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This dissertation investigates three link scheduling problems under the
physical interference model, or the SINR model. The first problem is called
minimum frame length link scheduling for arbitrary link topologies (MFSAT):
Given a set of arbitrarily constructed links over arbitrarily located nodes on a
plane, schedule all these links with the minimum number of timeslots such
that each link appears in at least one timeslot. The requirement for this
problem is that concurrently scheduled links must satisfy the SINR
constraints. The second problem is called minimum length link scheduling for
arbitrary link topologies (MLSAT): Different from the MFSAT problem where
each link has only a unit traffic demand (one packet to transmit), each link in
the MLSAT problem may have non-unit traffic demands, namely, we need to
schedule all the links with the minimum number of timeslots such that each
link is scheduled at least the number of times as specified by its traffic
demands. The third problem is called minimum frame length link scheduling

for a data gathering tree topology (MFSTT): Given a set of arbitrarily located
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nodes on a plane, connect these nodes as a data gathering tree towards the
sink node. The objective of this problem is to construct the tree such that all
the links in this topology can be scheduled using a minimum number of
timeslots. The requirement for this problem is the same as that for MFSAT.
We have developed heuristic, exact and approximate link scheduling
algorithms for the MFSAT problem. For the heuristic algorithm, we have
designed a novel maximum directed cut based scheduling framework called
MDCS. Both theoretical analyses and simulation results have shown that the
MDCS scheduling framework significantly outperforms all the sate-of-the-art
heuristic link scheduling algorithms in terms of the scheduling lengths. By
applying an exact algorithm for the set cover problem, we have designed an
exact algorithm called ESA_MFSAT for the MFSAT problem. Finally, based
on the ESA_MFSAT algorithm, we give the first polynomial time polynomial
space approximate link scheduling algorithm for the MFSAT problem with

approximation ratio O(n/logn) where nis the number of the links.

For the MLSAT problem, we first transform it into the set multi-cover
problem, and then we give a first known exact algorithm for the set multi-
cover problem. This exact algorithm can solve the MLSAT problem in
O ((2t)") time and O'((t+1)") space where t means the maximum traffic
demand. Based on the proposed exact algorithm, we present the first
polynomial time polynomial space approximation algorithm for the MLSAT
problem with an approximation ratio independent of the links’ lengths.

Finally, for the MFSTT problem, we have generalized a nonlinear power

assignment based link scheduling algorithm to cover also wideband networks.

We prove that the asymptotic poly-logarithmic scheduling length is achieved
Il




at the expense of the exponential total power consumption in the number of
the nodes. Then, by using the MDCS scheduling framework, we show that
connecting the nodes with a minimum spanning tree algorithm rather than an
iterative nearest component connector algorithm can significantly reduce the
scheduling length.

(An abstract of exactly 501 words)
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Chapter 1 Introduction

In this thesis, we will investigate three related minimum (frame) length
wireless link scheduling problems which are to use the minimum number of
timeslots to schedule all these links such that the simultaneously scheduled
links must fulfill some interference model. Here by the interference model, we
mean the criteria for determining the links that can be scheduled in the same
timeslot. Obviously the interference model plays a fundamental role in the
minimum length link scheduling problems. So in order to further explore our
research topics, we need to give a brief survey of the interference models

that arise in various literatures.

1.1 Interference Models

1.1.1 Graph-based interference models

In this section, we will introduce six graph-based interference models.
Here by a graph-based interference model, we mean that each constraint
only involves two wireless links, i.e., it is a binary constraint model. Among
the six interference models, only the first imposes constraints on a single
wireless node, while the other five models impose constraints on each pair of
wireless links.

The first binary constraint model is called the primary interference model
[49,111,119], or the node-exclusive interference model [71]. This model
restricts that a wireless node can not perform two operations at the same
time, such as receiving from two transmitters, transmitting to two receivers or

receiving and sending at the same time. These constraints are due to the
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following two facts: The first is the half-duplex constraint for the single radio
transceiver and the second is for the point-to-point traffic requirement which
means that each packet is addressed to a single receiver. In this model, only
non-adjacent links which form a link matching can be concurrently scheduled.

The second binary constraint model arises due to the so called
secondary interference caused by the broadcast nature of the wireless
medium [111]. Given two single hop wireless transmissions one is from node
/to node jand the other is from node 4 to node / we can tell that these two
transmissions can not be simultaneously scheduled if at least one of the
receivers is within the transmission range of another link’s sender. Obviously,
the secondary interference model prevents the capture effect of the wireless
transceiver. Here by the capture effect, we mean the ability of the wireless
transceiver that can correctly receive the strong signal from one transmitter
despite the interferences caused by the other transmitters. From this we can
see that capture effect is beneficial in physical reality since it can increase the
network throughput by allowing more potential transmissions in each timeslot.

The third binary constraint model we want to introduce is called the
protocol interference model that is given in [23]. For any wireless
transmission which is from node /to node j in order to make the receiver /
successfully receive the packet from / the distance from any transmitter & of
the other simultaneously scheduled links (transmissions) to node j must be at
least a factor (1+ A) higher than the distance from node /to node / (the link’s
length). Here the positive parameter A is a specified guard zone value to

prevent the neighboring nodes from transmitting at the same time.




Another protocol interference model has been introduced in [64]. In this
model, in order to make the receiver j successfully receive the packet from /
the distance from any transmitter & of the other concurrently scheduled links
to node jmust be at least a factor (1+A) larger than the distance from node &
to its corresponding receiver (node ).

The fifth binary constraint model which has been used in [21] is called the
transmitter interference model (Tx-model). For two transmissions with
transmitter / and jrespectively , in order to make sure the intended recipient
of node / correctly receive the packet, the distance between /and j must be
at least a factor (1+A) larger than the sum of the transmission ranges of
sender /and sender /.

The sixth binary constraint model is called the Distance-K interference
model (K'is a positive integer) [21,22,112]. This model requires that two links
must be at least distance-K apart to ensure simultaneous transmissions.
Here by the distance of two links, we mean the least number of hops between
an incident node of the first link and an incident node of the second link.
Depending on different K values, this model can incorporate a large class of
interference models. For example, when A=1, it becomes the primary
interference model; when AK=2, it becomes the transmitter-receiver
interference model (Distance-2 interference model) which has been used in
many network protocols, such as 802.11 DCF (Distributed Coordinated

Function).




1.1.2 SINR models

In this section, we will discuss the interference models that are based on
the signal-to-interference-plus-noise ratios (SINR). This means that only all
the SINR values at the links’ receivers are above some threshold values can
these links be successfully scheduled in the same timeslot. Different from
graph-based interference models, since each constraint in the physical
interference models covers any subset of all the links, they are called global
constraints models. It is commonly believed that the SINR models are more
realistic than the graph-based interference models but using these models
also pose much more challenges on the link scheduling problems due to the
cumulative interferences effect from all the other transmitters [50-52,54,80].

The SINR ratio at the receiver of a link 7/can be represented as [49,121]

SN, —— 9P P (1.1)
’7/+Zg,j'p, m

g

To delve into the details of this model, an explanation of the used

parameters is in order: p, denotes the transmission power of link /’s
transmitter/_; n, is the background noise at link /’ s receiver/ ; g, andg,
are the link gain (wireless signal propagation attenuation) from/ to/ , and
that from the transmitter /_of link jto/ , respectively; gis the SINR threshold

which is larger than or equal to 1; m stands for the processing gain which
equals the ratio of the chip rate to symbol rate or the information bit rate.
Here each message or information consists of symbols and each symbol is
encoded (spreaded) into a pseudorandom sequence of chips. Thus the chip

rate is normally larger than the symbol rate. The processing gain can be
4




regarded as the signal’s ability to fight the interferences. So the larger the
processing gain, the more links can be tolerated in the same timeslot. The
processing gain is larger than 1 in (ultra-)wideband networks, and it equals 1
in narrowband networks. Throughout this thesis, we assume m=1
(narrowband networks) except Chapter 6.

Since we do not consider fading effects and possible obstacles in

wireless transmissions, the link gain can be represented by an inverse power

law model of the link length, ie., g,=1/d“(/,/,) and g, =1/d"(/,,/,) -
Hered(,)is the Euclidean distance function, and « represents the path loss
exponent which is equal to 2 in free space, and varies between 2 and 6 in
urban areas. By plugging into these equations and the m value, the SINR
model becomes:

pld L) s g (1.2)
n+ S pld (i)

J=g#

SINR, =

This is the same as the physical interference model proposed in [23].

1.2 Relationships between Graph-based Interference Models and
the SINR Model
In this section, we will discuss some interesting relationships between the

two protocol interference models and the physical interference model. We will

use these results in the following chapters.

We consider two links, one is called link /with transmitter/_and receiver/ _,
the other is called link / with transmitter /. and receiver /. . In order to
successfully schedule link / according to inequality (1.2), we have

5




S/qu/ — p//d (ls’/'r)' Zﬂ
n+p,1di(j,r)

From this inequality, we can obtain

dUel) o pe (Pive
d(/'s,/,)>ﬂ (p/) (1.3)

Now if p, = p, (we call this as constant power assignment), inequality (1.3)

becomes

1
d(j,7,)> B -di.0)) (1.4)
This is the same as the first protocol interference model introduced in [23].
Similarly, if p, = p-d“(i,,/.)and p, = p-d*(J,, /,) (we call this as linear power

assignment), inequality (1.3) becomes

l - -
d(/,.1.)> B -d(J,.J,) (1.5)
This is the same as the second protocol interference model introduced in

[64].

1.3 Reasons to Choose the SINR Model

In this section, we will give some reasons for choosing the physical
interference model rather than the graph-based interference models.

The first reason is that, compared with the SINR model, all the graph-
based interference models did not take the cumulative interferences effect
into account. This can be seen in the following example of Figure 1-1. In this
example, there are seven links whose lengths are all 1. In addition, all the

distances from the other six links’ transmitters to the transmitter/ and the

receiver/ of link 7/are 3 and 4, respectively. We also set the distances of link
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/’s transmitter/_to all the other six links’ receivers are 2.5. Now according to

the five graph-based interference models (the secondary interference model,
the two protocol interference models, the transmitter interference model and
the Distance-K interference model), these seven links can be simultaneously
scheduled in the same timeslot (We suppose these seven links are distance-
K apart in the Distance-Kinterference model). However, if we assume all the
six links’ (link /4, /p,g andh) transmitters employ the same transmission

power which equals to 6-p,, and we set the path loss exponenta =3, the
threshold =2 and all the background noises values are 0, then the SINR

value at the receiver/ of link / is:

3
SR, =—PIT 17842
0+6-6-p /4

From this we can conclude that link /can not be successfully scheduled.
This example indicates that the power assignment strategies and the
aggregate interferences effect of simultaneous transmissions may subvert a
communication request which might otherwise appear successful under the

graph-based interference models.

Figure 1-1: An example of seven links centered at link /
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The second reason to choose the SINR model instead of the graph-
based interference models is derived from an observation in [57]. Specifically,
the authors in [57] proved that the scheduling algorithm under the SINR
model can achieve the throughput that can surpass the theoretically
attainable throughput upper bound under the graph-based interference
models. The simulation results to compare the throughput by using these two
kinds of interference models can be found in [10,11].

From the above analyses, we can conclude that we should employ the
physical interference model rather than the simple graph-based interference
models in terms of both improving the network throughput capacity and

guaranteeing correct packet receptions for all the wireless transmissions.

1.4 System Model and Problem Definitions

1.4.1 System model

Throughout the thesis, we have the following assumptions of the wireless
network: (1) All the wireless nodes are arbitrarily located on a plane, and
each node is equipped with an omni-directional antenna; (2) We assume all
the nodes are stationary; (3) we assume a single channel which means all
the simultaneously scheduled links interfere with each other; (4) The wireless
transceivers work on a half-duplex mode, which means each node can not
send to or receive from more than one node, nor to receive and send at the
same time (this corresponds to the primary interference model); (5) we
assume the link capacity is fixed, which means increasing the transmission

power only increases the sender’s transmission range but not its capacity; (6)
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we assume time is slotted with equal durations which means that each packet

can not be further divided into smaller units to transmit.

1.4.2 Problem definitions

To begin this section, we first give an explanation of some terms: As
mentioned earlier, by a wireless link, we mean a wireless transmission
comprised by a source node (transmitter) and a destination node (receiver); If
we regard the wireless link as an edge in a graph, then a ‘link matching’ is
just a matching in the graph; Similarly, a ‘link maximum (maximal) matching’
or a ‘maximum (maximal) link matching’ is just a maximum (maximal)
matching in the graph. For the brevity of presentation, we can also use
(maximum) (maximal) matching directly since it will not cause any confusion.
By a link independent set, we mean a set of links that can be concurrently
scheduled in the same timeslot under some interference model. Also any
subset of a link independent set is also a link independent set.

Now we define the minimum length wireless link scheduling (MLS)
problem. First we assume each link can transmit at most one packet in each
timeslot. Second, by the scheduling length, we mean the totally used
timeslots to schedule all the packets. Third, if all the links have the same
number of packets to be transmitted, we call it uniform traffic (link) demands
(traffic requirements), otherwise we call it non-uniform traffic (link) demands.
Now by the minimum length wireless link scheduling problem, we mean that,
for a set of wireless links with given traffic demands, we need to use the
minimum number of timeslots to schedule all the packets subject to the

interference constraints.




With the above definitions, we can define the minimum frame length link

scheduling problem. First, by the frame length 7, we mean the scheduling

length to schedule all the links such that each link has transmitted one packet.

Then the minimum frame length link scheduling problem is just the minimum
length link scheduling problem with a unit traffic demand. In the minimum
frame length link scheduling scenario, we just need to repeat the scheduling

sequences in the subsequent frames, i.e., X, = X, (0<t<T ; kis a

I t+kT

positive integer; X, equals 1 if link /transmits in timeslot zand 0 otherwise).

From these definitions, we can see that minimum frame length link
scheduling problem is only a special case for the minimum length link
scheduling problem. In addition, repeating the minimum frame length link
scheduling results in each frame can not guarantee the minimum length link
scheduling result with uniform traffic demands. Finally, even iteratively
applying the minimum frame length link scheduling algorithm to schedule all
the links with uniform or non-uniform traffic demands can not guarantee the
minimum length link scheduling results for the given traffic requirements. For
example, given four links {1,2,3,4} where the maximum link independent sets
are {1,2,3},{1,2,4} and {3,4}, the minimum frame length link scheduling result
could be to schedule {1,2} in the first timeslot and then to schedule {3,4} in
the second timeslot. Now suppose each link has two packets to transmit.
Repeating the minimum frame length link scheduling results would lead to the
scheduling length with four timeslots. However, the minimum Ilength
scheduling result for these eight packets is three timeslots

{{1,2,3},{3,4},{1,2,4}}. Moreover, we can first apply the minimum frame length
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link scheduling algorithm to schedule four packets and then to apply this
algorithm again to schedule the remaining four packets. The results could be
to use two timeslots ({1,2,3},{4}) in the first minimum frame length link
scheduling and then to use another two timeslots ({1,2,4},{3}) in the second
minimum frame length link scheduling. So this result is not optimal for
minimum length link scheduling, either.

We now give the definitions of the three studied problems in this thesis.
The first is called the minimum frame length link scheduling problem for
arbitrary link topologies (MFSAT); the second is called the minimum length
link scheduling problem for arbitrary link topologies (MLSAT); the third is
called the minimum frame length link scheduling problem for a data gathering
tree topology (MFSTT).

The MFSAT problem: Given n links which are arbitrarily constructed over
arbitrarily located nodes on a plane and suppose each link has a unit traffic
demand, we need to assign each link’s transmitter a power level and a
timeslot, such that all the links scheduled in the same timeslot satisfy the
SINR constraints and the total number of used timeslots for transmitting all
the packets is minimized.

