
Title Scheduling wireless links with SINR constraints

Author(s) Hua, Qiangsheng; 華強勝

Citation

Issue Date 2009

URL http://hdl.handle.net/10722/56036

Rights unrestricted

SCHEDULING WIRELESS LINKS WITH SINR

CONSTRAINTS

by

Hua Qiangsheng

华强胜

B. Eng.; M. Eng. C.S.U., P. R. China

A thesis submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy

at The University of Hong Kong.

July 2009

I

Abstract of thesis entitled

SCHEDULING WIRELESS LINKS WITH SINR

CONSTRAINTS

Submitted by

Hua Qiangsheng

For the degree of Doctor of Philosophy

at The University of Hong Kong

in July 2009

This dissertation investigates three link scheduling problems under the

physical interference model, or the SINR model. The first problem is called

minimum frame length link scheduling for arbitrary link topologies (MFSAT):

Given a set of arbitrarily constructed links over arbitrarily located nodes on a

plane, schedule all these links with the minimum number of timeslots such

that each link appears in at least one timeslot. The requirement for this

problem is that concurrently scheduled links must satisfy the SINR

constraints. The second problem is called minimum length link scheduling for

arbitrary link topologies (MLSAT): Different from the MFSAT problem where

each link has only a unit traffic demand (one packet to transmit), each link in

the MLSAT problem may have non-unit traffic demands, namely, we need to

schedule all the links with the minimum number of timeslots such that each

link is scheduled at least the number of times as specified by its traffic

demands. The third problem is called minimum frame length link scheduling

for a data gathering tree topology (MFSTT): Given a set of arbitrarily located

II

nodes on a plane, connect these nodes as a data gathering tree towards the

sink node. The objective of this problem is to construct the tree such that all

the links in this topology can be scheduled using a minimum number of

timeslots. The requirement for this problem is the same as that for MFSAT.

We have developed heuristic, exact and approximate link scheduling

algorithms for the MFSAT problem. For the heuristic algorithm, we have

designed a novel maximum directed cut based scheduling framework called

MDCS. Both theoretical analyses and simulation results have shown that the

MDCS scheduling framework significantly outperforms all the sate-of-the-art

heuristic link scheduling algorithms in terms of the scheduling lengths. By

applying an exact algorithm for the set cover problem, we have designed an

exact algorithm called ESA_MFSAT for the MFSAT problem. Finally, based

on the ESA_MFSAT algorithm, we give the first polynomial time polynomial

space approximate link scheduling algorithm for the MFSAT problem with

approximation ratio (/ log)O n n where n is the number of the links.

For the MLSAT problem, we first transform it into the set multi-cover

problem, and then we give a first known exact algorithm for the set multi-

cover problem. This exact algorithm can solve the MLSAT problem in

* ((2))nO t time and * ((1))nO t + space where t means the maximum traffic

demand. Based on the proposed exact algorithm, we present the first

polynomial time polynomial space approximation algorithm for the MLSAT

problem with an approximation ratio independent of the links’ lengths.

Finally, for the MFSTT problem, we have generalized a nonlinear power

assignment based link scheduling algorithm to cover also wideband networks.

We prove that the asymptotic poly-logarithmic scheduling length is achieved

III

at the expense of the exponential total power consumption in the number of

the nodes. Then, by using the MDCS scheduling framework, we show that

connecting the nodes with a minimum spanning tree algorithm rather than an

iterative nearest component connector algorithm can significantly reduce the

scheduling length.

(An abstract of exactly 501 words)

IV

Declarations

I Declare that this thesis represents my own work, except where due

acknowledgements is made, and that it has not been previously included in a

thesis, dissertation or report submitted to this University or to any other

institution for a degree, diploma or other qualifications.

 Hua Qiangsheng

 July 2009

V

Acknowledgements

First of all, this thesis could not have been completed without the

continuous support and guidance of Professor Francis C.M. Lau. I’m

profoundly grateful for the invaluable patience and freedom that Francis

offers for my research during the past five years. I really appreciate his kind

understanding, encouragement and help in both my studies and personal life.

It’s my fortune to have Prof. Francis as my PhD supervisor.

Second, I’d like to thank Dr. Choli Wang for his kind care in my SRG life.

Thanks also go to Prof. Richard B. Tan and Prof. Roger Wattenhofer for their

kind suggestions in my research. I’m also grateful for all the professors and

researchers whom I have email correspondences with.

Third, I’d like thank my co-author Yu Dongxiao. Part of our collaborated

work appears in Chapter 5 of the thesis.

Fourth, I’d like to thank all the staff from HKU library, the computer

science department General Office and Technical Support Office. It’s their

dedicated and diligent work that makes HKU and the department a

comfortable and pleasant place for doing research.

Last, I’m very lucky to know many colleagues and friends in HKU. They

are: Wang Rui, Wenzhang, Simai, Zheng Yuan, Luo Zhi, Xiangli, Xiaolei,

Chen Lin, Tianqi, Tianchi, Roy, Fangwei, Luo Yang, Haisheng, Wenxia,

Hongxing, Dongxiao, Di Sheng, Haoyu, Chen Zhuo, Wang Zhen, Yan Li,

Yongjian and many others. Thanks to all of you!

VI

Contents

CHAPTER 1 INTRODUCTION ..1

1.1 INTERFERENCE MODELS ...1
1.1.1 Graph-based interference models ...1
1.1.2 SINR models ..4

1.2 RELATIONSHIPS BETWEEN GRAPH-BASED INTERFERENCE MODELS AND THE SINR MODEL 5
1.3 REASONS TO CHOOSE THE SINR MODEL..6
1.4 SYSTEM MODEL AND PROBLEM DEFINITIONS...8

1.4.1 System model...8
1.4.2 Problem definitions ...9

1.5 THESIS ORGANIZATION...12

CHAPTER 2 LITERATURE REVIEW ..14

2.1 THE HARDNESS OF THE MFSAT AND THE MLSAT PROBLEMS..14
2.2 THE TOP-DOWN APPROACHES..15

2.2.1 Link removal algorithms for non-adjacent links ...18
2.2.2 Link removal algorithms for arbitrary topologies...19

2.3 THE BOTTOM-UP APPROACHES ..22
2.3.1 Non-matching based link incremental scheduling...22
2.3.2 Matching based link incremental scheduling ..28

2.4 TIME COMPLEXITIES OF THE HEURISTIC LINK SCHEDULING ALGORITHMS.........................29
2.5 ALGORITHMS INEFFICIENCY ANALYSES ...31

2.5.1 Inefficiency of constant and linear power assignments...31
2.5.2 Inefficiency of top-down based scheduling algorithms ...35
2.5.3 Inefficiency of bottom-up based scheduling algorithms ..36

CHAPTER 3 MDCS-MAXIMUM DIRECTED CUT BASED SCHEDULING

FRAMEWORK FOR THE MFSAT PROBLEM ..40

3.1 INSUFFICIENCY OF USING MAXIMAL LINK MATCHING...40
3.2 MAXIMUM DIRECTED CUT WITH MAXIMUM LINK MATCHING ...42
3.3 MAXIMUM DIRECTED CUT BASED SCHEDULING FRAMEWORK...45

3.3.1 Pair-wise link conflict graph...45
3.3.2 The MDCS scheduling framework ..45

3.4 COMPARISONS OF MDCS AND OTHER SIX HEURISTIC LINK SCHEDULING ALGORITHMS ...47
3.4.1 Simulation settings ..47
3.4.2 Performance comparisons...48

VII

CHAPTER 4 EXACT AND APPROXIMATE LINK SCHEDULING ALGORITHMS FOR

THE MFSAT PROBLEM ..54

4.1 NEW FORMULATION FOR THE MFSAT PROBLEM ...55
4.2 SET COVERING BASED EXACT AND APPROXIMATE COLORINGS ...56

4.2.1 Set covering based exact coloring...57
4.2.2 Set covering based approximate coloring ...57

4.3 COUNTING BASED EXACT COLORING ...58
4.3.1 The Inclusion-Exclusion Principle ..58
4.3.2 Counting the number of k-set-coverings..59
4.3.3 Computing the minimum number of colors ...61
4.3.4 The exact scheduling algorithm: ESA_MFSAT...62
4.3.5 Correctness and time complexity analysis ..63
4.3.6 An illustrating example for ESA_MFSAT..64

4.4 COUNTING BASED APPROXIMATE COLORINGS..72
4.4.1 Polynomial time approximation ..72
4.4.2 Quasi-polynomial time approximation..73
4.4.3 Exponential time approximation ...73

CHAPTER 5 EXACT AND APPROXIMATE LINK SCHEDULING ALGORITHMS FOR

THE MLSAT PROBLEM..75

5.1 NEW FORMULATION FOR THE MLSAT PROBLEM...75
5.2 RELATED WORK ...76
5.3 THE SET MULTI-COVER PROBLEM ..77
5.4 COUNTING BASED EXACT ALGORITHM FOR THE SET MULTI-COVER PROBLEM..................79

5.4.1 The Inclusion-Exclusion Principle ..79
5.4.2 Counting the number of k-tuples ...80

5.5 AN ALGORITHM FOR COMPUTING ()
k

Fc ...81

5.5.1 How to compute ()
k

n X ...81

5.5.2 How to compute all ()a X ...82

5.5.3 How to compute all (,)b X Y ..83

5.5.4 An Algorithm for computing all ()X

k X
p n ...85

5.5.5 Time and space complexities for calculating ()
k

c F ..88

5.6 A CONSTRUCTIVE ALGORITHM FOR THE SET MULTI-COVER PROBLEM92
5.6.1 Two basic elements pair operations..92
5.6.2 The constructive algorithm for the set multi-cover problem ...93
5.6.3 Correctness Analysis ...94
5.6.4 Time and Space Complexities Analysis ...95

VIII

5.7 AN ILLUSTRATING EXAMPLE..95
5.8 A POLYNOMIAL TIME POLYNOMIAL SPACE APPROXIMATION ALGORITHM FOR THE MLSAT

PROBLEM ..99

CHAPTER 6 A NONLINEAR POWER ASSIGNMENT BASED LINK SCHEDULING

ALGORITHM FOR THE MFSTT PROBLEM IN WIDEBAND NETWORKS100

6.1 ULTRA-WIDEBAND NETWORKS AND ITS SINR MODEL..100
6.2 PROTOCOL INTERFERENCE MODELS IN NARROWBAND AND WIDEBAND NETWORKS103

6.2.1 Protocol interference models in narrowband networks ..103
6.2.2 Protocol interference models in wideband networks ..105

6.3 LIMITATIONS OF POWER CONTROL IN NARROWBAND AND WIDEBAND NETWORKS.........107
6.4 THE NPAW SCHEDULING ALGORITHM FOR THE MFSTT PROBLEM IN WIDEBAND

NETWORKS ...109
6.4.1 Correctness analysis ...112
6.4.2 Efficiency analysis...117
6.4.3 Total power consumption analysis ..118

6.5 CONCLUDING REMARKS ...122

CHAPTER 7 MST_MDCS: A NEW ALGORITHM FOR THE MFSTT PROBLEM.........124

7.1 THE MST_MDCS ALGORITHM FOR MFSTT..125
7.2 COMPARISONS WITH OTHER ALGORITHMS ...126
7.3 CONCLUDING REMARKS ...129

CHAPTER 8 CONCLUSIONS AND FUTURE WORK..130

8.1 CONCLUSIONS...130
8.2 FUTURE WORK ...132

IX

List of Figures

FIGURE 1-1: AN EXAMPLE OF SEVEN LINKS CENTERED AT LINK I ...7
FIGURE 2-1: CATEGORIZATION OF EXISTING HEURISTIC LINK SCHEDULING ALGORITHMS UNDER THE

SINR MODEL..17

FIGURE 2-2: EXPONENTIAL NODE CHAIN, WHERE 2i
IS THE DISTANCE BETWEEN NODES 1ix − AND ix .32

FIGURE 2-3: A PAIR-WISE LINK CONFLICT (INFEASIBLE) GRAPH ..38
FIGURE 3-1: AN ARBITRARY LINK TOPOLOGY WITH 3M+1 NUMBER OF LINKS..41
FIGURE 3-2: AN ILLUSTRATING EXAMPLE FOR ADDING AN UNMATCHED NODE IN THE DIRECTED CUT...43
FIGURE 3-3: AN ARBITRARY LINK TOPOLOGY CONSTRUCTED OVER 20 ARBITRARILY LOCATED NODES ON

A PLANE..48
FIGURE 3-4: LINK SCHEDULING RESULTS COMPARISONS (5, 1α β= =) ..51

FIGURE 3-5: LINK SCHEDULING RESULTS COMPARISONS (5, 2α β= =) ...52

FIGURE 3-6: LINK SCHEDULING RESULTS COMPARISONS (5, 3α β= =) ...53

FIGURE 4-1: A LINK TOPOLOGY WITH FIVE LINKS ..65

FIGURE 4-2: A) THE ORIGINAL PAIR-WISE CONFLICT GRAPH pairG FOR THE FIVE LINKS N={1,2,3,4,5}; B)

A NEW CONFLICT GRAPH (1)pairG CONSTRUCTED ON pairG ; C) A NEW CONFLICT

GRAPH (2)pairG CONSTRUCTED ON THE REMAINING LINKSN {1,2,3,5}= ; D) A NEW

CONFLICT GRAPH (1)pairG CONSTRUCTED ON THE REMAINING LINKS 25N {1,p ,3}=66

FIGURE 6-1: PAIR-WISE TRANSMISSIONS EXAMPLES ..105
FIGURE 6-2: THREE KINDS OF LINK LENGTH CLASS SET AND THEIR RELATIONSHIPS110
FIGURE 7-1: A) A TREE LINK TOPOLOGY CONSTRUCTED VIA A NEAREST COMPONENT CONNECTOR

ALGORITHM; B) A TREE LINK TOPOLOGY CONSTRUCTED VIA A MINIMUM SPANNING TREE

ALGORITHM..126
FIGURE 7-2: COMPARISONS OF SCHEDULING LENGTHS OVER DIFFERENT TREE TOPOLOGIES................128

X

List of Tables

TABLE 4-1: FOR EACH SUBSET X OFN {1,2,3,4,5}= , THE NUMBER OF LINK INDEPENDENT

SETS ()s X IN ()S X =N X− ...66

TABLE 4-2: FOR EACH SUBSET X OF (1)pairG WHEREN {1,2,3,4,5}= , THE NUMBER OF LINK

INDEPENDENT SETS ()s X IN ()S X =N X− ..67

TABLE 4-3: FOR EACH SUBSET X OFN {1,2,3,5}= , THE NUMBER OF LINK INDEPENDENT

SETS ()s X IN ()S X =N X− ...69

TABLE 4-4: FOR EACH SUBSET X OF (2)pairG WHEREN {1,2,3,5}= , THE NUMBER OF LINK

INDEPENDENT SETS ()s X IN ()S X =N X− ..69

TABLE 4-5: FOR EACH SUBSET X OF (1)pairG WHEREN {1,2,3,5}= , THE NUMBER OF LINK

INDEPENDENT SETS ()s X IN ()S X =N X− ..70

TABLE 4-6: FOR EACH SUBSET X OF 25,N {1,p 3}= , THE NUMBER OF LINK INDEPENDENT

SETS ()s X IN ()S X =N X− ...71

TABLE 4-7: FOR EACH SUBSET X OF (1)pairG WHERE 25,N {1,p 3}= , THE NUMBER OF LINK

INDEPENDENT SETS ()s X IN ()S X =N X− ..72

TABLE 5-1: SUMMARY OF NOTATIONS AND THEIR DEFINITIONS...78

TABLE 5-2: CALCULATING
2
()n X FOR ALL X N⊆ ..96

TABLE 5-3: CALCULATING
2 1 | |

(,...,)X

X
p n n FOR ALL X N⊆ ...96

TABLE 6-1: LINK LENGTH CLASSES SCHEDULING (IN ORDER) IN NARROWBAND NETWORKS (FROM LEFT

TO RIGHT, FROM TOP TO BOTTOM). ...121
TABLE 6-2: LINK LENGTH CLASSES SCHEDULING (IN ORDER) IN WIDEBAND NETWORKS (FROM LEFT TO

RIGHT, FROM TOP TO BOTTOM). ..121

1

Chapter 1 Introduction

In this thesis, we will investigate three related minimum (frame) length

wireless link scheduling problems which are to use the minimum number of

timeslots to schedule all these links such that the simultaneously scheduled

links must fulfill some interference model. Here by the interference model, we

mean the criteria for determining the links that can be scheduled in the same

timeslot. Obviously the interference model plays a fundamental role in the

minimum length link scheduling problems. So in order to further explore our

research topics, we need to give a brief survey of the interference models

that arise in various literatures.

1.1 Interference Models

1.1.1 Graph-based interference models

In this section, we will introduce six graph-based interference models.

Here by a graph-based interference model, we mean that each constraint

only involves two wireless links, i.e., it is a binary constraint model. Among

the six interference models, only the first imposes constraints on a single

wireless node, while the other five models impose constraints on each pair of

wireless links.

The first binary constraint model is called the primary interference model

[49,111,119], or the node-exclusive interference model [71]. This model

restricts that a wireless node can not perform two operations at the same

time, such as receiving from two transmitters, transmitting to two receivers or

receiving and sending at the same time. These constraints are due to the

2

following two facts: The first is the half-duplex constraint for the single radio

transceiver and the second is for the point-to-point traffic requirement which

means that each packet is addressed to a single receiver. In this model, only

non-adjacent links which form a link matching can be concurrently scheduled.

The second binary constraint model arises due to the so called

secondary interference caused by the broadcast nature of the wireless

medium [111]. Given two single hop wireless transmissions one is from node

i to node j and the other is from node k to node l, we can tell that these two

transmissions can not be simultaneously scheduled if at least one of the

receivers is within the transmission range of another link’s sender. Obviously,

the secondary interference model prevents the capture effect of the wireless

transceiver. Here by the capture effect, we mean the ability of the wireless

transceiver that can correctly receive the strong signal from one transmitter

despite the interferences caused by the other transmitters. From this we can

see that capture effect is beneficial in physical reality since it can increase the

network throughput by allowing more potential transmissions in each timeslot.

The third binary constraint model we want to introduce is called the

protocol interference model that is given in [23]. For any wireless

transmission which is from node i to node j, in order to make the receiver j

successfully receive the packet from i, the distance from any transmitter k of

the other simultaneously scheduled links (transmissions) to node j must be at

least a factor (1+Δ) higher than the distance from node i to node j (the link’s

length). Here the positive parameter Δ is a specified guard zone value to

prevent the neighboring nodes from transmitting at the same time.

3

Another protocol interference model has been introduced in [64]. In this

model, in order to make the receiver j successfully receive the packet from i,

the distance from any transmitter k of the other concurrently scheduled links

to node j must be at least a factor (1+Δ) larger than the distance from node k

to its corresponding receiver (node l).

The fifth binary constraint model which has been used in [21] is called the

transmitter interference model (Tx-model). For two transmissions with

transmitter i and j respectively , in order to make sure the intended recipient

of node i correctly receive the packet, the distance between i and j must be

at least a factor (1+Δ) larger than the sum of the transmission ranges of

sender i and sender j.

The sixth binary constraint model is called the Distance-K interference

model (K is a positive integer) [21,22,112]. This model requires that two links

must be at least distance-K apart to ensure simultaneous transmissions.

Here by the distance of two links, we mean the least number of hops between

an incident node of the first link and an incident node of the second link.

Depending on different K values, this model can incorporate a large class of

interference models. For example, when K=1, it becomes the primary

interference model; when K=2, it becomes the transmitter-receiver

interference model (Distance-2 interference model) which has been used in

many network protocols, such as 802.11 DCF (Distributed Coordinated

Function).

4

1.1.2 SINR models

In this section, we will discuss the interference models that are based on

the signal-to-interference-plus-noise ratios (SINR). This means that only all

the SINR values at the links’ receivers are above some threshold values can

these links be successfully scheduled in the same timeslot. Different from

graph-based interference models, since each constraint in the physical

interference models covers any subset of all the links, they are called global

constraints models. It is commonly believed that the SINR models are more

realistic than the graph-based interference models but using these models

also pose much more challenges on the link scheduling problems due to the

cumulative interferences effect from all the other transmitters [50-52,54,80].

The SINR ratio at the receiver of a link i can be represented as [49,121]

1,

ii i
i

i ij j
j j i

g p
SINR

mn g p

β

= ≠

⋅
= ≥

+ ⋅∑
 (1.1)

To delve into the details of this model, an explanation of the used

parameters is in order: ip denotes the transmission power of link i ’s

transmitter si ; in is the background noise at link i ’ s receiver ri ; iig and ijg

are the link gain (wireless signal propagation attenuation) from si to ri , and

that from the transmitter sj of link j to ri , respectively; β is the SINR threshold

which is larger than or equal to 1; m stands for the processing gain which

equals the ratio of the chip rate to symbol rate or the information bit rate.

Here each message or information consists of symbols and each symbol is

encoded (spreaded) into a pseudorandom sequence of chips. Thus the chip

rate is normally larger than the symbol rate. The processing gain can be

5

regarded as the signal’s ability to fight the interferences. So the larger the

processing gain, the more links can be tolerated in the same timeslot. The

processing gain is larger than 1 in (ultra-)wideband networks, and it equals 1

in narrowband networks. Throughout this thesis, we assume m=1

(narrowband networks) except Chapter 6.

Since we do not consider fading effects and possible obstacles in

wireless transmissions, the link gain can be represented by an inverse power

law model of the link length, i.e., 1/ (,)ii s rg d i iα= and 1/ (,)ij s rg d j iα= .

Here (,)d is the Euclidean distance function, andα represents the path loss

exponent which is equal to 2 in free space, and varies between 2 and 6 in

urban areas. By plugging into these equations and the m value, the SINR

model becomes:

1,

/ (,)

/ (,)

i s r
i

i j s r
j j i

p d i i
SINR

n p d j i

α

α
β

= ≠

= ≥
+ ∑

 (1.2)

This is the same as the physical interference model proposed in [23].

1.2 Relationships between Graph-based Interference Models and

the SINR Model

In this section, we will discuss some interesting relationships between the

two protocol interference models and the physical interference model. We will

use these results in the following chapters.

We consider two links, one is called link i with transmitter si and receiver ri ,

the other is called link j with transmitter sj and receiver rj . In order to

successfully schedule link i, according to inequality (1.2), we have

6

/ (,)

/ (,)
i s r

i

i j s r

p d i i
SINR

n p d j i

α

α
β= ≥

+

From this inequality, we can obtain

1 1(,)

()
(,)

js r

s r i

pd j i
d i i p

α αβ> ⋅ (1.3)

Now if i jp p= (we call this as constant power assignment), inequality (1.3)

becomes

1

(,) (,)s r s rd j i d i iαβ> ⋅ (1.4)

This is the same as the first protocol interference model introduced in [23].

Similarly, if (,)i s rp d i iαρ= ⋅ and (,)j s rp d j jαρ= ⋅ (we call this as linear power

assignment), inequality (1.3) becomes

1

(,) (,)s r s rd j i d j jαβ> ⋅ (1.5)

This is the same as the second protocol interference model introduced in

[64].

1.3 Reasons to Choose the SINR Model

In this section, we will give some reasons for choosing the physical

interference model rather than the graph-based interference models.

The first reason is that, compared with the SINR model, all the graph-

based interference models did not take the cumulative interferences effect

into account. This can be seen in the following example of Figure 1-1. In this

example, there are seven links whose lengths are all 1. In addition, all the

distances from the other six links’ transmitters to the transmitter si and the

receiver ri of link i are 3 and 4, respectively. We also set the distances of link

7

i ’s transmitter si to all the other six links’ receivers are 2.5. Now according to

the five graph-based interference models (the secondary interference model,

the two protocol interference models, the transmitter interference model and

the Distance-K interference model), these seven links can be simultaneously

scheduled in the same timeslot (We suppose these seven links are distance-

K apart in the Distance-K interference model). However, if we assume all the

six links’ (link j,k,l,p,q andh) transmitters employ the same transmission

power which equals to 6 ip⋅ , and we set the path loss exponentα =3, the

threshold β =2 and all the background noises values are 0, then the SINR

value at the receiver ri of link i is:

3

3

/ 1
1.78 2

0 6 6 / 4
i

i

i

p
SINR

p
= <

+ ⋅ ⋅
�

From this we can conclude that link i can not be successfully scheduled.

This example indicates that the power assignment strategies and the

aggregate interferences effect of simultaneous transmissions may subvert a

communication request which might otherwise appear successful under the

graph-based interference models.

Figure 1-1: An example of seven links centered at link i

8

The second reason to choose the SINR model instead of the graph-

based interference models is derived from an observation in [57]. Specifically,

the authors in [57] proved that the scheduling algorithm under the SINR

model can achieve the throughput that can surpass the theoretically

attainable throughput upper bound under the graph-based interference

models. The simulation results to compare the throughput by using these two

kinds of interference models can be found in [10,11].

From the above analyses, we can conclude that we should employ the

physical interference model rather than the simple graph-based interference

models in terms of both improving the network throughput capacity and

guaranteeing correct packet receptions for all the wireless transmissions.

1.4 System Model and Problem Definitions

1.4.1 System model

Throughout the thesis, we have the following assumptions of the wireless

network: (1) All the wireless nodes are arbitrarily located on a plane, and

each node is equipped with an omni-directional antenna; (2) We assume all

the nodes are stationary; (3) we assume a single channel which means all

the simultaneously scheduled links interfere with each other; (4) The wireless

transceivers work on a half-duplex mode, which means each node can not

send to or receive from more than one node, nor to receive and send at the

same time (this corresponds to the primary interference model); (5) we

assume the link capacity is fixed, which means increasing the transmission

power only increases the sender’s transmission range but not its capacity; (6)

9

we assume time is slotted with equal durations which means that each packet

can not be further divided into smaller units to transmit.

1.4.2 Problem definitions

To begin this section, we first give an explanation of some terms: As

mentioned earlier, by a wireless link, we mean a wireless transmission

comprised by a source node (transmitter) and a destination node (receiver); If

we regard the wireless link as an edge in a graph, then a ‘link matching’ is

just a matching in the graph; Similarly, a ‘link maximum (maximal) matching’

or a ‘maximum (maximal) link matching’ is just a maximum (maximal)

matching in the graph. For the brevity of presentation, we can also use

(maximum) (maximal) matching directly since it will not cause any confusion.

By a link independent set, we mean a set of links that can be concurrently

scheduled in the same timeslot under some interference model. Also any

subset of a link independent set is also a link independent set.

Now we define the minimum length wireless link scheduling (MLS)

problem. First we assume each link can transmit at most one packet in each

timeslot. Second, by the scheduling length, we mean the totally used

timeslots to schedule all the packets. Third, if all the links have the same

number of packets to be transmitted, we call it uniform traffic (link) demands

(traffic requirements), otherwise we call it non-uniform traffic (link) demands.

Now by the minimum length wireless link scheduling problem, we mean that,

for a set of wireless links with given traffic demands, we need to use the

minimum number of timeslots to schedule all the packets subject to the

interference constraints.

10

With the above definitions, we can define the minimum frame length link

scheduling problem. First, by the frame length T, we mean the scheduling

length to schedule all the links such that each link has transmitted one packet.

Then the minimum frame length link scheduling problem is just the minimum

length link scheduling problem with a unit traffic demand. In the minimum

frame length link scheduling scenario, we just need to repeat the scheduling

sequences in the subsequent frames, i.e., , ,i t i t kTX X += (0 t T< ≤ ; k is a

positive integer; ,i tX equals 1 if link i transmits in timeslot t and 0 otherwise).

From these definitions, we can see that minimum frame length link

scheduling problem is only a special case for the minimum length link

scheduling problem. In addition, repeating the minimum frame length link

scheduling results in each frame can not guarantee the minimum length link

scheduling result with uniform traffic demands. Finally, even iteratively

applying the minimum frame length link scheduling algorithm to schedule all

the links with uniform or non-uniform traffic demands can not guarantee the

minimum length link scheduling results for the given traffic requirements. For

example, given four links {1,2,3,4} where the maximum link independent sets

are {1,2,3},{1,2,4} and {3,4}, the minimum frame length link scheduling result

could be to schedule {1,2} in the first timeslot and then to schedule {3,4} in

the second timeslot. Now suppose each link has two packets to transmit.

Repeating the minimum frame length link scheduling results would lead to the

scheduling length with four timeslots. However, the minimum length

scheduling result for these eight packets is three timeslots

{{1,2,3},{3,4},{1,2,4}}. Moreover, we can first apply the minimum frame length

11

link scheduling algorithm to schedule four packets and then to apply this

algorithm again to schedule the remaining four packets. The results could be

to use two timeslots ({1,2,3},{4}) in the first minimum frame length link

scheduling and then to use another two timeslots ({1,2,4},{3}) in the second

minimum frame length link scheduling. So this result is not optimal for

minimum length link scheduling, either.

We now give the definitions of the three studied problems in this thesis.

