 

Since we remove the maximum link independent set in each step, so 

after at most t steps, the number of remaining links is smaller than or equal to 

(1 1 )tn Opt⋅ − , and due to a standard inequality, we have 

(1 1 )t t Optn Opt n e −⋅ − ≤ ⋅ . So if Opt t s Optε ε⋅ ≤ ≤ ≤ ⋅⎡ ⎤⎢ ⎥ , then the number of 

remaining links is at most e nε− . By plugging into the time complexity result of 

the maximum link independent set finding algorithm in Section 4.2.2 and the 

polynomial space version of the exact scheduling algorithm in Section 4.3.4, 

we finish the proof. 
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Chapter 5  Exact and Approximate Link 

Scheduling Algorithms for the MLSAT Problem 

In this chapter, we will first transform the MLSAT problem as a set multi-

cover problem. Second, we will design a first known exact algorithm for the 

set multi-cover problem. Third, based on this exact algorithm, we will present 

a polynomial time polynomial space approximation algorithm for the MLSAT 

problem. To our knowledge, this is the first known approximation algorithm 

for the MLSAT problem that is independent of the links’ lengths. 

5.1 New Formulation for the MLSAT Problem  

Similar to Section 4.1, in this section, we will transform the MLSAT 

problem as a set multi-cover problem. Now based on the same definitions 

given in Section 4.1, we can rewrite the MLSAT problem as follows: 

The MLSAT Problem:  Givenn arbitrarily distributed single-hop wireless 

links {1.. }N n= , select a minimum number of link independent sets such that 

each link has been covered at least a number of times as specified in its 

coverage requirement, namely, the number of packets each link needs to 

transmit. 

From this new formulation, we can see that the MLSAT problem is 

actually the same as the set multi-cover problem. Set multi-cover is a 

generalization of the set cover problem where each element may need to be 

covered more than once and thus some subset in the given family of subsets 

may be picked several times for minimizing the number of sets to satisfy the 

coverage requirement. In this chapter, based on the inclusion-exclusion 
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principle, we will propose a first known exact algorithm for the set multi-cover 

problem. Specifically, the presented ESMC (Exact Set Multi-Cover) algorithm 

takes *((2 ) )nO t time and *(( 1) )nO t + space where t is the maximum value in the 

coverage requirement vector (The *( ( ))O f n notation omits 

a log( ( ))poly f n factor).  

5.2 Related Work 

Recently it has been shown that for some exact algorithms, using the 

inclusion-exclusion principle can significantly reduce the running time. For 

example, Björklund et al. have applied the inclusion-exclusion principle to 

various set cover and set partition problems, obtaining time complexities that 

are much lower than those of previous algorithms [100,101,104]. This 

principle has also been used in some early chapters, such as [128] and [131]. 

By using the Möbius inversion technique which is an algebraic equivalent of 

the inclusion-exclusion principle, Björklund et al. give a fast algorithm for the 

subset convolution problem [99] and Nederlof presents a family of fast 

polynomial space algorithms for the Steiner Tree problem and other related 

problems [132]. In this chapter, we are interested in designing inclusion-

exclusion based exact algorithms for the set multi-cover problem [135,136]. 

This problem is a generalization of the set cover problem in which each 

element needs to be covered by a specified integer number of times and 

each set can be picked multiple times in order to satisfy the coverage 

requirement. It is a bit surprising that only approximation algorithms have so 

far been proposed for the set multi-cover problem. In fact, by using the same 

greedy strategy as for the set cover problem, which is to repeatedly add the 
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set containing the largest number of uncovered elements to the cover, one 

can achieve the same (log )O n approximation for the problem [135]. Feige 

shows that the set cover problem can not be approximated better 

than lnn unless loglog( )nNP DTIME n∈ [130]. Some parallel approximation 

algorithms for the set cover problem and its generalizations, such as the set 

multi-cover problem, the multi-set multi-cover problem and the covering 

integer programs problem have been presented in [136]. In all these related 

work on approximation solutions, the set multi-cover problem appears to be 

no harder than the set cover problem. In this chapter, we will see that finding 

an exact solution for the set multi-cover problem can take much longer time 

than that for the fastest exact algorithm for the set cover problem [100,101].  

The structure of this chapter is as follows. In Section 5.3, we give a 

formal definition of the set multi-cover problem. In Section 5.4, based on the 

inclusion-exclusion principle, we will transform the set multi-cover problem to 

the problem of counting the number of k-tuples that satisfy the integral 

coverage requirements. We then give an algorithm for counting these 

numbers of k-tuples in Section 5.5. In Section 5.6, we give a constructive 

algorithm for finding the minimum number of sets that meet the coverage 

requirements. A simple illustrating example for our algorithms is given in 

Section 5.7. We finally give a polynomial time polynomial space approximate 

algorithm for the MLSAT problem in Section 5.8. 

5.3 The Set Multi-cover Problem 

A summary of the various notations used in this chapter and their 

corresponding definitions is given in Table 5-1. Throughout the chapter, we 
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let the union of a k-tuple 
1
,...,

k
s s< >  which is denoted as

1

k

i
i

C s
=

= ∪ represent a 

multi-set. This means that we just put all the elements in each
i

s into the set C 

without removing duplicated elements. 

Table 5-1: Summary of notations and their definitions 

Notation Definition 

N  The universe set, where {1,..., }N n= and| |N n= . 

F  A family of subsets of N, where
1 | |

{ ,..., }
F

F s s= and| |F is 

the total number of subsets in F. 

T  The integral coverage requirement vector, 

where
1

( ,..., )
n

T t t= ; each i N∈ must be covered at 

least 1
i

t ≥ times in the picked subsets over F. 

t  The maximum integer in the vector T, i.e., 
1

max( )
ii n

t t
≤ ≤

= . 

( )
k

c F  The number of k-tuples 
1
,...,

k
s s< >  over F such that the 

union of each k-tuple, i.e.,
1

k

i
i

C s
=

= ∪  , satisfy the specified 

coverage requirement T.  

( )
k

n X  The number of k-tuples 
1
,...,

k
s s< >  over F such that 

each i X∈ ( X N⊆ ) appears at most ( 1)
i

t − number of 

times in the multi-setC . 

( )a X  The number of subsets in F that avoid X. 

( , )b X Y  The number of subsets in F that include Y but avoid 

\X Y . 

1 | |
( ,..., )X

q X
p n n or

( )X

q X
p n  

The number of q-tuples over F such that each j X∈  

appears
j

n times in the union of each q-tuple. For 

simplicity, we use
X

n to denote
1 | |

{ ,..., }
X

n n . 
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The Set Multi-Cover Problem: Let {1,..., }N n= be the universe, and F a 

given family of subsets { }
i

s  over N, and the union of all the subsets in F 

covers all the elements in N. A legal( , )k T cover is a collection of k subsets 

over F such that eachi N∈ must appear at least 1
i

t ≥ times in the union of the 

k subsets. Note that the k subsets can be non-distinct which means that 

some subsets in F can be picked several times. The goal of the set multi-

cover problem is to find the minimum k to make a legal( , )k T multi-cover.  

Remark 5.1: Since each subset in F can contain each element of N at 

most once, in order to find a legal ( , )k T cover, k must be greater than or equal 

to t, the maximum integer in the coverage requirement vector T , i.e., k t≥ . 

Also, since the union of F covers all the elements in N, we havek tn≤ . 

5.4 Counting based Exact Algorithm for the Set Multi-Cover 

Problem 

5.4.1 The Inclusion-Exclusion Principle 

This principle has been given in Section 4.3.1. For convenience, we 

present it again here. Let B be a finite set with subsets
1 2
, ,...,

n
A A A B⊆ . With 

the convention that
i i

A B
∈∅

=∩ , the number of elements in B which lie in none 

of the
i

A is :  

 | |

1

| | ( 1) | |
n

X

i i
X Ni i X

A A
⊆= ∈

= − ⋅∑∩ ∩  (5.1) 
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5.4.2 Counting the number of k-tuples  

LEMMA 5.1:  Let ( )
k

n X denote the number of k-tuples 
1
,...,

k
s s< >where 

for each j X∈ , the number of j in the set
1

k

k
i

C s
=

= ∪  is at most 1
j

t − ; then the 

number of k-tuples that satisfy the coverage requirement T can be computed 

from the following equation: 

 | |( ) ( 1) ( )X

k k
X N

c F n X
⊆

= − ⋅∑  (5.2) 

PROOF:  Let B be the set of k-tuples 
1
,...,

k
s s< >  from F, and let 

i
A be the 

set of k-tuples where element i in the multi-set C appears at most ( 1)
i

t − times. 

The left side of Equation (5.1) is the number of k-tuples in which each 

element i in the universe N is covered at least 
i

t  times, which is represented 

by ( )
k

c F , the left side of Equation(5.2). Accordingly, | |
i

i X
A

∈
∩  is the number of 

k-tuples in which each j X∈ , which is an element in the set C, appears at 

most( 1)
j

t − times; i.e., ( ) | |
k i

i X
n X A

∈
= ∩  . By the right side of Equation(5.1), we 

can derive the right side of Equation (5.2). 

LEMMA 5.2:  We can find a legal( , )k T multi-cover if and only if ( ) 0
k

c F > . 

PROOF: ( )
k

c F is the number of k-tuples over F that satisfy the coverage 

requirement T. The number of legal ( , )k T multi-covers is the number of k 

subsets over F that satisfy the coverage requirement T. Since different 

orderings of the k subsets mean different k-tuples while the ( , )k T multi-cover 

concerned remains the same, we know that only when ( ) 0
k

c F > can there be 
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a legal ( , )k T multi-cover. Similarly, if there is a legal ( , )k T multi-cover, it 

guarantees that ( ) 0
k

c F > . This finishes the proof. 

According to Lemma 5.2, we have the following corollary. 

COROLLARY 5.3:  The minimum k value to make a legal ( , )k T multi-

cover is equal to the minimum k value that satisfies ( ) 0
k

c F > . 

Thus we can transform the set multi-cover problem to the problem of 

computing ( )
k

c F . By using binary search, sincet k tn≤ ≤ , the time for solving 

the set multi-cover problem equals the sum of the times for computing 

the (log( ))O tn numbers of ( )
k

c F . In the next section, we will introduce an 

algorithm for computing ( )
k

c F . 

5.5 An Algorithm for Computing ( )
k

Fc  

In this section, we show how to compute ( )
k

c F , i.e., to count the number 

of k-tuples 
1
,...,

k
s s< >  over F such that the union of each such k-tuple 

satisfies the given coverage requirement T.  

5.5.1 How to compute ( )
k

n X  

According to Equation(5.2), we know that the crux of computing ( )
k

c F is 

to obtain ( )
k

n X , i.e., the number of k-tuples over F such that each 

i X∈ appears at most ( 1)
i

t −  times in the union of every k-tuple. Without loss 

of generality, we assume {1,2,..., }X m= , and for the simplicity of notation, we 

let 
1 2

{ , ,..., }
X m

n n n n= . We then denote 
1 2

( ) ( , ,..., )X X

q X q m
p n p n n n= , the number of 

q-tuples over F  such that for each j X∈  the number of the element j in the 
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union of every q-tuple is
j

n . Now since the union of each q-tuple can cover 

each j X∈ at most q times, for each
1 2

( , ,..., )X

q m
p n n n , we have

j
n q≤ for 

each j X∈ ; otherwise, 
1 2

( , ,..., )X

q m
p n n n equals 0. From these definitions, we 

can easily obtain the following Equation(5.3). This equation means that, in 

order to obtain ( )
k

n X , we should sum all the ( )X

k X
p n values (

1

m

ii
t

=
∏ of them), 

where ( )X

k X
p n is from (0,0,...,0)X

k
p to

1 2
( 1, 1,..., 1)X

k m
p t t t− − −  . Now our problem 

becomes how to efficiently compute all the ( )X

k X
p n values. 