The MLSAT problem: The only difference between the MLSAT and the
MFSAT problem is that, each link in the MLSAT problem may have non-unit
traffic demands. In this case, in order to minimize the totally used timeslots
for transmitting all the packets, we need to assign each link’s transmitter a set
of power levels and timeslots such that each power level corresponds to a

timeslot.
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The MFSTT problem: Given n nodes arbitrarily located on a plane, we
need to connect these nodes to form a data gathering tree towards the sink
node such that the number of timeslots used to schedule all the links under
the SINR model is minimized.

From the three problem definitions, we can easily see that: (1) the
MFSAT problem is a special case for the MLSAT problem; and (2) if the tree
topology has been constructed, the MFSTT problem becomes a special case
for the MFSAT problem which has been identified as a prominent open
problem in [52]. However, as we will see in Chapter 7, how to construct this

tree topology plays a very important role in the scheduling length.

1.5 Thesis Organization

The structure of this thesis is organized as follows. We will first review the
state-of-the-art heuristic minimum (frame) length link scheduling algorithms
and analyze their time complexities and inefficiencies in Chapter 2. In
Chapter 3, we will give a maximum directed cut based scheduling framework
for the MFSAT problem. Then we will present both exact and approximate
link scheduling algorithms for the MFSAT problem in Chapter 4. In Chapter 5,
we give both an exact and an approximate algorithm for the MLSAT problem.
We then turn to investigating the MFSTT problem in Chapters 6 and 7.
Specifically, we will discuss an elegant nonlinear power assignment based
link scheduling algorithm together with its total power consumption analysis in
Chapter 6, then a joint topology construction and link scheduling algorithm
using the MDCS scheduling framework is given in Chapter 7. We finally

conclude this thesis with some future work in Chapter 8.
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Note that most of the results in this thesis have been published or are in
press. The details are as follows: Chapters 2, 3 and 7 have been summarized
as a brief survey chapter in “Handbook of Research on Developments and
Trends in Wireless Sensor Networks: From Principle to Practice” [138].
Chapter 4 has been published in the DIALM-POMC 2008 workshop [50].
Chapter 5 is now in press for “Theoretical Computer Science” [139]. Chapter

6 has been published in MSWiM 2006 [49].
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Chapter 2 Literature Review

In this chapter, we will review and analyze state-of-the-art link scheduling
algorithms whose objectives are to minimize the scheduling lengths. Although
the objectives of some link scheduling algorithms are not on scheduling
lengths minimization (throughput maximization), their algorithms can also be
easily adapted to the minimum length link scheduling problems. So we will
also cover some of these algorithms. Now we will first discuss the hardness

of the minimum length link scheduling problems.

2.1 The Hardness of the MFSAT and the MLSAT Problems

By regarding the wireless link as an edge in the graph, many researchers
have claimed that the MFSAT problem is NP-hard through the reduction from
the graph coloring problem. For example, this kind of reductions have been
used in [2,14]. All of these reductions assume that the link gains between any
pair of links are arbitrary values. However this is not true under the physical
interference model used in most of the link scheduling problems. Since the
link gains are determined by the distances among different links, thus the
triangle inequalities must not be violated. So these direct reductions from
graph coloring problems are problematic under the physical interference
model. Recently, under the assumption that power control is not allowed, the
MFSAT problem has been proven to be NP-hard [54]. In addition, even if we
allow arbitrary power assignment, the MFSAT problem is still NP-hard [137].
For the MLSAT problem, until the time we are writing the thesis, there is still

no rigorous hardness proof. However, some researchers believe that it
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remains NP-hard [15]. In this case, most of the researchers seek to solve the
minimum (frame) length link scheduling problems with heuristic algorithms.
All the existing heuristics can be largely classified as either a top-down or a
bottom-up approach (cf. Figure 2-1). In a top-down approach, if the given
links are not a link matching, the heuristic algorithm would first try to pick the
maximal number of links which do not violate the half-duplex constraint (a
matching), and then to find a maximal link independent set which does not
violate the SINR constraints by removing one link at a time. This process will
continue until all links have been scheduled. In a bottom-up approach, the
heuristic would pick each link incrementally to see if the union of the selected
links satisfies the half-duplex and SINR constraints; if not, the link is
discarded. This process continues until it finds a maximal link independent
set, and until all the links have been scheduled. Since the top-down approach
is based on removing one link at each step, it can also be called a link
removal based scheduling approach; similarly, since the bottom-up approach
is based on incrementing one link at each step, it can also be called a link
incremental based scheduling approach. We now first discuss the link

removal based link scheduling algorithms.

2.2 The Top-Down Approaches

To begin this section, we will go to further details in the SINR model. In
particular, we will discuss the link gain matrix and some useful properties on
it. Based on the SINR model given in Chapter 1, we define a normalized non-
negative link gain matrix# = (h,) such thath, = g-g,/1g,=p-d“(/,i)1d"(j,.i),

for/=j, andh =0, for/=,. Now if we construct an associated directed
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graph of matrix / as follows: for each element/, >0, we add a directed edge

from node /7 to node j. From this we know this directed graph is strongly

connected. Then by using a theorem in [141, p.20] which asserts that a
matrix is irreducible if and only if its associated directed graph is strongly

connected, we know His an irreducible matrix. We also define a normalized
noise vector n=(n,) such that »,=p-n/lg,=p-n-d“(i,i) . With these

definitions, we can rewrite the SINR inequality asp, =37 A, -p,+7,. Now by

=1
using the power vector P =(p,) and the normalized noise vectorn =(7,), the
SINR inequality becomes P>HP +7n, Or (/-H)P>5 . If there is only one

transmitting link, i.e., no interferences from other links, the SINR model
degenerates into the SNR (Signal to Noise Ratio) model, which is shown

below:
p,=p-n-d(i,i) (2.1)
Obviously, the right hand side of Inequality (2.1) is the minimum power of

link /’s transmitter/_to use such that the receiver/ can successfully decode
the packet. We now define the spectral radius p(~#) of the H matrix
as p(H):m§x|/‘t,(H)| where 4 (H) stands for the th eigenvalue of H. Now
according to the Perron-Frobenius Theorem [92], since H is a non-negative
irreducible matrix, we know that p(#) is positive and the corresponding

eigenvector has strictly positive components. Let 7, and ¢, represent the th
row sum and jh column sum of A4, and we have: r =3 A andc, =3} A . The

following is a compilation of the useful propositions of the A matrix shown in

[42,46,47,92]:
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Non-adjacent

i SRA [43] ,SMIRA [40] ,LISRA [45], SORA [37] and WCRP [39] )

The two-phase scheduling algorithm [29,30] and its variation [34] >

Arbitrary link

sl The ISPA algorithm [14] and the PCSA algorithm [12] )

o The Algorithm A [31,32] and the heuristic scheduling algorithm [33] )
Heuristic
Link ; ; - -
Scheduling { The adjusted GreedyPhysical [17], The Primal Algorithm [15] )
Algorithms —
under { The simplified scheduling algorithm [34] )
SINR
Model
{ The joint scheduling and power control algorithm JSPCA [34] )
w Non-
matching { The IDGS algorithm [36],The LSPC algorithm [35] )
based

algorithms

{ The CLM [20] and TM-SINR scheduling algorithms [19] )

’< The Serial Linear Programming Rounding heuristic SLPR [25] >

NPAN-INFOCOMO06 [58], NPAN-IPSNO7 [56], NPAN-MOBIHOC06

The non-linear power assignment based link scheduling algorithms: ‘
[59], and LDS [55]

Matching
based
algorithms

The adjusted Algorithm B [31,32] )

Figure 2-1. Categorization of existing heuristic link scheduling algorithms

under the SINR model

Proposition 2.1: p(+) increases when any entry of Hincreases.

Sinceh, = p-d“(i,i)/d*(j,.,i), we can see that p(H)can be reduced by
either reducing the threshold value g, the length of any links or by selecting
the links which can result in largerd(/,,/ ) values.

Proposition 2.2: p(H)is lower bounded by either the minimum row sum or

the minimum column sum, and it is upper bounded by either the maximum

row sum or the maximum column sum.

min(r) < p(H) <max(r;) ;min(c ) < p(H) <max(c,).
i 7 J J

J

Proposition 2.3: (/-H)" >0 if and only if p(H) <1.

17




Proposition 2.4: The power vectorP = (/- H)" - is Pareto-optimal in the

sense that P <P component-wise for any other nonnegative P vector
satisfying(/-H)P > 1.

After having introduced the link gain matrix and its useful propositions,
we will discuss the link removal based scheduling algorithms one by one.
According to Figure 2-1, we can further partition the top-down approaches
into two branches: the first is to consider non-adjacent links (a link matching),
the second is to consider arbitrary link topologies. We first consider the case

where all the links form a link matching.

2.2.1 Link removal algorithms for non-adjacent links

The first link removal based scheduling algorithm called SRA (Step-wise
Removal Algorithm) is proposed by Zander [43]. For a set of non-adjacent

links, this algorithm defers the link which has the maximum value max(r,c,).

The rationale behind this algorithm is based on Proposition 2.2, i.e., the
spectral radius of the link gain matrix is bounded by the maximum value of

the row sum, or the column sumc,. So the SRA algorithm aims to minimize

the upper bound of the spectral radius in each removal step. Note that the
CSCS (Combined Sum Criterion Selection) algorithm presented in [36] is
actually the same as SRA. Instead of minimizing the upper bound of the
spectral radius, the SORA (Step-wise Optimal Removal Algorithm) proposed
by Wu [37] defers the link whose removal can minimize the spectral radius
directly in each step. However, different from SRA which needs

only O(n) eigenvalue computations, the SORA algorithm
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needs O(n*) eigenvalue computations where nis the number of links. Aiming

at removing the link which can cause the maximum interference, Zander [45]
proposed another algorithm called LISRA (Limited Information Stepwise
Removal Algorithm). In this algorithm, assuming all the links employ the
same transmission powers, the link with the minimum SINR value is excluded
in each step. For each link in SMIRA (Step-wise Maximum Interference
Removal Algorithm) [40], the algorithm first computes the larger interference
value between the received cumulative interferences from other links and the
interferences it caused to all the other links, and then it postpones the link
which has this largest interference value. For each link in the WCRP
algorithm (named with the four initial letters of the four authors’ family names)
proposed by Wang et al.[39], it first computes a so called MIMSR (Maximum
Interference to Minimum Signal Ratio) value, and then all the links whose
MIMSR values exceed some pre-determined threshold is removed in each

step.

2.2.2 Link removal algorithms for arbitrary topologies

Having covered the link removal algorithms for non-adjacent links, we
now turn to the algorithms for the set of arbitrarily constructed links. To our
current knowledge, the two-phase link scheduling algorithm in [29,30] is the
first solution to the joint link scheduling and power control problem for ad-hoc
networks. In the first phase, this algorithm uses a separation distance to find
a “valid” link set. This links in the ‘valid’ link set must first guarantee that all
the links are non-adjacent; second the Euclidean distances between any pair

of links must be larger than the separation distance (the protocol interference
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models). From this we can deduce that these links must form a subset of
some maximal matching of the original links. Here, the larger the separation
distance, the fewer the number of links in the found ‘valid’ link set. In the
second phase, this algorithm tries to find an “admissible” link independent set
satisfying the SINR constraints by using the LISRA algorithm in each link
removal step. A variation of the two-phase link scheduling algorithm has been
presented in [34]. This algorithm first defines a link metric which is a
combination of the link’s queue length and the number of blocked links (the
number of links sharing either a transmitter node or a receiver node of the
current link). Then it finds a maximal matching by greedily selecting a link
with the longest queue length and the fewest blocked links (the lowest link
metric value). There are two differences between the two-phase scheduling
and its variation algorithm: the first is that the variation algorithm sets the
separation distance value as zero, which means it tries to find a maximal
matching but not its subset; the second difference is that, in order to find an
admissible link independent set, the variation algorithm defers the link with
the largest link metric, i.e., the link with the shortest queue length and the
maximum number of blocked links. So if we do not consider the backlogged
system, which means we do not consider the links’ queue lengths, the link
with the maximum number of blocked links rather than the link which has the
lowest SINR value is removed.

The PCSA (Power Controlled Scheduling Algorithm) presented in [12]
behave similarly as the ISPA (Integrated link Scheduling and Power control
Algorithm) proposed in [14]. Both of these two algorithms first construct a

(generalized) power-based interference graph. This kind of interference
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graph is constructed as follows: First, we take all of these links as vertices in
the interference graph; second, for each pair of links we check the spectral

radius p(H) of the link gain matrix consisting of the two links, then according
to Proposition 2.3, if po(H)>1, we add an edge between these two links which

correspond to two nodes in the interference graph; third, even if p(H) <1 but if

any power component in the Pareto-optimal power vector P° (Proposition 2.4)
is larger than the maximum allowable power, we need to add an edge
between these two links. From this we can conclude that the links in this
graph also form a subset of some maximal matching of the original links.
When this interference graph is established, by using the minimum degree
greedy algorithm (MDGA), the ISPA algorithm finds a maximal number of
links which satisfy the SINR constraints pair-wisely. Finally, they use the
SMIRA algorithm as the pruning method to find a maximal number of links
that satisfy the SINR constraints. The difference between the ISPA and the
PCSA algorithm is that, a “maximality stage” is added after the link removal
step in the ISPA algorithm. This step is to find more links to be added to the
link independent set.

Different from all the previously mentioned link removal based scheduling
algorithms, the Algorithm A in [31,32] first defines each link’s effective
interference as the corresponding column sum (c,) in the link gain matrix,
and then it finds a maximum matching of the links directly instead of finding a
maximal matching or even a subset of the maximal matching. If the maximum
matching does not satisfy the SINR constraints, the link with the maximum

effective interference is discarded in each link removal step. This process is
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repeated until all links have been scheduled. Also for the set of non-adjacent
links, the heuristic algorithm given in [33] first finds a link matching, not
necessarily the maximum matching, second it discards the link with the

maximum row sum value 7, in the link gain matrix.

2.3 The Bottom-Up Approaches

As mentioned earlier, the bottom-up approach is based on scheduling
each link incrementally. The main difference between the top-down and
bottom-up scheduling approaches is that, for a set of non-adjacent links, the
top-down approach always consists of two phases, i.e., the link matching
searching phase (either a maximum matching, a maximal matching or even
just a matching) and the link removal based scheduling phase. The bottom-
up approach, however, can directly schedule the links one by one without first
finding a link matching. So we can largely classify the bottom-up approach
into two categories: matching based scheduling and non-matching based
scheduling. We will first study the non-matching based algorithms since most
state-of-the-art link incremental based scheduling algorithms directly

schedule the links one by one without first finding a link matching.

2.3.1 Non-matching based link incremental scheduling

The first polynomial time approximated link scheduling algorithm called
GreedyPhysical is given in [17]. The approximation bound of this algorithm,
however, is proved under the assumption that the set of nodes are uniformly
distributed at random in a square of unit area or a disk of unit area. This

means that the approximation bound can not be generalized to arbitrarily
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constructed links over arbitrarily located nodes on a plane. Moreover, the
algorithm does not use packet-level power control, which means that all the
links in the same timeslot employ the same transmission powers. Since this
algorithm is designed for links with non-unit traffic demands, i.e., different
links may have different number of packets to be transmitted, it can be easily
applied to the unit traffic demand case. Moreover, as we will see, since
constant power assignment can result in very undesirable scheduling length,
we can modify this algorithm by allowing power control at the packet-level,
which means the links scheduled in the same timeslot can employ different
transmission powers. The original algorithm first sorts all the links in the
decreasing order of their interference numbers. Here by the interference
number of a link, it means the number of links which do not share a common
node with the current link and can not be concurrently scheduled with it under
constant power assignment (cf. Inequality (1.4)). But since we allow packet-
level power control, we modify the definition of interference degree as the
number of links which do not share a common node with the current link and
can not be concurrently scheduled with it SINR model (cf. Proposition 2.3).
Second, the GreedyPhysical algorithm proceeds as greedily schedules these
links from the link with the largest interference number to the link with the
fewest interference number.