The first is called the minimum frame length link scheduling problem for

arbitrary link topologies (MFSAT); the second is called the minimum length

link scheduling problem for arbitrary link topologies (MLSAT); the third is

called the minimum frame length link scheduling problem for a data gathering

tree topology (MFSTT).

The MFSAT problem: Given n links which are arbitrarily constructed over

arbitrarily located nodes on a plane and suppose each link has a unit traffic

demand, we need to assign each link’s transmitter a power level and a

timeslot, such that all the links scheduled in the same timeslot satisfy the

SINR constraints and the total number of used timeslots for transmitting all

the packets is minimized.

The MLSAT problem: The only difference between the MLSAT and the

MFSAT problem is that, each link in the MLSAT problem may have non-unit

traffic demands. In this case, in order to minimize the totally used timeslots

for transmitting all the packets, we need to assign each link’s transmitter a set

of power levels and timeslots such that each power level corresponds to a

timeslot.

12

The MFSTT problem: Given n nodes arbitrarily located on a plane, we

need to connect these nodes to form a data gathering tree towards the sink

node such that the number of timeslots used to schedule all the links under

the SINR model is minimized.

From the three problem definitions, we can easily see that: (1) the

MFSAT problem is a special case for the MLSAT problem; and (2) if the tree

topology has been constructed, the MFSTT problem becomes a special case

for the MFSAT problem which has been identified as a prominent open

problem in [52]. However, as we will see in Chapter 7, how to construct this

tree topology plays a very important role in the scheduling length.

1.5 Thesis Organization

The structure of this thesis is organized as follows. We will first review the

state-of-the-art heuristic minimum (frame) length link scheduling algorithms

and analyze their time complexities and inefficiencies in Chapter 2. In

Chapter 3, we will give a maximum directed cut based scheduling framework

for the MFSAT problem. Then we will present both exact and approximate

link scheduling algorithms for the MFSAT problem in Chapter 4. In Chapter 5,

we give both an exact and an approximate algorithm for the MLSAT problem.

We then turn to investigating the MFSTT problem in Chapters 6 and 7.

Specifically, we will discuss an elegant nonlinear power assignment based

link scheduling algorithm together with its total power consumption analysis in

Chapter 6, then a joint topology construction and link scheduling algorithm

using the MDCS scheduling framework is given in Chapter 7. We finally

conclude this thesis with some future work in Chapter 8.

13

Note that most of the results in this thesis have been published or are in

press. The details are as follows: Chapters 2, 3 and 7 have been summarized

as a brief survey chapter in “Handbook of Research on Developments and

Trends in Wireless Sensor Networks: From Principle to Practice” [138].

Chapter 4 has been published in the DIALM-POMC 2008 workshop [50].

Chapter 5 is now in press for “Theoretical Computer Science” [139]. Chapter

6 has been published in MSWiM 2006 [49].

14

Chapter 2 Literature Review

In this chapter, we will review and analyze state-of-the-art link scheduling

algorithms whose objectives are to minimize the scheduling lengths. Although

the objectives of some link scheduling algorithms are not on scheduling

lengths minimization (throughput maximization), their algorithms can also be

easily adapted to the minimum length link scheduling problems. So we will

also cover some of these algorithms. Now we will first discuss the hardness

of the minimum length link scheduling problems.

2.1 The Hardness of the MFSAT and the MLSAT Problems

By regarding the wireless link as an edge in the graph, many researchers

have claimed that the MFSAT problem is NP-hard through the reduction from

the graph coloring problem. For example, this kind of reductions have been

used in [2,14]. All of these reductions assume that the link gains between any

pair of links are arbitrary values. However this is not true under the physical

interference model used in most of the link scheduling problems. Since the

link gains are determined by the distances among different links, thus the

triangle inequalities must not be violated. So these direct reductions from

graph coloring problems are problematic under the physical interference

model. Recently, under the assumption that power control is not allowed, the

MFSAT problem has been proven to be NP-hard [54]. In addition, even if we

allow arbitrary power assignment, the MFSAT problem is still NP-hard [137].

For the MLSAT problem, until the time we are writing the thesis, there is still

no rigorous hardness proof. However, some researchers believe that it

15

remains NP-hard [15]. In this case, most of the researchers seek to solve the

minimum (frame) length link scheduling problems with heuristic algorithms.

All the existing heuristics can be largely classified as either a top-down or a

bottom-up approach (cf. Figure 2-1). In a top-down approach, if the given

links are not a link matching, the heuristic algorithm would first try to pick the

maximal number of links which do not violate the half-duplex constraint (a

matching), and then to find a maximal link independent set which does not

violate the SINR constraints by removing one link at a time. This process will

continue until all links have been scheduled. In a bottom-up approach, the

heuristic would pick each link incrementally to see if the union of the selected

links satisfies the half-duplex and SINR constraints; if not, the link is

discarded. This process continues until it finds a maximal link independent

set, and until all the links have been scheduled. Since the top-down approach

is based on removing one link at each step, it can also be called a link

removal based scheduling approach; similarly, since the bottom-up approach

is based on incrementing one link at each step, it can also be called a link

incremental based scheduling approach. We now first discuss the link

removal based link scheduling algorithms.

2.2 The Top-Down Approaches

To begin this section, we will go to further details in the SINR model. In

particular, we will discuss the link gain matrix and some useful properties on

it. Based on the SINR model given in Chapter 1, we define a normalized non-

negative link gain matrix ()
ij

H h= such that / (,) / (,)
ij ij ii s r s r

h g g d i i d j iα αβ β= ⋅ = ⋅ ,

for i j≠ , and 0
ij

h = , for i j= . Now if we construct an associated directed

16

graph of matrix H as follows: for each element 0
ij

h > , we add a directed edge

from node i to node j . From this we know this directed graph is strongly

connected. Then by using a theorem in [141, p.20] which asserts that a

matrix is irreducible if and only if its associated directed graph is strongly

connected, we know H is an irreducible matrix. We also define a normalized

noise vector ()
i

η η= such that / (,)
i i ii i s r

n g n d i iαη β β= ⋅ = ⋅ ⋅ . With these

definitions, we can rewrite the SINR inequality as
1

Q

ji ij j i
p h p η== ⋅ +∑ . Now by

using the power vector ()
i

P p= and the normalized noise vector ()
i

η η= , the

SINR inequality becomes P HP η≥ + , or ()I H P η− ≥ . If there is only one

transmitting link, i.e., no interferences from other links, the SINR model

degenerates into the SNR (Signal to Noise Ratio) model, which is shown

below:

 (,)i i s rp n d i iαβ≥ ⋅ ⋅ (2.1)

Obviously, the right hand side of Inequality (2.1) is the minimum power of

link i ’s transmitter si to use such that the receiver ri can successfully decode

the packet. We now define the spectral radius ()Hρ of the H matrix

as () max | () |
i

i
H Hρ λ= where ()

i
Hλ stands for the ith eigenvalue of H. Now

according to the Perron-Frobenius Theorem [92], since H is a non-negative

irreducible matrix, we know that ()Hρ is positive and the corresponding

eigenvector has strictly positive components. Let ir and jc represent the ith

row sum and jth column sum of H, and we have: ji ij
r h= ∑ and ij ij

c h= ∑ . The

following is a compilation of the useful propositions of the H matrix shown in

[42,46,47,92]:

17

Figure 2-1: Categorization of existing heuristic link scheduling algorithms

under the SINR model

Proposition 2.1: ()Hρ increases when any entry of H increases.

Since (,) / (,)
ij s r s r

h d i i d j iα αβ= ⋅ , we can see that ()Hρ can be reduced by

either reducing the threshold value β , the length of any links or by selecting

the links which can result in larger (,)
s r

d j i values.

Proposition 2.2: ()Hρ is lower bounded by either the minimum row sum or

the minimum column sum, and it is upper bounded by either the maximum

row sum or the maximum column sum.

min() () max()
i ii i

r H rρ≤ ≤ ;min() () max()
j jj j

c H cρ≤ ≤ .

Proposition 2.3: 1() 0I H −− > if and only if () 1Hρ < .

18

Proposition 2.4: The power vector * 1()P I H η−= − ⋅ is Pareto-optimal in the

sense that *P P≤ component-wise for any other nonnegative P vector

satisfying ()I H P η− ≥ .

After having introduced the link gain matrix and its useful propositions,

we will discuss the link removal based scheduling algorithms one by one.

According to Figure 2-1, we can further partition the top-down approaches

into two branches: the first is to consider non-adjacent links (a link matching),

the second is to consider arbitrary link topologies. We first consider the case

where all the links form a link matching.

2.2.1 Link removal algorithms for non-adjacent links

The first link removal based scheduling algorithm called SRA (Step-wise

Removal Algorithm) is proposed by Zander [43]. For a set of non-adjacent

links, this algorithm defers the link which has the maximum value max(,)
i i

r c .

The rationale behind this algorithm is based on Proposition 2.2, i.e., the

spectral radius of the link gain matrix is bounded by the maximum value of

the row sum ir or the column sum ic . So the SRA algorithm aims to minimize

the upper bound of the spectral radius in each removal step. Note that the

CSCS (Combined Sum Criterion Selection) algorithm presented in [36] is

actually the same as SRA. Instead of minimizing the upper bound of the

spectral radius, the SORA (Step-wise Optimal Removal Algorithm) proposed

by Wu [37] defers the link whose removal can minimize the spectral radius

directly in each step. However, different from SRA which needs

only ()O n eigenvalue computations, the SORA algorithm

19

needs 2()O n eigenvalue computations wheren is the number of links. Aiming

at removing the link which can cause the maximum interference, Zander [45]

proposed another algorithm called LISRA (Limited Information Stepwise

Removal Algorithm). In this algorithm, assuming all the links employ the

same transmission powers, the link with the minimum SINR value is excluded

in each step. For each link in SMIRA (Step-wise Maximum Interference

Removal Algorithm) [40], the algorithm first computes the larger interference

value between the received cumulative interferences from other links and the

interferences it caused to all the other links, and then it postpones the link

which has this largest interference value. For each link in the WCRP

algorithm (named with the four initial letters of the four authors’ family names)

proposed by Wang et al.[39], it first computes a so called MIMSR (Maximum

Interference to Minimum Signal Ratio) value, and then all the links whose

MIMSR values exceed some pre-determined threshold is removed in each

step.

2.2.2 Link removal algorithms for arbitrary topologies

Having covered the link removal algorithms for non-adjacent links, we

now turn to the algorithms for the set of arbitrarily constructed links. To our

current knowledge, the two-phase link scheduling algorithm in [29,30] is the

first solution to the joint link scheduling and power control problem for ad-hoc

networks. In the first phase, this algorithm uses a separation distance to find

a “valid” link set. This links in the ‘valid’ link set must first guarantee that all

the links are non-adjacent; second the Euclidean distances between any pair

of links must be larger than the separation distance (the protocol interference

20

models). From this we can deduce that these links must form a subset of

some maximal matching of the original links. Here, the larger the separation

distance, the fewer the number of links in the found ‘valid’ link set. In the

second phase, this algorithm tries to find an “admissible” link independent set

satisfying the SINR constraints by using the LISRA algorithm in each link

removal step. A variation of the two-phase link scheduling algorithm has been

presented in [34]. This algorithm first defines a link metric which is a

combination of the link’s queue length and the number of blocked links (the

number of links sharing either a transmitter node or a receiver node of the

current link). Then it finds a maximal matching by greedily selecting a link

with the longest queue length and the fewest blocked links (the lowest link

metric value). There are two differences between the two-phase scheduling

and its variation algorithm: the first is that the variation algorithm sets the

separation distance value as zero, which means it tries to find a maximal

matching but not its subset; the second difference is that, in order to find an

admissible link independent set, the variation algorithm defers the link with

the largest link metric, i.e., the link with the shortest queue length and the

maximum number of blocked links. So if we do not consider the backlogged

system, which means we do not consider the links’ queue lengths, the link

with the maximum number of blocked links rather than the link which has the

lowest SINR value is removed.

The PCSA (Power Controlled Scheduling Algorithm) presented in [12]

behave similarly as the ISPA (Integrated link Scheduling and Power control

Algorithm) proposed in [14]. Both of these two algorithms first construct a

(generalized) power-based interference graph. This kind of interference

21

graph is constructed as follows: First, we take all of these links as vertices in

the interference graph; second, for each pair of links we check the spectral

radius ()Hρ of the link gain matrix consisting of the two links, then according

to Proposition 2.3, if () 1Hρ ≥ , we add an edge between these two links which

correspond to two nodes in the interference graph; third, even if () 1Hρ < but if

any power component in the Pareto-optimal power vector *P (Proposition 2.4)

is larger than the maximum allowable power, we need to add an edge

between these two links. From this we can conclude that the links in this

graph also form a subset of some maximal matching of the original links.

When this interference graph is established, by using the minimum degree

greedy algorithm (MDGA), the ISPA algorithm finds a maximal number of

links which satisfy the SINR constraints pair-wisely. Finally, they use the

SMIRA algorithm as the pruning method to find a maximal number of links

that satisfy the SINR constraints. The difference between the ISPA and the

PCSA algorithm is that, a “maximality stage” is added after the link removal

step in the ISPA algorithm. This step is to find more links to be added to the

link independent set.

Different from all the previously mentioned link removal based scheduling

algorithms, the Algorithm A in [31,32] first defines each link’s effective

interference as the corresponding column sum (ic) in the link gain matrix,

and then it finds a maximum matching of the links directly instead of finding a

maximal matching or even a subset of the maximal matching. If the maximum

matching does not satisfy the SINR constraints, the link with the maximum

effective interference is discarded in each link removal step. This process is

22

repeated until all links have been scheduled. Also for the set of non-adjacent

links, the heuristic algorithm given in [33] first finds a link matching, not

necessarily the maximum matching, second it discards the link with the

maximum row sum value ir in the link gain matrix.

2.3 The Bottom-Up Approaches

As mentioned earlier, the bottom-up approach is based on scheduling

each link incrementally. The main difference between the top-down and

bottom-up scheduling approaches is that, for a set of non-adjacent links, the

top-down approach always consists of two phases, i.e., the link matching

searching phase (either a maximum matching, a maximal matching or even

just a matching) and the link removal based scheduling phase. The bottom-

up approach, however, can directly schedule the links one by one without first

finding a link matching. So we can largely classify the bottom-up approach

into two categories: matching based scheduling and non-matching based

scheduling. We will first study the non-matching based algorithms since most

state-of-the-art link incremental based scheduling algorithms directly

schedule the links one by one without first finding a link matching.

2.3.1 Non-matching based link incremental scheduling

The first polynomial time approximated link scheduling algorithm called

GreedyPhysical is given in [17]. The approximation bound of this algorithm,

however, is proved under the assumption that the set of nodes are uniformly

distributed at random in a square of unit area or a disk of unit area. This

means that the approximation bound can not be generalized to arbitrarily

23

constructed links over arbitrarily located nodes on a plane. Moreover, the

algorithm does not use packet-level power control, which means that all the

links in the same timeslot employ the same transmission powers. Since this

algorithm is designed for links with non-unit traffic demands, i.e., different

links may have different number of packets to be transmitted, it can be easily

applied to the unit traffic demand case. Moreover, as we will see, since

constant power assignment can result in very undesirable scheduling length,

we can modify this algorithm by allowing power control at the packet-level,

which means the links scheduled in the same timeslot can employ different

transmission powers. The original algorithm first sorts all the links in the

decreasing order of their interference numbers. Here by the interference

number of a link, it means the number of links which do not share a common

node with the current link and can not be concurrently scheduled with it under

constant power assignment (cf. Inequality (1.4)). But since we allow packet-

level power control, we modify the definition of interference degree as the

number of links which do not share a common node with the current link and

can not be concurrently scheduled with it SINR model (cf. Proposition 2.3).

Second, the GreedyPhysical algorithm proceeds as greedily schedules these

links from the link with the largest interference number to the link with the

fewest interference number.

The Primal Algorithm proposed in [15] is designed originally for some

kind of “superincreasing” link demands, which means when we sort the link

demands in a non-increasing order, each link with a higher demand is greater

than or equal to the sum of all the links with lower demands. This algorithm

first finds the link with the largest link demand, and then all the other links

24

which can be pair-wisely scheduled with the current link under the SINR

model. After that the algorithm schedules these two link sets with the duration

of the link with a lower link demand. And then the algorithm checks how many

packets have not been transmitted for the link with the largest link demand

and schedules this single link packet by packet. The algorithm repeats these

steps until all the packets have been transmitted. The authors of this paper

have proven that this polynomial time greedy algorithm is optimal for these

‘superincreasing’ link demands. We can adapt the algorithm to general non-

uniform link demands by first sorting the links in a decreasing order of their

link demands, and then picking each link in order using the bottom-up

approach. Obviously, this method can not guarantee the optimal scheduling

length for general non-uniform link demands cases.

Also designed for non-uniform link demands, the IDGS (Increasing

Demand Greedy Scheduling) algorithm presented in [36] first sorts the links

in an increasing order of their link demands; and then in each timeslot it first

picks the link with the lowest link demand, and then it switches to pick the

links in a reversed order, i.e., selecting the link with the highest link demand

using a bottom-up approach.

We now review the two non-matching based scheduling algorithms

proposed in [34]. The simplified scheduling algorithm first sorts the links in an

increasing order of their link metrics, and then picks each link in order while

giving it a power level which is the smaller value of its linear power

assignment (a power assignment proportional to its link length to the power of

the path loss exponent) and its maximum allowable power level. If any SINR

constraints are violated then it defers it to the next timeslot. The second joint

25

link scheduling and power control algorithm (JSPCA) behaves similarly with

the simplified scheduling algorithm with the difference that the former one

assigns the power levels with the values calculated from the Pareto-optimal

power vector *P (Proposition 2.4) rather than the pre-determined power

assignments. Compared with the two-phase link removal algorithm and the

simplified scheduling algorithm, the authors have shown that the JSPCA

algorithm can greatly improve the network performance in terms of

throughput and delay. The link scheduling and power control algorithm

(LSPC) proposed in [35] first constructs a conflict graph which is based on

the node-exclusive interference model (links sharing a common node can not

be concurrently scheduled), and then sorts the links either in an increasing

order or in a decreasing order of the node degrees. Finally it schedules the

links in order using the bottom-up approach. Note that if we employ the

increasing order and if we do not consider a backlogged system (without

considering the links’ queueing lengths), the LSPC algorithm becomes the

same as the JSPCA algorithm presented in [34].

For the throughput maximization problem for single hop links, i.e., to

compute the maximum number of packets transmitted on these links in a

fixed frame length, Tang et al. [25] first formulate it as a mixed integer linear

programming (MILP), and then they relax it as a linear programming. In order

to generate a link’s ordering for the proposed serial linear programming

rounding algorithm (SLPR), the authors also relax the SINR requirement.

Then by solving the linear programming, they sort the links in a decreasing

order of the fractional values of the scheduling variables. Finally the greedy

SLPR algorithm incrementally schedules these links using the bottom-up

26

approach. The intuitive idea of this link ordering is that, the larger the

fractional value of the scheduling variable calculated from the relaxed SINR

model, the higher the probability of this link satisfying the original SINR

requirement. Note that although this is a polynomial time algorithm, it suffers

from an extremely high worst case computational complexity 8()
LP

MO n ⋅ ,

where n is the number of the links and
LP

M is the number of binary bits

required to store the data.

We now turn to reviewing another class of non-matching based

scheduling algorithms which feature a kind of nonlinear power assignment.

Informally, nonlinear power assignment is a kind of strategy between

constant and linear power assignments. This power assignment can

overpower the short links, which means that on one hand, compared with

constant power assignment, long links can use larger powers; on the other

hand, short links can receive relatively larger power compared with linear

power assignment. The nonlinear power assignment is first introduced in an

algorithm (we call it NPAN-INFOCOM06) for the MFSTT problem [58] and

has subsequently been used for the MFSAT problem (Here NPAN stands for

Nonlinear Power Assignment for Narrowband Networks). The NPAN-

INFOCOM06 algorithm can schedule all the links in a tree topology

constructed by the nearest neighbor forest algorithm with 4(log)O n timeslots

where n is the number of the links. Aiming for the MFSAT problem, also by

using the nonlinear power assignment, the authors present an algorithm (we

call it NPAN-MOBIHOC06) [59] that studies the relationship between the

graph-based interference model (called the in-interference degree) and the

27

SINR model. Here by the in-interference degree of a node, we mean the

number of other transmitters whose transmission ranges cover this node. And

the largest in-interference degree of a node is called the in-interference

degree of the topology. This paper concludes that the scheduling length of

the MFSAT problem is upper bounded by the in-interference degree of the

topology times the square of the logarithmic function of the number of the

links. From this, we can see that a lower in-interference degree greatly

shortens the scheduling length. In a subsequent paper [55], the authors

propose a low disturbance scheduling algorithm called LDS. This algorithm

can generate a poly-logarithmic scheduling length for a topology with low

disturbances. Here low disturbance is characterized by a parameter

called disturbanceρ − which can also be regarded as the density of the links’

distribution. For a link’s disturbanceρ − , the algorithm first computes the

number of other links’ transmitters (receivers) located in the current link

transmitter’s (receiver’s) range (the link’s length divided by the value ρ which

is greater than or equal to 1), and then the larger value is the

link’s disturbanceρ − . The maximum disturbanceρ − of all the links becomes

the disturbanceρ − of the topology. With this parameter, the authors prove that

the scheduling length of the MFSAT problem is upper bounded by

the disturbanceρ − of the topology times the product of the square of the

logarithmic function of the number of the links and the square of the ρ value.

From this, we know that a sparse link topology with a lower disturbanceρ − can

significantly reduce the scheduling length. Similar to the NPAN-INFOCOM06

algorithm [58], the algorithm proposed in [56] (we call it NPAN-IPSN07) is

28

also aimed for the MFSTT problem. This algorithm also employs the

nonlinear power assignment, but it can reduce the scheduling length for all

the links in a tree topology constructed by the nearest component connector

algorithm to 2(log)O n where n is the number of the links.

The cross-layer latency minimization problem (CLM) and throughput

maximization problem (TM-SINR) for multi-hop flows have been studied in

[20,19]. Here a multi-hop flow consists of several links where each packet is

passed from the first link in the flow to the last link in the flow. The algorithms

proposed in these two papers also belong to the Bottom-Up approach

category since they all schedule each link one by one. These algorithms take

the routing issues into account, but their scheduling parts behave similarly

with the nonlinear power assignment based link incremental scheduling

algorithms in [55,56,58,59] except that they use either constant power

assignment or linear power assignment.

2.3.2 Matching based link incremental scheduling

In this section, we will introduce a link incremental scheduling algorithm

which is based on first finding a link matching. This algorithm is called

Algorithm B [31,32], and it is the only matching based link incremental

scheduling algorithm we’ve found in the literature. The Algorithm B, however,

is originally designed for minimizing the total power consumption, but it can

be adapted for the minimum length link scheduling problem with a few

modifications. Similar to Algorithm A given in the same paper which uses a

top-down approach, the Algorithm B first finds a maximum matching of the

unscheduled links; second, it sorts all the links in the maximum matching in a

29

decreasing order of their effective interferences; third, the algorithm can then

be adjusted to pick each link in order using the bottom-up approach. The

authors have shown that Algorithm B can schedule more links in a timeslot

than the top-down approach based Algorithm A.

2.4 Time Complexities of the Heuristic Link Scheduling

Algorithms

In this section, we will briefly summarize the time complexities of the

various scheduling algorithms just reviewed. First based on Proposition 2.3,

since most of the heuristic link scheduling algorithms reduce the problem of

finding whether there are positive power assignments that satisfy the SINR

constraints to the spectral radius checking problem, the time complexities of

these algorithms are dominated by the matrix eigenvalue computation. The

time complexity for the n n× matrix eigenvalue computation and matrix

inversion problem is 3()O n [95]. Based on this result, we then briefly review

the worst case time complexities for all the link removal and link incremental

based algorithms which need matrix eigenvalue computations.

We first review the time complexities for the link removal based

algorithms. In the worst case, any link removal based algorithms can only

schedule one link in each timeslot. This means that these algorithms will do

()O n eigenvalue computations in each timeslot (Heren means the number of

links). Since there are n timeslots, the total numbers of engenvalue

computations is 2()O n . Now since each eigenvalue computation takes

time 3()O n , we know the overall time complexity is 5()O n . Most of the current

30

link removal based algorithms, including SRA, SMIRA, LISRA, WCRP, the

PCSA algorithm and the ISPA algorithm belong to this group (cf. Section 2.2).

However, as mentioned in Section 2.2.1, the SORA algorithm is an exception

which needs more eigenvalue computations in each timeslot. Specifically,

each link removal in the SORA algorithm needs 2()O n eigenvalue

computations. Thus in the worst case, the SORA algorithm needs 3()O n total

eigenvalue computations. As a result, the overall time complexity for any link

removal based algorithm which uses SORA as a link removal algorithm

takes 6()O n time.

Second, we review the time complexity of the link incremental based

scheduling algorithms. Similarly, in the worst case, any link incremental

based algorithms can only schedule one link in each timeslot. This means

that these algorithms will do ()O n eigenvalue computations in each timeslot.

Since there aren timeslots, the total numbers of engenvalue computations

is 2()O n . Now since each eigenvalue computation takes time 3()O n , we know

the overall time complexity is 5()O n . The link incremental based scheduling

algorithms, including the GreedyPhysical, JSPCA, LSPC, IDGS and the

simplified scheduling algorithms belong to this category (cf. Section 2.3).

Now we review the time complexities of the scheduling algorithms which

do not need costly eigenvalue computations. All the nonlinear power

assignment based link incremental scheduling algorithms belong to this

category. Similarly, in the worst, these algorithms can only schedule one link

in each timeslot. Thus the overall time complexities of all the nonlinear power

31

assignment based algorithms, including NPAN-INFOCOM06, NPAN-

MOBIHOC06, NPAN-IPSN07 and LDS, are 2()O n .

2.5 Algorithms Inefficiency Analyses

In this section, we will give some inefficiency results for both top-down

and bottom-up based link scheduling algorithms. These results generalize the

wireless link scheduling algorithms inefficiency results in [55]. Before giving

more details, we need to give a theorem for any link scheduling algorithm

which employs either constant or linear power assignment. The proof of this

theorem was first given in our published paper [49].

2.5.1 Inefficiency of constant and linear power assignments

We first give an exponential node chain which is shown in Figure 2-2. In

this chain, there are n nodes (X) starting from the leftmost node 1x and end

at the rightmost node nx . All the nodes are placed on a straight line with

exponentially increasing distances between them. For every node ix X∈ , we

require it can successfully send at least one packet to its nearest neighbor.

Now we want to prove a theorem for the scheduling length to schedule all of

these n links for any scheduling algorithms which employ either constant or

linear power assignments. We have given the mathematical formulations of

the constant and linear power assignments in Inequality 1.4 and Inequality

1.5, and here we first formally define the constant and linear power

assignments.

32

Constant (Uniform) Power Assignment: If all the concurrently scheduled

links employ the same transmission power, we call it a constant (uniform)

power assignment.

Linear Power Assignment: If each link in the concurrently scheduled links

employs the transmission power which is proportional to the corresponding

link’s length (the distance from the transmitter to the receiver) to the power of

the path loss exponent, we call it a linear power assignment.

THEOREM 2.1: Under the SINR model given in Inequality 1.1, for both

constant and linear power assignments, no matter what link scheduling

algorithm we use, the scheduling length for all the links in the exponential

node chain is at least / (2) (/)n m n mαβ β⋅ ⋅ + ∈Ω , even in the absence of

ambient noise, where n is the number of the nodes, and m is the processing

gain.

• • • • • • • … •

 02 12 22 32 42 52 2n

Figure 2-2: Exponential node chain, where 2i is the distance between

nodes 1ix − and ix

PROOF: a) Constant power assignment

In this case, for all nodes, transmission power iP = kP =P. Now consider

the example in Figure 2-2; we assume there are at most L simultaneous

transmissions in a scheduling timeslot. Suppose node sx is the right-most

transmitter in this timeslot, and node rx is its receiver. The other (L-1)

simultaneous transmissions will cause aggregate interferences to node rx .