 
0 1
1

( ) ( )
i i

X

k k X
n t
i m

n X p n
≤ ≤ −
≤ ≤

= ∑  (5.3) 

Before delving into the details of calculating all these ( )X

k X
p n values, we 

need to introduce some notations. We use ( )a X to denote the number of sets 

in F that avoid X where X N⊆ , and ( , )b X Y to denote the number of sets in F 

that include Y but avoid \X Y , whereY X⊆ . We show next how to get 

( )a X for all X and ( , )b X Y for all X and Y. 

5.5.2 How to compute all ( )a X  

There are two ways to compute ( )a X . The first way is to use the fast zeta 

transform technique introduced in [101]. By using this technique, 

all ( )a X values can be computed in * (2 )nO time. And since the technique uses 

a look-up table to store all the interim values including ( )a X for all X N⊆ , it 

requires * (2 )nO space. The second way is to compute ( )a X directly without 

storing all the interim values into a look-up table. In order to 

compute ( )a X where X N⊆ , we just need to test every subset \S N X⊆ to 
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see if S is in F, which takes time * | |(2 )n XO − by assuming that the membership 

test in F can be decided in polynomial time and polynomial space (This is true 

for our MLSAT problem since checking whether a set of links is a link 

independent set can be transformed into checking whether the spectral 

radius of the links’ link gain matrix is smaller than 1 or not.). Then for 

all X N⊆ , the total time for computing ( )a X  

equals * | | * *

0
(2 ) ( 2 ) (3 )

n
n X r n r n

n
X N r

O O C O− −

⊆ =
= =∑ ∑ . 

5.5.3 How to compute all ( , )b X Y  

Based on the two different ways of computing ( )a X , we have two 

corresponding ways to compute all ( , )b X Y  for allY X⊆  and for all X N⊆ . 

For arbitrary X and Y, whereY X⊆ , we let | |X m= and| |Y r=  andr m≤ . 

Without loss of generality, assume {1,2,..., }X m= and {1,2,..., }Y r= . 

Then ( , )b X Y can be computed via Equation (5.4). 

 | | | |( , ) ( 1) ( ( \ )) ( 1) ( { 1,..., })Z Z

Z Y Z Y
b X Y a Z X Y a Z r m

⊆ ⊆
= − ⋅ = − ⋅ +∑ ∑∪ ∪  (5.4) 

Equation (5.4) is obtained by applying the inclusion-exclusion principle. 

Suppose B is a family of subsets of F which avoid \X Y , and let 

i
A B⊆ ( i Y X∈ ⊆ ) be the family of subsets which further avoid element i . 

Then the left side of Equation (5.1) (
| |

1

| |
Y

i
i

A
=
∩ ) is the number of sets in F that 

coverY but avoid \X Y which is the value of ( , )b X Y . Accordingly, the right 

side of Equation (5.1) ( | |
i

i Z Y
A

∈ ⊆
∩ ) is the number of sets in F that 

avoid ( \ )Z X Y∪ which is the value of ( ( \ ))a Z X Y∪ . Thus according to 
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Equation (5.1), we have Equation (5.4). Then we calculate how much time we 

need to compute all ( , )b X Y . 

First, we do not use a table to store all ( )a X values, and the time 

complexity is given in Lemma 5.4. 

Lemma 5.4: For allY X⊆  and for all X N⊆ , ( , )b X Y can be obtained 

in * (6 )nO time and polynomial space. 

PROOF: As mentioned earlier, in order to compute ( )a X where X N⊆ , 

we just need to test every subset \S N X⊆ to see if S is in F, which takes 

time * | |(2 )n XO − . For given X and Y, according to Equation (5.4), the time for 

computing ( , )b X Y  can be calculated from the formula *

0
(2 )

r
i n i m r

r
i

C O − − +

=
⋅∑ .  By 

using the Binomial theorem, we have Equation (5.5). 

 * *

0
(2 ) (2 3 )

r
i n i m r n m r

r
i

C O O− − + −

=
⋅ = ⋅∑  (5.5) 

Now for allY X⊆ , the time for computing ( , )b X Y can be calculated 

through the formula *

0
(2 3 )

m
r n m r

m
r

C O −

=
⋅ ⋅∑ . Similarly, by using the Binomial 

theorem, we have Equation (5.6). 

 * *

0
(2 3 ) (2 )

m
r n m r n m

m
r

C O O− +

=
⋅ ⋅ =∑  (5.6) 

Finally, for all X N⊆ , the time for computing ( , )b X Y can be calculated 

through the formula *

0
(2 )

n
m n m

n
m

C O +

=
∑ . Again by the Binomial theorem, we have 

Equation (5.7). 

 * *

0
(2 ) (6 )

n
m n m n

n
m

C O O+

=
=∑  (5.7) 

According to the computation steps of Equations (5.5), (5.6) and (5.7), 

since we did not use any look-up table to store the exponential number 
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of ( )a X values to speed up the calculation of ( , )b X Y  , the space used is only 

polynomial. This completes the proof. 

Now we give another way to compute all ( , )b X Y  by using exponential 

space. Its time and space complexities are given in Lemma 5.5. 

Lemma 5.5: For allY X⊆  and for all X N⊆ , ( , )b X Y can be obtained 

in (4 )nO time and * (2 )nO space. 

PROOF: As before, by using the fast zeta transform technique introduced 

in [101], all ( )a X values can be computed in * (2 )nO time and * (2 )nO space. 

Then for some given X and Y, according to Equation (5.4), since 

all ( )a X values are known, ( , )b X Y can be computed in time 2r where | |r Y= . 

The time for computing ( , )b X Y  for allY X⊆ equals 
0

2 3
m

r r m

m
r

C
=

⋅ =∑ . Similarly, 

the time for computing ( , )b X Y  for all X N⊆ equals 
0

3 4
n

m m n

n
m

C
=

⋅ =∑ . This 

finishes the proof.  

5.5.4 An Algorithm for computing all ( )X

k X
p n  

As mentioned in Section 5.4.1, we need to 

compute
1

m

ii
t

=
∏

1 2
( ) ( , ,..., )X X

k X k m
p n p n n n=  values, where0 1

i i
n t≤ ≤ −  and1 i m≤ ≤ . 

Without loss of generality, we assume the positive integers 

in
1 2

{ , ,..., }
m

n n n form a set
1

{ ,..., }
Y r

n n n= , where {1,2,..., }Y r= and 0 r m≤ ≤ . 

Then from the definitions of ( )a X and ( , )b X Y  , we 

have
1 1 2

( , ,..., ) ( ,{1,2,..., })X

m
p n n n b X r=  and

1
(0,0,...,0) ( )Xp a X= . Now for brevity 

of notation, for any subset
1

{ ,..., }
i

Z r r Y= ⊆ , we use ( 1 )Z

X
n −  to denote the 
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set
11 1

{ ,..., 1,..., 1, ,..., }
i ir r r m

n n n n n
+

− − , i.e., for all j Z∈ , the 

corresponding
j

n values are decremented by 1, and for all j Z∉ , we keep the 

corresponding 
j

n values. Then for 2 q k≤ ≤ , we use the following recursive 

function to obtain ( )X

q X
p n . 

 
1

( ) ( , ) ( 1 )X X Z

q X q X
Z Y

p n b X Z p n
−

⊆
= ⋅ −∑  (5.8) 

Basically, this equation tells us how to calculate the ( )X

q X
p n value when 

given
1
( 1 )X Z

q X
p n

−
− values for all Z Y⊆ . For example, 

when Z = ∅ , ( , ) ( )b X a X∅ =  and
1 1
( 1 ) ( )X Z X

q X q X
p n p n

− −
− = . We already 

know ( )a X means the number of sets in F that avoid X, and
1
( )X

q X
p n

−
 means 

the number of (q-1)-tuples from F  where for each j X∈  the number of the 

element j in the union of every (q-1)-tuple is
j

n ; thus the product of ( )a X  

and
1
( )X

q X
p n

−
 is the total number of ways to add a set to each of the 

1
( )X

q X
p n

−
 (q-

1)-tuples to make it a q-tuple while keeping 
X

n unchanged. Similarly, for each 

nonempty Z Y⊆ , we know ( , )b X Z means the number of sets in F that cover 

Z but avoid \X Z , where Z Y X⊆ ⊆ , and 
1
( 1 )X Z

q X
p n

−
− means the number of 

(q-1)-tuples from F  where for each j X∈  the number of the element j in the 

union of every (q-1)-tuple equals the updated
j

n value in the set ( 1 )Z

X
n − ; thus 

the product of ( , )b X Z and 
1
( 1 )X Z

q X
p n

−
−  is the total number of ways to add a 

set to each of the 
1
( 1 )X Z

q X
p n

−
−  (q-1)-tuples to make it a q-tuple while satisfying 

all the
j

n values in the set
X

n . Finally, the summation of all these products 
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yields the number of q-tuples from F such that for each j X∈  the number of 

the element j in the union of every q-tuple equals
j

n , which is ( )X

q X
p n . 

So according to Equation (5.8), in order to get all ( )X

k X
p n , we need to 

calculate all ( )X

q X
p n where 1 q k≤ < . Now before giving an algorithm for 

computing all ( )X

k X
p n , we need to first analyze the special case where the 

maximum integer t in the integral coverage requirement vector 

1
( ,..., )

n
T t t= equals 1. In this case, set multi-cover becomes the set cover 

problem. Then as mentioned in Section 5.4.1, we only need to 

compute
1

1
m

ii
t

=
∏ = number of ( ) (0,...,0)X X

k X k

m

p n p= �	
 values. This means that the 

number of positive integers in the set
1 2

{ , ,..., }
X m

n n n n= is zero, i.e., the set Y in 

Equation (5.8) is an empty set. Accordingly, Equation (5.8) becomes                

1 1
(0,...,0) ( , ) (0,...,0) ( ) (0,...,0)X X X

k k k
p b X p a X p

− −
= ∅ ⋅ = ⋅ . Since

1
(0,...,0) ( )Xp a X= , 

we can obtain (0,...,0) ( ( ))X k

k
p a X= . Finally from Equations (5.2) and (5.3), we 

obtain | |( ) ( 1) ( ( ))X k

k
X N

c F a X
⊆

= − ⋅∑ , which is the same as the formula given in 

[101] for counting the number of k-tuples that satisfy the set cover 

requirement. As discussed in [101], based on whether we use exponential 

space or not (c.f. Section 5.4.2), ( )
k

c F can be computed in * (2 )nO time 

and * (2 )nO space, or can be computed in * (3 )nO time and polynomial space. 

For the following, we assume that the maximum integer t in the integral 

coverage requirement vector 
1

( ,..., )
n

T t t= is greater than or equal to 2. 

Algorithm 5.1 for computing all ( )X

k X
p n  

Input: The value k  where t k tn≤ ≤ ; the set {1,2,..., }X m= ; the integral 
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coverage requirement sub-vector for X , i.e., 
1 2

( , ,..., )
X m

T t t t= . Here
X

T is a sub-

vector ofT , and we use min( )
X

T and max( )
X

T to denote the minimum and the 

maximum integers respectively in the sub-vector
X

T . 

Output: The values for all ( )X

k X
p n . 

1: For all X N⊆ , by using the fast zeta transform technique given in [101], 

we compute all ( )a X and store them in a look-up table.  

2: Based on the first step, for all Y X⊆ and X N⊆ , we compute 

all ( , )b X Y and store them in another look-up table. 

3:  For q=2 to k do: 

4:  By using Equation (5.8), we compute all ( )X

q X
p n from (0,...,0)X

q
p to 

1
(min( , 1),...,min( , 1),...,min( , 1))X

q i m
p q t q t q t− − − (with lexicographic order) and 

we store all these ( )X

q X
p n values in a look-up table. Here the 

function min( , 1)
i

q t − means choosing the minimum value 

betweenq and( 1)
i

t − . 

5:  End For.   

With the above Algorithm 5.1 for computing all ( )X

k X
p n , we can 

calculate ( )
k

n X  and then ( )
k

c F . Then we analyze in the following the time 

and space complexities for calculating ( )
k

c F . 

5.5.5 Time and space complexities for calculating ( )
k

c F  

Theorem 5.6: By using Algorithm 5.1 for computing all ( )X

k X
p n , ( )

k
c F can 

be computed in * ((2 ) )nO t  time and * (( 1) )nO t + space. 