The Primal Algorithm proposed in [15] is designed originally for some
kind of “superincreasing” link demands, which means when we sort the link
demands in a non-increasing order, each link with a higher demand is greater
than or equal to the sum of all the links with lower demands. This algorithm

first finds the link with the largest link demand, and then all the other links
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which can be pair-wisely scheduled with the current link under the SINR
model. After that the algorithm schedules these two link sets with the duration
of the link with a lower link demand. And then the algorithm checks how many
packets have not been transmitted for the link with the largest link demand
and schedules this single link packet by packet. The algorithm repeats these
steps until all the packets have been transmitted. The authors of this paper
have proven that this polynomial time greedy algorithm is optimal for these
‘superincreasing’ link demands. We can adapt the algorithm to general non-
uniform link demands by first sorting the links in a decreasing order of their
link demands, and then picking each link in order using the bottom-up
approach. Obviously, this method can not guarantee the optimal scheduling
length for general non-uniform link demands cases.

Also designed for non-uniform link demands, the IDGS (Increasing
Demand Greedy Scheduling) algorithm presented in [36] first sorts the links
in an increasing order of their link demands; and then in each timesiot it first
picks the link with the lowest link demand, and then it switches to pick the
links in a reversed order, i.e., selecting the link with the highest link demand
using a bottom-up approach.

We now review the two non-matching based scheduling algorithms
proposed in [34]. The simplified scheduling algorithm first sorts the links in an
increasing order of their link metrics, and then picks each link in order while
giving it a power level which is the smaller value of its linear power
assignment (a power assignment proportional to its link length to the power of
the path loss exponent) and its maximum allowable power level. If any SINR

constraints are violated then it defers it to the next timeslot. The second joint
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link scheduling and power control algorithm (JSPCA) behaves similarly with
the simplified scheduling algorithm with the difference that the former one
assigns the power levels with the values calculated from the Pareto-optimal
power vector P (Proposition 2.4) rather than the pre-determined power
assignments. Compared with the two-phase link removal algorithm and the
simplified scheduling algorithm, the authors have shown that the JSPCA
algorithm can greatly improve the network performance in terms of
throughput and delay. The link scheduling and power control algorithm
(LSPC) proposed in [35] first constructs a conflict graph which is based on
the node-exclusive interference model (links sharing a common node can not
be concurrently scheduled), and then sorts the links either in an increasing
order or in a decreasing order of the node degrees. Finally it schedules the
links in order using the bottom-up approach. Note that if we employ the
increasing order and if we do not consider a backlogged system (without
considering the links’ queueing lengths), the LSPC algorithm becomes the
same as the JSPCA algorithm presented in [34].

For the throughput maximization problem for single hop links, i.e., to
compute the maximum number of packets transmitted on these links in a
fixed frame length, Tang et al. [25] first formulate it as a mixed integer linear
programming (MILP), and then they relax it as a linear programming. In order
to generate a link’'s ordering for the proposed serial linear programming
rounding algorithm (SLPR), the authors also relax the SINR requirement.
Then by solving the linear programming, they sort the links in a decreasing
order of the fractional values of the scheduling variables. Finally the greedy

SLPR algorithm incrementally schedules these links using the bottom-up
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approach. The intuitive idea of this link ordering is that, the larger the
fractional value of the scheduling variable calculated from the relaxed SINR
model, the higher the probability of this link satisfying the original SINR

requirement. Note that although this is a polynomial time algorithm, it suffers

from an extremely high worst case computational complexity O(n°-m,),
where n is the number of the links and M, is the number of binary bits

required to store the data.

We now turn to reviewing another class of non-matching based
scheduling algorithms which feature a kind of nonlinear power assignment.
Informally, nonlinear power assignment is a kind of strategy between
constant and linear power assignments. This power assignment can
overpower the short links, which means that on one hand, compared with
constant power assignment, long links can use larger powers; on the other
hand, short links can receive relatively larger power compared with linear
power assignment. The nonlinear power assignment is first introduced in an
algorithm (we call it NPAN-INFOCOMO06) for the MFSTT problem [58] and
has subsequently been used for the MFSAT problem (Here NPAN stands for
Nonlinear Power Assignment for Narrowband Networks). The NPAN-

INFOCOMO6 algorithm can schedule all the links in a tree topology
constructed by the nearest neighbor forest algorithm with O(log* n7) timeslots

where n is the number of the links. Aiming for the MFSAT problem, also by
using the nonlinear power assignment, the authors present an algorithm (we
call it NPAN-MOBIHOCO06) [59] that studies the relationship between the

graph-based interference model (called the in-interference degree) and the
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SINR model. Here by the in-interference degree of a node, we mean the
number of other transmitters whose transmission ranges cover this node. And
the largest in-interference degree of a node is called the in-interference
degree of the topology. This paper concludes that the scheduling length of
the MFSAT problem is upper bounded by the in-interference degree of the
topology times the square of the logarithmic function of the number of the
links. From this, we can see that a lower in-interference degree greatly
shortens the scheduling length. In a subsequent paper [55], the authors
propose a low disturbance scheduling algorithm called LDS. This algorithm
can generate a poly-logarithmic scheduling length for a topology with low
disturbances. Here low disturbance is characterized by a parameter

called p - disturbance which can also be regarded as the density of the links’
distribution. For a link’'s p - disturbance , the algorithm first computes the

number of other links’ transmitters (receivers) located in the current link

transmitter’s (receiver’s) range (the link’s length divided by the value p which

is greater than or equal to 1), and then the larger value is the

link’s p - disturbance . The maximum p disturbance of all the links becomes
the p _ disturbance of the topology. With this parameter, the authors prove that

the scheduling length of the MFSAT problem is upper bounded by

the p disturbance of the topology times the product of the square of the
logarithmic function of the number of the links and the square of the p value.
From this, we know that a sparse link topology with a lower p - disturbance can

significantly reduce the scheduling length. Similar to the NPAN-INFOCOMO06

algorithm [58], the algorithm proposed in [56] (we call it NPAN-IPSNO7) is
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also aimed for the MFSTT problem. This algorithm also employs the
nonlinear power assignment, but it can reduce the scheduling length for all

the links in a tree topology constructed by the nearest component connector
algorithm to O(log® n) where nis the number of the links.

The cross-layer latency minimization problem (CLM) and throughput
maximization problem (TM-SINR) for multi-hop flows have been studied in
[20,19]. Here a multi-hop flow consists of several links where each packet is
passed from the first link in the flow to the last link in the flow. The algorithms
proposed in these two papers also belong to the Bottom-Up approach
category since they all schedule each link one by one. These algorithms take
the routing issues into account, but their scheduling parts behave similarly
with the nonlinear power assignment based link incremental scheduling
algorithms in [55,56,58,59] except that they use either constant power

assignment or linear power assignment.

2.3.2 Matching based link incremental scheduling

In this section, we will introduce a link incremental scheduling algorithm
which is based on first finding a link matching. This algorithm is called
Algorithm B [31,32], and it is the only matching based link incremental
scheduling algorithm we’ve found in the literature. The Algorithm B, however,
is originally designed for minimizing the total power consumption, but it can
be adapted for the minimum length link scheduling problem with a few
modifications. Similar to Algorithm A given in the same paper which uses a
top-down approach, the Algorithm B first finds a maximum matching of the

unscheduled links; second, it sorts all the links in the maximum matching in a
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decreasing order of their effective interferences; third, the algorithm can then
be adjusted to pick each link in order using the bottom-up approach. The
authors have shown that Algorithm B can schedule more links in a timeslot

than the top-down approach based Algorithm A.

2.4 Time Complexities of the Heuristic Link Scheduling
Algorithms

In this section, we will briefly summarize the time complexities of the
various scheduling algorithms just reviewed. First based on Proposition 2.3,
since most of the heuristic link scheduling algorithms reduce the problem of
finding whether there are positive power assignments that satisfy the SINR
constraints to the spectral radius checking problem, the time complexities of
these algorithms are dominated by the matrix eigenvalue computation. The

time complexity for the nxn matrix eigenvalue computation and matrix
inversion problem is O(n*)[95]. Based on this result, we then briefly review

the worst case time complexities for all the link removal and link incremental
based algorithms which need matrix eigenvalue computations.

We first review the time complexities for the link removal based
algorithms. In the worst case, any link removal based algorithms can only
schedule one link in each timeslot. This means that these algorithms will do
O(n) eigenvalue computations in each timeslot (Here 7 means the number of
links). Since there are n timeslots, the total numbers of engenvalue

computations is O(n°) . Now since each eigenvalue computation takes

time O(n*), we know the overall time complexity is O(n°). Most of the current
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link removal based algorithms, including SRA, SMIRA, LISRA, WCRP, the
PCSA algorithm and the ISPA algorithm belong to this group (cf. Section 2.2).
However, as mentioned in Section 2.2.1, the SORA algorithm is an exception

which needs more eigenvalue computations in each timeslot. Specifically,

each link removal in the SORA algorithm needs O(n?) eigenvalue

computations. Thus in the worst case, the SORA algorithm needs O(n°) total
eigenvalue computations. As a result, the overall time complexity for any link
removal based algorithm which uses SORA as a link removal algorithm

takes O(n°) time.

Second, we review the time complexity of the link incremental based
scheduling algorithms. Similarly, in the worst case, any link incremental
based algorithms can only schedule one link in each timeslot. This means

that these algorithms will do O(n)eigenvalue computations in each timeslot.
Since there are ntimeslots, the total numbers of engenvalue computations

isO(n’). Now since each eigenvalue computation takes time O(n°), we know

the overall time complexity is O(n°). The link incremental based scheduling

algorithms, including the GreedyPhysical, JSPCA, LSPC, IDGS and the
simplified scheduling algorithms belong to this category (cf. Section 2.3).

Now we review the time complexities of the scheduling algorithms which
do not need costly eigenvalue computations. All the nonlinear power
assignment based link incremental scheduling algorithms belong to this
category. Similarly, in the worst, these algorithms can only schedule one link

in each timeslot. Thus the overall time complexities of all the nonlinear power
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assignment based algorithms, including NPAN-INFOCOMO06, NPAN-

MOBIHOCO06, NPAN-IPSNO07 and LDS, are O(n?) .

2.5 Algorithms Inefficiency Analyses

In this section, we will give some inefficiency results for both top-down
and bottom-up based link scheduling algorithms. These results generalize the
wireless link scheduling algorithms inefficiency results in [55]. Before giving
more details, we need to give a theorem for any link scheduling algorithm
which employs either constant or linear power assignment. The proof of this

theorem was first given in our published paper [49].

2.5.1 Inefficiency of constant and linear power assignments

We first give an exponential node chain which is shown in Figure 2-2. In

this chain, there are n nodes ( X') starting from the leftmost node x, and end
at the rightmost node x, . All the nodes are placed on a straight line with
exponentially increasing distances between them. For every node x, € X', we

require it can successfully send at least one packet to its nearest neighbor.
Now we want to prove a theorem for the scheduling length to schedule all of
these n links for any scheduling algorithms which employ either constant or
linear power assignments. We have given the mathematical formulations of
the constant and linear power assignments in Inequality 1.4 and Inequality
1.5, and here we first formally define the constant and linear power

assignments.
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Constant (Uniform) Power Assignment: If all the concurrently scheduled
links employ the same transmission power, we call it a constant (uniform)
power assignment.

Linear Power Assignment: If each link in the concurrently scheduled links
employs the transmission power which is proportional to the corresponding
link’s length (the distance from the transmitter to the receiver) to the power of
the path loss exponent, we call it a linear power assignment.

THEOREM 2.1: Under the SINR model given in Inequality 1.1, for both
constant and linear power assignments, no matter what link scheduling
algorithm we use, the scheduling length for all the links in the exponential
node chain is at leastn-g/(m-2° + ) Q(n/ m), even in the absence of
ambient noise, where nis the number of the nodes, and m is the processing
gain.

st Pet——Pod—Pot——Pet—Pesdt—Pe o
2° 2! 2? 2° 2 2° 27
Figure 2-2: Exponential node chain, where 2’ is the distance between

nodes x, ,and x,

PROOF: a) Constant power assignment

In this case, for all nodes, transmission power” =/, =P. Now consider

the example in Figure 2-2; we assume there are at most L simultaneous

transmissions in a scheduling timeslot. Suppose node x_is the right-most
transmitter in this timeslot, and node x, is its receiver. The other (/-1)

simultaneous transmissions will cause aggregate interferences to node x, .
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According to the property of the exponential node chain, if node x_ is on the
left side of node x_, the distance from every other simultaneous transmitter to
the receiverx,is d x,, x,)<d(x_, x,); and if node x is on the right side of
node x,, the distance from every other simultaneous transmitter to the
receiver x, is d( x,, x,)<2-d( x_, x, ). Therefore the aggregate interferences
caused by these (L-1) simultaneous transmitters are at least
(L-1)-P/(2-d(x,,x,)) . According to the SINR inequality 1.1 and by
plugging in the link gain values, we have:

Pld(x,x)
N+(L-1)-PJ2-d(x,,x,))

> L
m

From the above inequality, it follows that the maximum number of
simultaneous transmissions L in each timeslot is(f+m-2“)/ . Therefore,
the constant power assignment method requires at least
n-p1(p+m-2%)timeslots to schedule all nodes at least once.

b) Linear power assignment

With linear power assignment, the sender x, will send to its
receiver x, with power P. = p - d(x_,x,)", where p denotes the minimum

received power to decode the message. Similar to the constant power
assignment analysis, we assume there are at most L simultaneous
transmissions in a scheduling timeslot. According to the property of the

exponential node chain, for all nodes x,, it will cause at least the interference

p/2° to its left side nodes [58]. Now suppose x, is the left-most receiver,
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and x_is some transmitter in the L simultaneous transmissions. The other (.-
1) simultaneous transmissions will cause at least the aggregate interferences
(L-1)-p/2° to this left-most receiver x, . According to the SINR inequality 1.1,
we have

p-dx,x ) ldx,x)
N+(L-1)-p/2°

v
m

From the above inequality, it follows that the maximum number of
simultaneous transmissions L in each timeslot is (f+m-2°)/f . And
therefore the linear power assignment method requires also at least
n-p1(p+m-2%)timeslots to schedule all nodes at least once.

By combining the two results for constant and linear power assignments,
we finish the proof for Theorem 2.1. Now if we consider narrowband networks,
i.e., the processing gain n=1, we have the following corollary. Note that this
result has been proved separately in [58].

COROLLARY 2.2: For both constant and linear power assignments in
narrowband networks, no matter what link scheduling algorithm we use, the

scheduling length for all the links in the exponential node chain is Q(n),

where nis the number of the nodes.
Now in order to show the inefficiency for both constant and linear power

assignment, we give another theorem which states that the links constructed
over the exponential node chain can be scheduled in O(log® ).

THEOREM 2.3: In narrowband networks, all the links in the exponential
node chain can be scheduled in O(log® n) with a nonlinear power assignment

algorithm proposed in [55].
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PROOF: The algorithm in [55] proves that the scheduling length for any
arbitrary link topologies is O((p - disturbance)- p* -logn-(logn+ p)) . Since
each node sends a packet to its nearest neighbor in the exponential node
chain topology, if we set p=1, then p disturbance is a constant value (cf. p27
for the definition of p - disturbance ). Thus we complete the proof.

By comparing Theorem 2.1 and Theorem 2.3, we can see that any link
scheduling algorithm which employs either constant or linear power

assignments are inefficient since it leads to exponentially longer scheduling

length than the scheduling algorithm based on a nonlinear power assignment.

2.5.2 Inefficiency of top-down based scheduling algorithms

THEOREM 2.4: The following top-down based link scheduling algorithms,
i.e., the two phase scheduling algorithm [29,30], the variation of the two
phase scheduling algorithm [34], the PCSA and the ISPA algorithms [12,14],
the Algorithm A [31,32] and the heuristic link scheduling in [33] have a worst
case scheduling length lower bound of (7).