33

According to the property of the exponential node chain, if node rx is on the

left side of node sx , the distance from every other simultaneous transmitter to

the receiver rx is d(ix , rx)≤d(sx , rx); and if node rx is on the right side of

node sx , the distance from every other simultaneous transmitter to the

receiver rx is d(ix , rx)≤ 2 ⋅ d(sx , rx). Therefore the aggregate interferences

caused by these (L-1) simultaneous transmitters are at least

(1) (2 (,))s rL P d x x α− ⋅ ⋅ . According to the SINR inequality 1.1 and by

plugging in the link gain values, we have:

(,)

(1) (2 (,))
s r

s r

P d x x
N L P d x x m

α

α

β
≥

+ − ⋅ ⋅

From the above inequality, it follows that the maximum number of

simultaneous transmissions L in each timeslot is (2) /m αβ β+ ⋅ . Therefore,

the constant power assignment method requires at least

/ (2)n m αβ β⋅ + ⋅ timeslots to schedule all nodes at least once.

b) Linear power assignment

With linear power assignment, the sender sx will send to its

receiver rx with power sP = ρ ⋅ (,)s rd x x α , where ρ denotes the minimum

received power to decode the message. Similar to the constant power

assignment analysis, we assume there are at most L simultaneous

transmissions in a scheduling timeslot. According to the property of the

exponential node chain, for all nodes ix , it will cause at least the interference

2αρ to its left side nodes [58]. Now suppose rx is the left-most receiver,

34

and sx is some transmitter in the L simultaneous transmissions. The other (L-

1) simultaneous transmissions will cause at least the aggregate interferences

(L-1) 2αρ⋅ to this left-most receiver rx . According to the SINR inequality 1.1,

we have

(,) / (,)

(1) 2
s r s rd x x d x x

N L m

α α

α

ρ β
ρ

⋅
≥

+ − ⋅

From the above inequality, it follows that the maximum number of

simultaneous transmissions L in each timeslot is (2) /m αβ β+ ⋅ . And

therefore the linear power assignment method requires also at least

/ (2)n m αβ β⋅ + ⋅ timeslots to schedule all nodes at least once.

By combining the two results for constant and linear power assignments,

we finish the proof for Theorem 2.1. Now if we consider narrowband networks,

i.e., the processing gain m=1, we have the following corollary. Note that this

result has been proved separately in [58].

COROLLARY 2.2: For both constant and linear power assignments in

narrowband networks, no matter what link scheduling algorithm we use, the

scheduling length for all the links in the exponential node chain is ()nΩ ,

where n is the number of the nodes.

Now in order to show the inefficiency for both constant and linear power

assignment, we give another theorem which states that the links constructed

over the exponential node chain can be scheduled in 2(log)O n .

THEOREM 2.3: In narrowband networks, all the links in the exponential

node chain can be scheduled in 2(log)O n with a nonlinear power assignment

algorithm proposed in [55].

35

PROOF: The algorithm in [55] proves that the scheduling length for any

arbitrary link topologies is 2(() log (log))O disturbance n nρ ρ ρ− ⋅ ⋅ ⋅ + . Since

each node sends a packet to its nearest neighbor in the exponential node

chain topology, if we set ρ =1, then disturbanceρ − is a constant value (cf. p27

for the definition of disturbanceρ −). Thus we complete the proof.

By comparing Theorem 2.1 and Theorem 2.3, we can see that any link

scheduling algorithm which employs either constant or linear power

assignments are inefficient since it leads to exponentially longer scheduling

length than the scheduling algorithm based on a nonlinear power assignment.

2.5.2 Inefficiency of top-down based scheduling algorithms

THEOREM 2.4: The following top-down based link scheduling algorithms,

i.e., the two phase scheduling algorithm [29,30], the variation of the two

phase scheduling algorithm [34], the PCSA and the ISPA algorithms [12,14],

the Algorithm A [31,32] and the heuristic link scheduling in [33] have a worst

case scheduling length lower bound of ()nΩ .

PROOF: Since the two phase scheduling algorithm, the PCSA and the

ISPA algorithm use either LISRA or SMIRA as their link removal algorithms,

the inefficiency results of the four link removal algorithms (SRA, SMIRA,

LISRA and WCRP) (Theorem 5.2 in [55]) can be directly applied here. For the

other three scheduling algorithms, we can also take the same co-centric

exponential node chain given in that paper as a worst case link topology. In

this topology, all the links’ transmitters and receivers are located on the same

line with link i ’s transmitter coordinate as (1)(2 ,0)i −− and link i ’s receiver

36

coordinate as (1)(2 ,0)i − (i is from 1 to n). In this case, the associated link gain

matrix of this link topology is 1 1(2 (2 2))i i j
ijh αβ − −= ⋅ + if i j≠ and 0ijh = if i j=

(cf. Section 2.2, p15). Similarly we can also set the path loss exponent 3α = ,

the background noise 0in = and the threshold 2β = . For the variation of the

two phase scheduling algorithm, since all the links have the same number of

blocked links (zero), the links removed in each step is link 1 to link n-1, so

only one link (link n) can be scheduled in the first timeslot. These removal

steps will be repeated in the following n-1 timeslots. For the Algorithm A and

the heuristic link scheduling, since they either use the link gain matrix column

sum or row sum as their link removal metrics, the links removed in each step

are either in an increasing order of their links’ lengths or in a decreasing order

of their links’ lengths. However, both orders will result in ()nΩ scheduling

lengths. This completes the proof.

Now since the co-centric exponential node chain topology can be

scheduled in (log)O n timeslots by a nonlinear power assignment based link

scheduling algorithm in [55], we can see that the top-down based link

scheduling algorithms shown in Theorem 2.4 are inefficient.

2.5.3 Inefficiency of bottom-up based scheduling algorithms

THEOREM 2.5: The two bottom-up based link scheduling algorithms, i.e.,

the simplified scheduling algorithm in [34] and the GreedyPhysical algorithm

in [17] have a worst case scheduling length lower bound ()nΩ .

PROOF: We can also take the co-centric exponential node chain as an

example (cf. the proof in Theorem 2.4). Since all the links form a matching,

37

the algorithm can schedule the links in a decreasing order of their lengths. So

depending on the value of maximum allowable transmission power, the

corresponding power assignments can be either linear power assignments,

constant power assignments, or the long links employing constant power

assignments while the remaining short links employing linear power

assignments. According to Theorem 2.1, we can complete the proof for the

simplified scheduling algorithm. Similarly since the GreedyPhysical algorithm

does not employ packet-level power control, which means that all the links in

the same timeslot use the same transmission powers (the links in different

timeslots may use different powers), Theorem 2.1 can be directly applied

here. This completes the proof for the GreedyPhysical algorithm.

Now before we introduce the inefficiency results for some other link

incremental scheduling algorithms, we need to introduce a pair-wise link

conflict (infeasible) graph. This graph is based on the following theorem and

is similar to the (generalized) power based interference graph introduced in

the PCSA scheduling algorithm and in the ISPA scheduling algorithm (cf.

Section 2.2.2).

THEOREM 2.6: In narrowband networks, for any two transmissions

(sx , rx) and (sy , ry), if d(sx , ry) ⋅d(sy , rx)≤ 2/αβ ⋅ d(sx , rx) ⋅d(sy , ry), then

there exists no feasible power assignment for simultaneous transmissions

(infeasible link independent set); otherwise, there always exists a feasible

power assignment to have a simultaneous schedule.

PROOF: If the two transmissions can be successfully scheduled, based

on SINR model (inequality 1.1) with processing gain equal to 1, the following

two inequalities must follow:

38

(,)

(,)
x s r

y s r

P d x x
N P d y x

α

α
β≥

+

(,)

(,)
y s r

x s r

P d y y

N P d x y

α

α
β≥

+

From these inequalities, we have

(,) (,)1

(,) (,)
s r s r

y x y

s r s r

d x x d x y
P P P

d y x d y y

α α

α α
β

β
⋅ < < ⋅ ⋅

Therefore, if
(,) (,)1

(,) (,)
s r s r

s r s r

d x x d x y
d y x d y y

α α

α α
β

β
⋅ ≥ ⋅ , there is no feasible power

assignment for simultaneous scheduling; otherwise, there always exists a

feasible power assignment to schedule these two transmissions in parallel.

According to this theorem, we construct the pair-wise link conflict

(infeasible) graph as follows: We first take each link as a node in the graph,

second we add an edge between any two links which satisfy the inequality

given in Theorem 2.6.

PROPOSITION 2.7: Let’s suppose there is a link topology whose pair-

wise link conflict (infeasible) graph is as shown in Figure 2-3, then any link

incremental scheduling algorithms which schedule the links in the order of

[1..n] will result in a scheduling length of ()nΩ (Similar to the worst case

behavior of some graph coloring algorithms analyzed in [88]). However, a

much fewer or even a constant number of timeslots is possible if we schedule

the links in the upper and lower parts of this conflict graph respectively.

Figure 2-3: A Pair-wise Link Conflict (Infeasible) Graph

39

From this proposition, we have the following three corollaries.

COROLLARY 2.8: The link incremental scheduling algorithms which use

the node degree in the pair-wise link conflict graph as the scheduling metric

(the criterion for scheduling the next link, i.e., the ordering of links), such as

the adjusted GreedyPhysical algorithm (GreedyPhysical algorithm with

packet-level power control), has a worst case lower bound of ()nΩ .

COROLLARY 2.9: Since all the links have the same link demands in

MFSAT, the link incremental scheduling algorithms which use the link

demands as a scheduling metric, such as the Primal Algorithm in [15] and the

IDGS algorithm in [36], have a worst case lower bound of ()nΩ .

COROLLARY 2.10: Let’s further suppose all the links in this link topology

are non-adjacent or have the same number of blocked links, then the link

incremental scheduling algorithms which use the number of blocked links as

the scheduling metric, such as the JSPCA algorithm in [34] and the LSPC

Algorithm in [35], have a worst case lower bound of ()nΩ .

40

Chapter 3 MDCS-Maximum Directed Cut based

Scheduling Framework for the MFSAT Problem

In this chapter, we will present a maximum directed cut based scheduling

framework (MDCS) for the MFSAT problem. This framework is also a two

phase scheduling algorithm, and there is a fundamental difference between

MDCS and the heuristic link scheduling algorithms reviewed in Chapter 2.

This difference is, in the first phase, we choose a maximum directed cut of

the links after finding a maximum matching. In addition, for all the links in

each directed cut, we choose to use a link incremental scheduling algorithm

instead of a link removal scheduling algorithm. Now before delving into the

details of the MDCS framework, we first discuss the insufficiency of using a

maximal matching in the first phase of two-phase scheduling algorithms for

arbitrary link topologies.

3.1 Insufficiency of Using Maximal Link Matching

We have introduced many state-of-the-art two-phase link scheduling

algorithms for arbitrary link topologies in Chapter 2, but most of them either

employ a link removal algorithm in the second phase for finding a link

independent set or choose to find a maximum (maximal) matching or even a

subset of the maximal matching in the first phase. There is only one two-

phase link scheduling algorithm which first finds a maximum matching in the

first phase and then employs a link incremental algorithm in the second

phase (cf. Section 2.3.2). Compared with finding a maximal matching or even

a subset of the maximal matching in the first phase, since a maximum

41

matching can offer more potential links to be covered in the same timeslot in

the second phase, finding a maximum matching in the first phase (This only

takes time 1.5()O n since there are only n links [96]) is obviously much better.

But is this sufficient for our link incremental scheduling algorithm? Now we

give an example to answer this question. The link topology is shown in Figure

3-1.

Figure 3-1: An arbitrary link topology with 3m+1 number of links

Now suppose the first maximum matching of this arbitrary link topology

comprises link 1 and links from link 2m+2 to link 3m+1. But this maximum

matching becomes somewhat inefficient if any link in link 2 to m+1 except link

1 can be simultaneously scheduled with any links in 2m+2 to 3m+1. The

reason is that: if any links in link 2 to m+1 can be simultaneously scheduled

with the links in the maximum matching, less links will be left in the next

phase. Thus the scheduling length could be potentially shortened. In order to

solve this problem and to provide more potential links to be scheduled in the

same timeslot, we choose to find a maximum directed cut containing this

maximum matching. Here by a maximum directed cut, we mean to partition

all the nodes into two disjoint node sets so that we can maximize the number

of directed edges from one node set to another node set. In this case, we can

42

avoid adding a link such that one link’s transmitter (receiver) becomes

another link’s receiver (transmitter), since this will lead to an infinity value in

the link gain matrix H which makes eigenvalue computation impossible and

also inefficient for comparisons for scheduling metrics based on H. So now

the key here is how to construct this maximum directed cut. Here we note that,

a simple maximum directed cut does not work for our scheduling problem,

because this maximum directed cut may miss the maximum matching and

may comprise too many links that are adjacent to some transmitters or

receivers which is very undesirable.

3.2 Maximum Directed Cut with Maximum Link Matching

In order to show the importance of the maximum directed cut construction

with maximum matching problem in our scheduling framework, we also take

the link topology in Figure 3-1 as an example. Also suppose we first find a

maximum matching consisting of link 1 and links from link 2m+2 to link 3m+1.

Now the first maximum directed cut we find is to add links from link 2 to link

m+1, and the second maximum directed cut we find is to add links from link 2

to link m and the links from link m+2 to link 2m+1. For the first maximum

directed cut construction, the total number of timeslots we need to schedule

all the links is at least 2m+1 since the maximum directed cut found in the next

phase comprises the links from link m+2 to link 2m+1 which needs at least m

timeslots to schedule, but for the second maximum directed cut construction,

a total number timeslots m+1 to schedule all the links is possible. So now we

give our algorithm to find this better maximum directed cut.

43

Before we elucidate the algorithm, we need to clarify some notions. First,

by an unmatched link, we mean this link is not included in the maximum

matching; second, by an unmatched node, we mean this node is not incident

to any links in the maximum matching.

Figure 3-2: An illustrating example for adding an unmatched node in the

directed cut

We now give the maximum directed cut construction with maximum

matching algorithm in the following. Here the key to this heuristic algorithm is

step 4, which is to add an unmatched node into set S1 or S2. We now give an

illustrating example of this step in Figure 3-2. Here S1(vi) denotes the number

of directed edges (links) from vi to the nodes in S2 and S2(vi) denote the

number of directed edges (links) from the nodes in S1 to vi . (Note that a

similar method for maximum cut can be found in [90], but their algorithm can

not be applied in our scenario). We now give a theorem to show the worst

case performance guarantee of our heurist algorithm for finding this

maximum directed cut.

Maximum Directed Cut Construction with Maximum Matching Algorithm:

1: Find a maximum matching;

2: Label the set of transmitters for all the links in the maximum matching as

44

the set S1, and label the set of receivers for all the links in the maximum

matching as the set S2; And we called all the links in the maximum matching

as a directed cut from S1 to S2.

3: For all the unmatched links which don’t have an unmatched node, check

whether they can be added to the directed cut; This means that the addition

of this new link would not make any node in set S1 (S2) as a receiver (a

transmitter);

4: For each unmatched node in the link topology, if S2(vi) ≥ S1(vi), we put this

node in S2, otherwise we put it in S1; Note that in this step, the set S1 and S2

are dynamically updated;

5: Return all the directed links whose transmitters are located in S1 and the

corresponding receivers are located in S2.

THEOREM 3.1: For the proposed maximum directed cut with maximum

matching problem, the proposed heuristic algorithm can add at least a half of

the optimal number of links that can be added to the already existed directed

cut (the directed cut derived from step 2 to step 3).

PROOF: Since we first find a maximum matching, we know there are no

edges (links) between the unmatched nodes since otherwise it is not a

maximum matching. Suppose there are m unmatched nodes (v1,v2,…,vm),

then we know that, by using step 4, the number of directed links that can be

added to the already existed directed cut is 1max(1(), 2())m
i S v S vi i=∑ . Now we know

the optimal number of new links that can be added to the already existed

directed cut is equal to or less than 1(1() 2())m
i S v S vi i=∑ + . From this we can prove

this theorem.

45

With the help of the maximum directed cut searching algorithm, we now

present a maximum directed cut based scheduling (MDCS) framework for

arbitrary link topologies.

3.3 Maximum Directed Cut based Scheduling Framework

3.3.1 Pair-wise link conflict graph

In this section, we will briefly review the pair-wise link conflict (infeasible)

graph introduced in Section 2.5.3. We call this graph pairG , and this graph will

be used by an exact scheduling algorithm in the next Chapter 4. From

Theorem 2.6, we can build pairG by just adding an edge between any two

infeasible links. This is done in time 2()O n wheren means the number of links.

And for each link i, let ()N i denote the number of links which conflict with i,

i.e., the number of neighbors of node i in pairG .

3.3.2 The MDCS scheduling framework

MDCS Scheduling Framework:

Input: A set of arbitrarily distributed wireless links {1,..., }N n= .

Output: The number of used timeslots T to successfully schedule all the links

under the SINR model.

1: T=0;

2: While not all links have been scheduled do

3: Call the Maximum Directed Cut Construction with Maximum Matching

Algorithm in Section 3.2.

4: t=0 and set all the links in the outputted direct cut unchecked and

unscheduled;

5: While not all the links in the outputted direct cut have been scheduled do

46

6: Construct a pair-wise link conflict graph of all the unscheduled links, and

then sort these unscheduled links in a decreasing order of the number of their

neighbors in the pair-wise link conflict graph;

7: Schedule the first link and update the remaining links’ ordering;

8: Check the next link to see if these links satisfy the SINR constraints;

9: If not satisfied, go back to step 8; otherwise schedule this link and update

the ordering of the unchecked links;

10: Repeat step 8 to step 9 until all links have been checked;

11: t=t +1 and set all the unscheduled links unchecked;

12: End While;

13: T=T+t ;

14: End While.

Now we analyze the time complexity of the MDCS scheduling framework.

First, we know the time of the maximum directed cut construction with

maximum matching algorithm relies on the maximum matching finding time.

And we know finding a maximum matching only takes time 1.5()O n since there

are only n links [96]. Then we analyze the time complexity of scheduling all

the links in each outputted directed cut. As we’ve mentioned in Section 2.4,

we know the worst case time complexity of a link incremental scheduling

algorithm is 5()O n , then the total time of the MDCS scheduling framework

is 5()O n where n denotes the number of links.

47

3.4 Comparisons of MDCS and other Six Heuristic Link

Scheduling Algorithms

3.4.1 Simulation settings

We first give the simulation settings. For any n arbitrarily located nodes

on a 2000 2000m m× plane (Here m means meters), we randomly select a

link’s transmitter and receiver subject to the constraint that they are different

nodes on the plane. We then repeat this process until a number of n different

links (either with different transmitters or receivers) have been constructed.

So in this topology construction, some nodes may not be used (Figure 3-3

gives an example of an arbitrary link topology constructed over 20 arbitrarily

located nodes on a plane). In this simulation, since (1) all the arbitrarily

constructed link topologies are dense link topologies; and (2) many links

share a common node, if we set a very small path loss exponent value or a

very high threshold value, no matter what kind of scheduling algorithms we

will use, we can only schedule almost one link in each timeslot. The reasons

are as follows: (1) If the path loss exponent is very low, say only around 2, all

the wireless signals do not rapidly attenuate. Thus all the links generate very

large cumulative interferences which could lead to a very small SINR value at

each link’s receiver. If the SINR threshold is still very high, many links can not

be simultaneously scheduled. (2) If many links share a common node, due to

the half-duplex constraint, these links can only be scheduled in one by one.

From these observations, we set the path loss exponent 5α = . But we will

test on different SINR threshold values, including 1β = , 2β = and 3β = .

48

Figure 3-3: An arbitrary link topology constructed over 20 arbitrarily located

nodes on a plane

3.4.2 Performance comparisons

We implemented six bottom-up based scheduling algorithms (please

refer to Chapter 2 for some of the algorithms descriptions): the proposed

MDCS scheduling framework, the bottom up Algorithm B [31,32], the

GreedyPhysical algorithm in [17] with packet level power control, the JSPCA

algorithm in [34], the LDS algorithm in [55] and the first fit based link

increment scheduling algorithm. Here by first fit based link incremental

49

scheduling algorithm, we mean that we just greedily schedule the links in its

unsorted order with the bottom up approach. There are two nonlinear power

assignment based link incremental scheduling algorithms for arbitrary link

topologies, one is NPAN-MOBIHOC06 [59] and the other is LDS [55]. We

have tested that the LDS algorithm can generate smaller scheduling lengths

than the NPAN-MOBIHOC06 algorithm, so we use LDS as a representative

for nonlinear power assignment based link scheduling algorithm. Note that for

the LDS algorithm, since its scheduling length relies on the parameter ρ , we

have tested different ρ values and find that LDS can achieve the shortest

scheduling length when 1ρ = , so we set 1ρ = in our simulation. Besides the

link incremental based scheduling algorithms, we also implement SORA as a

representative for link removal based scheduling algorithms. But since now

we are targeted for arbitrary link topologies, we first find a maximum matching

in each scheduling phase; then we employ SORA as the link removal

algorithm. In addition, for all the scheduling algorithms except LDS, we use

the Pareto-optimal power assignment (cf. Proposition 2.4) with no maximum

allowable power limitations (In this case we don’t care the background noise

powers). This assumption, however, can be removed if we set the same

maximum allowable power for all the scheduling algorithms. Note that, we

have tested these scheduling algorithms over ten sets of link topologies with

the number of links ranging from 20 to 110. And for each set of topology, we

compute the average scheduling length over 10 different instances.

The final scheduling results can be seen in Figure 3-4, Figure 3-5 and

Figure 3-6. According to the three figures, we can draw the first conclusion:

the smaller of the SINR threshold value, the fewer timeslots we need to

50

schedule all the links. More conclusions from the scheduling lengths in the

three figures are as follows. First, we can sort these eight scheduling

algorithms in an increasing order of their scheduling lengths: MDCS, the

bottom up Algorithm B, SORA, first fit, JSPCA, the GreedyPhysical with

power control and LDS. We have the following observations from this

ordering. (1) In matching based link scheduling algorithms, adding more links

to the maximum matching in each scheduling phase can significantly reduce

the scheduling length. This can be seen from the scheduling lengths of

MDCS, the bottom up Algorithm B and the matching based link removal

algorithm SORA. (2) Matching based link scheduling algorithms greatly

outperform the non-matching based link scheduling algorithms in terms of

their scheduling lengths. This can be seen from the scheduling lengths of

bottom up Algorithm B and the other three non-matching based scheduling

algorithms (first fit, JSPCA and GreedyPhysical). This observation is further

strengthened through the result that even the matching based link removal

algorithm SORA can generate fewer scheduling lengths than the non-

matching based link incremental scheduling algorithms (GreedyPhysical and

LDS). (3) Compared with the top down and bottom up based scheduling

algorithms, although the SORA algorithm can generate relatively shorter

scheduling lengths with small SINR threshold values (1β = and 2β =) than

some link incremental based scheduling algorithms, such as JSPCA and

GreedyPhysical, it’s obtained by paying more time (cf. Section 2.4). (4) Since

our generated arbitrary link topologies bear large disturbanceρ − values

(Figure 3-3 is an example whose disturbanceρ − value could be as large as

51

the number of links when 1ρ =), the low disturbance scheduling (LDS)

generates the longest scheduling lengths at every topology instance (it

almost schedules one link in each timeslot!). In Chapter 7, we will see how

LDS performs in the link topologies with much smaller disturbanceρ − values.

Figure 3-4: Link scheduling results comparisons (5, 1α β= =)

52

Figure 3-5: Link scheduling results comparisons (5, 2α β= =)

53

Figure 3-6: Link scheduling results comparisons (5, 3α β= =)

54

Chapter 4 Exact and Approximate Link

Scheduling Algorithms for the MFSAT Problem

Having discussed the heuristic link scheduling algorithms for the MFSAT

problem, we turn to study the exact and approximate link scheduling

algorithms in this chapter. Specifically, we propose two classes of exact and

approximate link scheduling algorithms, one based on the relatively

straightforward set covering, and the other on counting the number of

different set covers. Throughout this chapter, we let ()p n denote the time of

checking whether the spectral radius of an irreducible non-negative matrix is

smaller than 1 or not (Note that according to [95], 3() ()p n O n= , but according

to [93,94], faster algorithms maybe possible); then the time complexity for the

counting based exact link scheduling algorithm called ESA_MFSAT

is 2(3 log ())nO n n p n⋅ ⋅ ⋅ with polynomial space, which represents a substantial

improvement over the set covering based exact scheduling which needs

time
max()

(2)
n
iiO . If exponential space is allowed, using either the fast zeta

transform [101] or the fast subset convolution [99], the time complexity can be

reduced to 2(2 log ())nO n n p n⋅ ⋅ ⋅ . Then based on the exact coloring and the

maximum link independent set finding algorithms, we present three

approximate link scheduling algorithms with approximation ratios (log)O n n ,

(log)kO n n and (1)ε+⎡ ⎤⎢ ⎥ , respectively. Here ε is an arbitrary positive value

independent of n .The time complexity of the first approximation algorithm

is 2(log())O n poly n with polynomial space, the time complexity for the second

55

algorithm is
11 log3 log(log())

k nO n poly n
−+ ⋅ with polynomial space, and the time

complexity for the third algorithm is /2((() 3 log) log ())n e n
nO n n n p n

ε−

+ ⋅ ⋅ ⋅ ⋅ with

polynomial space.

The remainder of the chapter is organized as follows. We give a new

formulation of the MFSAT problem in Section 4.1. In Section 4.2, we present

some exact and approximate link scheduling algorithms based on link

independent set covering. In Section 4.3, based on the inclusion-exclusion

principle, we give the exact coloring algorithm ESA_MFSAT through counting

the number of k-set coverings. Building upon these results, we present three

approximate link scheduling algorithms in Section 4.4. Finally we conclude

this chapter with some possible research directions in Section 4.5. Note that

we will use the terms scheduling and coloring interchangeably throughout this

chapter.

4.1 New Formulation for the MFSAT Problem

In this section, we will give a new formulation of the MFSAT problem, but

first some related concepts need to be introduced.

DEFINITION 4.1: A set of non-adjacent links are called a link

independent set if there exist a positive power vector *P (cf. Proposition 2.4)

satisfying all the SINR constraints; otherwise it is an infeasible link

independent set.

DEFINITION 4.2: A maximal link independent set is a link independent

set that is not a proper subset of any other link independent set.

DEFINITION 4.3: The largest maximal link independent set is called a

maximum link independent set.

56

PROPOSITION 4.4: Any superset of an infeasible link independent set is

an infeasible link independent set; each subset of a link independent set is a

link independent set.

Based on these definitions, we can rewrite the MFSAT problem as

follows:

The MFSAT Problem: Givenn arbitrarily distributed single-hop wireless

links {1.. }N n= , select a minimum number of link independent sets such that

each link has at least one successful transmission under the SINR constraint.

4.2 Set Covering based Exact and Approximate Colorings

From the new formulation of the MFSAT problem we can see that it can

be viewed as a kind of set covering problem. So in this section, we give some

relatively straightforward exact and approximate link scheduling algorithms

based on some traditional techniques such as the generation and test

method, the backtracking search and the greedy set covering . Compared to

the counting based exact and approximate link scheduling algorithms given in

Sections 4.3 and 4.4, we will see that these traditional methods are inferior in

terms of either the running time or the approximation ratio.

LEMMA 4.1: The number of maximal link independent sets in arbitrary

link topologies is at most 1 1
2 2

max() max((),())n n

n n n
ii

+ +⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥
= .

PROOF: According to Proposition 4.4, we know that the maximum

number of maximal link independent sets equalsmax()n
ii

. Then by observing

1() / () 1n n
i i − ≥ , we know that 1 1

2 2

max() max((),())n n

n n n
ii

+ +⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥
= . This ends the proof.

57

4.2.1 Set covering based exact coloring

Since there are at most (2)nO link independent sets, a naive brute force

optimal covering (such as the generation and test method) takes time 2(2)
n

O .

An improvement is to consider only the maximal link independent sets, but

some post processing is needed since some links may then be scheduled

more than needed. All the maximal link independent sets can be found

in (2 ())nO p n⋅ , and from Lemma 4.1, the optimal set covering takes

time
max()

(2)
n
iiO .

4.2.2 Set covering based approximate coloring

This approximation algorithm proceeds as follows: In each timeslot, we

find a maximum link independent set among the unscheduled wireless links;

then we delete the maximum link independent set and continue until all the

links have been scheduled. Actually, this is equivalent to the standard greedy

set covering algorithm which is to select a set to maximize the uncovered

elements, and the approximation ratio is (log)O n . The decision version of the

maximum link independent set finding problem in arbitrary link topologies has

been shown to be NP-complete in [41], and an obvious brute force algorithm

takes time (2 ())nO p n⋅ . For example, we can just enumerate all the k-

combinations (k is from n to 1) of then links, and then check whether they

are link independent sets. If yes, we just stop there and output the k links [43].

But according to Proposition 4.4, with the help of binary search, we can give

an exact maximum link independent set finding algorithm which takes

time /2(() log ())n
nO n p n⋅ ⋅ . From the Stirling’s approximation for large factorials,

58

the above complexity becomes (2 log ())nO n n p n⋅ ⋅ . This algorithm works

as follows: we first check whether there exists a link independent set in all the

/ 2n -combinations of then links; if yes, we check the 3 / 4n -combinations,

otherwise we check / 4n -combinations. This continues until we find the

maximum combination. In Section 4.4, we will give another exponential time

approximation algorithm with a much better approximation ratio and without

increasing the running time.