PROOF: The first step of Algorithm 5.1 uses * (2 )nO time and * (2 )nO space. 

For the second step, according to Lemma 5.5, computing all ( , )b X Y takes 
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time (4 )nO . Obviously there are
0

2 3
n

m m n

n
m

C
=

=∑ ( , )b X Y , so storing all ( , )b X Y in a 

look-up table takes * (3 )nO space.  

In the ‘For’ loop (step 3 to step 5), we calculate 

all ( )X

q X
p n from 2q = to q k= and store all these ( )X

q X
p n values in a look-up 

table. So according to Equation (5.8), for each ( )X

q X
p n , since all 

the ( , )b X Y and
1
( )X

q X
p n

−
values have been stored, the time to 

compute ( )X

q X
p n is

0
2

r
j r

r
j

C
=

=∑ where r is the number of positive integers in the 

set
X

n . So in order to calculate the total time for calculating all ( )X

q X
p n , we just 

need to count how many ( )X

q X
p n we need to compute. 

Since we know the number of positive integers in the set
X

n is r, for each q 

where 2 q k≤ ≤ , the number of ( )X

q X
p n we need to compute equals 

1
min( , 1)

r

ii
q t

=
∏ − , i.e., those ( )X

q X
p n from N(1,...,1,0,...,0)X

q

r m r

p
−

�	
 to 

1
(min( , 1),...,min( , 1),0,...,0)X

q r

m rr

p q t q t
−

− − �	
������	�����
 .  

So if min( ) 1 1
X

q T t≤ − ≤ − , the number of ( )X

q X
p n we need to compute is rq , 

i.e., all ( )X

q X
p n from N(1,...,1,0,...,0)X

q

r m r

p
−

�	
 to ( ,..., ,0,...,0)X

q

m rr

p q q
−

�	
�	
 . Similarly, 

if 1t q k− < ≤ , the number of ( )X

q X
p n we need to compute equals

1
( 1)

r

ii
t

=
∏ − which 

is less than ( 1)rt − , i.e., all ( )X

q X
p n from 

N(1,...,1,0,...,0)X

q

r m r

p
−

�	
 to
1

( 1,..., 1,0,...,0)X

q r

m rr

p t t
−

− − �	
���	��
 . Finally, if 
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min( ) max( ) 1 1
X X

T q T t≤ ≤ − ≤ − , the number of ( )X

q X
p n we need to compute is 

at most rq . 

From the above analyses, for a given
X

n where the number of positive 

integers equals r and for all 2 q k≤ ≤ , the total number of ( )X

q X
p n we have 

computed is at most: 

 
1

2
( 1) ( 1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑  (5.9) 

As mentioned earlier in this proof, since the time for computing each 

( )X

q X
p n is 2r , the total time for computing all these ( )X

q X
p n  is at most: 

 
1

2
2 ( ( 1) ( 1) )

t
r r r

q
q k t t

−

=
⋅ + − + ⋅ −∑  

Then for all
X

n where r, the number of positive integers in each of them, 

varies from 0 to m, the total time for computing all ( )X

q X
p n is at most: 

1 1

0 2 2
(2 ( ( 1) ( 1) )) (2 1) ( 1) (2 1)

m t t
r r r r m m

m
r q q

C q k t t q k t t
− −

= = =
⋅ + − + ⋅ − = + + − + ⋅ −∑ ∑ ∑         

Now according to Equation (5.3) which is for computing ( )
k

n X , the total 

time for computing ( )
k

n X is less than
1

2
(2 1) ( 1) (2 1)

t
m m m

q
q k t t t

−

=
+ + − + ⋅ − +∑ , 

where the last term mt accounts for the at most mt number of additions 

of ( )X

k X
p n to obtain ( )

k
n X . 

Finally, according to Equation (5.2) which is for calculating ( )
k

c F , the time 

for computing ( )
k

c F is at most:  

1

0 2
( (2 1) ( 1) (2 1) )

n t
m m m m

n
m q

C q k t t t
−

= =
+ + − + ⋅ − +∑ ∑

 

2

2

(2 2) ( 2) (2 ) ( 1)
t

n n n

q
q k t t t

−

=
= + + − + ⋅ + +∑                                                     

Now according to the following helping lemma, Lemma 5.7, 
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2

2
(2 2) ( 2) (2 ) ( 1)

t
n n n

q
q k t t t

−

=
+ + − + ⋅ + +∑

 

*(( 1) (2 2) ) ( 2) (2 ) ( 1) ((2 ) )n n n nO t t k t t t O t= − ⋅ − + − + ⋅ + + = . 

Lemma 5.7: For any positive integer s, we have 

1

( 1) ( / 2) ( 1) / 2
s

n n n

i
s s i s s

=
+ ⋅ ≤ ≤ + ⋅∑ . 

PROOF: First we define a function ( ) ( )n nf x x s x= + − , where0 x s≤ ≤ . 

By computing the second derivative of ( )f x , we know ( )f x is a convex 

function. Thus it achieves the largest value at the boundaries of the x values, 

which are either 0x = or x s= . By computing the first derivate of ( )f x , we find 

that it achieves its smallest value at / 2x s= . So we have 12 ( )n n ns f x s− ≤ ≤ for 

all0 x s≤ ≤ . Then by replacing x with all its integer values from 0 to s, and 

summing these inequalities together, we obtain the result. This finishes the 

proof.        

After proving the time complexity for calculating ( )
k

c F , we now turn to the 

space complexity. This is equivalent to finding out the total interim values we 

have stored in the look-up tables. We know already the total spaces for 

storing all ( )a X and ( , )b X Y values are * (3 )nO , and now we only need to know 

the total number of ( )X

q X
p n we have stored in the table. As given in Equation 

(5.9), for a given
X

n and for all 2 q k≤ ≤ , the total number of ( )X

q X
p n we have 

computed is at most
1

2
( 1) ( 1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑ . Then for all

X
n , the total number 

of ( )X

q X
p n we have stored is at most: 

1 2

0 2 2
( ( 1) ( 1) ) ( 1) ( 2)

m t t
r r r m m

m
r q q

C q k t t q k t t
− −

= = =
+ − + ⋅ − = + + − + ⋅∑ ∑ ∑
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Finally, for all X N⊆ , the total number of ( )X

q X
p n we have stored is at 

most: 

2 2

0 2 2

( ( 1) ( 2) ) ( 2) ( 2) ( 1)
n t t

m m m n n

n
m q q

C q k t t q k t t
− −

= = =
+ + − + ⋅ = + + − + ⋅ +∑ ∑ ∑

 

Again, according to Lemma 5.7, we have: 

2
1 *

2

( 2) ( 2) ( 1) ( ( 2) ( 1) ) (( 1) )
t

n n n n n

q
q k t t O t k t t O t

−
+

=
+ + − + ⋅ + = + − + ⋅ + = +∑        

Since 2t ≥ , all the time and spaces consumed in the first and the second 

step of Algorithm 5.1 can be subsumed in * ((2 ) )nO t and * (( 1) )nO t + , 

respectively. This finishes the proof of Theorem 5.6. 

5.6 A Constructive Algorithm for the Set Multi-Cover Problem 

Although we have computed the minimum number of sets that satisfy the 

coverage requirement, we have not really constructed these sets. In this 

section, we present an algorithm called ESMC for picking the minimum 

number of sets such that each element in the universe is covered by at least 

the required number of times as specified in the integral coverage 

requirement set. Before giving this constructive algorithm, we need to define 

two basic elements pair operations. 

5.6.1 Two basic elements pair operations 

We define two kinds of elements pair operations over a series of sets. 

One is called elements pair separation, which is to divide a set into two sets 

such that any pair of elements in the original set will fall into two different sets; 

the other is called elements pair coalition, which is to merge a pair of 
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elements in the same set into a single element. Their formal definitions are 

given below. 

Elements Pair Separation: For any set
1

{ , , ,..., }
m

s a b x x=  in F which 

covers a pair of elements a and b, we replace the set s by separating the two 

elements into two different sets
1

{ , ,..., }
a m

s a x x= and
1

{ , ,..., }
b m

s b x x= . 

Elements Pair Coalition: For any set
1

{ , , ,..., }
m

s a b x x=  in F which covers 

a pair of elements a and b, we replace the set s with the 

set
1

{ , ,..., }
ab m

s ab x x=  where the two elements a and b are merged into a new 

single elementab . 

5.6.2 The constructive algorithm for the set multi-cover problem 

We now give a constructive algorithm for finding the minimum number of 

sets in F that satisfy the integral coverage requirement vector T. This 

algorithm is based on finding the minimum k value such that the value 

of ( )
k

c F is greater than zero. 

ESMC: Exact Set Multi-Cover Algorithm 

Input: A family F of subsets over the universe N ; a coverage requirement 

vector T . 

Output: The minimum number of sets from F to satisfy the requirement T. 

1:  Set
bak

F F= . 

2:  Calculate the minimum value of k such that ( ) 0
k

c F > . 

3:  Pick any element a in the universe N. 

4:  Find all the elements
1

{ ,..., }
m

x x in N that appear with a in some set in F. 

5:  Set
0

F F= . 

6:  For i=1 to m do:     

7:    
0

F F= .                                   
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8:  For the pair of elements( , )
i

a x , we apply the Elements Pair Separation 

operation over the setF to generate a new set called
i

F . 

9:    Calculate the value of ( )
k i

c F . 

10:  End For 

11: If all of the ( )
k i

c F values where 0 i m≤ ≤ are greater than zero, we can 

deduce that there exists a set in the optimal cover which only covers the 

element a since otherwise there must exist some
i

x whose separation with the 

element a can make ( ) 0
k i

c F ≤ . So we just pick this set inF which covers a 

and contains the least number of elements. We then decrement the value of k 

by 1 and update the coverage requirement vector T, i.e., for all elements
i

x in 

the picked set we decrement each of the corresponding
i

t values by 1. Also if 

any 0
i

t ≤  we remove the element i in the universe set N. 

12: Else we pick any i such that ( ) 0
k i

c F ≤ . Then for the pair of 

elements { , }
i

a x , we apply the Elements Pair Coalition operation over the 

setF . Note that the element a has become a new single element ( )
i

ax . 

13:  Repeat step 4 to step 12 until we have picked a set fromF . 

14:  Set
bak

F F= and we repeat step 3 to step 13 until 0k = .  

 

5.6.3 Correctness Analysis 

First, according to step 2, we know that the value of k we choose 

guarantees that we only use the minimum number of sets to satisfy the 

coverage requirement.  Second, according to step 11, we know that, when 

we pick a set from F in each step, we can guarantee that the picked set must 

exist in some optimal legal ( , )k T  multi-cover sets. From this we also know 

that, when we pick this set, there must exist a legal '( 1, )k T− multi-cover 

where 'T is the updated coverage requirement vector after picking a subset 
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from F. From the above analysis, we can conclude that we do pick the 

minimum number of sets from F that satisfies the coverage requirement 

vector T. 

5.6.4 Time and Space Complexities Analysis 

The time of the ESMC algorithm can be divided into two parts. The first 

part is due to step 2, which is to calculate the minimum k value for a 

legal ( , )k T multi-cover. By using binary search, since t k tn≤ ≤ , its time 

corresponds to (log( ))O tn calculations of ( )
k

c F (c.f. Section 5.3.2). The second 

part is due to steps 4 to 12 of the algorithm which is to pick a subset from F. 

We can easily see that it takes 2( )O n calculations of ( )
k

c F . Since we need to 

pick k subsets, we need 2( )O kn evaluations of ( )
k

c F in total. So the overall 

time complexity is dependent on the time complexity for computing ( )
k

c F . 

Now according to Theorem 5.6, we have the following corollary. 

COROLLARY 5.8: By using Algorithm 5.1 for computing all ( )X

k X
p n , the 

ESMC algorithm takes * ((2 ) )nO t  time and * (( 1) )nO t + space where t is the 

maximum integer in the coverage requirement vector T. 

5.7 An Illustrating Example 

In this section, we give a very simple example to show how we calculate 

the value of ( )kc F and how the ESMC algorithm works for the given example.  