PROOF: Since the two phase scheduling algorithm, the PCSA and the
ISPA algorithm use either LISRA or SMIRA as their link removal algorithms,
the inefficiency results of the four link removal algorithms (SRA, SMIRA,
LISRA and WCRP) (Theorem 5.2 in [55]) can be directly applied here. For the
other three scheduling algorithms, we can also take the same co-centric
exponential node chain given in that paper as a worst case link topology. In

this topology, all the links’ transmitters and receivers are located on the same

line with link /7’s transmitter coordinate as (—2("‘1),0) and link /’s receiver
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coordinate as(2/™",0)(/is from 1 to 7). In this case, the associated link gain
matrix of this link topology ish, = B-(2'/(27' +2/7))" if/ = jand h, =0if/ = /

(cf. Section 2.2, p15). Similarly we can also set the path loss exponenta =3,

the background noise 77, =0 and the threshold f = 2. For the variation of the

two phase scheduling algorithm, since all the links have the same number of
blocked links (zero), the links removed in each step is link 1 to link 71, so
only one link (link n) can be scheduled in the first timeslot. These removal
steps will be repeated in the following -1 timeslots. For the Algorithm A and
the heuristic link scheduling, since they either use the link gain matrix column
sum or row sum as their link removal metrics, the links removed in each step
are either in an increasing order of their links’ lengths or in a decreasing order

of their links’ lengths. However, both orders will result in Q(n) scheduling

lengths. This completes the proof.
Now since the co-centric exponential node chain topology can be

scheduled in O(logn) timeslots by a nonlinear power assignment based link

scheduling algorithm in [55], we can see that the top-down based link

scheduling algorithms shown in Theorem 2.4 are inefficient.

2.5.3 Inefficiency of bottom-up based scheduling algorithms

THEOREM 2.5: The two bottom-up based link scheduling algorithms, i.e.,
the simplified scheduling algorithm in [34] and the GreedyPhysical algorithm
in [17] have a worst case scheduling length lower bound Q(n).

PROOF: We can also take the co-centric exponential hode chain as an

example (cf. the proof in Theorem 2.4). Since all the links form a matching,
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the algorithm can schedule the links in a decreasing order of their lengths. So
depending on the value of maximum allowable transmission power, the
corresponding power assignments can be either linear power assignments,
constant power assignments, or the long links employing constant power
assignments while the remaining short links employing linear power
assignments. According to Theorem 2.1, we can complete the proof for the
simplified scheduling algorithm. Similarly since the GreedyPhysical algorithm
does not employ packet-level power control, which means that all the links in
the same timeslot use the same transmission powers (the links in different
timeslots may use different powers), Theorem 2.1 can be directly applied
here. This completes the proof for the GreedyPhysical algorithm.

Now before we introduce the inefficiency results for some other link
incremental scheduling algorithms, we need to introduce a pair-wise link
conflict (infeasible) graph. This graph is based on the following theorem and
is similar to the (generalized) power based interference graph introduced in
the PCSA scheduling algorithm and in the ISPA scheduling algorithm (cf.
Section 2.2.2).

THEOREM 2.6: In narrowband networks, for any two transmissions

(x,,x,)and (y,,y,) ifdx,,py) dy, x)< g dx,x) dy,,y,) then
there exists no feasible power assignment for simultaneous transmissions
(infeasible link independent set); otherwise, there always exists a feasible
power assignment to have a simultaneous schedule.

PROOF: If the two transmissions can be successfully scheduled, based
on SINR model (inequality 1.1) with processing gain equal to 1, the following

two inequalities must follow:
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P ldy..y,)

o .
./ d (X, X,) > N+P Jd(x.y )

N+P Jd(y,,x)

From these inequalities, we have

,g.Py—d(XS’X’)a <P <l.py,d(Xs'yr)a
aw,.x,) B awy..y.)

Therefore, if - d(Xs,X,)a 1 d(Xs,y,)a
d(yS,X’) ’B d(ys’yr)

, there is no feasible power

assignment for simultaneous scheduling; otherwise, there always exists a
feasible power assignment to schedule these two transmissions in parallel.

According to this theorem, we construct the pair-wise link conflict
(infeasible) graph as follows: We first take each link as a node in the graph,
second we add an edge between any two links which satisfy the inequality
given in Theorem 2.6.

PROPOSITION 2.7: Let’s suppose there is a link topology whose pair-
wise link conflict (infeasible) graph is as shown in Figure 2-3, then any link
incremental scheduling algorithms which schedule the links in the order of
[1..7] will result in a scheduling length of Q(n) (Similar to the worst case
behavior of some graph coloring algorithms analyzed in [88]). However, a
much fewer or even a constant number of timeslots is possible if we schedule

the links in the upper and lower parts of this conflict graph respectively.

Figure 2-3: A Pair-wise Link Conflict (Infeasible) Graph
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From this proposition, we have the following three corollaries.

COROLLARY 2.8: The link incremental scheduling algorithms which use
the node degree in the pair-wise link conflict graph as the scheduling metric
(the criterion for scheduling the next link, i.e., the ordering of links), such as
the adjusted GreedyPhysical algorithm (GreedyPhysical algorithm with
packet-level power control), has a worst case lower bound of Q(n).

COROLLARY 2.9: Since all the links have the same link demands in
MFSAT, the link incremental scheduling algorithms which use the link
demands as a scheduling metric, such as the Primal Algorithm in [15] and the
IDGS algorithm in [36], have a worst case lower bound of ().

COROLLARY 2.10: Let’s further suppose all the links in this link topology
are non-adjacent or have the same number of blocked links, then the link
incremental scheduling algorithms which use the number of blocked links as
the scheduling metric, such as the JSPCA algorithm in [34] and the LSPC

Algorithm in [35], have a worst case lower bound of (7).
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Chapter 3 MDCS-Maximum Directed Cut based
Scheduling Framework for the MFSAT Problem

In this chapter, we will present a maximum directed cut based scheduling
framework (MDCS) for the MFSAT problem. This framework is also a two
phase scheduling algorithm, and there is a fundamental difference between
MDCS and the heuristic link scheduling algorithms reviewed in Chapter 2.
This difference is, in the first phase, we choose a maximum directed cut of
the links after finding a maximum matching. In addition, for all the links in
each directed cut, we choose to use a link incremental scheduling algorithm
instead of a link removal scheduling algorithm. Now before delving into the
details of the MDCS framework, we first discuss the insufficiency of using a
maximal matching in the first phase of two-phase scheduling algorithms for

arbitrary link topologies.

3.1 Insufficiency of Using Maximal Link Matching

We have introduced many state-of-the-art two-phase link scheduling
algorithms for arbitrary link topologies in Chapter 2, but most of them either
employ a link removal algorithm in the second phase for finding a link
independent set or choose to find a maximum (maximal) matching or even a
subset of the maximal matching in the first phase. There is only one two-
phase link scheduling algorithm which first finds a maximum matching in the
first phase and then employs a link incremental algorithm in the second
phase (cf. Section 2.3.2). Compared with finding a maximal matching or even
a subset of the maximal matching in the first phase, since a maximum
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matching can offer more potential links to be covered in the same timeslot in
the second phase, finding a maximum matching in the first phase (This only
takes time O(n'°)since there are only 7 links [96]) is obviously much better.
But is this sufficient for our link incremental scheduling algorithm? Now we

give an example to answer this question. The link topology is shown in Figure

3-1.

Figure 3-1: An arbitrary link topology with 3/7+1 number of links

Now suppose the first maximum matching of this arbitrary link topology
comprises link 1 and links from link 2/7+2 to link 37+1. But this maximum
matching becomes somewhat inefficient if any link in link 2 to m+1 except link
1 can be simultaneously scheduled with any links in 2m+2 to 3m+1. The
reason is that: if any links in link 2 to 7#+1 can be simultaneously scheduled
with the links in the maximum matching, less links will be left in the next
phase. Thus the scheduling length could be potentially shortened. In order to
solve this problem and to provide more potential links to be scheduled in the
same timeslot, we choose to find a maximum directed cut containing this
maximum matching. Here by a maximum directed cut, we mean to partition
all the nodes into two disjoint node sets so that we can maximize the number

of directed edges from one node set to another node set. In this case, we can
41




avoid adding a link such that one link’s transmitter (receiver) becomes
another link’s receiver (transmitter), since this will lead to an infinity value in
the link gain matrix A/ which makes eigenvalue computation impossible and
also inefficient for comparisons for scheduling metrics based on H. So now
the key here is how to construct this maximum directed cut. Here we note that,
a simple maximum directed cut does not work for our scheduling problem,
because this maximum directed cut may miss the maximum matching and
may comprise too many links that are adjacent to some transmitters or

receivers which is very undesirable.

3.2 Maximum Directed Cut with Maximum Link Matching

In order to show the importance of the maximum directed cut construction
with maximum matching problem in our scheduling framework, we also take
the link topology in Figure 3-1 as an example. Also suppose we first find a
maximum matching consisting of link 1 and links from link 2742 to link 3m+1.
Now the first maximum directed cut we find is to add links from link 2 to link
m+1, and the second maximum directed cut we find is to add links from link 2
to link /m and the links from link m+2 to link 2m+1. For the first maximum
directed cut construction, the total number of timeslots we need to schedule
all the links is at least 2m+1 since the maximum directed cut found in the next
phase comprises the links from link m+2 to link 2m+1 which needs at least m
timeslots to schedule, but for the second maximum directed cut construction,
a total number timeslots m+1 to schedule all the links is possible. So nhow we

give our algorithm to find this better maximum directed cut.
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Before we elucidate the algorithm, we need to clarify some notions. First,
by an unmatched link, we mean this link is not included in the maximum
matching; second, by an unmatched node, we mean this node is not incident

to any links in the maximum matching.

Figure 3-2: An illustrating example for adding an unmatched node in the

directed cut

We now give the maximum directed cut construction with maximum
matching algorithm in the following. Here the key to this heuristic algorithm is
step 4, which is to add an unmatched node into set S1 or S2. We now give an
illustrating example of this step in Figure 3-2. Here S1( ) denotes the number
of directed edges (links) from ¥ to the nodes in S2 and S2(v) denote the
number of directed edges (links) from the nodes in S1 to ¥ . (Note that a
similar method for maximum cut can be found in [90], but their algorithm can
not be applied in our scenario). We now give a theorem to show the worst
case performance guarantee of our heurist algorithm for finding this

maximum directed cut.

Maximum Directed Cut Construction with Maximum Matching Algorithm:

1: Find a maximum matching;

2: Label the set of transmitters for all the links in the maximum matching as
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the set S1, and label the set of receivers for all the links in the maximum
matching as the set S2; And we called all the links in the maximum matching
as a directed cut from S1 to S2.

3: For all the unmatched links which don’t have an unmatched node, check
whether they can be added to the directed cut; This means that the addition
of this new link would not make any node in set S1 (S2) as a receiver (a
transmitter);

4: For each unmatched node in the link topology, if S2(%)> S1(¥), we put this
node in S2, otherwise we put it in S1; Note that in this step, the set S1 and S2

are dynamically updated;

5: Return all the directed links whose transmitters are located in S1 and the

corresponding receivers are located in S2.

THEOREM 3.1: For the proposed maximum directed cut with maximum
matching problem, the proposed heuristic algorithm can add at least a half of
the optimal number of links that can be added to the already existed directed
cut (the directed cut derived from step 2 to step 3).

PROOF: Since we first find a maximum matching, we know there are no
edges (links) between the unmatched nodes since otherwise it is not a
maximum matching. Suppose there are m unmatched nodes (w4, Vs,..., Vi),
then we know that, by using step 4, the number of directed links that can be
added to the already existed directed cut is 7, max(S1(v;).S2(v;)). Now we know
the optimal number of new links that can be added to the already existed
directed cut is equal to or less than 7, (s1v,;)+S2(v;)) . From this we can prove

this theorem.
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With the help of the maximum directed cut searching algorithm, we now
present a maximum directed cut based scheduling (MDCS) framework for

arbitrary link topologies.

3.3 Maximum Directed Cut based Scheduling Framework

3.3.1 Pair-wise link conflict graph

In this section, we will briefly review the pair-wise link conflict (infeasible)

graph introduced in Section 2.5.3. We call this graphG___, and this graph will

pail
be used by an exact scheduling algorithm in the next Chapter 4. From

Theorem 2.6, we can build G

. DY just adding an edge between any two
infeasible links. This is done in time O(n*) where nmeans the number of links.
And for each link / let N(/)denote the number of links which conflict with /,

i.e., the number of neighbors of node /inG__. .

pail

3.3.2 The MDCS scheduling framework

MDCS Scheduling Framework:

Input: A set of arbitrarily distributed wireless links NV ={1,...,n}.

Output: The number of used timeslots 7 to successfully schedule all the links
under the SINR model.

1: 7=0;

2: While not all links have been scheduled do

3: Call the Maximum Directed Cut Construction with Maximum Matching
Algorithm in Section 3.2.

4: 0 and set all the links in the outputted direct cut unchecked and
unscheduled;

5: While not all the links in the outputted direct cut have been scheduled do
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6: Construct a pair-wise link conflict graph of all the unscheduled links, and
then sort these unscheduled links in a decreasing order of the number of their
neighbors in the pair-wise link conflict graph;

7: Schedule the first link and update the remaining links’ ordering;

8: Check the next link to see if these links satisfy the SINR constraints;

9: If not satisfied, go back to step 8; otherwise schedule this link and update
the ordering of the unchecked links;

10: Repeat step 8 to step 9 until all links have been checked;

11: #¢+1 and set all the unscheduled links unchecked;

12: End While;

13: 7=T7+¢;

14: End While.

Now we analyze the time complexity of the MDCS scheduling framework.
First, we know the time of the maximum directed cut construction with

maximum matching algorithm relies on the maximum matching finding time.
And we know finding a maximum matching only takes time O(n"®) since there

are only n links [96]. Then we analyze the time complexity of scheduling all
the links in each outputted directed cut. As we’'ve mentioned in Section 2.4,

we know the worst case time complexity of a link incremental scheduling

algorithm isO(n°), then the total time of the MDCS scheduling framework

isO(n°) where ndenotes the number of links.
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3.4 Comparisons of MDCS and other Six Heuristic Link

Scheduling Algorithms

3.4.1 Simulation settings

We first give the simulation settings. For any n arbitrarily located nodes
on a 2000m x2000m plane (Here m means meters), we randomly select a
link’s transmitter and receiver subject to the constraint that they are different
nodes on the plane. We then repeat this process until a number of 2 different
links (either with different transmitters or receivers) have been constructed.
So in this topology construction, some nodes may not be used (Figure 3-3
gives an example of an arbitrary link topology constructed over 20 arbitrarily
located nodes on a plane). In this simulation, since (1) all the arbitrarily
constructed link topologies are dense link topologies; and (2) many links
share a common node, if we set a very small path loss exponent value or a
very high threshold value, no matter what kind of scheduling algorithms we
will use, we can only schedule almost one link in each timeslot. The reasons
are as follows: (1) If the path loss exponent is very low, say only around 2, all
the wireless signals do not rapidly attenuate. Thus all the links generate very
large cumulative interferences which could lead to a very small SINR value at
each link’s receiver. If the SINR threshold is still very high, many links can not
be simultaneously scheduled. (2) If many links share a common node, due to
the half-duplex constraint, these links can only be scheduled in one by one.
From these observations, we set the path loss exponenta =5. But we will

test on different SINR threshold values, including =1, =2 and f =3.