4.3 Counting based Exact Coloring

4.3.1 The Inclusion-Exclusion Principle

[folklore]: Let B be a finite set with subsets 1 2, ,..., nA A A B⊆ , and with the

convention that i iA B∈∅ =∩ , then we know the number of elements in B which

lie in none of the iA is

 | |

{1,..., }1

| | (1) | | .
n

X
i i

X ni i X

A A
⊆= ∈

= − ⋅∑∩ ∩ (4.1)

Now let’s define n

1 2{ , ,..., ,...} where i 2iS S S S= ≤ as the set of the link

independent sets, B as the set of k-tuples 1,..., kS S< > , and iA B⊆ as the set

of those k-tuples whose union does not include link i ; then the left hand side

of Equation (4.1) can be interpreted as the number of k-tuples in B which

cover all the links from {1,..., }N n= . On the right hand side of Equation (4.1),

for each X, | |i
i X

A
∈
∩ means the number of k-tuples whose union does not

include all the links in X.

59

4.3.2 Counting the number of k-set-coverings

Here we define a k-set-covering as a set covering in which each covering

consists of k link independent sets. Also we use ()kc S to denote the number

of different k-set-coverings. We define ()S X S⊆ as the set of the link

independent sets whose union does not include the links in X , which

means i
i

S N X= −∪ , where ()iS S X∈ . And we use

() | { : } |i is X S S S X= ∈ = ∅∩ to denote the number of link independent sets

in ()S X . Then the following lemma holds.

LEMMA 4.2: The number of different k-set coverings satisfies

 | |() (1) (())X k
k

X N
c S s X

⊆
= − ⋅∑ (4.2)

PROOF: With ()s X denoting the number of link independent sets

in ()S X , (())ks X stands for the number of different ways to choose k link

independent sets from ()S X . (Note that the link independent sets in a k-set-

covering may be non-distinct and non-disjoint.) Now combining the analyses

in Section 4.3.1, we have ()kc S =
1

| |
n

i
i

A
=
∩ , which is the left hand side of

Equation (4.1), and(())ks X =| |i
i X

A
∈
∩ , which is the right hand side of Equation

(4.1). This completes the proof.

THEOREM 4.3: Counting k-set coverings can be solved in (3 ())nO p n⋅

time and polynomial space.

PROOF: According to Equation (4.2), we can see that the computational

complexity is dominated by computing ()s X , i.e., to count the number of link

60

independent sets in ()S X . For each X , we can enumerate all the

combinations of the links in setN X− , which will take time | |2 (| |)n X p n X− ⋅ − ,

because each testing of the link independent set takes time ()p n . Now

combining with Equation (4.2) and the binomial theorem, the running time of

counting k-set coverings is
0

(()) () 2 () (3 ())
n

n n m n
k m

m
T c S p n m O p n−

=
= ⋅ ⋅ − = ⋅∑ .

Here ()p n subsumes the time of raising each ()s X to the k-th power. For the

space complexity, since we compute ()s X anew for each X, the occupied

space is definitely polynomial. This finishes the proof.

THEOREM 4.4: Counting k-set coverings can be solved in

(2 ())nO p n⋅ time and 2(2)nO n⋅ space.

PROOF: We need to introduce the zeta transform of a function f, where f

is an indicator function of the link independent set. Specifically, the zeta

transform [101] �f on the subset lattice (2 ,)N ⊆ of f is defined by

 �() () .
S X

f X f S for X N
⊆

= ⊆∑ (4.3)

Now since �() () ()
S X

s N X f S f X
⊆

− = =∑ , we can compute a table

containing ()s N X− for all X N⊆ , and using a fast zeta transform introduced

in [101], we can compute all �()f X with time (2 () 2) (2 ())n n nO p n n O p n⋅ + = ⋅ .

So according to Equation (4.2) and by subsuming the time of raising each

()s X to the k-th power into ()p n , the time complexity of computing ()kc S is

reduced to (2 ())nO p n⋅ . For the space complexity, since we have

stored (2)nO n⋅ number of interim values for calculating �()f X (including

61

all ()s X), and since the value of ()s X can be up to 2n , the space complexity

is 2(2)nO n⋅ . The proof is heavily relied on the fast zeta transform. For more

details of this technique, please refer to lemma 2 in [101]. This ends the proof.

4.3.3 Computing the minimum number of colors

LEMMA 4.5: The MFSAT problem can be solved with k colors if and only

if () 0kc S > .

PROOF: On one hand, if all the links can be scheduled with k colors,

there must exist a valid k-set covering, which means () 0kc S > ; on the other

hand, if () 0kc S > , there must exist a coloring such that all the links can be

scheduled at least once in k timeslots (colors). This finishes the proof.

Now we use ()Nχ to denote the minimum number of colors to schedule all

the {1,..., }N n= links. Combining with Lemma 4.5, we have the following

corollary.

COROLLARY 4.6: ()Nχ =min{ : () 0}.kk c S >

With the help of binary search, the time for

computing ()Nχ becomeslog (())kn T c S⋅ . So according to Theorems 4.3 and

4.4, we have the following corollaries.

COROLLARY 4.7: If we only allow polynomial space, the minimum

number of colors ()Nχ can be computed in time (3 log ()).nO n p n⋅ ⋅

COROLLARY 4.8: If exponential space is allowed, the minimum number

of colors ()Nχ can be computed in time (2 log ())nO n p n⋅ ⋅ .

62

4.3.4 The exact scheduling algorithm: ESA_MFSAT

Although we have computed the minimum number of colors to schedule

all the links, we have not constructed a practical schedule yet. In this section,

we present an algorithm called ESA_MFSAT for scheduling each link at least

once while guaranteeing the minimum number of colors. (To demonstrate the

use of this algorithm, we will give a detailed illustrating example in Section

4.3.6).

ESA_MFSAT: Exact Scheduling Algorithm for the MFSAT Problem

Input: A set of arbitrarily distributed single-hop wireless links {1,..., }N n= .

Output: A successful scheduling of all the links under the SINR constraint

such that the number of colors is minimized.

1: Construct the pair-wise link conflict graph pairG onN ; // (cf. Section 3.3.1)

2: Compute ()Nχ , i.e., the minimum number of colors of N.

3: Pick the most constrained link i which has the maximum node degree in

the conflict graph, and list all the links in pairG not incident oni . These links

form a set 1 2{ , ,..., }mj j j . We construct new pair-wise conflict graphs called

()pairG k (1 k m≤ ≤) on top of pairG by adding the edges between link i and

links kj where 1 k m≤ ≤ . Let ()pairV G and ()pairE G denote all the nodes and

edges in pairG , then (()) ()pair pairV G k V G= and 1(()) () { ,..., }pair pair kE G k E G ij ij= ∪ ;

4: Let ()S k ,1 k m≤ ≤ denote the set of all the link independent sets inN but

excluding any link independent set containing link pairs incident on link i

in ()pairG k ; similar to Corollary 4.6, we have (())pairG kχ =min{ : (()) 0}kk c S k′′ > ;

and from Proposition 4.4, we have

((1)) (()) ((1)) 1pair pair pairG k G k G kχ χ χ− ≤ ≤ − + ;

5: If () () (())pair pairG N G mχ χ χ= = , then we know the color of link i must be

different from those of all the other links in some optimal coloring. So we give

it a new color number and assign the sender of this link (or the senders of all

63

the actual links if i is a virtual link) based on the Pareto-optimal power vector
*P (cf. Proposition 2.4), then we removei fromN . Otherwise, we can find the

smallest k using binary search such that (()) () 1pair pairG k Gχ χ= + .

In this case, we can deduce that link i must have the same color with

link kj in some optimal coloring (otherwise (()) ()pair pairG k Gχ χ=). We now

replace link i and link kj with a new virtual link
kijp , and the neighbors of

kijp in

the conflict graph become () () ()
kij kN p N i N j= + .

6: Repeat step 2 to step 5 until all links have been scheduled (colored).

4.3.5 Correctness and time complexity analysis

We call step 2 to step 5 in the ESA_MFSAT algorithm a scheduling round.

In each scheduling round, we remove one link, either directly giving it a new

color or “contracting” two links (step 5). Since in each scheduling round, our

link removals are based on the computed minimum number of colors of all

the remaining links, and combining with the analyses in step 4 and step 5, we

can guarantee the output is optimal, i.e., the number of colors we actually

obtain is minimized.

Also, we need to emphasize the computation of the minimum number of

colors (())pairG kχ . Unlike the computation of ()Nχ , which is based on the set

of all the link independent sets (e.g., the set S in Sections 4.3.1 and 4.3.2),

the computation of (())pairG kχ is based on ()S k (the set of the link

independent sets in step 4). In addition, we must note that, if there are some

virtual links in the conflict graph, due to the aggregate interference effect, all

the actual links in these virtual links must be taken into account for checking

whether the supersets of these links are link independent sets.

64

We now analyze the time complexity of the ESA_MFSAT algorithm. First

let some exponential function (())T nχ denote the time of computing the

minimum number of colors of schedulingn links. Since each scheduling round

causes at most (log)O n computations of computing the minimum number of

colors, and there are n scheduling rounds, the overall optimal scheduling

takes time ((()) log)O T n n nχ ⋅ ⋅ . So from Corollaries 4.7 and 4.8, if only

polynomial space is allowed, the time complexity

becomes 2(3 log ())nO n n p n⋅ ⋅ ⋅ , and if exponential space is allowed, the time

complexity of the exact scheduling algorithm is 2(2 log ())nO n n p n⋅ ⋅ ⋅ .

4.3.6 An illustrating example for ESA_MFSAT

As shown in Figure 4-1, suppose there is a link topology with five

linksN {1,2,3,4,5}= , and all the maximal link independent sets have been

computed: {{1,3},{2,4},{3,5},{1,2,5}}. Recall that X stands for any subset of N,

and ()S X represents the set of all the link independent sets

inN X− and ()s X means the number of link independent sets in ()S X . For

clarity of presentation, we use a simpler notation to denote the link

independent sets in ()S X S⊆ (Table 4-1); for example, we use 1 to denote

the link independent set {1}, and 125 to denote the link independent set

{1,2,5}.

The 1st step of the ESA_MFSAT algorithm is to construct the pair-wise

conflict graph pairG , which is shown in Figure 4-2(a). The 2nd step is to

compute the minimum number of colors ()Nχ . According to Table 4-1, we

have S={1,2,3,4,5,12,13,15,24,25,35,125}, and we can calculate

65

that 1 2() () 0c S c S= = , and | | 3

3 () (1) (()) 96 0X

X N
c S s X

⊆
= − ⋅ = >∑ , and so we know

that ()Nχ =3. In the 3rd step we pick the most constrained link 4 and add new

edges (additional constraints) between link 4 and all the other links which are

not incident on it. In this example, only one link 1j 2= (link 2) is not incident

on link 4, so we add a new edge between them ((1)pairG as shown in Figure

4-2 (b)). In the 4th step, by removing all the link independent sets containing

link pair 4 and 2, we can achieve (1)S {1,2,3,4,5,12,13,15,25,35,125}= , and

since 1 2((1)) ((1)) 0c S c S= = and 3((1)) 30 0c S = > (based on Table 4-2), we

conclude that ((1)) 3pairGχ = . Then we go to the 5th step, since we have known

that () () ((1)) 3pair pairG N Gχ χ χ= = = , we can deduce that, in some optimal

coloring, link 4 must have a different color with all the other links, and so we

give it a new color number and remove it from N. Now we have finished the

first scheduling round; we then repeat step 2 to step 5 until all links have

been colored. We now briefly give the following scheduling rounds below.

5

1

24
3

A

B

C

D

E

F

G
5

1

24
3

A

B

C

D

E

F

G

Figure 4-1: A link topology with five links

66

1

3

5
4

2
1

3

5
4

2
1

3
5

2

1
3

25p

(a) (b) (c) (d)

Figure 4-2: a) The original pair-wise conflict graph pairG for the five links

N={1,2,3,4,5}; b) A new conflict graph (1)pairG constructed on pairG ; c) A new

conflict graph (2)pairG constructed on the remaining linksN {1,2,3,5}= ; d) A

new conflict graph (1)pairG constructed on the remaining links 25N {1,p ,3}= .

Table 4-1: For each subset X of N {1,2,3,4,5}= , the number of link

independent sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1,2,3,4,5,12,13,15,24,25,35,125} 12
{1} {2,3,4,5,24,25,35} 7
{2} {1,3,4,5,13,15,35} 7
{3} {1,2,4,5,12,15,24,25,125} 9
{4} {1,2,3,5,12,13,15,25,35,125} 10
{5} {1,2,3,4,12,13,24} 7
{1,2} {3,4,5,35} 4
{1,3} {2,4,5,24,25} 5
{1,4} {2,3,5,25,35} 5
{1,5} {2,3,4,24} 4
{2,3} {1,4,5,15} 4
{2,4} {1,3,5,13,15,35} 6
{2,5} {1,3,4,13} 4
{3,4} {1,2,5,12,15,25,125} 7
{3,5} {1,2,4,12,24} 5
{4,5} {1,2,3,12,13} 5
{1,2,3} {4,5} 2
{1,2,4} {3,5,35} 3
{1,2,5} {3,4} 2

67

{1,3,4} {2,5,25} 3
{1,3,5} {2,4,24} 3
{1,4,5} {2,3} 2
{2,3,4} {1,5,15} 3
{2,3,5} {1,4} 2
{2,4,5} {1,3,13} 3
{3,4,5} {1,2,12} 3
{1,2,3,4} {5} 1
{1,2,3,5} {4} 1
{1,2,4,5} {3} 1
{1,3,4,5} {2} 1
{2,3,4,5} {1} 1
{1,2,3,4,5}} ∅ 0

Table 4-2: For each subset X of (1)pairG whereN {1,2,3,4,5}= , the number of

link independent sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1,2,3,4,5,12,13,15,25,35,125} 11
{1} {2,3,4,5,25,35} 6
{2} {1,3,4,5,13,15,35} 7
{3} {1,2,4,5,12,15,25,125} 8
{4} {1,2,3,5,12,13,15,25,35,125} 10
{5} {1,2,3,4,12,13} 6
{1,2} {3,4,5,35} 4
{1,3} {2,4,5,25} 4
{1,4} {2,3,5,25,35} 5
{1,5} {2,3,4} 3
{2,3} {1,4,5,15} 4
{2,4} {1,3,5,13,15,35} 6
{2,5} {1,3,4,13} 4
{3,4} {1,2,5,12,15,25,125} 7
{3,5} {1,2,4,12} 4
{4,5} {1,2,3,12,13} 5
{1,2,3} {4,5} 2
{1,2,4} {3,5,35} 3
{1,2,5} {3,4} 2
{1,3,4} {2,5,25} 3

68

{1,3,5} {2,4} 2
{1,4,5} {2,3} 2
{2,3,4} {1,5,15} 3
{2,3,5} {1,4} 2
{2,4,5} {1,3,13} 3
{3,4,5} {1,2,12} 3
{1,2,3,4} {5} 1
{1,2,3,5} {4} 1
{1,2,4,5} {3} 1
{1,3,4,5} {2} 1
{2,3,4,5} {1} 1
{1,2,3,4,5}} ∅ 0

The 2nd scheduling round: In the 2nd step, similar to Table 4-1, we can

construct another Table 4-3 for N {1,2,3,5}= , and we have

S={1,2,3,5,12,13,15,25,35,125}. Then we can calculate

that 1() 0c S = and 2() 10 0c S = > , and so we know that () () 2pairN Gχ χ= = . In

the 3rd step, we pick link 2 as the most constrained link, and add new edges

between link 2 and links 1j 1= and 2j 5= ((2)pairG as shown in Figure 4-2(c)).

Note that by reducing the edge between links 2 and 5 from (2)pairG , we can

get (1)pairG . In the 4th and 5th steps, we have (2)S {1,2,3,5,13,15,35}= and

since 2((2)) 0c S = and 3((2)) 36 0c S = > (based on Table 4-4), we

know ((2)) 3 ()pairG Nχ χ= > , and then we continue to find

that (1)S {1,2,3,5,13,15,25,35}= and since 2((1)) 2 0c S = > (based on Table

4-5), we get ((1)) 2 ()pairG Nχ χ= = . So in this case, we conclude that

2k = (corresponding to link 2j) is the smallest k to

satisfy (()) () 1pair pairG k Gχ χ= + . We then deduce that link 2 must have the

69

same color with link 5 in this optimal coloring. So we contract these two links

into a new link 25p . Then we go to the 3rd scheduling round.

Table 4-3: For each subset X of N {1,2,3,5}= , the number of link

independent sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1,2,3,5,12,13,15,25,35,125} 10
{1} {2,3,5,25,35} 5
{2} {1,3,5,13,15,35} 6
{3} {1,2,5,12,15,25,125} 7
{5} {1,2,3,12,13} 5
{1,2} {3,5,35} 3
{1,3} {2,5,25} 3
{1,5} {2,3} 2
{2,3} {1,5,15} 3
{2,5} {1,3,13} 3
{3,5} {1,2,12} 3
{1,2,3} {5} 1
{1,2,5} {3} 1
{1,3,5} {2} 1
{2,3,5} {1} 1
{1,2,3,5} ∅ 0

Table 4-4: For each subset X of (2)pairG whereN {1,2,3,5}= , the number of

link independent sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1,2,3,5,13,15,35} 7
{1} {2,3,5,35} 4
{2} {1,3,5,13,15,35} 6
{3} {1,2,5,15} 4
{5} {1,2,3,13} 4
{1,2} {3,5,35} 3
{1,3} {2,5} 2
{1,5} {2,3} 2
{2,3} {1,5,15} 3

70

{2,5} {1,3,13} 3
{3,5} {1,2} 2
{1,2,3} {5} 1
{1,2,5} {3} 1
{1,3,5} {2} 1
{2,3,5} {1} 1
{1,2,3,5} ∅ 0

Table 4-5: For each subset X of (1)pairG whereN {1,2,3,5}= , the number of

link independent sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1,2,3,5,13,15,25,35} 8
{1} {2,3,5,25,35} 5
{2} {1,3,5,13,15,35} 6
{3} {1,2,5,15,25} 5
{5} {1,2,3,13} 4
{1,2} {3,5,35} 3
{1,3} {2,5,25} 3
{1,5} {2,3} 2
{2,3} {1,5,15} 3
{2,5} {1,3,13} 3
{3,5} {1,2} 2
{1,2,3} {5} 1
{1,2,5} {3} 1
{1,3,5} {2} 1
{2,3,5} {1} 1
{1,2,3,5} ∅ 0

The 3rd scheduling round: In the 2nd step, also similar to Table 4-1, we

can construct another Table 4-6 for 25,N {1,p 3}= , and we

have 25, 25S {1 p ,3,1p ,13}= , and then we can calculate

that 1() 0c S = and 2() 6 0c S = > , and so we know that () () 2pairN Gχ χ= = . In the

3rd step, we pick link 25p as the most constrained link, and add a new edge

71

between link 25p and link 1j 1= ((1)pairG as shown in Figure 4-2(d)). In the 4th

and 5th steps, we have 25(1) ,S {1,p 3,13}= and since 2((1)) 2 0c S = > (based on

Table 4-7), we obtain ((1)) 2 ()pairG Nχ χ= = , and so we conclude that

link 25p must have a different color with link 1 and link 3 in this optimal coloring.

Then we give it a new color and remove it from N. Now we finish the 3rd

scheduling round and can proceed to the 4th scheduling round.

 The 4th scheduling round: We can easily find that links 1 and 3 must have

the same color in this optimal coloring (the interested reader can do the

checking). So we give them a new color and we finish the scheduling of all

the links. Also the transmission powers of all the links are based on the

Pareto-optimal power vector *P (cf. Proposition 2.4). The final result is we

have used three colors for the link independent sets {4},{2,5} and {1,3}. Of

course, this is only one of the optimal colorings. By choosing different

coloring strategies or through choosing different orders of the links in step 3

of the ESA_MFSAT algorithm, we may obtain different optimal colorings.

Table 4-6: For each subset X of 25,N {1,p 3}= , the number of link independent

sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1, 25p ,3,13,1 25p } 5
{1} { 25p ,3} 2

{ 25p } {1,3,13} 3
{3} {1, 25p ,1 25p } 3

{1, 25p } {3} 1
{1,3} { 25p } 1

{ 25p ,3} {1} 1

{1, 25p ,3} ∅ 0

72

Table 4-7: For each subset X of (1)pairG where 25,N {1,p 3}= , the number of

link independent sets ()s X in ()S X =N X−

X ()S X ()s X
∅ {1, 25p ,3,13 } 4
{1} { 25p ,3} 2

{ 25p } {1,3,13} 3
{3} {1, 25p } 2

{1, 25p } {3} 1
{1,3} { 25p } 1

{ 25p ,3} {1} 1

{1, 25p ,3} ∅ 0

4.4 Counting based Approximate Colorings

4.4.1 Polynomial time approximation

This approximation algorithm is implemented by clustering. We first

partition all the n links into logn n groups, each group containing logn links.

Then we use the exponential space version of the ESA_MFSAT algorithm to

compute the minimum number of colors of each group. LetOpt stand for the

minimum number of colors, then the actual number of colors we get is at

most logn n Opt⋅ , and so the approximation ratio is (log)O n n . Since the

time complexity of our exact scheduling algorithm is 2(2 log ())nO n n p n⋅ ⋅ ⋅ ,

and the space complexity is 2(2)nO n⋅ , the time complexity of our

approximate scheduling algorithms is bounded by 2(log())O n poly n⋅ . The

space complexity is 2(log)O n n⋅ .

73

4.4.2 Quasi-polynomial time approximation

Obviously, we can also partition all then links into logkn n groups, each

group containinglogk n links. Then we use the polynomial space version of

the ESA_MFSAT algorithm to compute the minimum number of colors of

each group. The approximation ratio is (log)kO n n . But the time complexity

becomes
11 log3 log(log())

k nO n poly n
−+ ⋅ , which is a quasi-polynomial time

complexity, i.e., the complexity with the form (1)(exp((log))OO n . The space

complexity is still polynomial.

4.4.3 Exponential time approximation

We have given an exponential time approximate link scheduling

algorithm in Section 4.2.2, which is based on repeatedly finding the maximum

link independent set on the remaining links. This is equivalent to a standard

greedy set covering method with approximation ratio (log)O n . In this section,

we will present another exponential time approximation algorithm which is

also based on finding the maximum link independent set. But in this algorithm,

when the number of the remaining links equals e nε− , we do not repeat the

maximum link independent set finding algorithm. Instead we use our

polynomial space version of the exact link scheduling algorithm ESA_MFSAT

since the number of the remaining links has become small enough.

THEOREM 4.9: The approximation ratio of this polynomial space

approximate link scheduling algorithm is (1)ε+⎡ ⎤⎢ ⎥ , and the time complexity of

this algorithm is /2((() 3 log) log ())n e n
nO n n n p n

ε−

+ ⋅ ⋅ ⋅ ⋅ .

74

PROOF: The proof is adapted from [100,101].

Let Opt be the minimum number of colors for scheduling all the links.

And let s be the number of maximum link independent sets we have removed.

If we use ()e nεχ − to denote the minimum number of colors we have obtained

to schedule the remaininge nε− links, then the total number of colors we have

used is ()e n sεχ − + . Since ()e n Optεχ − ≤ , we only need to prove

thats Optε≤ ⋅⎡ ⎤⎢ ⎥ .

Since we remove the maximum link independent set in each step, so

after at most t steps, the number of remaining links is smaller than or equal to

(1 1)tn Opt⋅ − , and due to a standard inequality, we have

(1 1)t t Optn Opt n e −⋅ − ≤ ⋅ . So if Opt t s Optε ε⋅ ≤ ≤ ≤ ⋅⎡ ⎤⎢ ⎥ , then the number of

remaining links is at most e nε− . By plugging into the time complexity result of

the maximum link independent set finding algorithm in Section 4.2.2 and the

polynomial space version of the exact scheduling algorithm in Section 4.3.4,

we finish the proof.

75

Chapter 5 Exact and Approximate Link

Scheduling Algorithms for the MLSAT Problem

In this chapter, we will first transform the MLSAT problem as a set multi-

cover problem. Second, we will design a first known exact algorithm for the

set multi-cover problem. Third, based on this exact algorithm, we will present

a polynomial time polynomial space approximation algorithm for the MLSAT

problem. To our knowledge, this is the first known approximation algorithm

for the MLSAT problem that is independent of the links’ lengths.

5.1 New Formulation for the MLSAT Problem

Similar to Section 4.1, in this section, we will transform the MLSAT

problem as a set multi-cover problem. Now based on the same definitions

given in Section 4.1, we can rewrite the MLSAT problem as follows:

The MLSAT Problem: Givenn arbitrarily distributed single-hop wireless

links {1.. }N n= , select a minimum number of link independent sets such that

each link has been covered at least a number of times as specified in its

coverage requirement, namely, the number of packets each link needs to

transmit.

From this new formulation, we can see that the MLSAT problem is

actually the same as the set multi-cover problem. Set multi-cover is a

generalization of the set cover problem where each element may need to be

covered more than once and thus some subset in the given family of subsets

may be picked several times for minimizing the number of sets to satisfy the

coverage requirement. In this chapter, based on the inclusion-exclusion

76

principle, we will propose a first known exact algorithm for the set multi-cover

problem. Specifically, the presented ESMC (Exact Set Multi-Cover) algorithm

takes *((2))nO t time and *((1))nO t + space where t is the maximum value in the

coverage requirement vector (The *(())O f n notation omits

a log(())poly f n factor).

5.2 Related Work

Recently it has been shown that for some exact algorithms, using the

inclusion-exclusion principle can significantly reduce the running time. For

example, Björklund et al. have applied the inclusion-exclusion principle to

various set cover and set partition problems, obtaining time complexities that

are much lower than those of previous algorithms [100,101,104]. This

principle has also been used in some early chapters, such as [128] and [131].

By using the Möbius inversion technique which is an algebraic equivalent of

the inclusion-exclusion principle, Björklund et al. give a fast algorithm for the

subset convolution problem [99] and Nederlof presents a family of fast

polynomial space algorithms for the Steiner Tree problem and other related

problems [132]. In this chapter, we are interested in designing inclusion-

exclusion based exact algorithms for the set multi-cover problem [135,136].

This problem is a generalization of the set cover problem in which each

element needs to be covered by a specified integer number of times and

each set can be picked multiple times in order to satisfy the coverage

requirement. It is a bit surprising that only approximation algorithms have so

far been proposed for the set multi-cover problem. In fact, by using the same

greedy strategy as for the set cover problem, which is to repeatedly add the

77

set containing the largest number of uncovered elements to the cover, one

can achieve the same (log)O n approximation for the problem [135]. Feige

shows that the set cover problem can not be approximated better

than lnn unless loglog()nNP DTIME n∈ [130]. Some parallel approximation

algorithms for the set cover problem and its generalizations, such as the set

multi-cover problem, the multi-set multi-cover problem and the covering

integer programs problem have been presented in [136]. In all these related

work on approximation solutions, the set multi-cover problem appears to be

no harder than the set cover problem. In this chapter, we will see that finding

an exact solution for the set multi-cover problem can take much longer time

than that for the fastest exact algorithm for the set cover problem [100,101].

The structure of this chapter is as follows. In Section 5.3, we give a

formal definition of the set multi-cover problem. In Section 5.4, based on the

inclusion-exclusion principle, we will transform the set multi-cover problem to

the problem of counting the number of k-tuples that satisfy the integral

coverage requirements. We then give an algorithm for counting these

numbers of k-tuples in Section 5.5. In Section 5.6, we give a constructive

algorithm for finding the minimum number of sets that meet the coverage

requirements. A simple illustrating example for our algorithms is given in

Section 5.7. We finally give a polynomial time polynomial space approximate

algorithm for the MLSAT problem in Section 5.8.

5.3 The Set Multi-cover Problem

A summary of the various notations used in this chapter and their

corresponding definitions is given in Table 5-1. Throughout the chapter, we

78

let the union of a k-tuple
1
,...,

k
s s< > which is denoted as

1

k

i
i

C s
=

= ∪ represent a

multi-set. This means that we just put all the elements in each
i

s into the set C

without removing duplicated elements.

Table 5-1: Summary of notations and their definitions

Notation Definition

N The universe set, where {1,..., }N n= and| |N n= .

F A family of subsets of N, where
1 | |

{ ,..., }
F

F s s= and| |F is

the total number of subsets in F.

T The integral coverage requirement vector,

where
1

(,...,)
n

T t t= ; each i N∈ must be covered at

least 1
i

t ≥ times in the picked subsets over F.

t The maximum integer in the vector T, i.e.,
1

max()
ii n

t t
≤ ≤

= .

()
k

c F The number of k-tuples
1
,...,

k
s s< > over F such that the

union of each k-tuple, i.e.,
1

k

i
i

C s
=

= ∪ , satisfy the specified

coverage requirement T.

()
k

n X The number of k-tuples
1
,...,

k
s s< > over F such that

each i X∈ (X N⊆) appears at most (1)
i

t − number of

times in the multi-setC .

()a X The number of subsets in F that avoid X.

(,)b X Y The number of subsets in F that include Y but avoid

\X Y .

1 | |
(,...,)X

q X
p n n or

()X

q X
p n

The number of q-tuples over F such that each j X∈

appears
j

n times in the union of each q-tuple. For

simplicity, we use
X

n to denote
1 | |

{ ,..., }
X

n n .