Suppose the universe {1,2,3}N = , the family of subsets over N 

is {{1,2},{1,3},{2,3}}F =  and the coverage requirement vector (2,1,1)T = . Now 

we first find the minimum k value to make a legal ( , )k T multi-cover.  This is 
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equivalent to calculating the minimum k value such that ( ) 0kc F > . Suppose 

we first test the case where 2k = . 

According to Equation (5.2), we have | |

2 2
( ) ( 1) ( )X

X N
c F n X

⊆
= − ⋅∑ . Now due to 

Equation (5.3), we have
2 2 1 | |

0 1
1 | |

( ) ( ,..., )
i i

X

X
n t
i X

n X p n n
≤ ≤ −
≤ ≤

= ∑ . Then based on these 

equations we have Table 5-2 which is to calculate
2
( )n X values for all X N⊆ . 

Table 5-2: Calculating
2
( )n X for all X N⊆  

X  
2
( )n X  

∅  
2 ( )p ∅ ∅  

{1} {1}

2 (0)p + {1}

2 (1)p  

{2} {2}

2 (0)p  

{3} {3}

2 (0)p  

{1,2} {1,2}

2 (0,0)p + {1,2}

2 (1,0)p  

{1,3} {1,3}

2 (0,0)p + {1,3}

2 (1,0)p  

{2,3} {2,3}

2 (0,0)p  

{1,2,3} {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p  

 

The next step is to compute all the
2 1 | |

( ,..., )X

X
p n n values on the right side of 

Table 5-2. By combining Equation (5.8) which computes
1 | |

( ,..., )X

q X
p n n and 

Equation (5.4) which computes ( , )b X Y , we have Table 5-3. 

Table 5-3: Calculating
2 1 | |

( ,..., )X

X
p n n for all X N⊆  

X  
2
( )n X  

∅  
2 1( ) ( , ) ( ) ( ) ( )p b p a a∅ ∅∅ = ∅ ∅ ⋅ ∅ = ∅ ⋅ ∅ =3*3=9. 

{1} (1): {1}

2 (0)p = {1}

1({1}, ) (0)b p∅ ⋅  
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                  = ({1}) ({1}, )a b⋅ ∅ = ({1}) ({1})a a⋅ =1*1=1; 

(2): {1}

2 (1)p = {1} {1}

1 1({1}, ) (1) ({1},{1}) (0)b p b p∅ ⋅ + ⋅  

          = ({1}) ({1},{1}) ({1},{1}) ({1}, )a b b b⋅ + ⋅ ∅                     

          = ({1}) [ ( ) ({1})] [ ( ) ({1})] ({1})a a a a a a⋅ ∅ − + ∅ − ⋅      

          =1*(3-1)+(3-1)*1=4; 

(3): {1}

2 (0)p + {1}

2 (1)p =1+4=5. 

{2} {2}

2 (0)p = {2}

1({2}, ) (0)b p∅ ⋅  

    = ({2}) ({2}, )a b⋅ ∅ = ({2}) ({2})a a⋅ =1*1=1. 

{3} {3}

2 (0)p = {3}

1({3}, ) (0)b p∅ ⋅  

            = ({3}) ({3}, )a b⋅ ∅ = ({3}) ({3})a a⋅ =1*1=1. 

{1,2} (1): {1,2}

2 (0,0)p = {1,2}

1({1,2}, ) (0,0)b p∅ ⋅  

               = ({1,2}) ({1,2}, )a b⋅ ∅  

               = ({1,2}) ({1,2})a a⋅ =0*0=0; 

(2): {1,2}

2 (1,0)p = {1,2} {1,2}

1 1({1,2}, ) (1,0) ({1,2},{1}) (0,0)b p b p∅ ⋅ + ⋅  

                      = ({1,2}) ({1,2},{1}) ({1,2},{1}) ({1,2}, )a b b b⋅ + ⋅ ∅  

= ({1,2}) [ ({2}) ({1} {2})] [ ({2}) ({1} {2})] ({1,2})a a a a a a⋅ − + − ⋅∪ ∪  

=0*(1-0)+(1-0)*0=0; 

(3): {1,2}

2 (0,0)p + {1,2}

2 (1,0)p =0+0=0. 

{1,3} (1): {1,3}

2 (0,0)p = ({1,3}) ({1,3})a a⋅ =0*0=0;                       

(2): {1,3}

2 (1,0)p = {1,3} {1,3}

1 1({1,3}, ) (1,0) ({1,3},{1}) (0,0)b p b p∅ ⋅ + ⋅  

= ({1,3}) ({1,3},{1}) ({1,3},{1}) ({1,3}, )a b b b⋅ + ⋅ ∅                

=0*1+1*0=0; 

(3): {1,3}

2 (0,0)p + {1,3}

2 (1,0)p =0+0=0. 

{2,3} {2,3}

2 (0,0)p = ({2,3}) ({2,3})a a⋅ =0*0=0. 

{1,2,3} (1): {1,2,3}

2 (0,0,0)p = ({1,2,3}) ({1,2,3})a a⋅ =0*0=0;                        

(2): {1,2,3}

2 (1,0,0)p  

   = {1,2,3} {1,2,3}

1 1({1,2,3}, ) (1,0,0) ({1,2,3},{1}) (0,0,0)b p b p∅ ⋅ + ⋅  
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   = ({1,2,3}) ({1,2,3},{1}) ({1,2,3},{1}) ({1,2,3})a b b a⋅ + ⋅   

   =0*0+0*0=0;             

(3): {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p =0+0=0. 

  

Having calculated all the
2
( )n X values which are shown on the right side 

of Table 5-3, we can 

obtain | |

2 2
( ) ( 1) ( ) 9 5 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = >∑ , which means 

that there are two 2-tuples that can satisfy the coverage requirement.  Since 

the maximum integer in the coverage requirement vector T is 2, we know the 

minimum k value we need to pick is 2. Actually, by calculating the 
1
( )c F value, 

which is | |

1 1
( ) ( 1) ( ) 3 3 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = − <∑ , we can 

also conclude that the minimum k value is 2 since picking one set from F 

does not meet the coverage requirement. 

Now according to the ESMC algorithm, we briefly show in the following 

how to pick the two sets that can satisfy the coverage requirement T. 

First, according to step 3, we pick the element 1 in the universe N. Then 

we can find the elements
1 2

{ 2, 3}x x= = that can appear with 1 in some 

subsets in F. Now according to step 6 to step 10, we obtain 

1
{{1},{2},{1,3},{2,3}}F =  and

2
{{1,2},{1},{3},{2,3}}F = . From this we can 

calculate
2 1
( ) 0c F ≤ and

2 2
( ) 0c F ≤ . Then according to step 12, we choose to 

merge the elements pair (1,2) . Now since the new single element (12) does 

not appear with any other elements in the set F, we have 0m = . Then 

since
2 0 2
( ) ( ) 2 0c F c F= = > , according to step 11, we just pick the first subset 
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in F which is {1,2} . Similarly, we can pick the second subset in F which 

is {2,3} . This finishes the execution of the ESMC algorithm. 

5.8 A Polynomial Time Polynomial Space Approximation 

Algorithm for the MLSAT Problem 

In this section, we will give a polynomial time polynomial space algorithm 

for the MLSAT problem. First, we know the set multi-cover problem can be 

exactly solved in * ((2 ) )nO t  time and * (( 1) )nO t + space where t is the maximum 

integer in the coverage requirement vector T.  Note that since finding and 

storing all the link independent sets takes * (2 )nO time and * (2 )nO space, we 

know that exactly solving the MLSAT problem also takes * ((2 ) )nO t  time 

and * (( 1) )nO t + space. Thus if we partition all the links into
2

/ log
t

n n   groups 

where each group contains 
2

log
t
n links, we can find the minimum number of 

timeslots to schedule all the links in each group with polynomial time and 

polynomial space. Then similar to Section 4.4.1, we know this algorithm can 

give a polynomial time polynomial space algorithm for the MLSAT problem 

with approximation ratio ( / log )O n n . 

Compared with the approximation algorithm given in [137], our 

approximation ratio is independent of the links’ lengths. Note that, the 

approximation ratio given in [137] could become ( )O n in the worst case. 
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Chapter 6 A Nonlinear Power Assignment based 

Link Scheduling Algorithm for the MFSTT Problem 

in Wideband Networks 

6.1 Ultra-Wideband Networks and Its SINR Model 

The MFSTT problem in narrowband networks has been studied in [56,58], 

but it has not been examined in (ultra)-wideband networks. So in this chapter, 

we consider the MFSTT problem for ultra-wideband networks (UWB) which 

are drawing increasing attention in the wireless communications area due to 

their many promising features [116]. Specifically, since a UWB network is an 

inherent spread-spectrum network [114], the aggregate interferences caused 

by other simultaneous transmissions at the intended receiver can be reduced 

by a processing gain factor, thus making it very competitive in wireless 

communications (potentially improved throughput capacity while not 

sacrificing the energy-efficiency and the quality-of-service) [117]. And unlike 

the narrowband networks, where the interference range is larger than the 

transmission range, as will be shown later, the interference range of UWB 

networks around the receiver is much shorter than the transmission range, 

making more simultaneous transmissions at the receiver possible. For more 

information about UWB networks, please refer to [116].  

Also recently, one of the main findings in UWB network research [115] is 

that the design of optimal MAC is independent of the choice of routing. Thus 

the use of ultra-wideband can re-introduce the notion of layer separation 

between these two layers just like the traditional wire line networks. This will 
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make the resultant network more scalable and it will certainly be a good 

choice for the generic sensor networks. Furthermore, UWB is multi-path 

fading resistant, and as the following SINR model shows, it is more flexible in 

terms of adapting its parameters to meet different requirements (e.g., change 

in processing gain). 

In our analyses, we also adopt the physical signal-to-interference-plus-

noise ratio (SINR) model, which means that only when the received power is 

above the SINR ratio threshold can the message be successfully received. 

The SINR model in UWB networks was first given in [120], and it is different 

from the narrowband case in [56,58]. Specifically, the achieved signal-to-

interference-plus-noise ratio at the receiver of link i can be represented as:      

2

1,

( , )

[ ( , ) ]

i i j

i

i f k k j
k k i

P d x x
SINR

R T P d x x

α

α
β

η σ
= ≠

= ≥
+ ∑

 

 where iP denotes the average transmission power of link i ’s transmitter ix ; 

iR  denotes link i ’s data rate, and 1/ ( )
i s h c

R N N T= ; sN denotes the number of 

pulses per symbol; hN denotes the number of time slots per Pulse Repetition 

Interval (PRI); cT denotes the pulse duration;  fT is the PRI, and fT = hN cT ; 2σ  

is a parameter depending on the shape of  the monocycle; η  is the 

background noise plus interference from other non-UWB systems; 

( , )i jd x x denotes the Euclidean distance between transmitter ix and jx ; α  is 

the path loss exponent and β is the SINR threshold. 

If we set 2( )fN Tη σ= and 21 ( )i fm R T σ= , the above SINR model can be 

transformed to a form similar to the spread-spectrum SINR model given in 

Chapter 1 (cf. Inequality (1.1)): 
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1,

( , )

( , )

i i j

k k j
k k i

P d x x
SINR

mN P d x x

α

α

β

= ≠

= ≥
+ ∑

 (6.1) 

Here m is the processing gain of the UWB network. If m=1, this becomes 

a traditional narrowband SINR model, as used in [56,58]. The processing 

gain in (ultra)-wideband networks can be regarded as the signal’s ability to 

combat the aggregate interferences. So in this chapter, we will see how this 

processing gain can help to reduce the scheduling length of the MFSTT 

problem. In addition, since all the previously used nonlinear power 

assignment based scheduling algorithms have not taken care of their total 

power consumption, we will also pay attention to the energy consumption 

analysis of the nonlinear power assignment.  