47

b

o e e e e

1
| el




arbitrary n-link topology(randomly select the sender-receiver pairs over all generated points)
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Figure 3-3: An arbitrary link topology constructed over 20 arbitrarily located

nodes on a plane

3.4.2 Performance comparisons

We implemented six bottom-up based scheduling algorithms (please
refer to Chapter 2 for some of the algorithms descriptions): the proposed
MDCS scheduling framework, the bottom up Algorithm B [31,32], the
GreedyPhysical algorithm in [17] with packet level power control, the JSPCA
algorithm in [34], the LDS algorithm in [55] and the first fit based link

increment scheduling algorithm. Here by first fit based link incremental
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scheduling algorithm, we mean that we just greedily schedule the links in its
unsorted order with the bottom up approach. There are two nonlinear power
assignment based link incremental scheduling algorithms for arbitrary link
topologies, one is NPAN-MOBIHOCO06 [59] and the other is LDS [55]. We
have tested that the LDS algorithm can generate smaller scheduling lengths
than the NPAN-MOBIHOCO6 algorithm, so we use LDS as a representative
for nonlinear power assignment based link scheduling algorithm. Note that for

the LDS algorithm, since its scheduling length relies on the parameter p, we
have tested different p values and find that LDS can achieve the shortest
scheduling length when p =1, so we set p =1 in our simulation. Besides the

link incremental based scheduling algorithms, we also implement SORA as a
representative for link removal based scheduling algorithms. But since now
we are targeted for arbitrary link topologies, we first find a maximum matching
in each scheduling phase; then we employ SORA as the link removal
algorithm. In addition, for all the scheduling algorithms except LDS, we use
the Pareto-optimal power assignment (cf. Proposition 2.4) with no maximum
allowable power limitations (In this case we don’t care the background noise
powers). This assumption, however, can be removed if we set the same
maximum allowable power for all the scheduling algorithms. Note that, we
have tested these scheduling algorithms over ten sets of link topologies with
the number of links ranging from 20 to 110. And for each set of topology, we
compute the average scheduling length over 10 different instances.

The final scheduling results can be seen in Figure 3-4, Figure 3-5 and
Figure 3-6. According to the three figures, we can draw the first conclusion:

the smaller of the SINR threshold value, the fewer timeslots we need to ;——---\
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schedule all the links. More conclusions from the scheduling lengths in the
three figures are as follows. First, we can sort these eight scheduling
algorithms in an increasing order of their scheduling lengths: MDCS, the
bottom up Algorithm B, SORA, first fit, JSPCA, the GreedyPhysical with
power control and LDS. We have the following observations from this
ordering. (1) In matching based link scheduling algorithms, adding more links
to the maximum matching in each scheduling phase can significantly reduce
the scheduling length. This can be seen from the scheduling lengths of
MDCS, the bottom up Algorithm B and the matching based link removal
algorithm SORA. (2) Matching based link scheduling algorithms greatly
outperform the non-matching based link scheduling algorithms in terms of
their scheduling lengths. This can be seen from the scheduling lengths of
bottom up Algorithm B and the other three non-matching based scheduling
algorithms (first fit, JSPCA and GreedyPhysical). This observation is further
strengthened through the result that even the matching based link removal
algorithm SORA can generate fewer scheduling lengths than the non-
matching based link incremental scheduling algorithms (GreedyPhysical and
LDS). (3) Compared with the top down and bottom up based scheduling
algorithms, although the SORA algorithm can generate relatively shorter

scheduling lengths with small SINR threshold values (=1 and £ =2) than

some link incremental based scheduling algorithms, such as JSPCA and
GreedyPhysical, it's obtained by paying more time (cf. Section 2.4). (4) Since

our generated arbitrary link topologies bear large p - disturbance values

(Figure 3-3 is an example whose p - disturbance value could be as large as
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the number of links when p=1), the low disturbance scheduling (LDS)

generates the longest scheduling lengths at every topology instance (it

almost schedules one link in each timeslot!). In Chapter 7, we will see how

LDS performs in the link topologies with much smaller p - disturbance values.

1o
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—#— GreedyPhysical
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Mumber of Links in the Arbitrary Topologies

Figure 3-4: Link scheduling results comparisons (a =5, =1)
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Figure 3-5: Link scheduling results comparisons (a =5, =2)
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Chapter4 Exact and Approximate Link
Scheduling Algorithms for the MFSAT Problem

Having discussed the heuristic link scheduling algorithms for the MFSAT
problem, we turn to study the exact and approximate link scheduling
algorithms in this chapter. Specifically, we propose two classes of exact and
approximate link scheduling algorithms, one based on the relatively
straightforward set covering, and the other on counting the number of

different set covers. Throughout this chapter, we let p(n)denote the time of
checking whether the spectral radius of an irreducible non-negative matrix is
smaller than 1 or not (Note that according to [95], p(n) = O(n°), but according

to [93,94], faster algorithms maybe possible); then the time complexity for the

counting based exact link scheduling algorithm called ESA_MFSAT
isO(3" - n-log® n- p(n))with polynomial space, which represents a substantial
improvement over the set covering based exact scheduling which needs
time 02"y . If exponential space is allowed, using either the fast zeta
transform [101] or the fast subset convolution [99], the time complexity can be
reduced toO(2” -n-log? n- p(n)). Then based on the exact coloring and the
maximum link independent set finding algorithms, we present three
approximate link scheduling algorithms with approximation ratios O(n/logn),
O(n/log* n) and [(1+g)], respectively. Here ¢is an arbitrary positive value
independent of n.The time complexity of the first approximation algorithm

is O(n? poly log(n))with polynomial space, the time complexity for the second
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algorithm is O(n""****""" poly log(n)) with polynomial space, and the time

complexity for the third algorithm is O(((,)+3° " -n-logn)-logn- p(n)) with
polynomial space.

The remainder of the chapter is organized as follows. We give a new
formulation of the MFSAT problem in Section 4.1. In Section 4.2, we present
some exact and approximate link scheduling algorithms based on link
independent set covering. In Section 4.3, based on the inclusion-exclusion
principle, we give the exact coloring algorithm ESA_MFSAT through counting
the number of A-set coverings. Building upon these results, we present three
approximate link scheduling algorithms in Section 4.4. Finally we conclude
this chapter with some possible research directions in Section 4.5. Note that

we will use the terms scheduling and coloring interchangeably throughout this

chapter.

4.1 New Formulation for the MFSAT Problem

In this section, we will give a new formulation of the MFSAT problem, but
first some related concepts need to be introduced.

DEFINITION 4.1: A set of non-adjacent links are called a link

independent set if there exist a positive power vector P’ (cf. Proposition 2.4)
satisfying all the SINR constraints; otherwise it is an infeasible link
independent set.

DEFINITION 4.2: A maximal link independent set is a link independent
set that is not a proper subset of any other link independent set.

DEFINITION 4.3: The largest maximal link independent set is called a

maximum link independent set.
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PROPOSITION 4.4: Any superset of an infeasible link independent set is
an infeasible link independent set; each subset of a link independent set is a
link independent set.

Based on these definitions, we can rewrite the MFSAT problem as
follows:

The MFSAT Problem: Given narbitrarily distributed single-hop wireless

links NV = {1..n}, select a minimum number of link independent sets such that

each link has at least one successful transmission under the SINR constraint.

4.2 Set Covering based Exact and Approximate Colorings

From the new formulation of the MFSAT problem we can see that it can
be viewed as a kind of set covering problem. So in this section, we give some
relatively straightforward exact and approximate link scheduling algorithms
based on some traditional techniques such as the generation and test
method, the backtracking search and the greedy set covering . Compared to
the counting based exact and approximate link scheduling algorithms given in
Sections 4.3 and 4.4, we will see that these traditional methods are inferior in
terms of either the running time or the approximation ratio.

LEMMA 4.1: The number of maximal link independent sets in arbitrary
link topologies is at mostmax(}) = max(([’mj),(”mw)).

PROOF: According to Proposition 4.4, we know that the maximum

number of maximal link independent sets equalsmax(’). Then by observing

(7)/(7,) =1, we know thatmax(’) = max((L”MJ),(FM])). This ends the proof.
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4.2.1 Set covering based exact coloring

Since there are at most O(2")link independent sets, a naive brute force

optimal covering (such as the generation and test method) takes time O(2%).

An improvement is to consider only the maximal link independent sets, but
some post processing is needed since some links may then be scheduled

more than needed. All the maximal link independent sets can be found

in O(2"-p(n)) , and from Lemma 4.1, the optimal set covering takes

time 02"y

4.2.2 Set covering based approximate coloring

This approximation algorithm proceeds as follows: In each timeslot, we
find a maximum link independent set among the unscheduled wireless links;
then we delete the maximum link independent set and continue until all the
links have been scheduled. Actually, this is equivalent to the standard greedy
set covering algorithm which is to select a set to maximize the uncovered
elements, and the approximation ratio is O(log 7). The decision version of the
maximum link independent set finding problem in arbitrary link topologies has
been shown to be NP-complete in [41], and an obvious brute force algorithm
takes time O(2" - p(n)) . For example, we can just enumerate all the A
combinations (k is from n to 1) of then links, and then check whether they
are link independent sets. If yes, we just stop there and output the & links [43].
But according to Proposition 4.4, with the help of binary search, we can give
an exact maximum link independent set finding algorithm which takes

time O((’,,)-logn - p(n)) . From the Stirling’s approximation for large factorials,
57




the above complexity becomes O(2" -Iogn/\/;-p(n)). This algorithm works

as follows: we first check whether there exists a link independent set in all the
n/2-combinations of the n links; if yes, we check the3n /4 -combinations,
otherwise we check n/4 -combinations. This continues until we find the
maximum combination. In Section 4.4, we will give another exponential time
approximation algorithm with a much better approximation ratio and without

increasing the running time.

4.3 Counting based Exact Coloring

4.3.1 The Inclusion-Exclusion Principle

[folklore]: Let B be a finite set with subsets A, A,,...,A < B, and with the
convention that(1, A = B, then we know the number of elements in B which

lie in none of the A is

NALE T DINAL (4.1)

i=1 Xc{1,...,n} ieX
Now let's define § ={S,,S,....,S,,...} wherei<2" as the set of the link
independent sets, B as the set of 4-tuples < S,,...,S, >, and A c B as the set

of those A-tuples whose union does not include link 7; then the left hand side
of Equation (4.1) can be interpreted as the number of Atuples in B which

cover all the links from AN ={1,...,n}. On the right hand side of Equation (4.1),
for each X |[) A |means the number of Atuples whose union does not
ieX

include all the links in X
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4.3.2 Counting the number of k-set-coverings

Here we define a A-set-covering as a set covering in which each covering
consists of & link independent sets. Also we use ¢, (S)to denote the number
of different A-set-coverings. We define S(X)c S as the set of the link

independent sets whose union does not include the links in X , which

means (JS,=N-X , where S5eS(X) . And we use

s(X)={S, €S:S N X =T} |to denote the number of link independent sets
inS(X). Then the following lemma holds.

LEMMA 4.2: The number of different A-set coverings satisfies

c(8)= 2 W -(s(X)) (4.2)

XN

PROOF: With s(X) denoting the number of link independent sets
inS(X), (s(X)) stands for the number of different ways to choose 4 link
independent sets from S(X). (Note that the link independent sets in a A-set-

covering may be non-distinct and non-disjoint.) Now combining the analyses

in Section 4.3.1, we have ck(8)=|ﬁz,|, which is the left hand side of
/=1

Equation (4.1), and(s(X))*=| (] A |, which is the right hand side of Equation

fex
(4.1). This completes the proof.

THEOREM 4.3: Counting A-set coverings can be solved in O(3" - p(n))
time and polynomial space.

PROOF: According to Equation (4.2), we can see that the computational

complexity is dominated by computing s(X), i.e., to count the number of link
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independent sets in S(X) . For each X , we can enumerate all the
combinations of the links in setV — X, which will take time2" . p(n—| X |),
because each testing of the link independent set takes time p(n). Now

combining with Equation (4.2) and the binomial theorem, the running time of
counting 4-set coverings is 7(c (S)) = i(;).Z””” -p(n—m)=0(3"- p(n)) .
m=0

Here p(n) subsumes the time of raising each s(X)to the Ath power. For the
space complexity, since we compute s(X)anew for each X, the occupied

space is definitely polynomial. This finishes the proof.

THEOREM 4.4: Counting A-set coverings can be solved in
O(2" - p(n))time and O(2" - n*) space.
PROOF: We need to introduce the zeta transform of a function £ where 7

is an indicator function of the link independent set. Specifically, the zeta

transform [101] f on the subset lattice (2",<) of fis defined by

F(X)= Y F(S) for X c N. (4.3)

ScX

Now since s(N—X):Zf(S):;‘(X) , We can compute a table

ScX

containing s(NV — X') for all X < N, and using a fast zeta transform introduced

in [101], we can compute aII?(X)with time O(2" - p(n)+2"n)=0(2" - p(n)).
So according to Equation (4.2) and by subsuming the time of raising each

s(X)to the A-th power into p(n) , the time complexity of computingc, (S) is
reduced to O(2"-p(n)) . For the space complexity, since we have

stored O(2" -n) number of interim values for calculating ;’(X) (including
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alls(X)), and since the value of s(X)can be up to2”, the space complexity

isO(2" -n?). The proof is heavily relied on the fast zeta transform. For more

details of this technique, please refer to lemma 2 in [101]. This ends the proof.

4.3.3 Computing the minimum number of colors

LEMMA 4.5: The MFSAT problem can be solved with 4 colors if and only
ifc (S)>0.

PROOF: On one hand, if all the links can be scheduled with A colors,
there must exist a valid A-set covering, which meansc, (S) >0; on the other
hand, ifc,(S) >0, there must exist a coloring such that all the links can be

scheduled at least once in A timeslots (colors). This finishes the proof.

Now we use y(N)to denote the minimum number of colors to schedule all
the N ={1,...,n}links. Combining with Lemma 4.5, we have the following
corollary.

COROLLARY 4.6: y(N)=min{k:c,(S)>0}.

With the help of binary search, the time for
computing y(N)becomeslogn-7(c,(S)). So according to Theorems 4.3 and
4.4, we have the following corollaries.

COROLLARY 4.7: If we only allow polynomial space, the minimum
number of colors y(N)can be computed in time O(3” -logn - p(n)).

COROLLARY 4.8: If exponential space is allowed, the minimum number

of colors y(N)can be computed in time O(2" -logn - p(n)).
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4.3.4 The exact scheduling algorithm: ESA_MFSAT

Although we have computed the minimum number of colors to schedule
all the links, we have not constructed a practical schedule yet. In this section,
we present an algorithm called ESA_MFSAT for scheduling each link at least
once while guaranteeing the minimum number of colors. (To demonstrate the
use of this algorithm, we will give a detailed illustrating example in Section

4.3.6).

ESA_MFSAT: Exact Scheduling Algorithm for the MFSAT Problem

Input: A set of arbitrarily distributed single-hop wireless links NV ={1,...,n}.
Output: A successful scheduling of all the links under the SINR constraint
such that the number of colors is minimized.

1: Construct the pair-wise link conflict graphG,,, on N ; // (cf. Section 3.3.1)

2: Compute y(N), i.e., the minimum number of colors of M.

3: Pick the most constrained link/ which has the maximum node degree in

the conflict graph, and list all the links inG,,, not incident on/. These links
form a set{/, /,....,/,} . We construct new pair-wise conflict graphs called

G _(k)(1<k<m) on top of G_ by adding the edges between link / and

pair pair

links j, where1<k<m. LetV(G,,)and E(G,,, ) denote all the nodes and

pail pair

edgesinG,,, , then V(G,,, (k) =V(G,,,) and E(G,,, (k) = E(G,, ) U{fi-. 7, };

pai pai pair pair
4: LetS(k),1< k <mdenote the set of all the link independent sets in NV but
excluding any link independent set containing link pairs incident on link 7
inG,,,(k); similar to Corollary 4.6, we have x(G,,,(k)) =min{k": c,.(S(k)) > O};
and from Proposition 4.4, we have

G, (k=0 < x(G,, (k)< 1(G,,, (k=) +1;

S: Ifx(G,,.)=x(N)=x(G,,(m)), then we know the color of link / must be

different from those of all the other links in some optimal coloring. So we give

it a new color number and assign the sender of this link (or the senders of all
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the actual links if/ is a virtual link) based on the Pareto-optimal power vector
P’ (cf. Proposition 2.4), then we remove / from /. Otherwise, we can find the
smallest k& using binary search such that ¥(G,,, (k) = x(G,,,) +1.

In this case, we can deduce that link / must have the same color with

link /, in some optimal coloring (otherwise ¥(G,,,.(k))= x(G,,.)). We now

pair
replace link / and link /, with a new virtual link p, , and the neighbors of p, in

the conflict graph become N(p, )= N(/)+N(J,)-

6: Repeat step 2 to step 5 until all links have been scheduled (colored).