79

The Set Multi-Cover Problem: Let {1,..., }N n= be the universe, and F a

given family of subsets { }
i

s over N, and the union of all the subsets in F

covers all the elements in N. A legal(,)k T cover is a collection of k subsets

over F such that eachi N∈ must appear at least 1
i

t ≥ times in the union of the

k subsets. Note that the k subsets can be non-distinct which means that

some subsets in F can be picked several times. The goal of the set multi-

cover problem is to find the minimum k to make a legal(,)k T multi-cover.

Remark 5.1: Since each subset in F can contain each element of N at

most once, in order to find a legal (,)k T cover, k must be greater than or equal

to t, the maximum integer in the coverage requirement vector T , i.e., k t≥ .

Also, since the union of F covers all the elements in N, we havek tn≤ .

5.4 Counting based Exact Algorithm for the Set Multi-Cover

Problem

5.4.1 The Inclusion-Exclusion Principle

This principle has been given in Section 4.3.1. For convenience, we

present it again here. Let B be a finite set with subsets
1 2
, ,...,

n
A A A B⊆ . With

the convention that
i i

A B
∈∅

=∩ , the number of elements in B which lie in none

of the
i

A is :

 | |

1

| | (1) | |
n

X

i i
X Ni i X

A A
⊆= ∈

= − ⋅∑∩ ∩ (5.1)

80

5.4.2 Counting the number of k-tuples

LEMMA 5.1: Let ()
k

n X denote the number of k-tuples
1
,...,

k
s s< >where

for each j X∈ , the number of j in the set
1

k

k
i

C s
=

= ∪ is at most 1
j

t − ; then the

number of k-tuples that satisfy the coverage requirement T can be computed

from the following equation:

 | |() (1) ()X

k k
X N

c F n X
⊆

= − ⋅∑ (5.2)

PROOF: Let B be the set of k-tuples
1
,...,

k
s s< > from F, and let

i
A be the

set of k-tuples where element i in the multi-set C appears at most (1)
i

t − times.

The left side of Equation (5.1) is the number of k-tuples in which each

element i in the universe N is covered at least
i

t times, which is represented

by ()
k

c F , the left side of Equation(5.2). Accordingly, | |
i

i X
A

∈
∩ is the number of

k-tuples in which each j X∈ , which is an element in the set C, appears at

most(1)
j

t − times; i.e., () | |
k i

i X
n X A

∈
= ∩ . By the right side of Equation(5.1), we

can derive the right side of Equation (5.2).

LEMMA 5.2: We can find a legal(,)k T multi-cover if and only if () 0
k

c F > .

PROOF: ()
k

c F is the number of k-tuples over F that satisfy the coverage

requirement T. The number of legal (,)k T multi-covers is the number of k

subsets over F that satisfy the coverage requirement T. Since different

orderings of the k subsets mean different k-tuples while the (,)k T multi-cover

concerned remains the same, we know that only when () 0
k

c F > can there be

81

a legal (,)k T multi-cover. Similarly, if there is a legal (,)k T multi-cover, it

guarantees that () 0
k

c F > . This finishes the proof.

According to Lemma 5.2, we have the following corollary.

COROLLARY 5.3: The minimum k value to make a legal (,)k T multi-

cover is equal to the minimum k value that satisfies () 0
k

c F > .

Thus we can transform the set multi-cover problem to the problem of

computing ()
k

c F . By using binary search, sincet k tn≤ ≤ , the time for solving

the set multi-cover problem equals the sum of the times for computing

the (log())O tn numbers of ()
k

c F . In the next section, we will introduce an

algorithm for computing ()
k

c F .

5.5 An Algorithm for Computing ()
k

Fc

In this section, we show how to compute ()
k

c F , i.e., to count the number

of k-tuples
1
,...,

k
s s< > over F such that the union of each such k-tuple

satisfies the given coverage requirement T.

5.5.1 How to compute ()
k

n X

According to Equation(5.2), we know that the crux of computing ()
k

c F is

to obtain ()
k

n X , i.e., the number of k-tuples over F such that each

i X∈ appears at most (1)
i

t − times in the union of every k-tuple. Without loss

of generality, we assume {1,2,..., }X m= , and for the simplicity of notation, we

let
1 2

{ , ,..., }
X m

n n n n= . We then denote
1 2

() (, ,...,)X X

q X q m
p n p n n n= , the number of

q-tuples over F such that for each j X∈ the number of the element j in the

82

union of every q-tuple is
j

n . Now since the union of each q-tuple can cover

each j X∈ at most q times, for each
1 2

(, ,...,)X

q m
p n n n , we have

j
n q≤ for

each j X∈ ; otherwise,
1 2

(, ,...,)X

q m
p n n n equals 0. From these definitions, we

can easily obtain the following Equation(5.3). This equation means that, in

order to obtain ()
k

n X , we should sum all the ()X

k X
p n values (

1

m

ii
t

=
∏ of them),

where ()X

k X
p n is from (0,0,...,0)X

k
p to

1 2
(1, 1,..., 1)X

k m
p t t t− − − . Now our problem

becomes how to efficiently compute all the ()X

k X
p n values.

0 1
1

() ()
i i

X

k k X
n t
i m

n X p n
≤ ≤ −
≤ ≤

= ∑ (5.3)

Before delving into the details of calculating all these ()X

k X
p n values, we

need to introduce some notations. We use ()a X to denote the number of sets

in F that avoid X where X N⊆ , and (,)b X Y to denote the number of sets in F

that include Y but avoid \X Y , whereY X⊆ . We show next how to get

()a X for all X and (,)b X Y for all X and Y.

5.5.2 How to compute all ()a X

There are two ways to compute ()a X . The first way is to use the fast zeta

transform technique introduced in [101]. By using this technique,

all ()a X values can be computed in * (2)nO time. And since the technique uses

a look-up table to store all the interim values including ()a X for all X N⊆ , it

requires * (2)nO space. The second way is to compute ()a X directly without

storing all the interim values into a look-up table. In order to

compute ()a X where X N⊆ , we just need to test every subset \S N X⊆ to

83

see if S is in F, which takes time * | |(2)n XO − by assuming that the membership

test in F can be decided in polynomial time and polynomial space (This is true

for our MLSAT problem since checking whether a set of links is a link

independent set can be transformed into checking whether the spectral

radius of the links’ link gain matrix is smaller than 1 or not.). Then for

all X N⊆ , the total time for computing ()a X

equals * | | * *

0
(2) (2) (3)

n
n X r n r n

n
X N r

O O C O− −

⊆ =
= =∑ ∑ .

5.5.3 How to compute all (,)b X Y

Based on the two different ways of computing ()a X , we have two

corresponding ways to compute all (,)b X Y for allY X⊆ and for all X N⊆ .

For arbitrary X and Y, whereY X⊆ , we let | |X m= and| |Y r= andr m≤ .

Without loss of generality, assume {1,2,..., }X m= and {1,2,..., }Y r= .

Then (,)b X Y can be computed via Equation (5.4).

 | | | |(,) (1) ((\)) (1) ({ 1,..., })Z Z

Z Y Z Y
b X Y a Z X Y a Z r m

⊆ ⊆
= − ⋅ = − ⋅ +∑ ∑∪ ∪ (5.4)

Equation (5.4) is obtained by applying the inclusion-exclusion principle.

Suppose B is a family of subsets of F which avoid \X Y , and let

i
A B⊆ (i Y X∈ ⊆) be the family of subsets which further avoid element i .

Then the left side of Equation (5.1) (
| |

1

| |
Y

i
i

A
=
∩) is the number of sets in F that

coverY but avoid \X Y which is the value of (,)b X Y . Accordingly, the right

side of Equation (5.1) (| |
i

i Z Y
A

∈ ⊆
∩) is the number of sets in F that

avoid (\)Z X Y∪ which is the value of ((\))a Z X Y∪ . Thus according to

84

Equation (5.1), we have Equation (5.4). Then we calculate how much time we

need to compute all (,)b X Y .

First, we do not use a table to store all ()a X values, and the time

complexity is given in Lemma 5.4.

Lemma 5.4: For allY X⊆ and for all X N⊆ , (,)b X Y can be obtained

in * (6)nO time and polynomial space.

PROOF: As mentioned earlier, in order to compute ()a X where X N⊆ ,

we just need to test every subset \S N X⊆ to see if S is in F, which takes

time * | |(2)n XO − . For given X and Y, according to Equation (5.4), the time for

computing (,)b X Y can be calculated from the formula *

0
(2)

r
i n i m r

r
i

C O − − +

=
⋅∑ . By

using the Binomial theorem, we have Equation (5.5).

 * *

0
(2) (2 3)

r
i n i m r n m r

r
i

C O O− − + −

=
⋅ = ⋅∑ (5.5)

Now for allY X⊆ , the time for computing (,)b X Y can be calculated

through the formula *

0
(2 3)

m
r n m r

m
r

C O −

=
⋅ ⋅∑ . Similarly, by using the Binomial

theorem, we have Equation (5.6).

 * *

0
(2 3) (2)

m
r n m r n m

m
r

C O O− +

=
⋅ ⋅ =∑ (5.6)

Finally, for all X N⊆ , the time for computing (,)b X Y can be calculated

through the formula *

0
(2)

n
m n m

n
m

C O +

=
∑ . Again by the Binomial theorem, we have

Equation (5.7).

 * *

0
(2) (6)

n
m n m n

n
m

C O O+

=
=∑ (5.7)

According to the computation steps of Equations (5.5), (5.6) and (5.7),

since we did not use any look-up table to store the exponential number

85

of ()a X values to speed up the calculation of (,)b X Y , the space used is only

polynomial. This completes the proof.

Now we give another way to compute all (,)b X Y by using exponential

space. Its time and space complexities are given in Lemma 5.5.

Lemma 5.5: For allY X⊆ and for all X N⊆ , (,)b X Y can be obtained

in (4)nO time and * (2)nO space.

PROOF: As before, by using the fast zeta transform technique introduced

in [101], all ()a X values can be computed in * (2)nO time and * (2)nO space.

Then for some given X and Y, according to Equation (5.4), since

all ()a X values are known, (,)b X Y can be computed in time 2r where | |r Y= .

The time for computing (,)b X Y for allY X⊆ equals
0

2 3
m

r r m

m
r

C
=

⋅ =∑ . Similarly,

the time for computing (,)b X Y for all X N⊆ equals
0

3 4
n

m m n

n
m

C
=

⋅ =∑ . This

finishes the proof.

5.5.4 An Algorithm for computing all ()X

k X
p n

As mentioned in Section 5.4.1, we need to

compute
1

m

ii
t

=
∏

1 2
() (, ,...,)X X

k X k m
p n p n n n= values, where0 1

i i
n t≤ ≤ − and1 i m≤ ≤ .

Without loss of generality, we assume the positive integers

in
1 2

{ , ,..., }
m

n n n form a set
1

{ ,..., }
Y r

n n n= , where {1,2,..., }Y r= and 0 r m≤ ≤ .

Then from the definitions of ()a X and (,)b X Y , we

have
1 1 2

(, ,...,) (,{1,2,..., })X

m
p n n n b X r= and

1
(0,0,...,0) ()Xp a X= . Now for brevity

of notation, for any subset
1

{ ,..., }
i

Z r r Y= ⊆ , we use (1)Z

X
n − to denote the

86

set
11 1

{ ,..., 1,..., 1, ,..., }
i ir r r m

n n n n n
+

− − , i.e., for all j Z∈ , the

corresponding
j

n values are decremented by 1, and for all j Z∉ , we keep the

corresponding
j

n values. Then for 2 q k≤ ≤ , we use the following recursive

function to obtain ()X

q X
p n .

1

() (,) (1)X X Z

q X q X
Z Y

p n b X Z p n
−

⊆
= ⋅ −∑ (5.8)

Basically, this equation tells us how to calculate the ()X

q X
p n value when

given
1
(1)X Z

q X
p n

−
− values for all Z Y⊆ . For example,

when Z = ∅ , (,) ()b X a X∅ = and
1 1
(1) ()X Z X

q X q X
p n p n

− −
− = . We already

know ()a X means the number of sets in F that avoid X, and
1
()X

q X
p n

−
 means

the number of (q-1)-tuples from F where for each j X∈ the number of the

element j in the union of every (q-1)-tuple is
j

n ; thus the product of ()a X

and
1
()X

q X
p n

−
 is the total number of ways to add a set to each of the

1
()X

q X
p n

−
 (q-

1)-tuples to make it a q-tuple while keeping
X

n unchanged. Similarly, for each

nonempty Z Y⊆ , we know (,)b X Z means the number of sets in F that cover

Z but avoid \X Z , where Z Y X⊆ ⊆ , and
1
(1)X Z

q X
p n

−
− means the number of

(q-1)-tuples from F where for each j X∈ the number of the element j in the

union of every (q-1)-tuple equals the updated
j

n value in the set (1)Z

X
n − ; thus

the product of (,)b X Z and
1
(1)X Z

q X
p n

−
− is the total number of ways to add a

set to each of the
1
(1)X Z

q X
p n

−
− (q-1)-tuples to make it a q-tuple while satisfying

all the
j

n values in the set
X

n . Finally, the summation of all these products

87

yields the number of q-tuples from F such that for each j X∈ the number of

the element j in the union of every q-tuple equals
j

n , which is ()X

q X
p n .

So according to Equation (5.8), in order to get all ()X

k X
p n , we need to

calculate all ()X

q X
p n where 1 q k≤ < . Now before giving an algorithm for

computing all ()X

k X
p n , we need to first analyze the special case where the

maximum integer t in the integral coverage requirement vector

1
(,...,)

n
T t t= equals 1. In this case, set multi-cover becomes the set cover

problem. Then as mentioned in Section 5.4.1, we only need to

compute
1

1
m

ii
t

=
∏ = number of () (0,...,0)X X

k X k

m

p n p= �	
 values. This means that the

number of positive integers in the set
1 2

{ , ,..., }
X m

n n n n= is zero, i.e., the set Y in

Equation (5.8) is an empty set. Accordingly, Equation (5.8) becomes

1 1
(0,...,0) (,) (0,...,0) () (0,...,0)X X X

k k k
p b X p a X p

− −
= ∅ ⋅ = ⋅ . Since

1
(0,...,0) ()Xp a X= ,

we can obtain (0,...,0) (())X k

k
p a X= . Finally from Equations (5.2) and (5.3), we

obtain | |() (1) (())X k

k
X N

c F a X
⊆

= − ⋅∑ , which is the same as the formula given in

[101] for counting the number of k-tuples that satisfy the set cover

requirement. As discussed in [101], based on whether we use exponential

space or not (c.f. Section 5.4.2), ()
k

c F can be computed in * (2)nO time

and * (2)nO space, or can be computed in * (3)nO time and polynomial space.

For the following, we assume that the maximum integer t in the integral

coverage requirement vector
1

(,...,)
n

T t t= is greater than or equal to 2.

Algorithm 5.1 for computing all ()X

k X
p n

Input: The value k where t k tn≤ ≤ ; the set {1,2,..., }X m= ; the integral

88

coverage requirement sub-vector for X , i.e.,
1 2

(, ,...,)
X m

T t t t= . Here
X

T is a sub-

vector ofT , and we use min()
X

T and max()
X

T to denote the minimum and the

maximum integers respectively in the sub-vector
X

T .

Output: The values for all ()X

k X
p n .

1: For all X N⊆ , by using the fast zeta transform technique given in [101],

we compute all ()a X and store them in a look-up table.

2: Based on the first step, for all Y X⊆ and X N⊆ , we compute

all (,)b X Y and store them in another look-up table.

3: For q=2 to k do:

4: By using Equation (5.8), we compute all ()X

q X
p n from (0,...,0)X

q
p to

1
(min(, 1),...,min(, 1),...,min(, 1))X

q i m
p q t q t q t− − − (with lexicographic order) and

we store all these ()X

q X
p n values in a look-up table. Here the

function min(, 1)
i

q t − means choosing the minimum value

betweenq and(1)
i

t − .

5: End For.

With the above Algorithm 5.1 for computing all ()X

k X
p n , we can

calculate ()
k

n X and then ()
k

c F . Then we analyze in the following the time

and space complexities for calculating ()
k

c F .

5.5.5 Time and space complexities for calculating ()
k

c F

Theorem 5.6: By using Algorithm 5.1 for computing all ()X

k X
p n , ()

k
c F can

be computed in * ((2))nO t time and * ((1))nO t + space.

PROOF: The first step of Algorithm 5.1 uses * (2)nO time and * (2)nO space.

For the second step, according to Lemma 5.5, computing all (,)b X Y takes

89

time (4)nO . Obviously there are
0

2 3
n

m m n

n
m

C
=

=∑ (,)b X Y , so storing all (,)b X Y in a

look-up table takes * (3)nO space.

In the ‘For’ loop (step 3 to step 5), we calculate

all ()X

q X
p n from 2q = to q k= and store all these ()X

q X
p n values in a look-up

table. So according to Equation (5.8), for each ()X

q X
p n , since all

the (,)b X Y and
1
()X

q X
p n

−
values have been stored, the time to

compute ()X

q X
p n is

0
2

r
j r

r
j

C
=

=∑ where r is the number of positive integers in the

set
X

n . So in order to calculate the total time for calculating all ()X

q X
p n , we just

need to count how many ()X

q X
p n we need to compute.

Since we know the number of positive integers in the set
X

n is r, for each q

where 2 q k≤ ≤ , the number of ()X

q X
p n we need to compute equals

1
min(, 1)

r

ii
q t

=
∏ − , i.e., those ()X

q X
p n from N(1,...,1,0,...,0)X

q

r m r

p
−

�	
 to

1
(min(, 1),...,min(, 1),0,...,0)X

q r

m rr

p q t q t
−

− − �	
������	�����
 .

So if min() 1 1
X

q T t≤ − ≤ − , the number of ()X

q X
p n we need to compute is rq ,

i.e., all ()X

q X
p n from N(1,...,1,0,...,0)X

q

r m r

p
−

�	
 to (,..., ,0,...,0)X

q

m rr

p q q
−

�	
�	
 . Similarly,

if 1t q k− < ≤ , the number of ()X

q X
p n we need to compute equals

1
(1)

r

ii
t

=
∏ − which

is less than (1)rt − , i.e., all ()X

q X
p n from

N(1,...,1,0,...,0)X

q

r m r

p
−

�	
 to
1

(1,..., 1,0,...,0)X

q r

m rr

p t t
−

− − �	
���	��
 . Finally, if

90

min() max() 1 1
X X

T q T t≤ ≤ − ≤ − , the number of ()X

q X
p n we need to compute is

at most rq .

From the above analyses, for a given
X

n where the number of positive

integers equals r and for all 2 q k≤ ≤ , the total number of ()X

q X
p n we have

computed is at most:

1

2
(1) (1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑ (5.9)

As mentioned earlier in this proof, since the time for computing each

()X

q X
p n is 2r , the total time for computing all these ()X

q X
p n is at most:

1

2
2 ((1) (1))

t
r r r

q
q k t t

−

=
⋅ + − + ⋅ −∑

Then for all
X

n where r, the number of positive integers in each of them,

varies from 0 to m, the total time for computing all ()X

q X
p n is at most:

1 1

0 2 2
(2 ((1) (1))) (2 1) (1) (2 1)

m t t
r r r r m m

m
r q q

C q k t t q k t t
− −

= = =
⋅ + − + ⋅ − = + + − + ⋅ −∑ ∑ ∑

Now according to Equation (5.3) which is for computing ()
k

n X , the total

time for computing ()
k

n X is less than
1

2
(2 1) (1) (2 1)

t
m m m

q
q k t t t

−

=
+ + − + ⋅ − +∑ ,

where the last term mt accounts for the at most mt number of additions

of ()X

k X
p n to obtain ()

k
n X .

Finally, according to Equation (5.2) which is for calculating ()
k

c F , the time

for computing ()
k

c F is at most:

1

0 2
((2 1) (1) (2 1))

n t
m m m m

n
m q

C q k t t t
−

= =
+ + − + ⋅ − +∑ ∑

2

2

(2 2) (2) (2) (1)
t

n n n

q
q k t t t

−

=
= + + − + ⋅ + +∑

Now according to the following helping lemma, Lemma 5.7,

91

2

2
(2 2) (2) (2) (1)

t
n n n

q
q k t t t

−

=
+ + − + ⋅ + +∑

*((1) (2 2)) (2) (2) (1) ((2))n n n nO t t k t t t O t= − ⋅ − + − + ⋅ + + = .

Lemma 5.7: For any positive integer s, we have

1

(1) (/ 2) (1) / 2
s

n n n

i
s s i s s

=
+ ⋅ ≤ ≤ + ⋅∑ .

PROOF: First we define a function () ()n nf x x s x= + − , where0 x s≤ ≤ .

By computing the second derivative of ()f x , we know ()f x is a convex

function. Thus it achieves the largest value at the boundaries of the x values,

which are either 0x = or x s= . By computing the first derivate of ()f x , we find

that it achieves its smallest value at / 2x s= . So we have 12 ()n n ns f x s− ≤ ≤ for

all0 x s≤ ≤ . Then by replacing x with all its integer values from 0 to s, and

summing these inequalities together, we obtain the result. This finishes the

proof.

After proving the time complexity for calculating ()
k

c F , we now turn to the

space complexity. This is equivalent to finding out the total interim values we

have stored in the look-up tables. We know already the total spaces for

storing all ()a X and (,)b X Y values are * (3)nO , and now we only need to know

the total number of ()X

q X
p n we have stored in the table. As given in Equation

(5.9), for a given
X

n and for all 2 q k≤ ≤ , the total number of ()X

q X
p n we have

computed is at most
1

2
(1) (1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑ . Then for all

X
n , the total number

of ()X

q X
p n we have stored is at most:

1 2

0 2 2
((1) (1)) (1) (2)

m t t
r r r m m

m
r q q

C q k t t q k t t
− −

= = =
+ − + ⋅ − = + + − + ⋅∑ ∑ ∑

92

Finally, for all X N⊆ , the total number of ()X

q X
p n we have stored is at

most:

2 2

0 2 2

((1) (2)) (2) (2) (1)
n t t

m m m n n

n
m q q

C q k t t q k t t
− −

= = =
+ + − + ⋅ = + + − + ⋅ +∑ ∑ ∑

Again, according to Lemma 5.7, we have:

2
1 *

2

(2) (2) (1) ((2) (1)) ((1))
t

n n n n n

q
q k t t O t k t t O t

−
+

=
+ + − + ⋅ + = + − + ⋅ + = +∑

Since 2t ≥ , all the time and spaces consumed in the first and the second

step of Algorithm 5.1 can be subsumed in * ((2))nO t and * ((1))nO t + ,

respectively. This finishes the proof of Theorem 5.6.

5.6 A Constructive Algorithm for the Set Multi-Cover Problem

Although we have computed the minimum number of sets that satisfy the

coverage requirement, we have not really constructed these sets. In this

section, we present an algorithm called ESMC for picking the minimum

number of sets such that each element in the universe is covered by at least

the required number of times as specified in the integral coverage

requirement set. Before giving this constructive algorithm, we need to define

two basic elements pair operations.

5.6.1 Two basic elements pair operations

We define two kinds of elements pair operations over a series of sets.

One is called elements pair separation, which is to divide a set into two sets

such that any pair of elements in the original set will fall into two different sets;

the other is called elements pair coalition, which is to merge a pair of

93

elements in the same set into a single element. Their formal definitions are

given below.

Elements Pair Separation: For any set
1

{ , , ,..., }
m

s a b x x= in F which

covers a pair of elements a and b, we replace the set s by separating the two

elements into two different sets
1

{ , ,..., }
a m

s a x x= and
1

{ , ,..., }
b m

s b x x= .

Elements Pair Coalition: For any set
1

{ , , ,..., }
m

s a b x x= in F which covers

a pair of elements a and b, we replace the set s with the

set
1

{ , ,..., }
ab m

s ab x x= where the two elements a and b are merged into a new

single elementab .

5.6.2 The constructive algorithm for the set multi-cover problem

We now give a constructive algorithm for finding the minimum number of

sets in F that satisfy the integral coverage requirement vector T. This

algorithm is based on finding the minimum k value such that the value

of ()
k

c F is greater than zero.

ESMC: Exact Set Multi-Cover Algorithm

Input: A family F of subsets over the universe N ; a coverage requirement

vector T .

Output: The minimum number of sets from F to satisfy the requirement T.

1: Set
bak

F F= .

2: Calculate the minimum value of k such that () 0
k

c F > .

3: Pick any element a in the universe N.

4: Find all the elements
1

{ ,..., }
m

x x in N that appear with a in some set in F.

5: Set
0

F F= .

6: For i=1 to m do:

7:
0

F F= .

94

8: For the pair of elements(,)
i

a x , we apply the Elements Pair Separation

operation over the setF to generate a new set called
i

F .

9: Calculate the value of ()
k i

c F .

10: End For

11: If all of the ()
k i

c F values where 0 i m≤ ≤ are greater than zero, we can

deduce that there exists a set in the optimal cover which only covers the

element a since otherwise there must exist some
i

x whose separation with the

element a can make () 0
k i

c F ≤ . So we just pick this set inF which covers a

and contains the least number of elements. We then decrement the value of k

by 1 and update the coverage requirement vector T, i.e., for all elements
i

x in

the picked set we decrement each of the corresponding
i

t values by 1. Also if

any 0
i

t ≤ we remove the element i in the universe set N.

12: Else we pick any i such that () 0
k i

c F ≤ . Then for the pair of

elements { , }
i

a x , we apply the Elements Pair Coalition operation over the

setF . Note that the element a has become a new single element ()
i

ax .

13: Repeat step 4 to step 12 until we have picked a set fromF .

14: Set
bak

F F= and we repeat step 3 to step 13 until 0k = .

5.6.3 Correctness Analysis

First, according to step 2, we know that the value of k we choose

guarantees that we only use the minimum number of sets to satisfy the

coverage requirement. Second, according to step 11, we know that, when

we pick a set from F in each step, we can guarantee that the picked set must

exist in some optimal legal (,)k T multi-cover sets. From this we also know

that, when we pick this set, there must exist a legal '(1,)k T− multi-cover

where 'T is the updated coverage requirement vector after picking a subset

95

from F. From the above analysis, we can conclude that we do pick the

minimum number of sets from F that satisfies the coverage requirement

vector T.

5.6.4 Time and Space Complexities Analysis

The time of the ESMC algorithm can be divided into two parts. The first

part is due to step 2, which is to calculate the minimum k value for a

legal (,)k T multi-cover. By using binary search, since t k tn≤ ≤ , its time

corresponds to (log())O tn calculations of ()
k

c F (c.f. Section 5.3.2). The second

part is due to steps 4 to 12 of the algorithm which is to pick a subset from F.

We can easily see that it takes 2()O n calculations of ()
k

c F . Since we need to

pick k subsets, we need 2()O kn evaluations of ()
k

c F in total. So the overall

time complexity is dependent on the time complexity for computing ()
k

c F .

Now according to Theorem 5.6, we have the following corollary.

COROLLARY 5.8: By using Algorithm 5.1 for computing all ()X

k X
p n , the

ESMC algorithm takes * ((2))nO t time and * ((1))nO t + space where t is the

maximum integer in the coverage requirement vector T.

5.7 An Illustrating Example

In this section, we give a very simple example to show how we calculate

the value of ()kc F and how the ESMC algorithm works for the given example.

Suppose the universe {1,2,3}N = , the family of subsets over N

is {{1,2},{1,3},{2,3}}F = and the coverage requirement vector (2,1,1)T = . Now

we first find the minimum k value to make a legal (,)k T multi-cover. This is

96

equivalent to calculating the minimum k value such that () 0kc F > . Suppose

we first test the case where 2k = .

According to Equation (5.2), we have | |

2 2
() (1) ()X

X N
c F n X

⊆
= − ⋅∑ . Now due to

Equation (5.3), we have
2 2 1 | |

0 1
1 | |

() (,...,)
i i

X

X
n t
i X

n X p n n
≤ ≤ −
≤ ≤

= ∑ . Then based on these

equations we have Table 5-2 which is to calculate
2
()n X values for all X N⊆ .

Table 5-2: Calculating
2
()n X for all X N⊆

X
2
()n X

∅
2 ()p ∅ ∅

{1} {1}

2 (0)p + {1}

2 (1)p

{2} {2}

2 (0)p

{3} {3}

2 (0)p

{1,2} {1,2}

2 (0,0)p + {1,2}

2 (1,0)p

{1,3} {1,3}

2 (0,0)p + {1,3}

2 (1,0)p

{2,3} {2,3}

2 (0,0)p

{1,2,3} {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p

The next step is to compute all the
2 1 | |

(,...,)X

X
p n n values on the right side of

Table 5-2. By combining Equation (5.8) which computes
1 | |

(,...,)X

q X
p n n and

Equation (5.4) which computes (,)b X Y , we have Table 5-3.