The rest of this chapter is as follows. In Section 6.2, for both narrowband 

and wideband networks, we explore different power assignments and their 

impacts on pair-wise interference models which play a very important role in 

the design of wireless protocols and wireless network capacity analyses. In 

Section 6.3, we continue to compare the narrowband and wideband networks 

in terms of power limitations in improving the spatial reuse. In Section 6.4, in 

the context of wideband networks, we will give a nonlinear power assignment 

based link scheduling algorithm for the MFSTT problem, with the guarantee 

that all the simultaneous transmissions can be successfully scheduled based 

on the SINR model. Specifically, our algorithm proves that the scheduling 

length for the MFSTT problem for wideband networks is (log( ) log )O n m n⋅ . 

This result represents an improvement over that for the narrowband networks. 
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In the same section, we also analyze the total power consumption of our 

nonlinear power assignment based scheduling algorithm. In particular, we 

show that the poly-logarithmic scheduling length was achieved at the 

expense of the exponential total power consumption. And in wideband 

networks, the upper bound of the total power consumption can be reduced by 

a processing gain factor. Section 6.5 concludes the chapter and discusses 

some future tasks that could make our algorithm practical. 

6.2 Protocol Interference Models in Narrowband and Wideband 

Networks 

In this section, we focus on the impact of the power assignments on the 

pair-wise interference models, which was often neglected in wireless 

scheduling algorithm design. Specifically, we will show how the protocol 

interference models introduced in Chapter 1 for narrowband networks behave 

in wideband networks. Through this comparison, we will find that there is 

more room for wideband networks to take advantage of power control to 

reduce the scheduling length. We first consider narrowband networks. 

6.2.1 Protocol interference models in narrowband networks 

According to inequality (1.4), in order to ensure a successful 

transmission ( , )s rx x , the protocol interference model with constant power 

assignment in narrowband networks is: 

                                      1/( , ) ( , )s r s rd y x d x xαβ> ⋅                      



104 

 

 

Since in narrowband networks, usually the threshold β >1 and 

consequently the range 1/ ( , )s rd x xαβ ⋅ is greater than the sender’s 

transmission range ( , )s rd x x . Thus to ensure a successful transmission, a 

disc of radius at least 1/ ( , )s rd x xαβ ⋅ around each successful receiver rx  must 

not contain other transmitters. So we denote 1/ ( , )s rd x xαβ ⋅  as the interference 

range (or exclusion region) around each receiver rx . For example, in Figure 

6-1(a), assuming constant power assignment, since ( , )s rd x y < ( , )s rd y y , 

transmission ( , )s ry y is not successful; whereas, since ( , )s rd y x > ( , )s rd x x , 

transmission ( , )s rx x is successful. With this we can distinguish the other 

graph-based interference models from the protocol interference model which 

was considered the same in [10]. Notice that the protocol interference model 

originates from the physical SINR model, and so it can reflect the physical 

reality including the “capture effect” (cf. Section 1.1.1), while all the other 

graph-based interference models cannot reflect this reality. For example, 

since node rx  is in the transmission range of sy , it suffers from the secondary 

interference problem, so transmission( , )s rx x is not successful. 

 

(a) ( , ) 1, ( , ) 4, ( , ) 2, ( , ) 3s r s r s r s rd x x d y y d x y d y x= = = =  

                                  

(b) ( , ) 2, ( , ) 4, ( , ) 1, ( , ) 1s r s r s r s rd x x d y y d x y d y x= = = =  
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(c) ( , ) 1, ( , ) 1, ( , ) 1, ( , ) 3s r s r s r s rd x x d y y d x y d y x= = = =  

 

(d) ( , ) 2, ( , ) 4, ( , ) 3, ( , ) 3s r s r s r s rd x x d y y d x y d y x= = = =  

                       Figure 6-1: Pair-wise transmissions examples     

Now according to inequality (1.5), in order to ensure a successful 

transmission ( , )s rx x , the protocol interference model with linear power 

assignment in narrowband networks is: 

                                      1/( , ) ( , )s r s rd y x d y yαβ> ⋅  

This protocol model was used in [64]. But compared with the first protocol 

interference model, it has attracted much less attention mostly because many 

capacity analysis papers assume the constant power assignment. Note that 

here the interference range of receiver rx has been changed 

from 1/ ( , )s rd x xαβ ⋅ to 1/ ( , )s rd y yαβ ⋅ . For example, in Figure 6-1(a), assuming 

linear power assignment, since ( , )s rd y x < ( , )s rd y y , transmission ( , )s rx x is 

not successful. And since ( , )s rd x y > ( , )s rd x x , transmission ( , )s ry y  is 

successful. 

6.2.2 Protocol interference models in wideband networks 

Now we turn to UWB networks. According to inequality (6.1), in order to 

ensure a successful transmission ( , )s rx x , the following inequality must hold. 
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( , )

( , )
x s r

y s r

P d x x
N P d y x m

α

α

β
≥

+
     ⇒    

1 1( , )
( ) ( )

( , )
ys r

s r x

Pd y x
d x x m P

α α
β

> ⋅                 (6.2) 

We first consider the protocol interference model with constant power 

assignment in UWB networks. With the constant power assignment, by 

inequality (6.2), we have  

                                1/( , ) ( / ) ( , )s r s rd y x m d x xαβ> ⋅                                   (6.3) 

The interference range 1/ ( , )s rd x xαβ ⋅ around the receiver rx  is replaced 

with 1/( / ) ( , )s rm d x xαβ ⋅ . Hence the interference range becomes smaller than 

the transmission range.  

For example, in Figure 6-1(a), ifα =4, β =2, m=100, since  

( , )s rd x y =2> 1/( / ) ( , )s rm d y yαβ ⋅ � 1.5, the previously unsuccessful 

transmission( , )s ry y with constant power assignment in narrowband networks 

becomes successful in UWB networks. As a result, the two transmissions can 

be scheduled in parallel. 

Second, we take a look at the protocol interference model with linear 

power assignment in UWB networks. Also by inequality (6.2), we have 

1( , ) ( , )
( )

( , ) ( , )
s r s r

s r s r

d y x d y y
d x x m d x x

α
β

> ⋅  ⇒  
1

( , ) ( ) ( , )ms r s rd y x d y yαβ> ⋅                      (6.4) 

The interference range around receiver rx is changed 

from 1/( / ) ( , )s rm d x xαβ ⋅ to 1/( / ) ( , )s rm d y yαβ ⋅ . For example, in Figure 6-1(a), 

if α =4, β =2, m=100, since ( , )s rd y x =3> 1/( / ) ( , )s rm d y yαβ ⋅ � 1.5, the 

previously unsuccessful transmission ( , )s rx x with linear power assignment in 
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narrowband networks becomes successful in UWB networks. So the two 

transmissions can be simultaneously scheduled. 

From the above analyses, on one hand, due to the large processing gain 

m when using the constant or linear power assignment, many unsuccessful 

simultaneous transmissions in narrowband networks become successful in 

UWB networks, thus leading to increased spatial reuse in UWB networks. On 

the other hand, as the examples in [65] have shown, even in narrowband 

networks, the unsuccessful simultaneous transmissions can also become 

successful with a proper arbitrary power assignment. For example, for Figure 

6-1(a), ifα =4, β =2, N=1, and xP =80, yP =3150, the two transmissions can be 

successfully scheduled in parallel. And for Figure 6-1(c), ifα =3, β =4, N=1, 

and xP =14, yP =64, the two transmissions can also take place simultaneously.  

6.3 Limitations of Power Control in Narrowband and Wideband 

Networks 

From the last section, it is shown that we can benefit a lot from power 

control to reduce the scheduling length in wireless networks. In this section, 

we will show that power control, however, has its limitations in improving the 

network throughput when some conditions are met. For example, for 

narrowband networks, according to Theorem 2.6, we know that for any two 

transmissions ( sx , rx ) and ( sy , ry ), if d( sx , ry ) ⋅ d( sy , rx ) ≤  2/αβ ⋅  

d( sx , rx ) ⋅ d( sy , ry ), then there exists no feasible power assignment for 

simultaneous transmissions; otherwise, there always exists a feasible power 

assignment to have a simultaneous schedule. For example, in Figure 6-1(d), 
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if α =4, β =2, and N=1, there will be no feasible power assignment to 

simultaneously schedule transmission ( sx , rx ) and ( sy , ry ). The same is true 

of Figure 6-1(b). 

We now give another theorem to show that, although there is much more 

room for UWB networks to reduce the scheduling length through power 

control, the power control strategy also has its limitations in wideband 

networks. 

THEOREM 6.1. In UWB (or any spread-spectrum) networks, for any two 

transmissions ( sx , rx ) and ( sy , ry ), if 

 d( sx , ry ) ⋅ d( sy , rx ) > 2/( / )m αβ ⋅d( sx , rx ) ⋅ d( sy , ry ), there always exists a 

power assignment to schedule these transmissions in parallel; no feasible 

power assignments for simultaneous schedule, otherwise. 

PROOF. Similar to the proof of Theorem 2.6, if the two transmissions can 

be successfully scheduled, the following two inequalities must follow: 

      
( , )

( , )
x s r

y s r

P d x x
N P d y x m

α

α

β
≥

+
              

( , )

( , )
y s r

x s r

P d y y

N P d x y m

α

α

β
≥

+
 

From these inequalities, we have 

            
( , ) ( , )

( , ) ( , )
s r s r

y x y

s r s r

d x x d x ym
P P P

m d y x d y y

α α

α α

β
β

⋅ < < ⋅ ⋅  

Therefore, if 
( , ) ( , )

( , ) ( , )
s r s r

s r s r

d x x d x ym
m d y x d y y

α α

α α

β
β

⋅ < ⋅ , there always exists a power 

assignment to simultaneously schedule these two transmissions; otherwise, 

there is no valid power assignment to give a parallel schedule. This ends the 

proof.  

For example, in Figure 6-1(d), if α =4, β =2, N=1, and m=10, 

xP = yP =1000, the two transmissions can be simultaneously scheduled.  
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Therefore, given any two transmissions in narrowband networks where 

power control cannot guarantee a simultaneous schedule, they can be 

scheduled in parallel in UWB networks as long as 

d( sx , ry ) ⋅d( sy , rx )> 2/( / )m αβ ⋅d( sx , rx ) ⋅d( sy , ry ). Given this result, we will 

discuss how these benefits can help to reduce the scheduling length for the 

MFSTT problem in the context of (Ultra)-Wideband networks in the next 

section. 

6.4 The NPAW Scheduling Algorithm for the MFSTT Problem in 

Wideband Networks 

We consider an arbitrarily distributed network with nodes 

X={ 0x , 1x ,…, 1nx − } in the Euclidean plane, and one of them is a sink node. 

Here by a sink node, we mean there are no outgoing edges (links) from this 

node. For any links ijf =( ix , jx ), ( )ijfA =d( ix , jx ) denotes the distance between 

node ix and node jx . Now before going into the details of the scheduling 

algorithm, it is important to distinguish between link length class and link 

length class set which are used in our algorithm. A link length class is a set of 

transmission links such that the lengths of these links differ by at most a 

factor of 2 (line 8 of the main algorithm). A number of link length classes form 

a link length class set. The three kinds of link length class set L, S and I used 

in our algorithm, and their relationships, are described in Figure 6-2. 
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  S0   S1  …   Sj Sj+1  …   SkSk+1   S2  … 

  L0   L1   L2   L3   L4  …   Lk  …  L∆-1 L : 

 S : 

  I :   I0   I1   I2  …   Ik  …   Iq

 

Figure 6-2: Three kinds of link length class set and their relationships 

In Figure 6-2, Lk, Sk and Ik denote the respective length classes in each 

set. L is renamed to S because the empty length classes (containing no 

transmission links) in L were deleted (line 9 of the main algorithm). For 

example, the length classes L1 and L3 were deleted. S is renamed to I 

because in each round, the scheduling algorithm only selects the length 

classes in S with a certain length class separation. The separation value is 

log(4βn) in [58] but we use log(3nβ/m) in our algorithm (line 11 of the main 

algorithm). The solid arrows from S to I mean we select the length classes 

S0SjSk… in the first round, while the dashed arrows mean we select the length 

classes S1Sj+1Sk+1… in the second round (the details are in Table 6-1 and 

Table 6-2). Note that only links in Lk have the property 12 ( ) 2k k
ijf +≤ <A , but 

not those in Sk or Ik (because 12k + upper bound would not hold for them). 