4.3.5 Correctness and time complexity analysis

We call step 2 to step 5 in the ESA_MFSAT algorithm a scheduling round.

In each scheduling round, we remove one link, either directly giving it a new
color or “contracting” two links (step 5). Since in each scheduling round, our
link removals are based on the computed minimum number of colors of all
the remaining links, and combining with the analyses in step 4 and step 5, we
can guarantee the output is optimal, i.e., the number of colors we actually
obtain is minimized.

Also, we need to emphasize the computation of the minimum number of

colors y(G, . (k)) . Unlike the computation of y(N), which is based on the set

pair
of all the link independent sets (e.g., the set Sin Sections 4.3.1 and 4.3.2),

the computation of y(G _ (k)) is based on S(k) (the set of the link

pair
independent sets in step 4). In addition, we must note that, if there are some
virtual links in the conflict graph, due to the aggregate interference effect, all
the actual links in these virtual links must be taken into account for checking

whether the supersets of these links are link independent sets.
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We now analyze the time complexity of the ESA_MFSAT algorithm. First

let some exponential function 7(y(n)) denote the time of computing the
minimum number of colors of scheduling n7links. Since each scheduling round
causes at most O(logn) computations of computing the minimum number of
colors, and there are n scheduling rounds, the overall optimal scheduling
takes time O(7(y(n))-n-logn) . So from Corollaries 4.7 and 4.8, if only
polynomial space is allowed, the time complexity

becomes O(3" - n-log® n- p(n)), and if exponential space is allowed, the time

complexity of the exact scheduling algorithm isO(2” - n-log® n- p(n)) .

4.3.6 An illustrating example for ESA_MFSAT

As shown in Figure 4-1, suppose there is a link topology with five
links NV ={7,2,3,4,5}, and all the maximal link independent sets have been
computed: {17,3}{2,4},{3,5},{1,2,5}}. Recall that X stands for any subset of N,
and S(X) represents the set of all the link independent sets
inV — X and s(X) means the number of link independent sets inS(X). For
clarity of presentation, we use a simpler notation to denote the link
independent sets inS(X) c S (Table 4-1); for example, we use 7 to denote
the link independent set {7}, and 725 to denote the link independent set
{1,2,5}.

The 1% step of the ESA_MFSAT algorithm is to construct the pair-wise

conflict graph G, , which is shown in Figure 4-2(a). The 2" step is to

pai
compute the minimum number of colors y(N). According to Table 4-1, we

have S§={1,2345,12,13,1524,2535,125}, and we can calculate
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thatc,(S)=c,(S)=0, andc,(S)= > (- (s(X))’ =96 >0, and so we know

XcN
that 7(NV)=3. In the 3™ step we pick the most constrained link 4 and add new

edges (additional constraints) between link 4 and all the other links which are

not incident on it. In this example, only one link /, = 2 (link 2) is not incident

on link 4, so we add a new edge between them (G __ (1) as shown in Figure

pai
4-2 (b)). In the 4™ step, by removing all the link independent sets containing

link pair 4 and 2, we can achieve S(1)={7,2,3,4,5,12,13,15,25,35,125} , and
since ¢,(S(1)) =¢,(S(1)) =0 and ¢,(S(1)) =30>0 (based on Table 4-2), we

conclude that (G (1)) = 3. Then we go to the 5" step, since we have known

pair

that (G

o) = X(IN) = x(G,,. (1)) =3, we can deduce that, in some optimal
coloring, link 4 must have a different color with all the other links, and so we
give it a new color number and remove it from AN. Now we have finished the

first scheduling round; we then repeat step 2 to step 5 until all links have

been colored. We now briefly give the following scheduling rounds below.

Figure 4-1: A link topology with five links
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(@) (b) © )

Figure 4-2: a) The original pair-wise conflict graph G, for the five links

={1,2,3,4,5}, b) A new conflict graphG,_ (1) constructed onG__; c) A new

pair pail

(2) constructed on the remaining links N ={7,2,3,5}; d) A

air

conflict graphG,

air

new conflict graph G, (1) constructed on the remaining links N = {7, p,., 3} .

Table 4-1: For each subset X of N={7,2345} , the number of link

independent setss(X)inS(X)=N-X

X S(X) s(X)
% {1,2.34,5,12,13 15,24,25,35,125} | 12
{1} {2 3,4,5,24, 25,35} 7
{2} {134,513, 15,35} 7
{3} {124,512, 15,24,25, 125} 9
{4} {1,235,12,13,1525,35,125} 10
{5} {1,2,34,12,13 24} 7
(1,2} {34,5,35 4
1,3} {24,5,24,25} 5
{1,4} {2,3,5,25,35} S
71,5} {2.34,24} 4
2,3} {14,515} 4
2,4} {1,3,5,13,1535} 6
{25} 1,34, 13} 4
{34} {1,2,5,12,15.25,125} 7
{35} {1.24,1224)} S
4,5} {12312 13} 5
{123} 4,5} 2
{124} {3,5,35} 3
{125} {34} 2
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(1,34} {2,525}
{1,3,5 {2,4,24}
{1.4,5 2,3}

(2,34} {1,515}
{2,3,5} (1.4}

{2,4,5} {1,313}
{3,4,5} {1212}

Ol == =2 = =2 WWDNWNWW

{1,234} | {5
{1,235} | {4
{1,245 | {3}
{1,345 | {2}
2345 | {1}
{12345} @

Table 4-2: For each subset X of G

pair

(NwhereN ={7,2,3,4,5}, the number of

link independent sets s(X)inS(X)=N-X

X S(X) s(X)
%) {1,234,512 13 152535, 125} | 11
{1} {2,34,5,25, 35} 6
{2} {1,34,5,13 15,35} 7
{3} {1,24,5,12 1525, 125} 8
{4} {1,235,12,13,15,25,35,125) | 10
{5} {1,234,12,13} 6
(1.2} {3,4,5,35} 4
(1,3} {2,4,5,25} 4
{1,4} {2,35,25,35} 5
{15} (2,34} 3
2.3} {14,515 4
(2,4} {1,35,13,15,35} 6
2,5} {1,3,4,13} 4
(3.4} {1,2,5,12,15,25, 125} 7
(3,5} {1,24,12} 4
4,5} {1,2312,13} 5
{123 | {45 2
{124 | {3535} 3
{125} | {34 2
{1,3,4} {2,5,25} 3
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(1,35 2,4}
{145 2,3}
{2,3,4} {1,515}
{2,3,5} {14}
{2,4,5} {1,313}
{3,4,5} {1212}
{1,234} | {5
{1,235 | {4
{1,245 | {3
{1,345} | {2
2345 | {1}
{12345 @

O| = === =2 WWDNWDNDN

The 2™ scheduling round: In the 2nd step, similar to Table 4-1, we can
construct another Table 4-3 for N={7,235} , and we have
S$={1,2,35,12,13,15.25,35, 125}. Then we can calculate

thatc,(S)=0andc,(S)=10>0, and so we know that y(N)= x(G,,, )=2. In

pair
the 3" step, we pick link 2 as the most constrained link, and add new edges

between link 2and links /, =7 and j, =5 (G,,,(2) as shown in Figure 4-2(c)).

Note that by reducing the edge between links 2 and 5 fromG,_ (2), we can

pai

getG _(1). In the 4™ and 5™ steps, we have S(2)={7,2 35,1315, 35} and

pair
since ¢,(S(2))=0 and ¢,(S(2))=36>0 (based on Table 4-4), we

know (G

pair

(2)=3>y(N) , and then we continue to find
that S(1)={7,2,3,5,713,715, 25,35} and since ¢,(S(1)) =2 >0 (based on Table
4-5), we get y(G,,,(1)=2=y(N) . So in this case, we conclude that

k=2 (corresponding to link 4, ) is the smallest 4k to

satisfy y(G . (k))= y(G, . )+1. We then deduce that link 2 must have the

pair pair
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same color with link 5'in this optimal coloring. So we contract these two links
into a new link p,.. Then we go to the 3™ scheduling round.
Table 4-3: For each subset X of N={7,235} , the number of link

independent setss(X)inS(X)=N-X

X S(X) s(X)
%] /123512 13,15,25,35,125} | 10
{1} {2,3,5,25,35} S
(2] 71,.35,13,15,35) 6
{3} {1,2,5,12,15,25,125} 7
{5} {1,2,312,13} S
1.2} 735,35} 3
{1,3} {2,5,25} 3
{1,5} 2,3} 2
2,3} {1,515} 3
2,5} {1,313} 3
{35} {1212} 3
{123} | {5} 1
(1,25} | {3} 1
(1,35} | {2} 1
235 | {1} 1
{1235 @ 0

Table 4-4: For each subset X of G, (2)where N ={7,2,3 5}, the number of

air

link independent setss(X)inS(X)=N-X

X S(X) s(X)
% {1,2,35131535}| 7
{7} {2,3,5,35} 4
[2) /135131535 |6
{3} {1,2,5,15} 4
{5} {12,313} 4
{12} {3,5,35} 3
{1,3} {2,5} 2
1,5/} {2,3} 2
2,3} {1,515} 3 ——
E;_ 2 ok
B &2
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{2,5} {1,313}
{3,5/ (1,2}
(1,23} | {5/
{1.25 | {3}
(1,35} | {2}
235 | {1}
{1,235} <&

Ol = = = =2 DN W

Table 4-5: For each subset X of G, (1) where N ={7,2,3,5}, the number of

air

link independent setss(X)IinS(X)=N - X

X S(X) s(X)
% {1,2,35,13,152535} | 8
{1} {2,3,5,25,35} S
2} {1,35,13 1535} 6
{3} {1,2,5,1525} S
{5} {12,313} 4
[12] | {3535 3
{1,3} {2,5,25} 3
{1,5} (2,3} 2
2,3} {1,515} 3
251 | {1,313 3
{35} {1,2} 2
{123} | {5/ 1
{125} | {3} 1
{135} | {2} 1
235 | {1} 1
{1235} & 0

The 3™ scheduling round: In the 2nd step, also similar to Table 4-1, we

can construct another Table 4-6 for N={7p,,3} , and we
have S={7,p,.,31p,,73} , and then we <can calculate

thatc,(S)=0andc,(S)=6 >0, and so we know that y(N)= y(G,,)=2. In the

pair

3" step, we pick link p,,as the most constrained link, and add a new edge
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between link p,;and link /, =7 (G, (1) as shown in Figure 4-2(d)). In the 4™

and 5™ steps, we have S(1) = {7, p,.,3,73}and sincec,(S(1)) =2 > 0(based on

Table 4-7), we obtain ¥(G,, (1)=2=x(N), and so we conclude that

link p,, must have a different color with link 7 and link 3in this optimal coloring.

Then we give it a new color and remove it from N. Now we finish the 3™
scheduling round and can proceed to the 4™ scheduling round.

The 4™ scheduling round: We can easily find that links 7 and 3 must have
the same color in this optimal coloring (the interested reader can do the
checking). So we give them a new color and we finish the scheduling of all

the links. Also the transmission powers of all the links are based on the

Pareto-optimal power vector 2" (cf. Proposition 2.4). The final result is we
have used three colors for the link independent sets {4},{2,5} and {7,3}. Of
course, this is only one of the optimal colorings. By choosing different
coloring strategies or through choosing different orders of the links in step 3

of the ESA_MFSAT algorithm, we may obtain different optimal colorings.

Table 4-6: For each subset X of N = {7, p,., 3}, the number of link independent

setss(X)inS(X)=N-X

X S(X) s(X)
%) {1, p,,3,13,1p,.} | 5
{7} W) 2
{Pys} {1,315} 3
{3} {1, Pos:1Pss} 3
{1, ps} |15 1
{1,3} { Py} 1
{ps.3y | {T} 1
{1, P, 3}| 9 0
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Table 4-7: For each subset X of G, (1) where N = {7, p,;,3}, the number of

link independent setss(X)IinS(X)=N - X

X S(X) s(X)
%) {1, ps,313}| 4
{7} { Pos -3} 2
{Ps} {1,313} 3
& {1, Py} 2
{1, P} | 13} 1
{1,3 { Py} 1
{ps3y | {7} 1
{1, P, 3| 9 0

4.4 Counting based Approximate Colorings

4.4.1 Polynomial time approximation

This approximation algorithm is implemented by clustering. We first
partition all the nlinks into n/logn groups, each group containinglog links.

Then we use the exponential space version of the ESA_MFSAT algorithm to

compute the minimum number of colors of each group. LetOpf stand for the
minimum number of colors, then the actual number of colors we get is at

most n/logn-Opt, and so the approximation ratio is O(n/logn). Since the
time complexity of our exact scheduling algorithm is O(2" - n-log® n- p(n)),
and the space complexity is O(2"-n°) , the time complexity of our
approximate scheduling algorithms is bounded by O(n?- polylog(n)). The

space complexity is O(n? -logn).
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4.4.2 Quasi-polynomial time approximation

Obviously, we can also partition all the nlinks into 77/log* n groups, each

group containinglog® 7 links. Then we use the polynomial space version of
the ESA_MFSAT algorithm to compute the minimum number of colors of

each group. The approximation ratio is O(n/log* nn). But the time complexity
becomes O(n'"**** " polylog(n)) , which is a quasi-polynomial time

complexity, i.e., the complexity with the form O(exp((logn)°”). The space

complexity is still polynomial.

4.4.3 Exponential time approximation

We have given an exponential time approximate link scheduling
algorithm in Section 4.2.2, which is based on repeatedly finding the maximum
link independent set on the remaining links. This is equivalent to a standard

greedy set covering method with approximation ratio O(logn) . In this section,

we will present another exponential time approximation algorithm which is

also based on finding the maximum link independent set. But in this algorithm

when the number of the remaining links equals e “n, we do not repeat the
maximum link independent set finding algorithm. Instead we use our
polynomial space version of the exact link scheduling algorithm ESA_MFSAT
since the number of the remaining links has become small enough.

THEOREM 4.9: The approximation ratio of this polynomial space

approximate link scheduling algorithm is [(1+g)], and the time complexity of

this algorithm isO(((?,,)+ 3° " -n-logn)-logn - p(n)).
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PROOF: The proof is adapted from [100,101].

Let Opt be the minimum number of colors for scheduling all the links.

And let s be the number of maximum link independent sets we have removed.

If we use y(e “n)to denote the minimum number of colors we have obtained
to schedule the remaining e “n links, then the total number of colors we have
used is y(e‘n)+s . Since y(e“n)<Opt , we only need to prove
thats <[] -Opt .

Since we remove the maximum link independent set in each step, so
after at most ¢ steps, the number of remaining links is smaller than or equal to
n-(1-1/0pt) , and due to a standard inequality, we have
n-(1-1/Opt) <n-e"* . So ife-Opt <t <s<[e|-Opt, then the number of
remaining links is at most e “n. By plugging into the time complexity result of
the maximum link independent set finding algorithm in Section 4.2.2 and the

polynomial space version of the exact scheduling algorithm in Section 4.3.4,

we finish the proof.
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Chapter 5 Exact and Approximate Link

Scheduling Algorithms for the MLSAT Problem

In this chapter, we will first transform the MLSAT problem as a set multi-
cover problem. Second, we will design a first known exact algorithm for the
set multi-cover problem. Third, based on this exact algorithm, we will present
a polynomial time polynomial space approximation algorithm for the MLSAT
problem. To our knowledge, this is the first known approximation algorithm

for the MLSAT problem that is independent of the links’ lengths.

5.1 New Formulation for the MLSAT Problem

Similar to Section 4.1, in this section, we will transform the MLSAT
problem as a set multi-cover problem. Now based on the same definitions
given in Section 4.1, we can rewrite the MLSAT problem as follows:

The MLSAT Problem: Given narbitrarily distributed single-hop wireless

links NV ={1..n}, select a minimum number of link independent sets such that

each link has been covered at least a number of times as specified in its
coverage requirement, namely, the number of packets each link needs to
transmit.