Table 5-3: Calculating
2 1 | |

(,...,)X

X
p n n for all X N⊆

X
2
()n X

∅
2 1() (,) () () ()p b p a a∅ ∅∅ = ∅ ∅ ⋅ ∅ = ∅ ⋅ ∅ =3*3=9.

{1} (1): {1}

2 (0)p = {1}

1({1},) (0)b p∅ ⋅

97

 = ({1}) ({1},)a b⋅ ∅ = ({1}) ({1})a a⋅ =1*1=1;

(2): {1}

2 (1)p = {1} {1}

1 1({1},) (1) ({1},{1}) (0)b p b p∅ ⋅ + ⋅

 = ({1}) ({1},{1}) ({1},{1}) ({1},)a b b b⋅ + ⋅ ∅

 = ({1}) [() ({1})] [() ({1})] ({1})a a a a a a⋅ ∅ − + ∅ − ⋅

 =1*(3-1)+(3-1)*1=4;

(3): {1}

2 (0)p + {1}

2 (1)p =1+4=5.

{2} {2}

2 (0)p = {2}

1({2},) (0)b p∅ ⋅

 = ({2}) ({2},)a b⋅ ∅ = ({2}) ({2})a a⋅ =1*1=1.

{3} {3}

2 (0)p = {3}

1({3},) (0)b p∅ ⋅

 = ({3}) ({3},)a b⋅ ∅ = ({3}) ({3})a a⋅ =1*1=1.

{1,2} (1): {1,2}

2 (0,0)p = {1,2}

1({1,2},) (0,0)b p∅ ⋅

 = ({1,2}) ({1,2},)a b⋅ ∅

 = ({1,2}) ({1,2})a a⋅ =0*0=0;

(2): {1,2}

2 (1,0)p = {1,2} {1,2}

1 1({1,2},) (1,0) ({1,2},{1}) (0,0)b p b p∅ ⋅ + ⋅

 = ({1,2}) ({1,2},{1}) ({1,2},{1}) ({1,2},)a b b b⋅ + ⋅ ∅

= ({1,2}) [({2}) ({1} {2})] [({2}) ({1} {2})] ({1,2})a a a a a a⋅ − + − ⋅∪ ∪

=0*(1-0)+(1-0)*0=0;

(3): {1,2}

2 (0,0)p + {1,2}

2 (1,0)p =0+0=0.

{1,3} (1): {1,3}

2 (0,0)p = ({1,3}) ({1,3})a a⋅ =0*0=0;

(2): {1,3}

2 (1,0)p = {1,3} {1,3}

1 1({1,3},) (1,0) ({1,3},{1}) (0,0)b p b p∅ ⋅ + ⋅

= ({1,3}) ({1,3},{1}) ({1,3},{1}) ({1,3},)a b b b⋅ + ⋅ ∅

=0*1+1*0=0;

(3): {1,3}

2 (0,0)p + {1,3}

2 (1,0)p =0+0=0.

{2,3} {2,3}

2 (0,0)p = ({2,3}) ({2,3})a a⋅ =0*0=0.

{1,2,3} (1): {1,2,3}

2 (0,0,0)p = ({1,2,3}) ({1,2,3})a a⋅ =0*0=0;

(2): {1,2,3}

2 (1,0,0)p

 = {1,2,3} {1,2,3}

1 1({1,2,3},) (1,0,0) ({1,2,3},{1}) (0,0,0)b p b p∅ ⋅ + ⋅

98

 = ({1,2,3}) ({1,2,3},{1}) ({1,2,3},{1}) ({1,2,3})a b b a⋅ + ⋅

 =0*0+0*0=0;

(3): {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p =0+0=0.

Having calculated all the
2
()n X values which are shown on the right side

of Table 5-3, we can

obtain | |

2 2
() (1) () 9 5 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = >∑ , which means

that there are two 2-tuples that can satisfy the coverage requirement. Since

the maximum integer in the coverage requirement vector T is 2, we know the

minimum k value we need to pick is 2. Actually, by calculating the
1
()c F value,

which is | |

1 1
() (1) () 3 3 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = − <∑ , we can

also conclude that the minimum k value is 2 since picking one set from F

does not meet the coverage requirement.

Now according to the ESMC algorithm, we briefly show in the following

how to pick the two sets that can satisfy the coverage requirement T.

First, according to step 3, we pick the element 1 in the universe N. Then

we can find the elements
1 2

{ 2, 3}x x= = that can appear with 1 in some

subsets in F. Now according to step 6 to step 10, we obtain

1
{{1},{2},{1,3},{2,3}}F = and

2
{{1,2},{1},{3},{2,3}}F = . From this we can

calculate
2 1
() 0c F ≤ and

2 2
() 0c F ≤ . Then according to step 12, we choose to

merge the elements pair (1,2) . Now since the new single element (12) does

not appear with any other elements in the set F, we have 0m = . Then

since
2 0 2
() () 2 0c F c F= = > , according to step 11, we just pick the first subset

99

in F which is {1,2} . Similarly, we can pick the second subset in F which

is {2,3} . This finishes the execution of the ESMC algorithm.

5.8 A Polynomial Time Polynomial Space Approximation

Algorithm for the MLSAT Problem

In this section, we will give a polynomial time polynomial space algorithm

for the MLSAT problem. First, we know the set multi-cover problem can be

exactly solved in * ((2))nO t time and * ((1))nO t + space where t is the maximum

integer in the coverage requirement vector T. Note that since finding and

storing all the link independent sets takes * (2)nO time and * (2)nO space, we

know that exactly solving the MLSAT problem also takes * ((2))nO t time

and * ((1))nO t + space. Thus if we partition all the links into
2

/ log
t

n n groups

where each group contains
2

log
t
n links, we can find the minimum number of

timeslots to schedule all the links in each group with polynomial time and

polynomial space. Then similar to Section 4.4.1, we know this algorithm can

give a polynomial time polynomial space algorithm for the MLSAT problem

with approximation ratio (/ log)O n n .

Compared with the approximation algorithm given in [137], our

approximation ratio is independent of the links’ lengths. Note that, the

approximation ratio given in [137] could become ()O n in the worst case.

100

Chapter 6 A Nonlinear Power Assignment based

Link Scheduling Algorithm for the MFSTT Problem

in Wideband Networks

6.1 Ultra-Wideband Networks and Its SINR Model

The MFSTT problem in narrowband networks has been studied in [56,58],

but it has not been examined in (ultra)-wideband networks. So in this chapter,

we consider the MFSTT problem for ultra-wideband networks (UWB) which

are drawing increasing attention in the wireless communications area due to

their many promising features [116]. Specifically, since a UWB network is an

inherent spread-spectrum network [114], the aggregate interferences caused

by other simultaneous transmissions at the intended receiver can be reduced

by a processing gain factor, thus making it very competitive in wireless

communications (potentially improved throughput capacity while not

sacrificing the energy-efficiency and the quality-of-service) [117]. And unlike

the narrowband networks, where the interference range is larger than the

transmission range, as will be shown later, the interference range of UWB

networks around the receiver is much shorter than the transmission range,

making more simultaneous transmissions at the receiver possible. For more

information about UWB networks, please refer to [116].

Also recently, one of the main findings in UWB network research [115] is

that the design of optimal MAC is independent of the choice of routing. Thus

the use of ultra-wideband can re-introduce the notion of layer separation

between these two layers just like the traditional wire line networks. This will

101

make the resultant network more scalable and it will certainly be a good

choice for the generic sensor networks. Furthermore, UWB is multi-path

fading resistant, and as the following SINR model shows, it is more flexible in

terms of adapting its parameters to meet different requirements (e.g., change

in processing gain).

In our analyses, we also adopt the physical signal-to-interference-plus-

noise ratio (SINR) model, which means that only when the received power is

above the SINR ratio threshold can the message be successfully received.

The SINR model in UWB networks was first given in [120], and it is different

from the narrowband case in [56,58]. Specifically, the achieved signal-to-

interference-plus-noise ratio at the receiver of link i can be represented as:

2

1,

(,)

[(,)]

i i j

i

i f k k j
k k i

P d x x
SINR

R T P d x x

α

α
β

η σ
= ≠

= ≥
+ ∑

 where iP denotes the average transmission power of link i ’s transmitter ix ;

iR denotes link i ’s data rate, and 1/ ()
i s h c

R N N T= ; sN denotes the number of

pulses per symbol; hN denotes the number of time slots per Pulse Repetition

Interval (PRI); cT denotes the pulse duration; fT is the PRI, and fT = hN cT ; 2σ

is a parameter depending on the shape of the monocycle; η is the

background noise plus interference from other non-UWB systems;

(,)i jd x x denotes the Euclidean distance between transmitter ix and jx ; α is

the path loss exponent and β is the SINR threshold.

If we set 2()fN Tη σ= and 21 ()i fm R T σ= , the above SINR model can be

transformed to a form similar to the spread-spectrum SINR model given in

Chapter 1 (cf. Inequality (1.1)):

102

1,

(,)

(,)

i i j

k k j
k k i

P d x x
SINR

mN P d x x

α

α

β

= ≠

= ≥
+ ∑

 (6.1)

Here m is the processing gain of the UWB network. If m=1, this becomes

a traditional narrowband SINR model, as used in [56,58]. The processing

gain in (ultra)-wideband networks can be regarded as the signal’s ability to

combat the aggregate interferences. So in this chapter, we will see how this

processing gain can help to reduce the scheduling length of the MFSTT

problem. In addition, since all the previously used nonlinear power

assignment based scheduling algorithms have not taken care of their total

power consumption, we will also pay attention to the energy consumption

analysis of the nonlinear power assignment.

The rest of this chapter is as follows. In Section 6.2, for both narrowband

and wideband networks, we explore different power assignments and their

impacts on pair-wise interference models which play a very important role in

the design of wireless protocols and wireless network capacity analyses. In

Section 6.3, we continue to compare the narrowband and wideband networks

in terms of power limitations in improving the spatial reuse. In Section 6.4, in

the context of wideband networks, we will give a nonlinear power assignment

based link scheduling algorithm for the MFSTT problem, with the guarantee

that all the simultaneous transmissions can be successfully scheduled based

on the SINR model. Specifically, our algorithm proves that the scheduling

length for the MFSTT problem for wideband networks is (log() log)O n m n⋅ .

This result represents an improvement over that for the narrowband networks.

103

In the same section, we also analyze the total power consumption of our

nonlinear power assignment based scheduling algorithm. In particular, we

show that the poly-logarithmic scheduling length was achieved at the

expense of the exponential total power consumption. And in wideband

networks, the upper bound of the total power consumption can be reduced by

a processing gain factor. Section 6.5 concludes the chapter and discusses

some future tasks that could make our algorithm practical.

6.2 Protocol Interference Models in Narrowband and Wideband

Networks

In this section, we focus on the impact of the power assignments on the

pair-wise interference models, which was often neglected in wireless

scheduling algorithm design. Specifically, we will show how the protocol

interference models introduced in Chapter 1 for narrowband networks behave

in wideband networks. Through this comparison, we will find that there is

more room for wideband networks to take advantage of power control to

reduce the scheduling length. We first consider narrowband networks.

6.2.1 Protocol interference models in narrowband networks

According to inequality (1.4), in order to ensure a successful

transmission (,)s rx x , the protocol interference model with constant power

assignment in narrowband networks is:

 1/(,) (,)s r s rd y x d x xαβ> ⋅

104

Since in narrowband networks, usually the threshold β >1 and

consequently the range 1/ (,)s rd x xαβ ⋅ is greater than the sender’s

transmission range (,)s rd x x . Thus to ensure a successful transmission, a

disc of radius at least 1/ (,)s rd x xαβ ⋅ around each successful receiver rx must

not contain other transmitters. So we denote 1/ (,)s rd x xαβ ⋅ as the interference

range (or exclusion region) around each receiver rx . For example, in Figure

6-1(a), assuming constant power assignment, since (,)s rd x y < (,)s rd y y ,

transmission (,)s ry y is not successful; whereas, since (,)s rd y x > (,)s rd x x ,

transmission (,)s rx x is successful. With this we can distinguish the other

graph-based interference models from the protocol interference model which

was considered the same in [10]. Notice that the protocol interference model

originates from the physical SINR model, and so it can reflect the physical

reality including the “capture effect” (cf. Section 1.1.1), while all the other

graph-based interference models cannot reflect this reality. For example,

since node rx is in the transmission range of sy , it suffers from the secondary

interference problem, so transmission(,)s rx x is not successful.

(a) (,) 1, (,) 4, (,) 2, (,) 3s r s r s r s rd x x d y y d x y d y x= = = =

(b) (,) 2, (,) 4, (,) 1, (,) 1s r s r s r s rd x x d y y d x y d y x= = = =

105

(c) (,) 1, (,) 1, (,) 1, (,) 3s r s r s r s rd x x d y y d x y d y x= = = =

(d) (,) 2, (,) 4, (,) 3, (,) 3s r s r s r s rd x x d y y d x y d y x= = = =

 Figure 6-1: Pair-wise transmissions examples

Now according to inequality (1.5), in order to ensure a successful

transmission (,)s rx x , the protocol interference model with linear power

assignment in narrowband networks is:

 1/(,) (,)s r s rd y x d y yαβ> ⋅

This protocol model was used in [64]. But compared with the first protocol

interference model, it has attracted much less attention mostly because many

capacity analysis papers assume the constant power assignment. Note that

here the interference range of receiver rx has been changed

from 1/ (,)s rd x xαβ ⋅ to 1/ (,)s rd y yαβ ⋅ . For example, in Figure 6-1(a), assuming

linear power assignment, since (,)s rd y x < (,)s rd y y , transmission (,)s rx x is

not successful. And since (,)s rd x y > (,)s rd x x , transmission (,)s ry y is

successful.

6.2.2 Protocol interference models in wideband networks

Now we turn to UWB networks. According to inequality (6.1), in order to

ensure a successful transmission (,)s rx x , the following inequality must hold.

106

(,)

(,)
x s r

y s r

P d x x
N P d y x m

α

α

β
≥

+
 ⇒

1 1(,)
() ()

(,)
ys r

s r x

Pd y x
d x x m P

α α
β

> ⋅ (6.2)

We first consider the protocol interference model with constant power

assignment in UWB networks. With the constant power assignment, by

inequality (6.2), we have

 1/(,) (/) (,)s r s rd y x m d x xαβ> ⋅ (6.3)

The interference range 1/ (,)s rd x xαβ ⋅ around the receiver rx is replaced

with 1/(/) (,)s rm d x xαβ ⋅ . Hence the interference range becomes smaller than

the transmission range.

For example, in Figure 6-1(a), ifα =4, β =2, m=100, since

(,)s rd x y =2> 1/(/) (,)s rm d y yαβ ⋅ � 1.5, the previously unsuccessful

transmission(,)s ry y with constant power assignment in narrowband networks

becomes successful in UWB networks. As a result, the two transmissions can

be scheduled in parallel.

Second, we take a look at the protocol interference model with linear

power assignment in UWB networks. Also by inequality (6.2), we have

1(,) (,)
()

(,) (,)
s r s r

s r s r

d y x d y y
d x x m d x x

α
β

> ⋅ ⇒
1

(,) () (,)ms r s rd y x d y yαβ> ⋅ (6.4)

The interference range around receiver rx is changed

from 1/(/) (,)s rm d x xαβ ⋅ to 1/(/) (,)s rm d y yαβ ⋅ . For example, in Figure 6-1(a),

if α =4, β =2, m=100, since (,)s rd y x =3> 1/(/) (,)s rm d y yαβ ⋅ � 1.5, the

previously unsuccessful transmission (,)s rx x with linear power assignment in

107

narrowband networks becomes successful in UWB networks. So the two

transmissions can be simultaneously scheduled.

From the above analyses, on one hand, due to the large processing gain

m when using the constant or linear power assignment, many unsuccessful

simultaneous transmissions in narrowband networks become successful in

UWB networks, thus leading to increased spatial reuse in UWB networks. On

the other hand, as the examples in [65] have shown, even in narrowband

networks, the unsuccessful simultaneous transmissions can also become

successful with a proper arbitrary power assignment. For example, for Figure

6-1(a), ifα =4, β =2, N=1, and xP =80, yP =3150, the two transmissions can be

successfully scheduled in parallel. And for Figure 6-1(c), ifα =3, β =4, N=1,

and xP =14, yP =64, the two transmissions can also take place simultaneously.

6.3 Limitations of Power Control in Narrowband and Wideband

Networks

From the last section, it is shown that we can benefit a lot from power

control to reduce the scheduling length in wireless networks. In this section,

we will show that power control, however, has its limitations in improving the

network throughput when some conditions are met. For example, for

narrowband networks, according to Theorem 2.6, we know that for any two

transmissions (sx , rx) and (sy , ry), if d(sx , ry) ⋅ d(sy , rx) ≤ 2/αβ ⋅

d(sx , rx) ⋅ d(sy , ry), then there exists no feasible power assignment for

simultaneous transmissions; otherwise, there always exists a feasible power

assignment to have a simultaneous schedule. For example, in Figure 6-1(d),

108

if α =4, β =2, and N=1, there will be no feasible power assignment to

simultaneously schedule transmission (sx , rx) and (sy , ry). The same is true

of Figure 6-1(b).

We now give another theorem to show that, although there is much more

room for UWB networks to reduce the scheduling length through power

control, the power control strategy also has its limitations in wideband

networks.

THEOREM 6.1. In UWB (or any spread-spectrum) networks, for any two

transmissions (sx , rx) and (sy , ry), if

 d(sx , ry) ⋅ d(sy , rx) > 2/(/)m αβ ⋅d(sx , rx) ⋅ d(sy , ry), there always exists a

power assignment to schedule these transmissions in parallel; no feasible

power assignments for simultaneous schedule, otherwise.

PROOF. Similar to the proof of Theorem 2.6, if the two transmissions can

be successfully scheduled, the following two inequalities must follow:

(,)

(,)
x s r

y s r

P d x x
N P d y x m

α

α

β
≥

+

(,)

(,)
y s r

x s r

P d y y

N P d x y m

α

α

β
≥

+

From these inequalities, we have

(,) (,)

(,) (,)
s r s r

y x y

s r s r

d x x d x ym
P P P

m d y x d y y

α α

α α

β
β

⋅ < < ⋅ ⋅

Therefore, if
(,) (,)

(,) (,)
s r s r

s r s r

d x x d x ym
m d y x d y y

α α

α α

β
β

⋅ < ⋅ , there always exists a power

assignment to simultaneously schedule these two transmissions; otherwise,

there is no valid power assignment to give a parallel schedule. This ends the

proof.

For example, in Figure 6-1(d), if α =4, β =2, N=1, and m=10,

xP = yP =1000, the two transmissions can be simultaneously scheduled.

109

Therefore, given any two transmissions in narrowband networks where

power control cannot guarantee a simultaneous schedule, they can be

scheduled in parallel in UWB networks as long as

d(sx , ry) ⋅d(sy , rx)> 2/(/)m αβ ⋅d(sx , rx) ⋅d(sy , ry). Given this result, we will

discuss how these benefits can help to reduce the scheduling length for the

MFSTT problem in the context of (Ultra)-Wideband networks in the next

section.

6.4 The NPAW Scheduling Algorithm for the MFSTT Problem in

Wideband Networks

We consider an arbitrarily distributed network with nodes

X={ 0x , 1x ,…, 1nx − } in the Euclidean plane, and one of them is a sink node.

Here by a sink node, we mean there are no outgoing edges (links) from this

node. For any links ijf =(ix , jx), ()ijfA =d(ix , jx) denotes the distance between

node ix and node jx . Now before going into the details of the scheduling

algorithm, it is important to distinguish between link length class and link

length class set which are used in our algorithm. A link length class is a set of

transmission links such that the lengths of these links differ by at most a

factor of 2 (line 8 of the main algorithm). A number of link length classes form

a link length class set. The three kinds of link length class set L, S and I used

in our algorithm, and their relationships, are described in Figure 6-2.

110

 S0 S1 … Sj Sj+1 … SkSk+1 S2 …

 L0 L1 L2 L3 L4 … Lk … L∆-1 L :

 S :

 I : I0 I1 I2 … Ik … Iq

Figure 6-2: Three kinds of link length class set and their relationships

In Figure 6-2, Lk, Sk and Ik denote the respective length classes in each

set. L is renamed to S because the empty length classes (containing no

transmission links) in L were deleted (line 9 of the main algorithm). For

example, the length classes L1 and L3 were deleted. S is renamed to I

because in each round, the scheduling algorithm only selects the length

classes in S with a certain length class separation. The separation value is

log(4βn) in [58] but we use log(3nβ/m) in our algorithm (line 11 of the main

algorithm). The solid arrows from S to I mean we select the length classes

S0SjSk… in the first round, while the dashed arrows mean we select the length

classes S1Sj+1Sk+1… in the second round (the details are in Table 6-1 and

Table 6-2). Note that only links in Lk have the property 12 () 2k k
ijf +≤ <A , but

not those in Sk or Ik (because 12k + upper bound would not hold for them).

Our scheduling algorithm also uses a nonlinear power assignment. For

convenience, we refer to the scheduling algorithm in [55,56,58,59] as “NPAN”

(nonlinear power assignment for narrowband networks), and our algorithm

“NPAW” (nonlinear power assignment for (ultra)-wideband networks). Note

that only the works in [56,58] directly investigate the MFSTT problem. Our

main algorithm is different from [56] in the sense that we start the scheduling

process after the tree topology has been constructed. Thus, compared with

111

the result in [56], the scheduling length upper bound can be reduced by

a (log)O n factor. In addition, we need to point out that, as shown in step 1 to

step 6 in the main algorithm, if the remaining single node in the established

tree topology is not the designated sink node, we just need to add an

outgoing link from this single node to the pre-determined sink and then to

remove the outgoing edge (link) from the sink node.

The challenging part of the algorithm is how to schedule all the links both

successfully and efficiently. Just as Figure 6-2 has demonstrated, we first

partition all the links into length classes of L which is then renamed to S (lines

8 and 9). Then we use the subroutine Schedule() to schedule the links in

length classes log(3 /)h n m kS β⋅ + in the kth round (lines 10, 11 and Table 6-2). The

trick of this algorithm lies in two aspects: one is the nonlinear power

assignment scheme (line 14 of the subroutine). This power assignment uses

a power scaling factorτ which depends on the position of the scheduling links

in link length class set I (lines 1 and 2 of the subroutine and Figure 6-2).

Because short links have a highτ value and long links have a low τ value,

this power assignment can increase the power of the short links relative to

the long ones so that it makes simultaneous transmissions of very different

lengths possible. Furthermore, because this power assignment takes the

parameter n (total number of the nodes) into account, it can bound the

aggregate interferences through the properly designed protocol interference

model (line 10 of the subroutine). But as discussed in Section 6.2, traditional

pair-wise protocol interference models cannot guarantee the successful

transmission due to the aggregate interference effect.

112

 The second part of the trick is the selection of the simultaneous

transmitting links in length class set I (Figure 6-2). With the proper length

class separation, for each link i , the algorithm can bound the total number of

blocking links for this link which is (log)O n (line 11 of the main algorithm and

line 10 of the subroutine), thus guaranteeing that after at most ((log)O n)

timeslots, all the links can be successfully scheduled. Therefore the poly-

logarithmic scheduling length can be arrived at. Here for the blocking links of

link i , we mean the links which can not be simultaneously scheduled with link

i .

6.4.1 Correctness analysis

Compared with narrowband networks, there are more links that can be

scheduled in each timeslot in wideband networks (link 10 in the Subroutine).

In this case, guaranteeing the successful simultaneous transmissions in the

same timeslot is of fundamental importance.

Main Algorithm: A Nonlinear Power Assignment based Link Scheduling

Algorithm for (Ultra)-Wideband Networks (NPAW)

Input: An arbitrarily distributed set of nodes X

Output: A data gathering tree with the number of timeslots t to schedule all

the links in this tree under the SINR model

1: F =∅

2: While |X|>1 do

3: For each ix X∈ find its closest neighbor jx such that

F :=F ∪ ijf ; { ijf is a directed edge from ix to jx .}

4: If F contains bi-directional edges then remove one edge of them; {To

makeF a directed nearest neighbor forest}

5: Delete all the nodes from node set X except the sink node in each tree of

113

the directed nearest neighbor forestF ;

6: End While {Step 2 to step 6 is to construct a tree topology}

7: Define a constant υ :=4N and a variable μ which is a function of the

processing gain m such that μ :=2+ε +4 ⋅
1 (1)

(2)(72) m
α αβα

α
−
−⋅ ; α >2; t:=0;

{N is the background noise from the Inequality (6.1) and ε is a small positive

parameter.}

8: Partition all the transmission links in F into length class

set 0 1 1{ , ,..., }L L L LΔ−= , such that kL contains all links ijf of length 12 () 2k k
ijf +≤ <A ;

{ maxlog()lΔ = ⎡ ⎤⎢ ⎥ , and maxl means the maximum link length inF .}

9: Delete all empty length classes kL in F and rename L to

0 1{ , ,..., ,...}kS S S S= such that kS is the thk smallest non-empty length-class in

S ;

10: For k=0 to log(3 /) 1n mβ − do

11: Schedule all the links

 /log(3 /) 1

log(3 /)0

n n m

ij h n m khf Sβ
β

−

⋅ +=∈∪

 using subroutine Schedule();

12: End For

13: Return t

Subroutine Schedule():

1: Let rF be the set of links to be scheduled, rename these link length

classes in S to 0 1{ , ,..., }qI I I I= with at most q+1 length classes where

q= / log(3 /) 1n n mβ −⎡ ⎤⎢ ⎥ . kI is the thk smallest length-class in I; {line 11 of the

main algorithm}

2: for each uvf ∈ kI do () : 1ux q kτ = − + ;

{Links within the smallest length class 0I have the highest τ

value / log(3 /)n n mβ⎡ ⎤⎢ ⎥ , and links within the largest length class qI have

the lowest τ value 1.}

3: while rF ≠ ∅do

114

4: : ;tE = ∅

5: Consider all ij rf F∈ in an increasing order of their lengths

6: Boolean:=true;

7: If tE ≠ ∅

8: For each link kl tf E∈

9: : () ()ik i kx xδ τ τ= − ;

10: if ikδ =0 and d(ix , lx) *()ijfμ≤ ⋅ A

 or if 0ikδ ≠ and d(ix , lx) (1)/ *(3 /) ()ik

ijn m fδ αβ +≤ ⋅ A

 Boolean:=false;

11: End For

12: End If

13: If Boolean==True then : { };t t ijE E f= ∪ \ { }r r ijF F f=

14: Schedule all ij tf E∈ in timeslot t with the transmission power

 () *() : (3 /) ()ix
i ijP x n m fτ αυ β= ⋅ A

15: t =t +1;

16: End While

LEMMA 6.2: Consider a scheduled link xf with intended sender sx and

receiver rx . Let ()r iI y be the interference caused at rx by simultaneously

transmitting nodes iy for which () ()i sy xτ τ< . It holds

that () 1() (3 /) sx
r iI y n m τυ β −≤ .

PROOF: In our main algorithm, because every node iy transmits

messages to its nearest neighbor, we have d(iy , rx) ()yf≥ A . Hence the

interference at rx caused by iy is at most

()r iI y =
()(3 /) ()

(,) ()

iy
yi

i r y

n m fP
d y x f

τ α

α α

υ β ⋅
≤

A
A

() 1()3 3() () si xyn n
m m

ττβ βυ υ −= ≤ .

115

LEMMA 6.3: Consider a scheduled link xf with intended sender sx and

receiver rx . Let ()r iI y be the interference caused at rx by simultaneously

transmitting nodes iy for which () ()i sy xτ τ> . It holds

that () 1() (3 /) sx
r iI y n m τυ β −≤ .

PROOF: Assume for contradiction that there exists a

node iy with () ()i sy xτ τ> and () 1() (3 /) sx
r iI y n m τυ β −> . Then

()r iI y =
()(3 /) ()

(,) (,)

iy
yi

i r i r

n m fP
d y x d y x

τ α

α α

υ β ⋅
≤

A
() 13() sxn

m
τβυ −>

From this, we have (1)/(,) (3 /) ()is

i r yd y x n m fδ αβ +< ⋅ A .

However, this contradicts the definition of our algorithm. In line 10 of the

subroutine, if node iy has been scheduled (because it has short link length,

line 5 of the subroutine), from the above inequality, node sx should not have

been scheduled, which establishes the contradiction. Therefore,

() 1() (3 /) sx
r iI y n m τυ β −≤ holds.

LEMMA 6.4: Consider a scheduled link xf with intended sender sx and

receiver rx . Let 0

rI be the total interferences caused at rx by simultaneously

transmitting nodes iy for which () ()i sy xτ τ= . The following holds:

 () 1 ()0 (/ 3) (/) (3)s sx x
rI m nτ τυ β −≤ ⋅ ⋅ .

PROOF: The proof of this lemma is similar to that of Lemma 4.4 in [58].