Our scheduling algorithm also uses a nonlinear power assignment. For 

convenience, we refer to the scheduling algorithm in [55,56,58,59] as “NPAN” 

(nonlinear power assignment for narrowband networks), and our algorithm 

“NPAW” (nonlinear power assignment for (ultra)-wideband networks). Note 

that only the works in [56,58] directly investigate the MFSTT problem. Our 

main algorithm is different from [56] in the sense that we start the scheduling 

process after the tree topology has been constructed. Thus, compared with 
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the result in [56], the scheduling length upper bound can be reduced by 

a (log )O n factor. In addition, we need to point out that, as shown in step 1 to 

step 6 in the main algorithm, if the remaining single node in the established 

tree topology is not the designated sink node, we just need to add an 

outgoing link from this single node to the pre-determined sink and then to 

remove the outgoing edge (link) from the sink node. 

The challenging part of the algorithm is how to schedule all the links both 

successfully and efficiently. Just as Figure 6-2 has demonstrated, we first 

partition all the links into length classes of L which is then renamed to S (lines 

8 and 9). Then we use the subroutine Schedule() to schedule the links in 

length classes log(3 / )h n m kS β⋅ + in the kth round (lines 10, 11 and Table 6-2). The 

trick of this algorithm lies in two aspects: one is the nonlinear power 

assignment scheme (line 14 of the subroutine). This power assignment uses 

a power scaling factorτ which depends on the position of the scheduling links 

in link length class set I (lines 1 and 2 of the subroutine and Figure 6-2). 

Because short links have a highτ  value and long links have a low τ value, 

this power assignment can increase the power of the short links relative to 

the long ones so that it makes simultaneous transmissions of very different 

lengths possible. Furthermore, because this power assignment takes the 

parameter n (total number of the nodes) into account, it can bound the 

aggregate interferences through the properly designed protocol interference 

model (line 10 of the subroutine). But as discussed in Section 6.2, traditional 

pair-wise protocol interference models cannot guarantee the successful 

transmission due to the aggregate interference effect. 
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 The second part of the trick is the selection of the simultaneous 

transmitting links in length class set I (Figure 6-2). With the proper length 

class separation, for each link i , the algorithm can bound the total number of 

blocking links for this link which is (log )O n  (line 11 of the main algorithm and 

line 10 of the subroutine), thus guaranteeing that after at most ( (log )O n ) 

timeslots, all the links can be successfully scheduled. Therefore the poly-

logarithmic scheduling length can be arrived at. Here for the blocking links of 

link i , we mean the links which can not be simultaneously scheduled with link 

i . 

6.4.1 Correctness analysis 

Compared with narrowband networks, there are more links that can be 

scheduled in each timeslot in wideband networks (link 10 in the Subroutine). 

In this case, guaranteeing the successful simultaneous transmissions in the 

same timeslot is of fundamental importance. 

Main Algorithm:  A Nonlinear Power Assignment based Link Scheduling 

Algorithm for (Ultra)-Wideband Networks (NPAW) 

Input: An arbitrarily distributed set of nodes X 

Output: A data gathering tree with the number of timeslots t to schedule all 

the links in this tree under the SINR model 

1:  F =∅  

2:  While |X|>1 do 

3:  For each ix X∈ find its closest neighbor jx such that 

F :=F ∪ ijf ;     { ijf is a directed edge from ix to jx .} 

4:  If F contains bi-directional edges then remove one edge of them; {To 

makeF a directed nearest neighbor forest} 

5:  Delete all the nodes from node set X except the sink node in each tree of 
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the directed nearest neighbor forestF ;   

6:  End While  {Step 2 to step 6 is to construct a tree topology} 

7: Define a constant υ :=4N and a variable μ which is a function of the 

processing gain m such that μ :=2+ε +4 ⋅
1 ( 1)

( 2)(72) m
α αβα

α
−
−⋅ ;  α >2;  t:=0;   

{N is the background noise from the Inequality (6.1) and ε is a small positive 

parameter.}                               

8: Partition all the transmission links in F  into length class 

set 0 1 1{ , ,..., }L L L LΔ−= , such that kL contains all links ijf of length 12 ( ) 2k k
ijf +≤ <A ; 

{ maxlog( )lΔ = ⎡ ⎤⎢ ⎥ , and maxl means the maximum link length inF .} 

9: Delete all empty length classes kL in F and rename L to 

0 1{ , ,..., ,...}kS S S S= such that kS is the thk smallest non-empty length-class in 

S ; 

10:  For k=0 to log(3 / ) 1n mβ −  do 

11: Schedule all the links 

            /log(3 / ) 1

log(3 / )0

n n m

ij h n m khf Sβ
β

−

⋅ +=∈∪  

            using subroutine Schedule(); 

12: End For 

13:  Return t 

Subroutine Schedule(): 

1: Let rF  be the set of links to be scheduled, rename these link length 

classes in S to 0 1{ , ,..., }qI I I I=  with at most q+1 length classes where 

q= / log(3 / ) 1n n mβ −⎡ ⎤⎢ ⎥ . kI is the thk smallest  length-class in I; {line 11 of the 

main algorithm} 

2: for each uvf ∈ kI do ( ) : 1ux q kτ = − + ;   

{Links within the smallest length class 0I have the highest τ  

value / log(3 / )n n mβ⎡ ⎤⎢ ⎥ , and links within the largest length class qI have 

the lowest τ  value 1.} 

3: while rF ≠ ∅do 
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4: : ;tE = ∅  

5: Consider all ij rf F∈ in an increasing order of their lengths 

6:     Boolean:=true; 

7:     If tE ≠ ∅  

8:            For each link kl tf E∈  

9:                  : ( ) ( )ik i kx xδ τ τ= − ; 

10:               if ikδ =0 and d( ix , lx ) *( )ijfμ≤ ⋅ A   

               or  if 0ikδ ≠ and d( ix , lx ) ( 1)/ *(3 / ) ( )ik

ijn m fδ αβ +≤ ⋅ A  

                     Boolean:=false;   

11:         End For 

12:    End If 

13:    If Boolean==True then : { };t t ijE E f= ∪  \ { }r r ijF F f=  

14: Schedule all ij tf E∈ in timeslot t  with the transmission power 

    ( ) *( ) : (3 / ) ( )ix
i ijP x n m fτ αυ β= ⋅ A  

15: t =t +1; 

16:  End While 

 

LEMMA 6.2: Consider a scheduled link xf with intended sender sx and 

receiver rx . Let ( )r iI y  be the interference caused at rx by simultaneously 

transmitting nodes iy for which ( ) ( )i sy xτ τ< . It holds 

that ( ) 1( ) (3 / ) sx
r iI y n m τυ β −≤ . 

PROOF: In our main algorithm, because every node iy transmits 

messages to its nearest neighbor, we have d( iy , rx ) ( )yf≥ A . Hence the 

interference at rx caused by iy is at most 

( )r iI y =
( )(3 / ) ( )

( , ) ( )

iy
yi

i r y

n m fP
d y x f

τ α

α α

υ β ⋅
≤

A
A

( ) 1( )3 3( ) ( ) si xyn n
m m

ττβ βυ υ −= ≤ . 
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LEMMA 6.3: Consider a scheduled link xf with intended sender sx and 

receiver rx . Let ( )r iI y  be the interference caused at rx by simultaneously 

transmitting nodes iy for which ( ) ( )i sy xτ τ> . It holds 

that ( ) 1( ) (3 / ) sx
r iI y n m τυ β −≤ . 

PROOF: Assume for contradiction that there exists a 

node iy with ( ) ( )i sy xτ τ> and ( ) 1( ) (3 / ) sx
r iI y n m τυ β −> . Then 

( )r iI y =
( )(3 / ) ( )

( , ) ( , )

iy
yi

i r i r

n m fP
d y x d y x

τ α

α α

υ β ⋅
≤

A
( ) 13( ) sxn

m
τβυ −>  

From this, we have ( 1)/( , ) (3 / ) ( )is

i r yd y x n m fδ αβ +< ⋅ A . 

However, this contradicts the definition of our algorithm. In line 10 of the 

subroutine, if node iy has been scheduled (because it has short link length, 

line 5 of the subroutine), from the above inequality, node sx should not have 

been scheduled, which establishes the contradiction. Therefore, 

( ) 1( ) (3 / ) sx
r iI y n m τυ β −≤  holds.  

LEMMA 6.4: Consider a scheduled link xf with intended sender sx and 

receiver rx . Let 0

rI  be the total interferences caused at rx by simultaneously 

transmitting nodes iy for which ( ) ( )i sy xτ τ= . The following holds: 

 ( ) 1 ( )0 ( / 3) ( / ) (3 )s sx x
rI m nτ τυ β −≤ ⋅ ⋅ . 

PROOF: The proof of this lemma is similar to that of Lemma 4.4 in [58]. 

The main idea is that because the lengths of the links in the same length 

class differ by at most a factor of 2, according to a simple geometric area 

argument, the blocking links must be bounded by a certain number. The 

difference is that we change the ring width from 
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1
2 ( 3) ( )xfμ − ⋅ A to 1

2 ( 2 ) ( )xfμ ε− − ⋅ A . And more importantly, the μ value is 

greatly reduced due to the introduction of the processing gain m in the 

denominator. Thus the blocking links in the same length class are greatly 

reduced. Plugging in the value of μ in line 7 of the main algorithm, the results 

follow.  

THEOREM 6.5: For an arbitrary timeslot t, all scheduled transmissions 

tE in t are received successfully by the intended receivers, and thus the 

computed schedule is correct. 

PROOF: Consider a scheduled link xf with intended sender sx and 

receiver rx . The aggregate interferences at this receiver rx can be calculated 

through Lemmas 6.2, 6.3 and 6.4.  

By Lemmas 6.2 and 6.3, we know that for 

all iy with ( ) ( )i sy xτ τ> and ( ) ( )i sy xτ τ< , the interference ( )r iI y is bounded 

by ( ) 1(3 / ) sxn m τυ β − . Hence, because there are at most n nodes in these sets, it 

holds that 

( ) 1 ( ) 1 ( )3

: ( ) ( )

( ) ( ) ( ) (3 )
3

s s s

i s i

x x xn
mr i

y x y
I y n n

m
τ τ τβ

τ τ

υ βυ − −

≠
≤ ⋅ = ⋅ ⋅∑

 

Therefore the aggregate interference at rx is 

( ) 1 ( ) ( ) 1 ( )( / 3) ( / ) (3 ) ( / 3) ( / ) (3 )s s s sx x x x
rI m n m nτ τ τ τυ β υ β− −= ⋅ ⋅ + ⋅ ⋅  

( ) 1 ( )2 ( / 3) ( / ) (3 )s sx xm nτ τυ β −= ⋅ ⋅ ⋅  

And SINR at rx is 

( )

( ) 1 ( )

(3 / ) ( ) / ( )

2 ( / 3) ( / ) (3 )

s

s s

x
x x
x x

n m f f
SINR

N m n

τ α α

τ τ

υ β
υ β −

⋅ ⋅
=

+ ⋅ ⋅ ⋅
A A

 

Since υ :=4N (line 7 of the main algorithm) 
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( )

( ) 1 ( )

(3 / )
2 ( / 3) ( / ) (3 )

s

s s

x

x x

n m
SINR

N m n m

τ

τ τ

υ β β
υ β −

⋅
= ≥

+ ⋅ ⋅ ⋅  

From this, we conclude that the computed schedule is correct. 

6.4.2 Efficiency analysis 

COROLLARY 6.6: In each timeslot, the blocking links in the same length 

class in the NPAW algorithm are strictly fewer than the deleted links in the 

NPAN-INFOCOM06 algorithm in [58]. 

PROOF:  This conclusion is from the proof of Lemma 6.4.  

LEMMA 6.7: In each timeslot, the blocking links in different length classes 

in the NPAW algorithm are fewer than or at most equal to the deleted links in 

the NPAN-INFOCOM06 algorithm in [58]. 