From this new formulation, we can see that the MLSAT problem is
actually the same as the set multi-cover problem. Set multi-cover is a
generalization of the set cover problem where each element may need to be
covered more than once and thus some subset in the given family of subsets
may be picked several times for minimizing the number of sets to satisfy the

coverage requirement. In this chapter, based on the inclusion-exclusion
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principle, we will propose a first known exact algorithm for the set multi-cover

problem. Specifically, the presented ESMC (Exact Set Multi-Cover) algorithm

takes O'((2t)") time and O ((f +1)") space where tis the maximum value in the

coverage requirement  vector (The O'(f(n)) notation omits

a poly log(f(n))factor).

5.2 Related Work

Recently it has been shown that for some exact algorithms, using the
inclusion-exclusion principle can significantly reduce the running time. For
example, Bjorklund et al. have applied the inclusion-exclusion principle to
various set cover and set partition problems, obtaining time complexities that
are much lower than those of previous algorithms [100,101,104]. This
principle has also been used in some early chapters, such as [128] and [131].
By using the Mdébius inversion technique which is an algebraic equivalent of
the inclusion-exclusion principle, Bjérklund et al. give a fast algorithm for the
subset convolution problem [99] and Nederlof presents a family of fast
polynomial space algorithms for the Steiner Tree problem and other related
problems [132]. In this chapter, we are interested in designing inclusion-
exclusion based exact algorithms for the set multi-cover problem [135,136].
This problem is a generalization of the set cover problem in which each
element needs to be covered by a specified integer number of times and
each set can be picked multiple times in order to satisfy the coverage
requirement. It is a bit surprising that only approximation algorithms have so
far been proposed for the set multi-cover problem. In fact, by using the same

greedy strategy as for the set cover problem, which is to repeatedly add the
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set containing the largest number of uncovered elements to the cover, one

can achieve the same O(logn) approximation for the problem [135]. Feige
shows that the set cover problem can not be approximated better
than Inn unless NP e DTIME (n***") [130]. Some parallel approximation

algorithms for the set cover problem and its generalizations, such as the set
multi-cover problem, the multi-set multi-cover problem and the covering
integer programs problem have been presented in [136]. In all these related
work on approximation solutions, the set multi-cover problem appears to be
no harder than the set cover problem. In this chapter, we will see that finding
an exact solution for the set multi-cover problem can take much longer time
than that for the fastest exact algorithm for the set cover problem [100,101].
The structure of this chapter is as follows. In Section 5.3, we give a
formal definition of the set multi-cover problem. In Section 5.4, based on the
inclusion-exclusion principle, we will transform the set multi-cover problem to
the problem of counting the number of A-tuples that satisfy the integral
coverage requirements. We then give an algorithm for counting these
numbers of Atuples in Section 5.5. In Section 5.6, we give a constructive
algorithm for finding the minimum number of sets that meet the coverage
requirements. A simple illustrating example for our algorithms is given in
Section 5.7. We finally give a polynomial time polynomial space approximate

algorithm for the MLSAT problem in Section 5.8.

5.3 The Set Multi-cover Problem

A summary of the various notations used in this chapter and their

corresponding definitions is given in Table 5-1. Throughout the chapter, we
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let the union of a A-tuple <s,,...,s, > which is denoted asC = Os represent a

multi-set. This means that we just put all the elements in each s into the set C

without removing duplicated elements.

Table 5-1: Summary of notations and their definitions

Notation Definition
N The universe set, where N ={1,...,n}and|N |=n.
F A family of subsets of A, where F ={s,...,s, }and|F |is

the total number of subsets in F.
T The integral coverage requirement vector,

where 7 =(¢,...,t) ; each /eN must be covered at

least? >1times in the picked subsets over F.

t The maximum integer in the vector 7 i.e., = nggﬂx(f,).
c.(F) The number of Atuples <s,...,s, > over F such that the

union of each A-tuple, i.e.,C = Qs,_ , satisfy the specified

coverage requirement 7.

n (X) The number of Atuples <s,...,s, > over F such that

each/e X (X <N ) appears at most (¢ —1) number of

i

times in the multi-setC .

a(x) The number of subsets in Fthat avoid X.
b(X,Y) The number of subsets in F that include Y but avoid
X\Y.

pl(n,..,n,) or The number of gtuples over F such that each je X

pX(n,) appears n, times in the union of each gtuple. For

simplicity, we use n, to denote{n,...,n, }.
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The Set Multi-Cover Problem: LetN ={1,...,n}be the universe, and F a
given family of subsets{s} over N, and the union of all the subsets in F
covers all the elements in N. A legal(k,7) cover is a collection of & subsets
over Fsuch that each/ € N must appear at least? > 1times in the union of the

k subsets. Note that the k subsets can be non-distinct which means that
some subsets in F can be picked several times. The goal of the set multi-

cover problem is to find the minimum A to make a legal (4,7 ) multi-cover.

Remark 5.1: Since each subset in F can contain each element of N at

most once, in order to find a legal (k,7) cover, A must be greater than or equal

to £, the maximum integer in the coverage requirement vector 7, i.e., kK >t.

Also, since the union of Fcovers all the elements in N, we havek <in.

5.4 Counting based Exact Algorithm for the Set Multi-Cover

Problem

5.4.1 The Inclusion-Exclusion Principle

This principle has been given in Section 4.3.1. For convenience, we
present it again here. Let B be a finite set with subsets A, A,,...,A < B. With
the convention that(\__ A = B, the number of elements in B which lie in none

of the A is :

INAE X ED™INAI (5.1)

Xc
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5.4.2 Counting the number of k-tuples
LEMMA 5.1: Letn (X)denote the number of k-tuples <s,,...,s, >where
for each j € X', the number of j in the setC :st is at most?, -1; then the

number of k-tuples that satisfy the coverage requirement T can be computed

from the following equation:

c.(F)= %(—1)'*‘ -n (X) (5.2)

PROOF: Let B be the set of Atuples <s,,...,s, > from £, and let A be the

set of Atuples where element /in the multi-set C appears at most (¢ -1)times.

The left side of Equation (5.1) is the number of A-tuples in which each

element 7in the universe Nis covered at least ¢ times, which is represented

byc,(F), the left side of Equation(5.2). Accordingly, | A | is the number of

k-tuples in which each j € X', which is an element in the set C, appears at
most(¢, - 1) times; i.e., n,(X)=| Q/‘H . By the right side of Equation(5.1), we
can derive the right side of Equation (5.2).
LEMMA 5.2: We can find a legal (4,7 ) multi-cover if and only ifc (F)>0.
PROOF: ¢, (F)is the number of Atuples over F that satisfy the coverage
requirement 7. The number of legal (k,7) multi-covers is the number of &

subsets over F that satisfy the coverage requirement 7. Since different

orderings of the A subsets mean different Atuples while the (4,7) multi-cover

concerned remains the same, we know that only whenc (F) > 0 can there be
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a legal (k,7) multi-cover. Similarly, if there is a legal (k,7) multi-cover, it
guarantees that ¢ (F) > 0. This finishes the proof.

According to Lemma 5.2, we have the following corollary.

COROLLARY 5.3: The minimum &k value to make a legal (k,7) multi-
cover is equal to the minimum 4 value that satisfiesc (F)>0.

Thus we can transform the set multi-cover problem to the problem of

computing ¢, (F) . By using binary search, sincet < k < tn, the time for solving

the set multi-cover problem equals the sum of the times for computing

the O(log(#r)) numbers of ¢ (F). In the next section, we will introduce an

algorithm for computingc (F).

5.5 An Algorithm for Computingc (F)

In this section, we show how to computec (F), i.e., to count the number
of Atuples <s,...,s, > over F such that the union of each such A-tuple

satisfies the given coverage requirement 7.

5.5.1 How to compute n (X)

According to Equation(5.2), we know that the crux of computingc, (F)is
to obtain n (X), i.e., the number of Atuples over F such that each
/ € X appears at most (¢ —1) times in the union of every A-tuple. Without loss
of generality, we assume X ={1,2,...,m}, and for the simplicity of notation, we
let n, ={n,n,....n }. We then denote p*(n,)=p’(n,n,,...,n ), the number of

g-tuples over F such that for each j € X the number of the element /in the
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union of every g-tuple isn. . Now since the union of each g-tuple can cover
J

m

each je X at most g times, for each p*(n,n,,...n ), we have n <gq for
each j € X'; otherwise, p*(n,n,,...,n )equals 0. From these definitions, we
can easily obtain the following Equation(5.3). This equation means that, in
order to obtain n,(X), we should sum all the p’(n,) values (liz‘, of them),
where p*(n,)is from p*(0,0,...,0)to p* (¢, —1,¢,-1,..., —1) . Now our problem
becomes how to efficiently compute all the p”(n, ) values.

n(X)= 3 pl(n,) (5.3)

Before delving into the details of calculating all these p(n,)values, we
need to introduce some notations. We use a(X)to denote the number of sets
in Fthat avoid Xwhere X c N, and b(X,Y)to denote the number of sets in F
that include Y but avoid X'\Y , whereY < X . We show next how to get

a(X)forall Xand b6(X,Y)for all Xand Y.

5.5.2 How to compute all a(.x)

There are two ways to compute a(.X) . The first way is to use the fast zeta
transform technique introduced in [101]. By using this technique,
all a(X) values can be computed inO (2")time. And since the technique uses
a look-up table to store all the interim values includinga(X)for all X c N, it
requires O (2")space. The second way is to compute a(X) directly without

storing all the interim values into a look-up table. In order to

compute a(X')where X < N, we just need to test every subsetS c N\ X to
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see if Sis in F, which takes time O (2"""') by assuming that the membership

test in £ can be decided in polynomial time and polynomial space (This is true
for our MLSAT problem since checking whether a set of links is a link
independent set can be transformed into checking whether the spectral
radius of the links’ link gain matrix is smaller than 1 or not.). Then for

all XcN : the total time for computing a(Xx)

equals ¥ O'(2")=0'(£C27)=0'(3).

XcN

5.5.3 How to compute all 5(X,Y)

Based on the two different ways of computing a(X), we have two
corresponding ways to compute all 5(X,Y’) forally < X andforall X c V.

For arbitrary X' and Y, whereY c X', we let | X |=mand|Y |=r andr<m.
Without loss of generality, assume X ={12,...m} and Y ={12,...,r} .
Then b(X,Y) can be computed via Equation (5.4).

b(X,Y)= ;(—1)‘2‘ -a(ZuUX\y)) = Zch(—1)‘2' -a(ZU{r+1,....m}y) (5.4)

Equation (5.4) is obtained by applying the inclusion-exclusion principle.
Suppose B is a family of subsets of F which avoid X\Y , and let

A cB(/ieY c X) be the family of subsets which further avoid element/ .

Then the left side of Equation (5.1) (| h‘ZJ) is the number of sets in F that

coverY but avoid X' \Y which is the value of b(X,Y’). Accordingly, the right

side of Equation (5.1) (| N A ) is the number of sets in F that

avoid ZUJ (X \Y) which is the value of a(ZU (X \Y)). Thus according to
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Equation (5.1), we have Equation (5.4). Then we calculate how much time we

need to compute all b(X,Y).
First, we do not use a table to store all a(X) values, and the time

complexity is given in Lemma 5.4.

Lemma 5.4: For allY < X and for all X c NV, b(X,Y)can be obtained
inO’(6”)time and polynomial space.

PROOF: As mentioned earlier, in order to compute a(X)where X c N,
we just need to test every subsetS —c N\ X to see if Sis in F, which takes
time O (2"™). For given X and Y, according to Equation (5.4), the time for
computing b(X,Y’) can be calculated from the formulagcr/ -O(27™™). By
using the Binomial theorem, we have Equation (5.5).

gc; 027y =0'(2""-3") (5.5)

Now for allY < X, the time for computing 6(X,Y’) can be calculated
through the formula gc; -0 (2" -3") . Similarly, by using the Binomial
theorem, we have Equation (5.6).

gcn; -0(27-3)=0'(2"") (5.6)

Finally, for all X < NV, the time for computing 6(X,Y’)can be calculated
through the formula ZOCjO"(Z”W). Again by the Binomial theorem, we have
Equation (5.7).

Z)Cj’O”(Z"”) =0'(6") (5.7)

According to the computation steps of Equations (5.5), (5.6) and (5.7),

since we did not use any look-up table to store the exponential humber
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of a(X') values to speed up the calculation of b(X,Y) , the space used is only

polynomial. This completes the proof.

Now we give another way to compute all 5(X,Y) by using exponential

space. Its time and space complexities are given in Lemma 5.5.

Lemma 5.5: For allY < X and for all X c NV, b(X,Y)can be obtained
inO(4")time and O (2") space.

PROOF: As before, by using the fast zeta transform technique introduced
in [101], all a(X) values can be computed in O (2")time and O'(2") space.
Then for some given X and Y, according to Equation (5.4), since

all a(X) values are known, 6(X,Y)can be computed in time2"where r =Y |.
The time for computing 6(X,Y) for allY < X equals ﬁan -2"=3". Similarly,
the time for computing 6(X,Y) for all X < N equals in 3" =4". This

finishes the proof.

5.5.4 An Algorithm for computing all p*(n,)

As mentioned in Section 541, we need to

computeli[t, pr(n)=p-(n,n,..n ) values, where0<n <t —1and1</<m.

Without loss of generality, we assume the positive integers
in{n,n,...,n }form a setn ={n,...n}, where Y ={12,....,rtand0<r<m.
Then from the definitons of a(X) and b(X,)Y) , we
have p*(n,n,,....n )= b(X,{1,2,...,r}) and p(0,0,...,0) = a(X). Now for brevity

of notation, for any subsetZ ={r,...,r}cY , we use(n —1°) to denote the
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set {n,..n-%1...,n-1n ...n} , e, for all jez , the
corresponding 7, values are decremented by 1, and for all / ¢ £, we keep the
corresponding 77, values. Then for2<g <k, we use the following recursive
function to obtain p*(n,).
p;(n)= 2 b(X,2)p.(n ~T) (5.8)
Basically, this equation tells us how to calculate the p*(n,)value when
given p*(n -1) values for all ZcVY . For  example,
when Z2=0 , b(X,D)=a(X) and p'(n -1)=p"(n,) . We already
know a(.X') means the number of sets in F that avoid X, and p’ (n,) means

the number of (¢g-1)-tuples from F where for each j € X the number of the

element / in the union of every (g-1)-tuple is#, ; thus the product of a(X)
and p”,(n,) is the total number of ways to add a set to each of the p”(n,) (¢

1)-tuples to make it a g-tuple while keeping n, unchanged. Similarly, for each
nonempty Z c Y, we know b(X,Z)means the number of sets in Fthat cover
Zbut avoid X'\ Z, whereZ cY c X, and p’,(n, —1")means the number of

(g-1)-tuples from F where for each j € X the number of the element /in the

union of every (g-1)-tuple equals the updated n7, value in the set(n, —17); thus
the product of b(X,Z)and p’ (n, —17) is the total number of ways to add a
set to each of the p” (n, —17) (g-1)-tuples to make it a g-tuple while satisfying

all the n values in the setn, . Finally, the summation of all these products
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yields the number of g-tuples from F such that for each j € X the number of
the element /in the union of every g-tuple equals n,, whichis p*(n,).

So according to Equation (5.8), in order to get allp’(n, ), we need to
calculate all p*(n,) where 1<g <k . Now before giving an algorithm for

computing all p/(n,), we need to first analyze the special case where the

maximum integer ¢ in the integral coverage requirement vector

T =(t,...t)equals 1. In this case, set multi-cover becomes the set cover

problem. Then as mentioned in Section 5.4.1, we only need to

compute ﬁz‘ =T1number of p*(n.)=p’(0,...,0) values. This means that the
i=1 %/_/

m

number of positive integers in the setn_={n,n,,...,n }is zero, i.e., the set Yin
Equation (5.8) is an empty set. Accordingly, Equation (5.8) becomes
p(0,...,0) = b(X,D)- p" (0,...,0) = a(X)- p" (0,...,0). Since p*(0,...,0)=a(X),
we can obtain p(0,...,0) = (a(X))". Finally from Equations (5.2) and (5.3), we
obtain Ck(F)IgN(—WX' -(a(X))", which is the same as the formula given in
[101] for counting the number of Atuples that satisfy the set cover

requirement. As discussed in [101], based on whether we use exponential

space or not (c.f. Section 5.4.2), ¢ (F) can be computed in O'(2") time

and O'(2") space, or can be computed in O (3") time and polynomial space.
For the following, we assume that the maximum integer ¢in the integral

coverage requirement vector 7 = (¢,...,¢ )is greater than or equal to 2.