The main idea is that because the lengths of the links in the same length

class differ by at most a factor of 2, according to a simple geometric area

argument, the blocking links must be bounded by a certain number. The

difference is that we change the ring width from

116

1
2 (3) ()xfμ − ⋅ A to 1

2 (2) ()xfμ ε− − ⋅ A . And more importantly, the μ value is

greatly reduced due to the introduction of the processing gain m in the

denominator. Thus the blocking links in the same length class are greatly

reduced. Plugging in the value of μ in line 7 of the main algorithm, the results

follow.

THEOREM 6.5: For an arbitrary timeslot t, all scheduled transmissions

tE in t are received successfully by the intended receivers, and thus the

computed schedule is correct.

PROOF: Consider a scheduled link xf with intended sender sx and

receiver rx . The aggregate interferences at this receiver rx can be calculated

through Lemmas 6.2, 6.3 and 6.4.

By Lemmas 6.2 and 6.3, we know that for

all iy with () ()i sy xτ τ> and () ()i sy xτ τ< , the interference ()r iI y is bounded

by () 1(3 /) sxn m τυ β − . Hence, because there are at most n nodes in these sets, it

holds that

() 1 () 1 ()3

: () ()

() () () (3)
3

s s s

i s i

x x xn
mr i

y x y
I y n n

m
τ τ τβ

τ τ

υ βυ − −

≠
≤ ⋅ = ⋅ ⋅∑

Therefore the aggregate interference at rx is

() 1 () () 1 ()(/ 3) (/) (3) (/ 3) (/) (3)s s s sx x x x
rI m n m nτ τ τ τυ β υ β− −= ⋅ ⋅ + ⋅ ⋅

() 1 ()2 (/ 3) (/) (3)s sx xm nτ τυ β −= ⋅ ⋅ ⋅

And SINR at rx is

()

() 1 ()

(3 /) () / ()

2 (/ 3) (/) (3)

s

s s

x
x x
x x

n m f f
SINR

N m n

τ α α

τ τ

υ β
υ β −

⋅ ⋅
=

+ ⋅ ⋅ ⋅
A A

Since υ :=4N (line 7 of the main algorithm)

117

()

() 1 ()

(3 /)
2 (/ 3) (/) (3)

s

s s

x

x x

n m
SINR

N m n m

τ

τ τ

υ β β
υ β −

⋅
= ≥

+ ⋅ ⋅ ⋅

From this, we conclude that the computed schedule is correct.

6.4.2 Efficiency analysis

COROLLARY 6.6: In each timeslot, the blocking links in the same length

class in the NPAW algorithm are strictly fewer than the deleted links in the

NPAN-INFOCOM06 algorithm in [58].

PROOF: This conclusion is from the proof of Lemma 6.4.

LEMMA 6.7: In each timeslot, the blocking links in different length classes

in the NPAW algorithm are fewer than or at most equal to the deleted links in

the NPAN-INFOCOM06 algorithm in [58].

PROOF: From line 10 of the subroutine, on one hand, if the difference of

the power scaling factors between different length classes is the same,

because we have introduced the processing gain m as the denominator in the

base, the blocking links must be fewer than its counterpart in NPAN-

INFOCOM06. On the other hand, since

(1)/(3 /) ikn m δ αβ + ≤ (/log(3 /) 1 1)/(3 /) n n mn m β αβ − + = /2n α , and since

(1)/(4) ikn δ αβ + ≤ (/log(4) 1 1)/(4) n nn β αβ − + = /2n α , the deleted links must be at most equal

to its counterpart in NPAN-INFOCOM06.

THEOREM 6.8: The scheduling length for the MFSTT problem in (Ultra)-

Wideband networks is (log() log)O n m n⋅ .

PROOF: First of all, according to Corollary 6.6 and Lemma 6.7, for each

link in a scheduling round (each kth iteration in the for loop in line 10 of the

main algorithm), the total number of blocking links must not

118

exceed (log)O n which is the result of the NPAN-INFOCOM06 algorithm.

Hence, after at most (log)O n timeslots, all the transmission links that remain

to be scheduled in the kth scheduling round can be successfully scheduled.

And since there are at most log(3 /)n mβ scheduling rounds, the total

scheduling length of this algorithm is:

(log) log(3 /) (log(/) log)O n n m O n m nβ⋅ ∈ ⋅ .

6.4.3 Total power consumption analysis

In this section we will analyze the total power consumption for the NPAN-

INFOCOM06 algorithm and our NPAW algorithm. First, we will give the

analysis for the NPAN-INFOCOM06 algorithm [58].

THEOREM 6.9: For the strong connectivity scheduling algorithm for

narrowband networks, i.e., NPAN-INFOCOM06, the lower bound of the total

power consumption is (2)nnΩ ⋅ ; and the upper bound of the total power

consumption is 2(2)nO n α⋅ , where n is the number of the nodes.

PROOF: In the NPAN-INFOCOM06 algorithm, only links in link length

class log(4)h n kS β⋅ + can be simultaneously scheduled in the kth scheduling round

(k is from 0 to log(4) 1nβ − , represented by the columns of Table 6-1). And h

is from 0 to / log(4) 1n nβ − (represented by the rows of Table 6-1). In

particular, let’s consider the link length classes kS and log(4)n n kS β− + , which are

the shortest length class and the longest length class in the kth scheduling

round, respectively.

119

According to Figure 6-2, suppose the length class kS is mapped

from uL ,we have u k≥ ; And suppose the length class log(4)n n kS β− + is mapped

from log(4)n n vL β− + ,we have v u k≥ ≥ . According to the power scaling factorτ of

their algorithm, length class kS has the highestτ value / log(4)n nβ ; and length

class log(4)n n kS β− + has the lowestτ value, of 1. So according to the nonlinear

power assignment scheme in the algorithm, the power ()kP S assigned to the

links in kS has the property

/log(4) /log(4) (1)(4) 2 () (4) 2n n u n n u
kn P S nβ α β αυ β υ β +⋅ ≤ < ⋅ ⇒

(1)2 2 () 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅

The power log(4)()n n kP S β− + assigned to links in log(4)n n kS β− + has the property

1 log(4)

log(4)() (4) (2)n n v
n n kP S n β α

β υ β − +
− + ≥ ⋅ ⋅ and

1 log(4) 1

log(4)() (4) (2)n n v
n n kP S n β α

β υ β − + +
− + < ⋅ ⋅ ⇒

1 (1) 1

log(4)2 2 / (4) () 2 2 / (4)n v n v
n n kn P S nα α α α α α

βυ β υ β− + −
− +⋅ ⋅ ≤ < ⋅ ⋅

 Because 0≤ k ≤u≤v≤ log(4) 1nβ − , we have

02 2nυ ⋅ ⋅ ≤ (1)2 2 () 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅ ≤

1 (1) 1

log(4)2 2 / (4) () 2 2 / (4)n v n v
n n kn P S nα α α α α α

βυ β υ β− + −
− +⋅ ⋅ ≤ < ⋅ ⋅ ≤ (4) 2nn αυ β⋅ ⋅

From this, and because the sink node of the final directed spanning tree

transmits with the power maxN l αβ⋅ ⋅ , which could be 2nN αβ⋅ ⋅ , we get the lower

bound of the total power consumption for the strong connectivity scheduling

problem in narrowband networks, which is (2)nnΩ ⋅ , and the upper bound of

the total power consumption, which is 2(2)nO n α⋅ .

THEOREM 6.10: For our NPAW scheduling algorithm in UWB (or any

spread-spectrum) networks, the lower bound of the total power consumption

is still (2)nnΩ ⋅ ; but the upper bound of the total power consumption is

120

reduced to 21(2)n
mO n α⋅ ⋅ , where n is the number of the nodes and m is the

processing gain.

PROOF: With our main algorithm, only links in link length class

log(3 /)h n m kS β⋅ + can be scheduled simultaneously in the kth scheduling round (k is

from 0 tolog(3 /) 1n mβ − , represented by the columns of Table 6-2); and h is

from 0 to / log(3 /) 1n n mβ − (represented by the rows of Table 6-2). In

particular, let’s consider the link length classes kS and log(3 /)n n m kS β− + , which are

the shortest length class and the longest length class in the kth scheduling

round, respectively.

According to Figure 6-2, suppose the length class kS is mapped from uL ,

we have u k≥ ; and suppose the length class

log(3 /)n n m kS β− + is mapped from log(3 /)n n m vL β− + ,we havev u k≥ ≥ . From line 2 of the

subroutine Schedule(), the length class kS has the

highest τ value / log(3 /)n n mβ⎡ ⎤⎢ ⎥ ,and the length class log(3 /)n n m kS β− + has the

lowestτ value, of 1. So according to the nonlinear power assignment scheme

in our algorithm, the power ()kP S assigned to the links in kS has the property

/log(3 /)() (3 /) 2n n m u
kP S n m β αυ β ⎡ ⎤⎢ ⎥≥ ⋅ and

/log(3 /) (1)() (3 /) 2n n m u
kP S n m β αυ β ⎡ ⎤ +⎢ ⎥< ⋅ ⇒

(1)2 2 () 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅

The power log(3 /)()n n m kP S β− + assigned to links in log(3 /)n n m kS β− + has the property

1 log(3 /)

log(3 /)() (3 /) (2)n n m v
n n m kP S n m β α

β υ β − +
− + ≥ ⋅ ⋅ and

1 log(3 /) 1

log(3 /)() (3 /) (2)n n m v
n n m kP S n m β α

β υ β − + +
− + < ⋅ ⋅ ⇒

() 1 (1) 1

log(3 /)2 / (3 /) () 2 / (3 /)n v n v
n n m kn m P S n mα α α α

βυ β υ β+ − + + −
− +⋅ ≤ < ⋅

Because 0≤ k ≤u≤v≤ log(3 /) 1n mβ − , we have

121

0 (1)2 2 2 2 () 2 2n n u n u
kP Sα αυ υ υ +⋅ ⋅ ≤ ⋅ ⋅ ≤ < ⋅ ⋅ ≤

() 1 (1) 1

log(3 /)2 / (3 /) () 2 / (3 /)n v n v
n n m kn m P S n mα α α α

βυ β υ β+ − + + −
− +⋅ ≤ < ⋅ ≤

(3 /) 2nn m αυ β⋅ ⋅

From this, we get the lower bound of the total power consumption for the

MFSTT problem in (Ultra)-Wideband networks is (2)nnΩ ⋅ , and the upper

bound of the total power consumption is 21(2)n
mO n α⋅ ⋅ .

Table 6-1: Link length classes scheduling (in order) in narrowband networks

(from left to right, from top to bottom).

0S log(4)nS β 2log(4)nS β …
log(4)n nS β−

1S log(4) 1nS β + 2log(4) 1nS β + …
log(4) 1n nS β− +

 … … … … …

kS log(4)n kS β + 2log(4)n kS β +
 …

log(4)n n kS β− +

 … … … … …

log(4) 1nS β − 2log(4) 1nS β − 3log(4) 1nS β − …
1nS −

Table 6-2: Link length classes scheduling (in order) in wideband networks

(from left to right, from top to bottom).

0S log(3 /)n mS β 2log(3 /)n mS β …
log(3 /)n n mS β−

1S log(3 /) 1n mS β + 2log(3 /) 1n mS β + …
log(3 /) 1n n mS β− +

 … … … … …

kS log(3 /)n m kS β + 2log(3 /)n m kS β +
 …

log(3 /)n n m kS β− +

 … … … … …

log(3 /) 1n mS β − 2log(3 /) 1n mS β − 3log(3 /) 1n mS β − ……
1nS −

From the above two theorems, we can see that the poly-logarithmic

scheduling length comes at the expense of exponential total power

122

consumption. But compared with narrowband networks, by Theorem 6.10, we

can see that the upper bound of the total power consumption can be reduced

by a processing gain factor in (Ultra)-Wideband networks.

6.5 Concluding Remarks

In this chapter, we show that the scheduling length for the MFSTT

problem in the context of (Ultra)-Wideband networks is (log() log)O n m n⋅ .

Compared with the currently smallest scheduling length for the MFSTT

problem in narrowband networks ,which is 2(log)O n in [56], we can see that

higher processing gain in wideband networks does help to reduce the

scheduling length, especially when ()m n= Θ . In addition, by considering the

impact of the arbitrary power assignment on pair-wise transmissions

scheduling, we explicitly show that when some node distance function is

satisfied, there does not exist any power assignment for simultaneous link

scheduling, and thus the scheduling length cannot be further improved via

the means of power assignment. Therefore, the scheduling algorithm must

take full advantage of the power assignment schemes so that it can

simultaneously schedule as many links as possible without violating the

physical SINR model. Compared to narrowband networks, we show that

there is more room for UWB networks to take full advantage of power control

to reduce the scheduling length. More importantly, we explicitly prove that the

poly-logarithmic scheduling lengths derived from the nonlinear power

assignments are gained at the expense of exponential total power

consumption in both narrowband networks and UWB networks.

123

In order to turn our algorithm into a practical network protocol, some

problems need to be solved first, including the following.

 1) Although in UWB networks, the upper bound of the total power

consumption can be reduced by a processing gain factor, the exponential

lower bound would not change. Thus reducing the total power consumption

without sacrificing the scheduling length is a very interesting and challenging

task. To take up this challenge, more refined power assignment strategies,

either a new nonlinear power assignment or some completely new power

assignment methods may need to be designed.

2) With the nonlinear power assignment, every transmitting node must

know its own power scaling factorτ , which is based on some global picture,

thus making it difficult to implement the algorithm in a distributed manner. To

take up this challenge, implementing some randomized algorithm is a

possible method.

3) Our algorithm assumes one channel is used, but actually in MIMO

networks (e.g., 802.11n), a node can be equipped with multiple radios and

operate on multiple channels. Thus extending our algorithm to multi-radio

multi-channel scenarios is a natural idea.

124

Chapter 7 MST_MDCS: A New Algorithm for the

MFSTT Problem

We have given a nonlinear power assignment based algorithm for the

MFSTT problem in (Ultra)-Wideband networks in the last Chapter. In this

chapter, we will give another heuristic algorithm for the MFSTT problem in the

context of narrowband networks. As described in the NPAW algorithm, for the

topology construction part, we iteratively connect all the nodes on the plane

by using a nearest neighbor forest algorithm. This tree topology construction

algorithm has also been used in the NPAN-INFOCOM06 algorithm. As for the

latest joint link scheduling and topology control algorithm NPAN-IPSN07, it

iteratively constructs the tree topology through the nearest component

connector (NCC) algorithm [60,61]. This algorithm, however, is almost the

same as the nearest neighbor forest algorithm. In addition, by using the

graph-based interference model called in-interference degree which is to

characterize a node’s interference by counting the number of transmitters

whose transmission range covers this node, Fussen et al. show that,

compared with the NCC algorithm, the minimum spanning tree (MST)

algorithm would cause a destructive ()O n in-interference [60,61]. However,

the NCC algorithm can only lead to a constant in-interference degree. Thus

they prefer to the NCC algorithm from the graph-based interference model’s

point of view. In this chapter, from the SINR model’s point of view, we can

greatly lower the scheduling length by using the MST topology.

125

7.1 The MST_MDCS Algorithm for MFSTT

We now give the MST_MDCS algorithm for the MFSTT problem. As the

algorithm’s name shows, the proposed algorithm is based on the minimum

spanning tree algorithm. This means that, for the topology construction part in

the MFSTT problem, we choose to first connect all the nodes by using a

minimum spanning tree algorithm. After the tree topology has been

established, we seek to use the maximum directed cut based scheduling

framework MDCS to schedule all the links in the tree.

MST_MDCS: Joint Link Scheduling and Topology Construction for MFSTT

Input: A set of arbitrarily distributed nodes on a plane.

Output: A data gathering tree with the number of timeslots T to schedule all

the links in this tree under the SINR model.

1: Construct a directed minimum spanning tree over all the nodes;

2: Schedule all the links in this tree using the MDCS scheduling framework;

3: Return the number of used timeslots T.

Since the MDCS framework finds a maximum directed cut which also

contains a maximum matching in each scheduling phase, we have the

following theorem for the number of scheduling phases used in our joint

topology construction and scheduling algorithm.

THEOREM 7.1: The number of scheduling phases for our joint topology

construction and scheduling algorithm is (log)O n .

PROOF: By using the following two results: (1) For a graph with n edges

and a degree k, the number of edges in a maximum matching is lower

bounded by 4n/(5k+3) [98]; (2) The maximum degree of a minimum spanning

tree is bounded by 6, we can easily end the proof.

126

Note that, as shown in [84], we can use a local algorithm to construct the

MST. And the degree of this local-MST is also bounded by 6 [84]. In addition,

even if we use maximal matching instead of maximum matching in the MDCS

scheduling framework, Theorem 7.1 still hold because the number of edges

in a maximal matching is lower bounded by n/(2k-1) [97].

 (a) (b)

Figure 7-1: a) A tree link topology constructed via a nearest component

connector algorithm; b) A tree link topology constructed via a minimum

spanning tree algorithm.

7.2 Comparisons with Other Algorithms

First of all, all the nodes are arbitrarily located on a 2000 2000m m× plane

and we set the path loss exponent 4α = and the threshold 20β = . Compared

with the simulation setting in Section 3.4, the reason why we set a much

higher threshold value here is that the constructed tree topologies are very

sparse link topologies. In this case, if we set either a very high path loss

exponent or a very low SINR threshold, all the scheduling algorithms could

generate very short scheduling lengths which are almost the same as the

127

maximum degree in the tree topology. Two different tree topologies have

been shown in Figure 7-1. Specifically, Figure 7-1 (a) gives a tree topology

iteratively constructed by the nearest component connector (NCC) algorithm

and Figure 7-1(b) shows a tree topology constructed by using a minimum

spanning tree algorithm over the same node set. Besides the MDCS

scheduling framework and the LDS algorithm, we also implement the NPAN-

IPSN07 algorithm which is currently the fastest (in terms of the scheduling

length) nonlinear power assignment based link scheduling algorithm that can

schedule the NCC-tree (tree constructed with NCC algorithm) in time 2(log)O n

[56]. Now since the in-interference degree (cf. Section 2.3.1) of a MST

topology can be ()O n , we can not use the NPAN-IPSN07 algorithm to

schedule the links in the MST topology since the SINR constraints may not

be satisfied [56]. So for the MST topology, we apply the MDCS and the LDS

scheduling algorithms, and for the NCC tree, we can also apply the NPAN-

IPSN07 algorithm. But for the NPAN-IPSN07 algorithm, we must pay

attention to the background noise value in since the scheduling length is also

dependent on this parameter. Note that, in this algorithm, when the

background noise (2) / (2 (1))in α β α< − ⋅ − , the SNR constraints can not be

guaranteed by the proposed nonlinear power assignment (cf. Inequality 2.1).

So in this simulation, since we have tested that a much larger in value can

greatly increase the scheduling length, we set all the in as the same value

which is a little bit larger than(2) / (2 (1))α β α− ⋅ − .

The scheduling results can be seen from Figure 7-2. From this figure we

have the following observations: (1) the MST topology always yields much

128

shorter scheduling lengths no matter which scheduling algorithm is used; (2)

compared with Figure 3-4, Figure 3-5 and Figure 3-6, since the MST and

NCC tree topologies have much lower disturbanceρ − values, LDS

generates shorter scheduling lengths; meanwhile, although the scheduling

lengths reductions for the LDS algorithm are not that significant, the

scheduling lengths reductions of the MDCS algorithm are quite large; (3) for

both MST and NCC tree topologies, the MDCS algorithm always achieves the

shortest scheduling lengths; (4) for NCC tree, compared with the NPAN-

IPSN07 algorithm, MDCS achieves a much shorter scheduling length.

Figure 7-2: Comparisons of scheduling lengths over different tree topologies

129

7.3 Concluding Remarks

In this chapter, we show that connecting wireless devices with a

minimum spanning tree algorithm can significantly lower the scheduling

length compared with an iteratively nearest component connector algorithm.

This is due to the fact that MST generates shorter links, and shorter links

obviously generate much less interferences to other links thus making more

links scheduled in the same timeslot. One challenging task for future work is

to design local scheduling algorithms that can schedule the links in the tree

topology under SINR model both correctly and efficiently.

130

Chapter 8 Conclusions and Future Work

8.1 Conclusions

The work presented in this thesis can be largely classified into four parts.

In the first part, we have reviewed the frequently-used interference models

and the minimum (frame) length wireless link scheduling algorithms under the

SINR model. The subsequent three parts are devoted for the MFSAT,

MLSAT and MFSTT problems. Specifically, the second part covers heuristic,

exact and approximate scheduling algorithms for the MFSAT problem; the

third part proposes both exact and approximation algorithms for the MLSAT

problem; and the fourth part incorporates two joint link scheduling and

topology construction algorithms for the MFSTT problem.

For the MFSAT problem, the heuristic maximum directed cut based

scheduling framework MDCS differs from all the previous heuristic link

scheduling algorithms in two aspects. First, the MDCS framework seeks to

find a maximum directed cut of the remaining links after finding a maximum

link matching. All the existing heuristic scheduling algorithms, however, either

find a maximum (maximal) link matching or a subset of the link matching. A

large body of them even tries to directly schedule the links without first finding

a link matching. The second difference is that the MDCS framework employs

the link incremental scheduling algorithm together with the number of

neighbors in the pair-wise link conflict graph as a scheduling metric.

Extensive simulation results have shown that the MDCS framework

131

significantly outperforms all the previous heurist scheduling algorithms in

terms of the scheduling length.

For the MFSAT problem, by transforming it into a set cover problem, we

also give the first exact scheduling algorithm and the first polynomial time

approximate algorithm with a non-trivial approximation ratio.

For the MLSAT problem, by transforming it into a set multi-cover problem,

we also present both exact and polynomial time polynomial space

approximation algorithms. In addition, to our knowledge, the proposed exact

algorithm for the set multi-cover and the MLSAT problem are the first known

exact algorithm for these two problems. And different from the approximation

algorithm given in [137], the approximation ratio of our approximate

scheduling algorithm is independent of the links’ lengths.

For the MFSTT problem, we first generalize the nonlinear power

assignment based algorithm for narrowband networks into (Ultra)-Wideband

networks. The presented scheduling algorithm demonstrates that a large

processing gain in wideband networks can greatly lower the scheduling

length. Furthermore, we also prove that all the nonlinear power assignment

based scheduling algorithms achieve their poly-logarithmic scheduling

lengths at the expense of the total power consumption which is lower

bounded by the exponential function of the number of the nodes or links. We

also propose another joint link scheduling and topology construction

algorithm for the MFSTT problem. Different from all the previous algorithms,

this algorithm first construct the tee topology with a minimum spanning tree

algorithm rather than the frequently used nearest neighbor forest or nearest

component connector algorithm. The simulation results show that, the

132

proposed MST_MDCS algorithm obtains the smallest scheduling length

across all the algorithms for the MFSTT problem. Moreover, this simulation

results show that connecting all the nodes with the MST algorithm is superior

to the nearest component connector algorithm and the nearest neighbor

forest algorithm.

8.2 Future Work

There are many open problems in the wireless scheduling area that

warrant further attention and investigation. Here we could only touch upon

some of them.

Let’s first restrict to the MFSAT, MLSAT and MFSTT problems.

First, until the time we are writing the thesis, the hardness of the MLSAT

problem is still open. So a rigorous proof is necessary. Second, although we

have proposed some polynomial time polynomial space approximation

algorithms for the MFSAT and MLSAT problems, they are centralized

algorithms. So a local approximation algorithm where each sensor only has

limited knowledge of the whole network is necessary for wireless ad hoc and

sensor networks that may experience many changes dynamically. For

example, we want a sensor node to decide its transmission power locally

while guaranteeing higher throughput capacity and lower power consumption.

In addition, all the joint link scheduling and topology construction algorithms

for the MFSTT problem are also centralized algorithms, thus it entails

distributed algorithms for practical network protocols.

We have imposed several assumptions on the wireless link scheduling

problems studied in this thesis. So it will be interesting to investigate some of

133

the versions without some restrictions. For example, we can consider multi-

radio multi-channel wireless networks, and we can also consider the wireless

link scheduling with precedence constraints problem, i.e., some wireless links

can not be scheduled before some other links.

There are also many other challenging problems for wireless scheduling

under the SINR model.

First, we can consider the minimum length broadcasting (multicasting)

scheduling with SINR constraints problems. In these problems, different from

point to point link scheduling problems, we must ensure that all the receivers

successfully receive the packets from the corresponding sender. These

problems have been studied in some papers [53,110], but more work still

need to be done.

Second, for the joint scheduling and topology control problem, we can

consider some other frequently used topologies in wireless networks. For

example, we can consider the minimum length scheduling problem for the

dominating set [87], t-spanner or a k-connectivity topology.

Third, just as the authors did in [17], since it becomes very difficult to

design an approximate algorithm for arbitrary link topologies, we can resort to

designing distributed approximation algorithms for some specific link

topologies. For example, we can take full advantage of useful properties of

these link topologies, such as the bounded independence number (the

number of pair-wisely non-adjacent nodes in each node’s k-hop

neighborhood) property in growth-bounded-graph [64] to help our algorithm

design.

134

Finally, we can also consider the joint link scheduling, power control and

routing problems [19,20].

135

References

[1] A. Ephremides. Energy Concerns in Wireless Networks. IEEE Wireless

Communications, 9(4):48-59, 2002.

[2] P. Björklund, P. Värbrand and D. Yuan. A column generation method for

spatial TDMA scheduling in ad hoc networks. Ad Hoc Networks, 2(4): 405-

418, 2004.

[3] S. Kompella, J. E. Wieselthier and A. Ephremides. Multi-hop Routing and

Scheduling in Wireless Networks Subject to SINR Constraints. In Proc.

46th IEEE Conference on Decision and Control (CDC), New Orleans, LA,

USA, 2007.

[4] S. Kompella, J. E. Wieselthier and A. Ephremides. A Cross-layer

Approach to Optimal Wireless Link Scheduling with SINR Constraints, In

Proc. Military Communications Conference (MILCOM), 2007.

[5] S. Kompella, J. E. Wieselthier and A. Ephremides. Revisiting the Optimal

Scheduling Problem. In Proc. 42nd Annual Conference on Information

Sciences and Systems (CISS), Princeton, NJ, USA, 2008.

[6] S. Koskie and Z. Gajic. Signal-to-Interference-based Power Control for

Wireless Networks: a Survey, 1992-2005. Dynamics of Continuous,

Discrete and Impulsive Systems B: Applications and Algorithms,

13(2):187-220, 2006.

[7] A.J. Goldsmith and S.B. Wicker. Design challenges for energy-

constrained ad hoc wireless networks. IEEE Wireless Communications,

9(4):8-27, 2002.

[8] Q. Zhang and Y.-Q. Zhang. Cross-Layer Design for QoS Support in

Multihop Wireless Networks. Proceedings of the IEEE, 96(1):64-76, 2008.

[9] F. Baccelli, N. Bambos and C. Chan. Optimal Power, Throughput and

Routing for Wireless Link Arrays. In Proc. 25th IEEE International

Conference on Computer Communications, Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), Barcelona,

Catalunya, Spain, April 2006.

136

[10] Behzad and I. Rubin. On the Performance of Graph-based Scheduling

Algorithms for Packet Radio Networks. In Proc. of IEEE Global

Telecommunications Conference (GLOBECOM), 6:3432-3436, San

Francisco, December 2003.

[11] J. Grönkvist and A. Hansson. Comparison between graph-based and

interference-based STDMA scheduling. In Proc. MOBIHOC 2001: 255-

258.

[12] Behzad and I. Rubin. Multiple Access Protocol for Power-Controlled

Wireless Access Nets. IEEE Transactions on Mobile Computing, 3(4):

307-316, 2004.

[13] Behzad and I. Rubin. High Transmission Power Increases the Capacity of

Ad Hoc Wireless Networks. IEEE Transactions on Wireless

Communications, 5(1): 156-165, 2006.

[14] Behzad and I. Rubin. Optimum Integrated Link Scheduling and Power

Control for Multihop Wireless Networks. IEEE Transactions on Vehicular

Technology, 56(1):194-205, 2007.

[15] S. A. Borbash and A. Ephremides. Wireless Link Scheduling With Power

Control and SINR Constraints. IEEE Transactions on Information Theory,

52(11): 5106-5111, 2006.

[16] S. A. Borbash and A. Ephremides. The Feasibility of Matchings in a

Wireless Network. IEEE Transactions on Information Theory, 52(6): 2749-

2755, 2006.

[17] G. Brar, D. Blough, and P. Santi. Computationally efficient scheduling with

the physical interference model for throughput improvement in wireless

mesh networks. In Proc. 12th ACM Annual International Conference on

Mobile Computing and Networking (MOBICOM), Los Angeles, CA, US,

Sept. 2006.

[18] D. Chafekar, D. Levin, V.S. A. Kumar, M. V. Marathe, S. Parthasarathy,

and A. Srinivasan. Capacity of Asynchronous Random-Access

Scheduling in Wireless Networks. In Proc. 27th Annual Joint Conference

137

of the IEEE Computer and Communications Societies (INFOCOM),

Phoenix, AZ, US, April 2008.

[19] D. Chafekar, V. S. A. Kumar, M. V. Marathe, S. Parthasarathy and A.