PROOF:  From line 10 of the subroutine, on one hand, if the difference of 

the power scaling factors between different length classes is the same, 

because we have introduced the processing gain m as the denominator in the 

base, the blocking links must be fewer than its counterpart in NPAN-

INFOCOM06. On the other hand, since 

( 1)/(3 / ) ikn m δ αβ + ≤ ( /log(3 / ) 1 1)/(3 / ) n n mn m β αβ − + = /2n α , and since 

( 1)/(4 ) ikn δ αβ + ≤ ( /log(4 ) 1 1)/(4 ) n nn β αβ − + = /2n α , the deleted links must be at most equal 

to its counterpart in NPAN-INFOCOM06.  

THEOREM 6.8: The scheduling length for the MFSTT problem in (Ultra)-

Wideband networks is (log( ) log )O n m n⋅ . 

PROOF: First of all, according to Corollary 6.6 and Lemma 6.7, for each 

link in a scheduling round (each kth iteration in the for loop in line 10 of the 

main algorithm), the total number of blocking links must not 
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exceed (log )O n which is the result of the NPAN-INFOCOM06 algorithm. 

Hence, after at most (log )O n timeslots, all the transmission links that remain 

to be scheduled in the kth scheduling round can be successfully scheduled. 

And since there are at most log(3 / )n mβ scheduling rounds, the total 

scheduling length of this algorithm is: 

(log ) log(3 / ) (log( / ) log )O n n m O n m nβ⋅ ∈ ⋅ . 

6.4.3 Total power consumption analysis 

In this section we will analyze the total power consumption for the NPAN-

INFOCOM06 algorithm and our NPAW algorithm. First, we will give the 

analysis for the NPAN-INFOCOM06 algorithm [58]. 

THEOREM 6.9: For the strong connectivity scheduling algorithm for 

narrowband networks, i.e., NPAN-INFOCOM06, the lower bound of the total 

power consumption is ( 2 )nnΩ ⋅  ; and the upper bound of the total power 

consumption is 2( 2 )nO n α⋅ , where n is the number of the nodes. 

PROOF: In the NPAN-INFOCOM06 algorithm, only links in link length 

class log(4 )h n kS β⋅ + can be simultaneously scheduled in the kth scheduling round 

(k is from 0 to log(4 ) 1nβ − , represented by the columns of Table 6-1). And h 

is from 0 to / log(4 ) 1n nβ − (represented by the rows of Table 6-1). In 

particular, let’s consider the link length classes kS and log(4 )n n kS β− + , which are 

the shortest length class and the longest length class in the kth scheduling 

round, respectively.  
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According to Figure 6-2, suppose the length class kS is mapped 

from uL ,we have u k≥ ; And suppose the length class log(4 )n n kS β− + is mapped 

from log(4 )n n vL β− +  ,we have v u k≥ ≥ . According to the power scaling factorτ of 

their algorithm, length class kS has the highestτ value / log(4 )n nβ ; and length 

class log(4 )n n kS β− + has the lowestτ value, of 1. So according to the nonlinear 

power assignment scheme in the algorithm, the power ( )kP S assigned to the 

links in kS has the property 

/log(4 ) /log(4 ) ( 1)(4 ) 2 ( ) (4 ) 2n n u n n u
kn P S nβ α β αυ β υ β +⋅ ≤ < ⋅ ⇒

( 1)2 2 ( ) 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅  

The power log(4 )( )n n kP S β− + assigned to links in log(4 )n n kS β− + has the property 

1 log(4 )

log(4 )( ) (4 ) (2 )n n v
n n kP S n β α

β υ β − +
− + ≥ ⋅ ⋅     and 

1 log(4 ) 1

log(4 )( ) (4 ) (2 )n n v
n n kP S n β α

β υ β − + +
− + < ⋅ ⋅   ⇒                 

1 ( 1) 1

log(4 )2 2 / (4 ) ( ) 2 2 / (4 )n v n v
n n kn P S nα α α α α α

βυ β υ β− + −
− +⋅ ⋅ ≤ < ⋅ ⋅                    

 Because 0≤  k ≤u≤v≤ log(4 ) 1nβ − , we have  

02 2nυ ⋅ ⋅ ≤ ( 1)2 2 ( ) 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅ ≤  

1 ( 1) 1

log(4 )2 2 / (4 ) ( ) 2 2 / (4 )n v n v
n n kn P S nα α α α α α

βυ β υ β− + −
− +⋅ ⋅ ≤ < ⋅ ⋅ ≤ (4 ) 2nn αυ β⋅ ⋅  

From this, and because the sink node of the final directed spanning tree 

transmits with the power maxN l αβ⋅ ⋅ , which could be 2nN αβ⋅ ⋅ , we get the lower 

bound of the total power consumption for the strong connectivity scheduling 

problem in narrowband networks, which is ( 2 )nnΩ ⋅ , and the upper bound of 

the total power consumption, which is 2( 2 )nO n α⋅ . 

THEOREM 6.10: For our NPAW scheduling algorithm in UWB (or any 

spread-spectrum) networks, the lower bound of the total power consumption 

is still ( 2 )nnΩ ⋅ ; but the upper bound of the total power consumption is 
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reduced to 21( 2 )n
mO n α⋅ ⋅ , where n is the number of the nodes and m is the 

processing gain. 

PROOF: With our main algorithm, only links in link length class 

log(3 / )h n m kS β⋅ + can be scheduled simultaneously in the kth scheduling round (k is 

from 0 tolog(3 / ) 1n mβ − , represented by the columns of Table 6-2); and h is 

from 0 to / log(3 / ) 1n n mβ − (represented by the rows of Table 6-2). In 

particular, let’s consider the link length classes kS and log(3 / )n n m kS β− + , which are 

the shortest length class and the longest length class in the kth scheduling 

round, respectively.  

According to Figure 6-2, suppose the length class kS is mapped from uL , 

we have u k≥ ; and suppose the length class 

log(3 / )n n m kS β− + is mapped from log(3 / )n n m vL β− +  ,we havev u k≥ ≥ . From line 2 of the 

subroutine Schedule(), the length class kS has the 

highest τ value / log(3 / )n n mβ⎡ ⎤⎢ ⎥ ,and the length class log(3 / )n n m kS β− + has the 

lowestτ value, of 1. So according to the nonlinear power assignment scheme 

in our algorithm, the power ( )kP S assigned to the links in kS has the property 

/log(3 / )( ) (3 / ) 2n n m u
kP S n m β αυ β ⎡ ⎤⎢ ⎥≥ ⋅                            and 

/log(3 / ) ( 1)( ) (3 / ) 2n n m u
kP S n m β αυ β ⎡ ⎤ +⎢ ⎥< ⋅                                    ⇒  

( 1)2 2 ( ) 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅  

The power log(3 / )( )n n m kP S β− + assigned to links in log(3 / )n n m kS β− +  has the property 

1 log(3 / )

log(3 / )( ) (3 / ) (2 )n n m v
n n m kP S n m β α

β υ β − +
− + ≥ ⋅ ⋅      and 

1 log(3 / ) 1

log(3 / )( ) (3 / ) (2 )n n m v
n n m kP S n m β α

β υ β − + +
− + < ⋅ ⋅   ⇒              

( ) 1 ( 1) 1

log(3 / )2 / (3 / ) ( ) 2 / (3 / )n v n v
n n m kn m P S n mα α α α

βυ β υ β+ − + + −
− +⋅ ≤ < ⋅  

Because 0≤  k ≤u≤v≤ log(3 / ) 1n mβ − , we have  



121 

 

 

0 ( 1)2 2 2 2 ( ) 2 2n n u n u
kP Sα αυ υ υ +⋅ ⋅ ≤ ⋅ ⋅ ≤ < ⋅ ⋅ ≤

( ) 1 ( 1) 1

log(3 / )2 / (3 / ) ( ) 2 / (3 / )n v n v
n n m kn m P S n mα α α α

βυ β υ β+ − + + −
− +⋅ ≤ < ⋅ ≤

(3 / ) 2nn m αυ β⋅ ⋅  

From this, we get the lower bound of the total power consumption for the 

MFSTT problem in (Ultra)-Wideband networks is ( 2 )nnΩ ⋅ , and the upper 

bound of the total power consumption is 21( 2 )n
mO n α⋅ ⋅ . 

Table 6-1: Link length classes scheduling (in order) in narrowband networks 

(from left to right, from top to bottom). 

0S  log(4 )nS β  2log(4 )nS β     …
log(4 )n nS β−  

1S  log(4 ) 1nS β +  2log(4 ) 1nS β +     …
log(4 ) 1n nS β− +  

 …  …  …    …  … 

kS  log(4 )n kS β +  2log(4 )n kS β +
   …

log(4 )n n kS β− +  

 …  …  …    …  … 

log(4 ) 1nS β −  2log(4 ) 1nS β − 3log(4 ) 1nS β −     …
1nS −  

 

Table 6-2: Link length classes scheduling (in order) in wideband networks 

(from left to right, from top to bottom). 

0S  log(3 / )n mS β  2log(3 / )n mS β    … 
log(3 / )n n mS β−  

1S  log(3 / ) 1n mS β +  2log(3 / ) 1n mS β +    … 
log(3 / ) 1n n mS β− +  

 …  …  …   …  … 

kS  log(3 / )n m kS β +  2log(3 / )n m kS β +
  … 

log(3 / )n n m kS β− +  

 …  …  …   …  … 

log(3 / ) 1n mS β −  2log(3 / ) 1n mS β − 3log(3 / ) 1n mS β −    ……
1nS −  

    

From the above two theorems, we can see that the poly-logarithmic 

scheduling length comes at the expense of exponential total power 
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consumption. But compared with narrowband networks, by Theorem 6.10, we 

can see that the upper bound of the total power consumption can be reduced 

by a processing gain factor in (Ultra)-Wideband networks.  

6.5 Concluding Remarks 

In this chapter, we show that the scheduling length for the MFSTT 

problem in the context of (Ultra)-Wideband networks is (log( ) log )O n m n⋅ . 

Compared with the currently smallest scheduling length for the MFSTT 

problem in narrowband networks ,which is 2(log )O n in [56], we can see that 

higher processing gain in wideband networks does help to reduce the 

scheduling length, especially when ( )m n= Θ . In addition, by considering the 

impact of the arbitrary power assignment on pair-wise transmissions 

scheduling, we explicitly show that when some node distance function is 

satisfied, there does not exist any power assignment for simultaneous link 

scheduling, and thus the scheduling length cannot be further improved via 

the means of power assignment. Therefore, the scheduling algorithm must 

take full advantage of the power assignment schemes so that it can 

simultaneously schedule as many links as possible without violating the 

physical SINR model. Compared to narrowband networks, we show that 

there is more room for UWB networks to take full advantage of power control 

to reduce the scheduling length. More importantly, we explicitly prove that the 

poly-logarithmic scheduling lengths derived from the nonlinear power 

assignments are gained at the expense of exponential total power 

consumption in both narrowband networks and UWB networks.  
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In order to turn our algorithm into a practical network protocol, some 

problems need to be solved first, including the following. 

 1) Although in UWB networks, the upper bound of the total power 

consumption can be reduced by a processing gain factor, the exponential 

lower bound would not change. Thus reducing the total power consumption 

without sacrificing the scheduling length is a very interesting and challenging 

task. To take up this challenge, more refined power assignment strategies, 

either a new nonlinear power assignment or some completely new power 

assignment methods may need to be designed.  

2) With the nonlinear power assignment, every transmitting node must 

know its own power scaling factorτ , which is based on some global picture, 

thus making it difficult to implement the algorithm in a distributed manner. To 

take up this challenge, implementing some randomized algorithm is a 

possible method. 

3) Our algorithm assumes one channel is used, but actually in MIMO 

networks (e.g., 802.11n), a node can be equipped with multiple radios and 

operate on multiple channels. Thus extending our algorithm to multi-radio 

multi-channel scenarios is a natural idea. 
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Chapter 7 MST_MDCS: A New Algorithm for the 

MFSTT Problem 

We have given a nonlinear power assignment based algorithm for the 

MFSTT problem in (Ultra)-Wideband networks in the last Chapter. In this 

chapter, we will give another heuristic algorithm for the MFSTT problem in the 

context of narrowband networks. As described in the NPAW algorithm, for the 

topology construction part, we iteratively connect all the nodes on the plane 

by using a nearest neighbor forest algorithm. This tree topology construction 

algorithm has also been used in the NPAN-INFOCOM06 algorithm. As for the 

latest joint link scheduling and topology control algorithm NPAN-IPSN07, it 

iteratively constructs the tree topology through the nearest component 

connector (NCC) algorithm [60,61]. This algorithm, however, is almost the 

same as the nearest neighbor forest algorithm. In addition, by using the 

graph-based interference model called in-interference degree which is to 

characterize a node’s interference by counting the number of transmitters 

whose transmission range covers this node, Fussen et al. show that, 

compared with the NCC algorithm, the minimum spanning tree (MST) 

algorithm would cause a destructive ( )O n  in-interference [60,61]. However, 

the NCC algorithm can only lead to a constant in-interference degree. Thus 

they prefer to the NCC algorithm from the graph-based interference model’s 

point of view. In this chapter, from the SINR model’s point of view, we can 

greatly lower the scheduling length by using the MST topology. 
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7.1 The MST_MDCS Algorithm for MFSTT 

We now give the MST_MDCS algorithm for the MFSTT problem. As the 

algorithm’s name shows, the proposed algorithm is based on the minimum 

spanning tree algorithm. This means that, for the topology construction part in 

the MFSTT problem, we choose to first connect all the nodes by using a 

minimum spanning tree algorithm. After the tree topology has been 

established, we seek to use the maximum directed cut based scheduling 

framework MDCS to schedule all the links in the tree. 

MST_MDCS: Joint Link Scheduling and Topology Construction for MFSTT 

Input: A set of arbitrarily distributed nodes on a plane. 

Output: A data gathering tree with the number of timeslots T to schedule all 

the links in this tree under the SINR model. 

1: Construct a directed minimum spanning tree over all the nodes; 

2: Schedule all the links in this tree using the MDCS scheduling framework; 

3:  Return the number of used timeslots T.   

     

Since the MDCS framework finds a maximum directed cut which also 

contains a maximum matching in each scheduling phase, we have the 

following theorem for the number of scheduling phases used in our joint 

topology construction and scheduling algorithm. 

THEOREM 7.1: The number of scheduling phases for our joint topology 

construction and scheduling algorithm is (log )O n . 

PROOF: By using the following two results: (1) For a graph with n edges 

and a degree k, the number of edges in a maximum matching is lower 

bounded by 4n/(5k+3) [98]; (2) The maximum degree of a minimum spanning 

tree is bounded by 6, we can easily end the proof.  
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Note that, as shown in [84], we can use a local algorithm to construct the 

MST. And the degree of this local-MST is also bounded by 6 [84]. In addition, 

even if we use maximal matching instead of maximum matching in the MDCS 

scheduling framework, Theorem 7.1 still hold because the number of edges 

in a maximal matching is lower bounded by n/(2k-1) [97]. 

 

                                (a)                                                         (b) 

Figure 7-1: a) A tree link topology constructed via a nearest component 

connector algorithm; b) A tree link topology constructed via a minimum 

spanning tree algorithm. 

7.2 Comparisons with Other Algorithms 

First of all, all the nodes are arbitrarily located on a 2000 2000m m× plane 

and we set the path loss exponent 4α = and the threshold 20β = . Compared 

with the simulation setting in Section 3.4, the reason why we set a much 

higher threshold value here is that the constructed tree topologies are very 

sparse link topologies. In this case, if we set either a very high path loss 

exponent or a very low SINR threshold, all the scheduling algorithms could 

generate very short scheduling lengths which are almost the same as the 
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maximum degree in the tree topology. Two different tree topologies have 

been shown in Figure 7-1. Specifically, Figure 7-1 (a) gives a tree topology 

iteratively constructed by the nearest component connector (NCC) algorithm 

and Figure 7-1(b) shows a tree topology constructed by using a minimum 

spanning tree algorithm over the same node set. Besides the MDCS 

scheduling framework and the LDS algorithm, we also implement the NPAN-

IPSN07 algorithm which is currently the fastest (in terms of the scheduling 

length) nonlinear power assignment based link scheduling algorithm that can 

schedule the NCC-tree (tree constructed with NCC algorithm) in time 2(log )O n  

[56]. Now since the in-interference degree (cf. Section 2.3.1) of a MST 

topology can be ( )O n , we can not use the NPAN-IPSN07 algorithm to 

schedule the links in the MST topology since the SINR constraints may not 

be satisfied [56]. So for the MST topology, we apply the MDCS and the LDS 

scheduling algorithms, and for the NCC tree, we can also apply the NPAN-

IPSN07 algorithm. But for the NPAN-IPSN07 algorithm, we must pay 

attention to the background noise value in since the scheduling length is also 

dependent on this parameter. Note that, in this algorithm, when the 

background noise ( 2) / (2 ( 1))in α β α< − ⋅ − , the SNR constraints can not be 

guaranteed by the proposed nonlinear power assignment (cf. Inequality 2.1). 

So in this simulation, since we have tested that a much larger in value can 

greatly increase the scheduling length, we set all the in as the same value 

which is a little bit larger than( 2) / (2 ( 1))α β α− ⋅ − . 

The scheduling results can be seen from Figure 7-2. From this figure we 

have the following observations: (1) the MST topology always yields much 
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shorter scheduling lengths no matter which scheduling algorithm is used; (2) 

compared with Figure 3-4, Figure 3-5 and Figure 3-6, since the MST and 

NCC tree topologies have much lower disturbanceρ − values, LDS 

generates shorter scheduling lengths; meanwhile, although the scheduling 

lengths reductions for the LDS algorithm are not that significant, the 

scheduling lengths reductions of the MDCS algorithm are quite large; (3) for 

both MST and NCC tree topologies, the MDCS algorithm always achieves the 

shortest scheduling lengths; (4) for NCC tree, compared with the NPAN-

IPSN07 algorithm, MDCS achieves a much shorter scheduling length. 

 

Figure 7-2: Comparisons of scheduling lengths over different tree topologies 
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7.3 Concluding Remarks 

In this chapter, we show that connecting wireless devices with a 

minimum spanning tree algorithm can significantly lower the scheduling 

length compared with an iteratively nearest component connector algorithm. 

This is due to the fact that MST generates shorter links, and shorter links 

obviously generate much less interferences to other links thus making more 

links scheduled in the same timeslot. One challenging task for future work is 

to design local scheduling algorithms that can schedule the links in the tree 

topology under SINR model both correctly and efficiently. 
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Chapter 8 Conclusions and Future Work 

8.1 Conclusions 

The work presented in this thesis can be largely classified into four parts. 

In the first part, we have reviewed the frequently-used interference models 

and the minimum (frame) length wireless link scheduling algorithms under the 

SINR model. The subsequent three parts are devoted for the MFSAT, 

MLSAT and MFSTT problems. Specifically, the second part covers heuristic, 

exact and approximate scheduling algorithms for the MFSAT problem; the 

third part proposes both exact and approximation algorithms for the MLSAT 

problem; and the fourth part incorporates two joint link scheduling and 

topology construction algorithms for the MFSTT problem.  

For the MFSAT problem, the heuristic maximum directed cut based 

scheduling framework MDCS differs from all the previous heuristic link 

scheduling algorithms in two aspects. First, the MDCS framework seeks to 

find a maximum directed cut of the remaining links after finding a maximum 

link matching. All the existing heuristic scheduling algorithms, however, either 

find a maximum (maximal) link matching or a subset of the link matching. A 

large body of them even tries to directly schedule the links without first finding 

a link matching. The second difference is that the MDCS framework employs 

the link incremental scheduling algorithm together with the number of 

neighbors in the pair-wise link conflict graph as a scheduling metric. 

Extensive simulation results have shown that the MDCS framework 
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significantly outperforms all the previous heurist scheduling algorithms in 

terms of the scheduling length.  

For the MFSAT problem, by transforming it into a set cover problem, we 

also give the first exact scheduling algorithm and the first polynomial time 

approximate algorithm with a non-trivial approximation ratio.  

For the MLSAT problem, by transforming it into a set multi-cover problem, 

we also present both exact and polynomial time polynomial space 

approximation algorithms. In addition, to our knowledge, the proposed exact 

algorithm for the set multi-cover and the MLSAT problem are the first known 

exact algorithm for these two problems. And different from the approximation 

algorithm given in [137], the approximation ratio of our approximate 

scheduling algorithm is independent of the links’ lengths. 

For the MFSTT problem, we first generalize the nonlinear power 

assignment based algorithm for narrowband networks into (Ultra)-Wideband 

networks. The presented scheduling algorithm demonstrates that a large 

processing gain in wideband networks can greatly lower the scheduling 

length. Furthermore, we also prove that all the nonlinear power assignment 

based scheduling algorithms achieve their poly-logarithmic scheduling 

lengths at the expense of the total power consumption which is lower 

bounded by the exponential function of the number of the nodes or links. We 

also propose another joint link scheduling and topology construction 

algorithm for the MFSTT problem. Different from all the previous algorithms, 

this algorithm first construct the tee topology with a minimum spanning tree 

algorithm rather than the frequently used nearest neighbor forest or nearest 

component connector algorithm. The simulation results show that, the 
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proposed MST_MDCS algorithm obtains the smallest scheduling length 

across all the algorithms for the MFSTT problem. Moreover, this simulation 

results show that connecting all the nodes with the MST algorithm is superior 

to the nearest component connector algorithm and the nearest neighbor 

forest algorithm. 

8.2 Future Work 

There are many open problems in the wireless scheduling area that 

warrant further attention and investigation. Here we could only touch upon 

some of them. 

Let’s first restrict to the MFSAT, MLSAT and MFSTT problems. 

First, until the time we are writing the thesis, the hardness of the MLSAT 

problem is still open. So a rigorous proof is necessary. Second, although we 

have proposed some polynomial time polynomial space approximation 

algorithms for the MFSAT and MLSAT problems, they are centralized 

algorithms. So a local approximation algorithm where each sensor only has 

limited knowledge of the whole network is necessary for wireless ad hoc and 

sensor networks that may experience many changes dynamically. For 

example, we want a sensor node to decide its transmission power locally 

while guaranteeing higher throughput capacity and lower power consumption. 

In addition, all the joint link scheduling and topology construction algorithms 

for the MFSTT problem are also centralized algorithms, thus it entails 

distributed algorithms for practical network protocols. 

We have imposed several assumptions on the wireless link scheduling 

problems studied in this thesis. So it will be interesting to investigate some of 
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the versions without some restrictions. For example, we can consider multi-

radio multi-channel wireless networks, and we can also consider the wireless 

link scheduling with precedence constraints problem, i.e., some wireless links 

can not be scheduled before some other links.  

There are also many other challenging problems for wireless scheduling 

under the SINR model. 

First, we can consider the minimum length broadcasting (multicasting) 

scheduling with SINR constraints problems. In these problems, different from 

point to point link scheduling problems, we must ensure that all the receivers 

successfully receive the packets from the corresponding sender. These 

problems have been studied in some papers [53,110], but more work still 

need to be done. 

Second, for the joint scheduling and topology control problem, we can 

consider some other frequently used topologies in wireless networks. For 

example, we can consider the minimum length scheduling problem for the 

dominating set [87], t-spanner or a k-connectivity topology. 

Third, just as the authors did in [17], since it becomes very difficult to 

design an approximate algorithm for arbitrary link topologies, we can resort to 

designing distributed approximation algorithms for some specific link 

topologies. For example, we can take full advantage of useful properties of 

these link topologies, such as the bounded independence number (the 

number of pair-wisely non-adjacent nodes in each node’s k-hop 

neighborhood) property in growth-bounded-graph [64] to help our algorithm 

design. 
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Finally, we can also consider the joint link scheduling, power control and 

routing problems [19,20]. 
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