Srinivasan. Approximation Algorithms for Computing Capacity of Wireless

Networks with SINR Constraints. In Proc. 27th Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM), Phoenix,

AZ, US, April 2008.

[20] D. Chafekar, V. S. A. Kumar, M. V. Marathe, S. Parthasarathy and A.

Srinivasan. Cross-Layer Latency Minimization in Wireless Networks with

SINR Constraints. In Proc. 8th ACM International Symposium on Mobile

Ad Hoc Networking and Computing (MOBIHOC), Montreal, Canada, Sept.

2007.

[21] V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy and A. Srinivasan.

Algorithmic aspects of capacity in wireless networks. In Proc.

SIGMETRICS 2005: 133-144.

[22] V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy and A. Srinivasan.

End-to-end packet-scheduling in wireless ad-hoc networks. In Proc.

SODA 2004: 1021-1030.

[23] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE

Transactions on Information Theory, 46(2):388-404, 2000.

[24] K. Jain, J. Padhye, V. N. Padmanabhan, L. Qiu. Impact of Interference on

Multi-hop Wireless Network Performance. Wireless Networks, 11(4): 471-

487, 2005.

[25] J. Tang, G. Xue, C. Chandler and W. Zhang. Link Scheduling with Power

Control for Throughput Enhancement in Multihop Wireless Networks.

IEEE Transactions on Vehicular Technology, 55(3):733-742, 2006.

[26] J. Tang, G. Xue, and W. Zhang. Cross-Layer Design for End-to-End

Throughput and Fairness Enhancement in Multi-Channel Wireless Mesh

Networks. IEEE Transactions on Wireless Communications, 6(10): 3482-

3486, 2007.

138

[27] J. Tang, G. Xue and W. Zhang. Cross-Layer Optimization for End-to-End

Rate Allocation in Multi-Radio Wireless Mesh Networks. ACM/Kluwer

Journal of Wireless Networks. In press.

[28] R. L. Cruz and A. Santhanam. Optimal Routing, Link Scheduling, and

Power Control in Multi-hop Wireless Networks. In Proc. 22nd Annual Joint

Conference of the IEEE Computer and Communications Societies

(INFOCOM), San Francisco, CA, US, Mar. 2003.

[29] T. A. ElBatt and A. Ephremides. Joint Scheduling and Power Control for

Wireless Ad-hoc Networks. In Proc. 21st Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM), New York,

US, June 2002.

[30] T. A. ElBatt and A. Ephremides. Joint scheduling and power control for

wireless ad hoc networks. IEEE Transactions on Wireless

Communications, 3(1): 74-85, 2004.

[31] U.C. Kozat, I. Koutsopoulos, and L. Tassiulas. A Framework for Cross-

layer Design of Energy-efficient Communication with QoS Provisioning in

Multi-hop Wireless Networks. In Proc. INFOCOM 2004.

[32] U.C. Kozat, I. Koutsopoulos, and L. Tassiulas. Cross-Layer Design for

Power Efficiency and QoS Provisioning in Multi-Hop Wireless Networks.

IEEE Transactions on Wireless Communications,5(11): 3306-3315, 2006.

[33] A.K. Das, R.J. Marks, P. Arabshahi and A. Gray. Power controlled

minimum frame length scheduling in TDMA wireless networks with

sectored antennas. In Proc. INFOCOM 2005.

[34] Y. Li and A.Ephremides. A joint scheduling, power control, and routing

algorithm for ad hoc wireless networks. Ad Hoc Networks, 5(7): 959-973,

2007.

[35] V. Ramamurthi, A.S. Reaz, S. Dixit and B. Mukherjee. Link Scheduling

and Power Control in Wireless Mesh Networks with Directional Antennas.

In Proc. ICC, Beijing China, May, 2008.

139

[36] L. Fu, S. Liew and J. Huang. Joint Power Control and Link Scheduling in

Wireless Networks for Throughput Optimization. In Proc. ICC, Beijing,

China, May 2008.

[37] Q. Wu. Performance of Optimum Transmitter Power Control in CDMA

Cellular Mobile Systems. IEEE Transactions on Vehicular Technology,

48(2):571-575, 1999.

[38] Q. Wu, W.-L. Wu and J.-P. Zhou. Centralized Power Control in CDMA

Cellular Mobile Systems. Electronics Letters, 33(2):115-116, 1997.

[39] K. Wang, C.-F. Chiasserini, R.R. Rao and J.G. Proakis. A Joint Solution to

Scheduling and Power Control for Multicasting in Wireless Ad Hoc

Networks, EURASIP Journal on Applied Signal Processing, 2005(1):144-

152, 2005.

[40] T.H. Lee, J.C. Lin and Y.T. Su. Downlink Power Control Algorithms for

Cellular Radio Systems. IEEE Transactions on Vehicular Technology,

44(1):89-94, 1995.

[41] M. Andersin, Z. Rosberg and J. Zander. Gradual Removals in Cellular

PCS with Constrained Power Control and Noise. Wireless Networks, 2(1):

27-43, 1996.

[42] S.A. Grandhi, R. Vijayan, D.J. Goodman and J. Zander. Centralized

Power Control in Cellular Radio Systems. IEEE Transactions on Vehicular

Technology, 42(4):466-468, 1993.

[43] J. Zander. Performance of Optimum Transmitter Power Control in Cellular

Radio Systems. IEEE Transactions on Vehicular Technology, 41(1):57-

62, 1992.

[44] J. Zander and M. Frodigh. Comment on "Performance of Optimum

Transmitter Power Control in Cellular Radio Systems". IEEE Transactions

on Vehicular Technology, 43(3):636, 1994.

[45] J. Zander. Distributed Cochannel Interference Control in Cellular Radio

Systems. IEEE Transactions on Vehicular Technology, 41(3):305-311,

1992.

140

[46] Roy D. Yates. A Framework for Uplink Power Control in Cellular Radio

Systems. IEEE Journal on Selected Areas in Communications, 13(7):

1341-1347, 1995.

[47] G.J. Foschini and Z. Miljanic. A Simple Distributed Autonomous Power

Control Algorithm and its Convergence. IEEE Transactions on Vehicular

Technology, 42(4):641-646, 1993.

[48] R. Jäntti and S.-L. Kim. Power control with partially known link gain

matrix. IEEE Trans. Vehic. Tech.,52(5):1288-1296, Sept. 2003.

[49] Q.-S. Hua and F. C. M. Lau. The Scheduling and Energy Complexity of

Strong Connectivity in Ultra-Wideband Networks. In Proc. 9th

International Symposium on Modeling Analysis and Simulation of

Wireless and Mobile Systems (MSWiM), Torremolinos, Malaga, Spain,

Oct. 2006.

[50] Q.-S. Hua and F.C.M. Lau. Exact and Approximate Link Scheduling

Algorithms under the Physical Interference Model. In Proc. 5th SIGACT-

SIGOPS International Workshop on Foundation of Mobile computing

(DIALM-POMC), Toronto, Canada, Aug. 2008.

[51] Q.-S. Hua, D. Yu, F.C.M. Lau and Y. Wang. Faster Exact Algorithms for

Set Multicover and Multiset Multicover Problems. Submitted to ISAAC

2009.

[52] T. Locher, P. von Rickenbach, and R. Wattenhofer. Sensor Networks

Continue to Puzzle: Selected Open Problems (Invited chapter). In Proc.

9th International Conference on Distributed Computing and Networking

(ICDCN), Kolkata, India, Jan. 2008.

[53] Goussevskaia, T. Moscibroda and R. Wattenhofer. Local broadcasting in

the physical interference model. In Proc. 5th SIGACT-SIGOPS

International Workshop on Foundation of Mobile computing (DIALM-

POMC), Toronto, Canada, Aug. 2008.

[54] Goussevskaia, Y. A. Oswald, and R.Wattenhofer. Complexity in

Geometric SINR. In Proc. 8th ACM International Symposium on Mobile Ad

141

Hoc Networking and Computing (MOBIHOC), Montreal, Canada, Sept.

2007.

[55] T. Moscibroda, Y. A. Oswald, and R. Wattenhofer. How Optimal are

Wireless Scheduling Protocols? In Proc. 26th Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM),

Anchorage, Alaska, US, May 2007.

[56] T. Moscibroda. The Worst-Case Capacity of Wireless Sensor Networks. In

Proc. 6th International Conference on Information Processing in Sensor

Networks (IPSN), Cambridge, Massachusetts, US, April 2007.

[57] T. Moscibroda, R. Wattenhofer, and Y. Weber. Protocol Design Beyond

Graph-Based Models. In Proc. 5th Workshop on Hot Topics in Networks

(HotNets), Irvine, California, US, Nov. 2006.

[58] T. Moscibroda and R. Wattenhofer. The Complexity of Connectivity in

Wireless Networks. In Proc. 25th Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), Barcelona, Spain,

April 2006.

[59] T. Moscibroda, R. Wattenhofer, and A. Zollinger. Topology Control Meets

SINR: The Scheduling Complexity of Arbitrary Topologies. In Proc. 7th

ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MOBIHOC), Florence, Italy, May 2006.

[60] M. Fussen, R. Wattenhofer and A. Zollinger. Interference Arises at the

Receiver. In Proc. of the International Conference on Wireless Networks,

Communications, and Mobile Computing (WirelessCom), June 2005.

[61] Martin Fussen. Sensor Networks: Interference Reduction and Possible

Applications. Diploma Thesis. Distributed Computing Group, ETH Zurich,

Switzerland, 2004.

[62] F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M.

Gruenewald. Energy, congestion and dilation in radio networks. In Proc.

of the 14th Annual ACM Symp. on Parallel Algorithms and Architectures

(SPAA), Winnipeg, Canada, August 2002.

142

[63] P. von Rickenbach, S. Schmid, R. Wattenhofer, and A. Zollinger. A

Robust Interference Model for Wireless Ad-Hoc Networks. In Proc. IPDPS

2005.

[64] S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks.

In Proc. 14th International Workshop on Parallel and Distributed Real-

Time Systems (WPDRTS), Island of Rhodes, Greece, April 2006.

[65] R. Wattenhofer. MACbeth: The three witches of media access theory . In

1st IEEE International Workshop on Foundation and Algorithms for

Wireless Networking (FAWN), Pisa, Italy, March 2006.

[66] M. Burkhart, P. von Rickenbach, R. Wattenhofer and A. Zollinger. Does

topology control reduce interference? In Proc. MobiHoc 2004: 9-19.

[67] L. Tassiulas and A. Ephremides. Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in

multihop radio networks. IEEE Transactions on Automatic Control,

37(12):1936-1949, 1992.

[68] F.P. Kelly, A. Maulloo and D. Tan. Rate Control In Communication

Networks: Shadow Prices, Proportional Fairness and Stability. Journal of

the Operational Research Society, V49:237-252, 1998.

[69] X. Lin, Ness B. Shroff and R. Srikant. A Tutorial on Cross-Layer

Optimization in Wireless Networks. IEEE Journal on Selected Areas in

Communications, 24(8): 1452-1463, 2006.

[70] X. Lin and N. B. Shroff. Joint Rate Control and Scheduling in Multihop

Wireless Networks. In Proc. 43rd IEEE Conference on Decision and

Control (CDC), Paradise Island, Bahamas, December 2004.

[71] X. Lin, Ness B. Shroff. The Impact of Imperfect Scheduling on Cross-

Layer Congestion Control in Wireless Networks. IEEE/ACM Transactions

on Networking, 14(2): 302-315, 2006.

[72] J. Kim, X. Lin and N.B. Shroff. Locally-Optimized Scheduling and Power

Control Algorithms for Multi-hop Networks under SINR Interference

Models. In Proc. WiOpt 2007.

143

[73] G. Sharma, C. Joo and N.B. Shroff. Distributed Scheduling Schemes for

Throughput Guarantees in Wireless Networks. In Proc. Allerton 2006.

[74] G. Sharma, R.R. Mazumdar and N.B. Shroff. On the Complexity of

Scheduling in Wireless Networks. In Proc. 12th Annual International

Conference on Mobile Computing and Networking (MOBICOM), Los

Angeles, CA, USA, Sept. 2006.

[75] G. Sharma, R.R. Mazumdar, and N.B. Shroff. Maximum Weighted

Matching with Interference Constraints. In Proc. FAWN 2006.

[76] Joo. A Local Greedy Scheduling Scheme with Provable Performance

Guarantee. In Proc. 9th ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MOBIHOC), Hong Kong, China, May 2008.

[77] Joo, X. Lin and N.B. Shroff. Understanding the Capacity Region of the

Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks. In

Proc. 27th Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), Phoenix, AZ, US, April 2008.

[78] P. Chaporkar, K. Kar and S. Sarkar. Throughput Guarantees Through

Maximal Scheduling in Wireless Networks. In Proc. Allerton 2005.

[79] X. Lin and S. Rasool. Constant-Time Distributed Scheduling Policies for

Ad Hoc Wireless Networks. In Proc. IEEE Conference on Decision and

Control (CDC), San Diego, December 2006.

[80] Modiano, D. Shah and G. Zussman. Maximizing Throughput in Wireless

Networks via Gossiping. In Proc. SIGMETRICS/Performance 2006: 27-

38.

[81] P.Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. John

Wiley and Sons, Chichester, UK, July 2005.

[82] Y. Wang and X.-Y. Li. Localized Construction of Bounded Degree Planar

Spanner for Wireless Ad Hoc Networks. In Proc. DIALM-POMC 2003.

[83] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed Topology

Control for Power Efficient Operation in Multihop Wireless Ad Hoc

Networks. In Proc. INFOCOM 2001.

144

[84] N. Li, Jennifer C. Hou, Lui Sha. Design and Analysis of an MST-based

Topology Control Algorithm. IEEE Transactions on Wireless

Communications 4(3): 1195-1206 (2005).

[85] K. Moaveni-Nejad and X.-Y. Li. Low-Interference Topology Control for

Wireless Ad Hoc Networks. In Proc. IEEE SECON, 2005.

[86] Y. Gao, J.C. Hou and H. Nguyen. Topology Control for Maintaining

Network Connectivity and Maximizing Network Capacity under the

Physical Model. In Proc. INFOCOM, Phoenix, AZ, USA, April 2008.

[87] Richa, C.Scheideler, P.Santi. An O(logn) Dominating Set Protocol for

Wireless Ad Hoc Networks under the Physical Interference Model. In

Proc. 9th ACM International Symposium on Mobile Ad Hoc Networking

and Computing (MOBIHOC), Hong Kong, China, May 2008.

[88] D.S. Johnson. Worst Case Behavior of Graph Coloring Algorithms. In

Proc. 5th Southeastern Conf. on Comb., Graph Theory and Computing,

1974, 513-527.

[89] L. Trevisan. Inapproximability of Combinatorial Optimization Problems.

Electronic Colloquium on Computational Complexity (ECCC)(065):

(2004).

[90] S. Sahni and T. Gonzalez. P-Complete Approximation Problems. J. ACM.

23(3): 555-565, 1976.

[91] L. Alfandari, V. Th. Paschos. Master-Slave Strategy and Polynomial

Approximation. Computational Optimization and Applications, 16, 231-

245, 2000.

[92] S. U. Pillai, T. Suel, and S. Cha. The Perron-Frobenius Theorem and

Some of its Applications. IEEE Signal Processing Magazine, 22(2):62-75,

2005.

[93] R. J. Wood and M. J. O'Neill. An Always Convergent Method for Finding

the Spectral Radius of an Irreducible Non-Negative Matrix. The ANZIAM

Journal,V45:C474-C485,2004.

145

[94] P. Chanchana. An Algorithm for Computing the Perron Root of a

Nonnegative Irreducible Matrix. PhD Thesis, North Carolina State

University, North Carolina, USA, 2007.

[95] Victor Y. Pan, Zhao Q. Chen. The Complexity of the Matrix Eigenproblem.

In Proc. STOC 1999: 507-516.

[96] S. Micali and V. V. Vazirani. An O(sqrt(|v|) |E|) Algorithm for Finding

Maximum Matching in General Graphs. In Proc. FOCS, 1980: 17-27.

[97] T. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer and S. G. Kobourov.

Tight Bounds on Maximal and Maximum Matchings. Discrete

Mathematics, 285(1-3):7-15, 2004.

[98] Yijie Han: Matching for Graphs of Bounded Degree. FAW 2008: 171-173.

[99] Björklund, T. Husfeldt, P. Kaski and Mikko Koivisto. Fourier Meets

Möbius: Fast Subset Convolution. In Proc. 39th Annual ACM Symposium

on Theory of Computing (STOC), San Diego, California, US, June 2007.

[100] Björklund and T. Husfeldt. Inclusion--Exclusion Algorithms for Counting

Set Partitions. In Proc. 47th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), Berkeley, California, US, Oct. 2006.

[101] Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion--

Exclusion. SIAM Journal on Computing, to appear.

[102] V. Fomin, F. Grandoni and D. Kratsch. Measure and Conquer: a Simple

O(2^0.288n) Independent Set Algorithm. In Proc. 17th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), Miami, Florida, US, Jan.

2006.

[103] M. Fürer and S. P. Kasiviswanathan. Algorithms for Counting 2-Sat

Solutions and Colorings with Applications. In Proc. 3rd International

Conference on Algorithmic Aspects in Information and Management

(AAIM), Portland, OR, US, June 2007.

[104] M. Koivisto. An O*(2^n) Algorithm for Graph Coloring and Other

Partitioning Problems via Inclusion--Exclusion. In Proc. 47th Annual IEEE

146

Symposium on Foundations of Computer Science (FOCS), Berkeley,

California, US, Oct. 2006.

[105] J.W. Moon and L. Moser. On Cliques in Graphs. Israel Journal of

Mathematics, Vol. 3, pp. 23-28, 1965.

[106] Takeaki Uno. A Fast Algorithm for Enumeration of Maximal Matchings in

General Graphs. Journal of National Institute of Informatics, Vol.3, pp. 89-

97, 2001.

[107] S. Tsukiyama, M. Ide, H. Aviyoshi and I. Shirakawa. A New Algorithm for

Generating all the Maximum Independent Sets. SIAM Journal on

Computing, V6:505-517, 1977.

[108] E. Tomita, A. Tanaka and H. Takahashi. The Worst-Case Time

Complexity for Generating all Maximal Cliques and Computational

Experiments. Theoretical Computer Science, V363:28-42, 2006.

[109] M. Bomze, M. Budinich, P. M. Pardalos and M. Pelillo. The Maximum

Clique Problem. In “Handbook of Combinatorial Optimization” Supplement

Vol. A (Eds: DingZhu Du and Panos M. Pardalos), Kluwer Academic

Publishers (1999), pp. 1-74.

[110] S. C.-H. Huang, P.-J. Wan, X. Jia, H. Du, and W. Shang. Minimum-

Latency Broadcast Scheduling Schemes in Ad Hoc Networks. In Proc.

INFOCOM 2007.

[111] S. Ramanathan. A Unified Framework and Algorithm for Channel

Assignment in Wireless Networks. Wireless Networks,5:81-94, 1999.

[112] Balakrishnan, C. Barrett, V. S. Anil Kumar, M. Marathe, and S. Thite. The

distance 2-matching problem and its relationship to the MAC layer

capacity of ad-hoc wireless networks. IEEE J. Selected Areas in

Communications, 22(6):1069-1079, August 2004.

[113] W. Wang, X.Y. Li, O. Frieder, Y. Wang and W.Z. Song. Efficient

Interference-Aware TDMA Link Scheduling for Static Wireless Networks.

In Proc. 12th Annual International Conference on Mobile Computing and

Networking (MOBICOM), Los Angeles, CA, US, Sept. 2006.

147

[114] R.C. Qiu, H. Liu, and X. Shen. Ultra-wideband for multiple-access

communications. IEEE Communications Magazine, 43(2):80-87, Feb.

2005.

[115] Radunovic and J.-Y. Le Boudec. Optimal power control, scheduling and

routing in UWB Networks. IEEE Journal on Selected Areas in

Communications, 22(7):1252-1270, Sept. 2004.

[116] M. Z. Win and R. A. Scholtz. Ultra-wide bandwidth time-hopping spread-

spectrum impulse radio for wireless multiple-access communications.

IEEE Transactions on Communications, 48(4):679-691,2000.

[117] X. Yang and G. de Veciana. Inducing spatial clustering in MAC contention

for spread spectrum ad hoc networks. In Proc. 6th ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC),

Urbana-Champaign, IL, USA May 2005.

[118] Dousse, F. Baccelli, and Patrick Thiran. Impact of interferences on

connectivity in ad hoc networks. IEEE/ACM Trans. Netw. 13(2): 425-436,

2005.

[119] B.E. Hajek and G.H. Sasaki. Link Scheduling in Polynomial Time. IEEE

Transactions on Information Theory, 34(5): 910-917, 1988.

[120] F. Cuomo, C. Martello, A. Baiocchi and F. Capriotti. Radio resource

sharing for ad-hoc networking with UWB. IEEE Journal on Selected Areas

in Communications, 20(9):1722-1732, December 2002.

[121] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc

wireless networks. IEEE/ACM Transactions on Networking, 10(4):477-

486, August, 2002.

[122] T. Erlebach, K. Jansen and E. Seidel. Polynomial-Time Approximation

Schemes for Geometric Intersection Graphs. SIAM Journal on

Computing: 34(6): 1302--1323, 2005.

[123] M. Caramia and P. Dell'olmo. Constraint Propagation in Graph Coloring.

Journal of Heuristics, 8(1):83--107, 2002.

148

[124] M. S. Kodialam and T. Nandagopal. Characterizing the capacity region in

multi-radio multi-channel wireless mesh networks. In Proc. MOBICOM

2005.

[125] R. Bhatia and M. S. Kodialam. On Power Efficient Communication over

Multi-hop Wireless Networks: Joint Routing, Scheduling and Power

Control. In Proc. INFOCOM 2004.

[126] M. S. Kodialam and T. Nandagopal. Characterizing Achievable Rates in

Multi-hop Wireless Networks: the Joint Routing and Scheduling Problem.

In Proc. MOBICOM 2003.

[127] M. Alicherry, R. Bhatia, and E. L. Li. Joint Channel Assignment and

Routing for Throughput Optimization in Multiradio Wireless Mesh

Networks. IEEE Journal on Selected Areas in Communications,24(11):

1960-1971, 2006.

[128] E.T. Bax. Inclusion and exclusion algorithms for the Hamiltonian path

problem. Information Processing Letters, 47(4):203-207,1993.

[129] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling

salesman problem in bounded degree graphs. In Proc. 35th ICALP ,

Iceland, 2008.

[130] U. Feige. A threshold of lnn for approximating set cover. Journal of the

ACM, 45(4):634-652, 1998.

[131] R.M. Karp. Dynamic programming meets the principle of inclusion-

exclusion. Operations Research Letters, 1(2):49-51,1982.

[132] J. Nederlof. Fast polynomial-space algorithms using Möbius inversion:

Improving on Steiner Tree and related problems, to appear in Proc. ICALP

2009.

[133] Nederlof, A.J.: Inclusion-Exclusion for hard problems. Master Thesis.

Utrecht University, The Netherlands (2008)

[134] J. Radhakrishnan. Entropy and counting. In: Mishra, J.C. (ed.) IIT

Kharagpur Golden Jubilee Volume on Computational Mathematics,

Modelling and Algorithms, Narosa Publishers,New Delhi, 2001.

149

[135] V.V. Vazirani. Approximation Algorithms. Berlin: Springer, 2003.

[136] S. Rajagopalan and V.V. Vazirani. Primal-dual RNC approximation

algorithms for set cover and covering integer programs. SIAM Journal on

Computing, 28(2):525-540, 1998.

[137] L. Fu, S. Liew and J. Huang. Power controlled scheduling with

consecutive transmission constraints: complexity analysis and algorithm

design. To appear in IEEE INFOCOM, 2009.

[138] Q.-S. Hua and F.C.M. Lau. Joint Link Scheduling and Topology Control

for Wireless Sensor Networks with SINR Constraints. In Handbook of

Research on Developments and Trends in Wireless Sensor Networks:

From Principle to Practice, IGI Global, to appear.

[139] Q.-S. Hua, Y. Wang, D. Yu and F.C.M. Lau. Set multi-covering via

inclusion-exclusion. Theoretical Computer Science,

doi:10.1016/j.tcs.2009.05.020 (2009)

[140] Q.-S. Hua, D. Yu and F.C.M. Lau. Exact Algorithms for (Multi)set

Multicover and #k-Multiset Multicover Problems. Submitted to SODA

2010.

[141] Richard S. Varga. Matrix iterative analysis. Prentice-Hall, Englewood

Cliffs, N.J., 1962.

	Chapter 1 Introduction
	1.1 Interference Models
	1.1.1 Graph-based interference models
	1.1.2 SINR models

	1.2 Relationships between Graph-based Interference Models and the SINR Model
	1.3 Reasons to Choose the SINR Model
	1.4 System Model and Problem Definitions
	1.4.1 System model
	1.4.2 Problem definitions

	1.5 Thesis Organization

	Chapter 2 Literature Review
	2.1 The Hardness of the MFSAT and the MLSAT Problems
	2.2 The Top-Down Approaches
	2.2.1 Link removal algorithms for non-adjacent links
	2.2.2 Link removal algorithms for arbitrary topologies

	2.3 The Bottom-Up Approaches
	2.3.1 Non-matching based link incremental scheduling
	2.3.2 Matching based link incremental scheduling

	2.4 Time Complexities of the Heuristic Link Scheduling Algorithms
	2.5 Algorithms Inefficiency Analyses
	2.5.1 Inefficiency of constant and linear power assignments
	2.5.2 Inefficiency of top-down based scheduling algorithms
	2.5.3 Inefficiency of bottom-up based scheduling algorithms

	Chapter 3 MDCS-Maximum Directed Cut based Scheduling Framework for the MFSAT Problem
	3.1 Insufficiency of Using Maximal Link Matching
	3.2 Maximum Directed Cut with Maximum Link Matching
	3.3 Maximum Directed Cut based Scheduling Framework
	3.3.1 Pair-wise link conflict graph
	3.3.2 The MDCS scheduling framework

	3.4 Comparisons of MDCS and other Six Heuristic Link Scheduling Algorithms
	3.4.1 Simulation settings
	3.4.2 Performance comparisons

	Chapter 4 Exact and Approximate Link Scheduling Algorithms for the MFSAT Problem
	4.1 New Formulation for the MFSAT Problem
	4.2 Set Covering based Exact and Approximate Colorings
	4.2.1 Set covering based exact coloring
	4.2.2 Set covering based approximate coloring

	4.3 Counting based Exact Coloring
	4.3.1 The Inclusion-Exclusion Principle
	4.3.2 Counting the number of k-set-coverings
	4.3.3 Computing the minimum number of colors
	4.3.4 The exact scheduling algorithm: ESA_MFSAT
	4.3.5 Correctness and time complexity analysis
	4.3.6 An illustrating example for ESA_MFSAT

	4.4 Counting based Approximate Colorings
	4.4.1 Polynomial time approximation
	4.4.2 Quasi-polynomial time approximation
	4.4.3 Exponential time approximation

	Chapter 5 Exact and Approximate Link Scheduling Algorithms for the MLSAT Problem
	5.1 New Formulation for the MLSAT Problem
	5.2 Related Work
	5.3 The Set Multi-cover Problem
	5.4 Counting based Exact Algorithm for the Set Multi-Cover Problem
	5.4.1 The Inclusion-Exclusion Principle
	5.4.2 Counting the number of k-tuples

	5.5 An Algorithm for Computing
	5.5.1 How to compute
	5.5.2 How to compute all
	5.5.3 How to compute all
	5.5.4 An Algorithm for computing all
	5.5.5 Time and space complexities for calculating

	5.6 A Constructive Algorithm for the Set Multi-Cover Problem
	5.6.1 Two basic elements pair operations
	5.6.2 The constructive algorithm for the set multi-cover problem
	5.6.3 Correctness Analysis
	5.6.4 Time and Space Complexities Analysis

	5.7 An Illustrating Example
	5.8 A Polynomial Time Polynomial Space Approximation Algorithm for the MLSAT Problem

	Chapter 6 A Nonlinear Power Assignment based Link Scheduling Algorithm for the MFSTT Problem in Wideband Networks
	6.1 Ultra-Wideband Networks and Its SINR Model
	6.2 Protocol Interference Models in Narrowband and Wideband Networks
	6.2.1 Protocol interference models in narrowband networks
	6.2.2 Protocol interference models in wideband networks

	6.3 Limitations of Power Control in Narrowband and Wideband Networks
	6.4 The NPAW Scheduling Algorithm for the MFSTT Problem in Wideband Networks
	6.4.1 Correctness analysis
	6.4.2 Efficiency analysis
	6.4.3 Total power consumption analysis

	6.5 Concluding Remarks

	Chapter 7 MST_MDCS: A New Algorithm for the MFSTT Problem
	7.1 The MST_MDCS Algorithm for MFSTT
	7.2 Comparisons with Other Algorithms
	7.3 Concluding Remarks

	Chapter 8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