Algorithm 5.1 for computing all p;"(n,)

Input: The value k& where t <k <itn; the set X ={1,2,...,m}; the integral

87




coverage requirement sub-vector for X , i.e., 7, =(¢,¢,,....)). Here7 is a sub-
vector of 7, and we use min(7, ) and max(7,)to denote the minimum and the
maximum integers respectively in the sub-vector7 .

Output: The values for all p(n.).

1: For all X < NV, by using the fast zeta transform technique given in [101],
we compute all a(.X") and store them in a look-up table.

2. Based on the first step, for all Y c X and X <N , we compute
all b(X,Y) and store them in another look-up table.

3: For g=2 to kdo:

4: By using Equation (5.8), we compute all p*(n,) from p”(0,...,0) to
p(min(g,t —1),...,min(g,t, —1),...,min(qg,z —1)) (with lexicographic order) and
we store all these p’(n,) values in a look-up table. Here the
function min(g,f —1) means choosing the minimum value

betweengand(f —-1).

5: End For.

With the above Algorithm 5.1 for computing all p*(n ), we can
calculate n (X) and thenc (F). Then we analyze in the following the time

and space complexities for calculatingc (F).

5.5.5 Time and space complexities for calculatingc, (F)

Theorem 5.6: By using Algorithm 5.1 for computing all p*(n,), ¢ (F)can
be computed inO'((2¢)") time and O ((f +1)") space.

PROOF: The first step of Algorithm 5.1 usesO’(2")time and O (2") space.

For the second step, according to Lemma 5.5, computing all 5(X,Y) takes
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time O(4") . Obviously there areiCﬂ”’Zm =3" b(X,Y), so storing allb(X,Y)ina

look-up table takes O'(3") space.

In the ‘For loop (step 3 to step 5), we -calculate

all p’(n,)fromg=2tog =k and store all these p’(n,) values in a look-up
table. So according to Equation (5.8), for each p*(n,) , since all
the bH(X,Y) and p’(n,) values have been stored, the time to
computepj(nx)islz;crf =2'where ris the number of positive integers in the
setn,. So in order to calculate the total time for calculating all p"(n, ), we just
need to count how many p*(n,) we need to compute.

Since we know the number of positive integers in the setn is r, for each g

where 2<g <k , the number of p’(n,) we need to compute equals

0,..,0) to
%,_/

m-r

I:Imin(q,tl_—1) , le, those p*(n) from pr..1,

p; (min(g,t, -1),...,min(g,t -1),0,...,0).
—

r m-r

So ifg <min(7,)-1<¢ -1, the number of p”(n,) we need to compute isg’,

yeuey
H_/

m-r

i.e.,, all p*(n) from p*(1..,1,0,..0 to p*(g....q,0,..,0) . Similarly,
%;—‘ %r,_/%,—/

m-r

iff —1< g < k, the number of p*(n,) we need to compute equals 1:[(1‘, —T)which

is less than (t=-1) , ie., all p;(n,) from
p’(1...,1,0,..,0) to pr(t 1.t -10,...,0) : Finally, if
—_— — \ —

r m-r r m-r
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min(7,) < g <max(7,)-1<¢-1, the number of p*(n,)we need to compute is
at mostg’.

From the above analyses, for a givenn where the number of positive
integers equals r and for all2<g <k, the total number of p*(n,)we have
computed is at most:

-1

>q +(k—t+1)-(t-1) (5.9)

g2

As mentioned earlier in this proof, since the time for computing each

p(n,)is2’, the total time for computing all these p*(n,) is at most:
2 -(gq’ H(k—t+1)-(£=1))

Then for alln,_where r, the number of positive integers in each of them,
varies from 0 to m, the total time for computing all p (7, ) is at most:
SC2(Rg +k-t+D)-(t-N)=5@q+1) +(k—t+D- (21

Now according to Equation (5.3) which is for computingn (X)), the total
time for computing n,(X) is less than §(2q+1)” +(k=t+1)-(2t-10)"+1¢",
where the last term ¢” accounts for the at most " number of additions
of p*(n, )to obtainn (X).

Finally, according to Equation (5.2) which is for calculatingc, (F) , the time
for computing ¢, (F)is at most:

;cﬁm(g(ZqH)”’ +(k=t+1)-(2t=1)"+1¢")

=

= 72(2q+2)” +(hk—t+2)-(28)" +(t+1)
Now according to the following helping lemma, Lemma 5.7,
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S Q2 +2) +(k—t+2)-(2f) + (¢ +1)

g=2

=0((t-1)-(2t-2)")+(k—t+2)-(2t) +(t+1) =0 ((2t)")

Lemma 5.7: For any positive integer s, we have
(s+1)-(s/2) Si/’" <(s+1)-s5"/2.
PROOF: First we define a functionf(x)=x"+(s—x)", where0< x<s.

By computing the second derivative of 7(x), we know 7(x)is a convex

function. Thus it achieves the largest value at the boundaries of the x values,

which are either x =0or x = s. By computing the first derivate of f(x), we find
that it achieves its smallest value atx =s/2. So we have2""s” < f(x) < s for

all0 < x <s. Then by replacing x with all its integer values from 0O to s, and
summing these inequalities together, we obtain the result. This finishes the
proof.

After proving the time complexity for calculating ¢ (F), we now turn to the

space complexity. This is equivalent to finding out the total interim values we
have stored in the look-up tables. We know already the total spaces for

storing alla(X) and b(X,Y ) values are O (3"), and now we only need to know

the total number of p*(n,) we have stored in the table. As given in Equation

(5.9), for a givenn, and for all2< g < k, the total number of p*(n,)we have
computed is at mostiq’ +(k—t+1)-(¢-1). Then for alln_, the total number

of p*(n,)we have stored is at most:

Z:Cm’(gq’+(k—t+1)-(t—1)’):2(q+1)m+(k—t+2)-t”7
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Finally, for all X c AV, the total number of p*(n,)we have stored is at

most:

>Cl

=2
m=0 q=2

(q+1)”+(k—t+2)-t”’)=2(q+2)”+(k—1‘+2)-(t+1)"

Again, according to Lemma 5.7, we have:

-

N

(@+2) +(k—t+2)-(t+1) =0 +(k—t+2)-(t+1)")=0((t+1)")

[N}

Sincetf > 2, all the time and spaces consumed in the first and the second
step of Algorithm 5.1 can be subsumed in O'((2¢)") and O ((¢+1)") ,

respectively. This finishes the proof of Theorem 5.6.

5.6 A Constructive Algorithm for the Set Multi-Cover Problem

Although we have computed the minimum number of sets that satisfy the
coverage requirement, we have not really constructed these sets. In this
section, we present an algorithm called ESMC for picking the minimum
number of sets such that each element in the universe is covered by at least
the required number of times as specified in the integral coverage
requirement set. Before giving this constructive algorithm, we need to define

two basic elements pair operations.

5.6.1 Two basic elements pair operations

We define two kinds of elements pair operations over a series of sets.
One is called elements pair separation, which is to divide a set into two sets
such that any pair of elements in the original set will fall into two different sets;

the other is called elements pair coalition, which is to merge a pair of
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elements in the same set into a single element. Their formal definitions are

given below.

Elements Pair Separation: For any sets={a,b,x,...,x } in F which
covers a pair of elements a and b, we replace the set s by separating the two
elements into two different setss, ={a,x,,...,x }ands, ={b,x,,....x_}.

Elements Pair Coalition: For any sets ={a,b, x,,...,x_} in F which covers

a pair of elements a and b, we replace the set s with the

sets, ={ab, x,,...,x,} where the two elements a and b are merged into a new

single elementab .

5.6.2 The constructive algorithm for the set multi-cover problem

We now give a constructive algorithm for finding the minimum number of
sets in F that satisfy the integral coverage requirement vector 7. This
algorithm is based on finding the minimum k value such that the value

of c (F)is greater than zero.

ESMC: Exact Set Multi-Cover Algorithm

Input: A family F of subsets over the universe N ; a coverage requirement
vector 7.

Output: The minimum number of sets from Fto satisfy the requirement 7.

1. SetF_=F.

bak

: Calculate the minimum value of k such thatc, (F)>0.

: Pick any element gin the universe N.

: SetF, =F.

2
3
4: Find all the elements{x,,...,x_}in Nthat appear with ain some set in F.
5
6: For ~1to mdo:

7

F=F,

0"
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8: For the pair of elements(a,x ), we apply the Elements Pair Separation
operation over the set 7 to generate a new set called F,.
9: Calculate the value ofc, (F)).

10: End For

11: If all of the c (F)values where0 </ < m are greater than zero, we can

deduce that there exists a set in the optimal cover which only covers the

element a since otherwise there must exist some x, whose separation with the
element a can makec, (F)<0. So we just pick this set inF which covers a

and contains the least number of elements. We then decrement the value of &

by 1 and update the coverage requirement vector 7, i.e., for all elements x . in
the picked set we decrement each of the corresponding? values by 1. Also if
anyt <0 we remove the element /in the universe set N.

12: Else we pick any / such that ¢ (F)<0 . Then for the pair of
elements{a,x }, we apply the Elements Pair Coalition operation over the
set F . Note that the element g has become a new single element (ax,).

13: Repeat step 4 to step 12 until we have picked a set from F .

14: SetF = F, and we repeat step 3 to step 13 untilA =0.

5.6.3 Correctness Analysis

First, according to step 2, we know that the value of & we choose
guarantees that we only use the minimum number of sets to satisfy the
coverage requirement. Second, according to step 11, we know that, when
we pick a set from Fin each step, we can guarantee that the picked set must

exist in some optimal legal(k,7) multi-cover sets. From this we also know
that, when we pick this set, there must exist a legal (kK —1,7) multi-cover
where7 is the updated coverage requirement vector after picking a subset
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from F. From the above analysis, we can conclude that we do pick the
minimum number of sets from F that satisfies the coverage requirement

vector 7.

5.6.4 Time and Space Complexities Analysis

The time of the ESMC algorithm can be divided into two parts. The first
part is due to step 2, which is to calculate the minimum A value for a

legal (k,7) multi-cover. By using binary search, since t <k <itn, its time
corresponds to O(log(#m)) calculations of ¢, (F) (c.f. Section 5.3.2). The second

part is due to steps 4 to 12 of the algorithm which is to pick a subset from F.

We can easily see that it takes O(n*) calculations of ¢ (F). Since we need to
pick k subsets, we need O(kn*)evaluations ofc (F)in total. So the overall
time complexity is dependent on the time complexity for computingc (F).

Now according to Theorem 5.6, we have the following corollary.

COROLLARY 5.8: By using Algorithm 5.1 for computing all p*(n,), the

ESMC algorithm takes O'((2¢)") time and O'((¢ +1)") space where ¢ is the

maximum integer in the coverage requirement vector 7.

5.7 An lllustrating Example
In this section, we give a very simple example to show how we calculate
the value of ¢, (F)and how the ESMC algorithm works for the given example.

Suppose the wuniverse N ={123} , the family of subsets over N
isF ={{1,2},{1,3},{2,3}} and the coverage requirement vector7 =(2,1,1). Now

we first find the minimum 4 value to make a legal(4,7) multi-cover. This is
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equivalent to calculating the minimum 4 value such thatc, (F)>0. Suppose

we first test the case wherek =2.

According to Equation (5.2), we havec,(F)= Y (-1)"-n,(X). Now due to

Equation (5.3), we have n(X)= ¥ p(n,...,n, ). Then based on these

1<i< X
equations we have Table 5-2 which is to calculate n,(X) values forall X c V.

Table 5-2: Calculatingn,(X)forall X c N

X n,(X)
Z p; ()

{1} p;"(0)+ p;" (1)

{2} p;”(0)

{3} p;”(0)

{1.2} P57 (0,0)+ p;” (1,0)

{1,3) PE9(0,0)+ pf)(1,0)

2,3} p;**(0,0)

{123) pi29(0,0,0)+ pf'**(1,0,0)

The next step is to compute all the p;(n,...,n, ) values on the right side of

Table 5-2. By combining Equation (5.8) which computes p’(n,...,n, ) and

X1
Equation (5.4) which computes 6(X,Y), we have Table 5-3.

Table 5-3: Calculating p;'(n,,...,n, )forall X c N

X1

X n,(X)
Z p; (@) = b(2,9) p; (D) = a(D)- a(D) =3"3=9.
i (1): p2"(0)=6({1},2)- p"(0)
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{2}

{3}

{1.2}

{1,3}

{2,3}

=2t - b(1,2)=aGM - aGH=1"1=1;
2): p'()=b(1,2) (1) + AL A (0)
= a((t) - bEI A + LGN - 6(TD)
= a({h)-[4(2) - 2] + [4(2) - a1 - aq)
=1%(3-1)+(3-1)"1=4;
(3): p(0)+ pi’(1)=1+4=5.
P (0)=5(2},2)- P (0)
=a({2))- b({2).2) = a(2))- a2} =1*1=1.
P (0)=5({3},2)- p{*(0)
=a({3)- b(3},2)= a3 a(3H=1*1=1.
(1): P (0,0)= b({1,2},2)- "*(0,0)
=a({1,2}) b({1,2},2)
=a({1,2})- a({1,2}) =0*0=0;
(2): P (10)= b({1,2},2)- P (10)+ b({1,2L,{1h) - £ (0,0)
= a(i2)- b 24{M) + L2 b({1,2),2)
= 4({12)) [a((2) - a1 U {2D)] + [a62) - 2 U 2] - a(t1,2)
=0*(1-0)+(1-0)*0=0;
(3): p{(0,0)+ p{™(1,0) =0+0=0.
(1): pi**(0,0)=a({1,3})- a({1,3}) =0*0=0;
@ pEIA0) = b{I3LD)-p(1L0)+ HELZHY - £{(0,0)
= ({13 bEL3L{H + (1,3 - H({13L.D)
=0*1+1*0=0;
(3): pL(0,0)+ p{™(1,0) =0+0=0.
p#*(0,0)=a({2,3})- a({2,3}) =0*0=0.

{1,2,3}

(1): pi***1(0,0,0)=a({1,2,3})- a({1,2,3}) =0*0=0;
(2): £§(1,0,0)
=5({1,2,3},2)- ("> (10,0)+ b({1,2.34{1) - p{**(0,0,0)
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=a({1,2,3})- 6({1,2,3},{1h) + b({1,2,3},{1}) - a({1,2,3})
=0*0+0*0=0;
(3): p9(0,0,0)+ pi'2%(1,0,0) =0+0=0.

Having calculated all the n,(.X) values which are shown on the right side

of Table 5-3, we can

obtainc,(F)= > (-1)"-n(X)=9-5-1-1+0+0+0-0=2>0, which means

that there are two Z-tuples that can satisfy the coverage requirement. Since
the maximum integer in the coverage requirement vector 7is 2, we know the

minimum 4 value we need to pick is 2. Actually, by calculating the ¢ (F)value,

which is ¢(F)=> (-1)"-n(X)=3-3-1-1+0+0+0-0=-2<0, we can

also conclude that the minimum 4 value is 2 since picking one set from F
does not meet the coverage requirement.

Now according to the ESMC algorithm, we briefly show in the following
how to pick the two sets that can satisfy the coverage requirement 7.

First, according to step 3, we pick the element 1 in the universe N. Then

we can find the elements {x, =2,x, =3} that can appear with 1 in some
subsets in F. Now according to step 6 to step 10, we obtain
F ={1}{2},{1,3},{2,3}} and F, ={{1,2},{1},{3},{2,3}} . From this we can
calculatec,(F,)<0andc,(F,)<0. Then according to step 12, we choose to
merge the elements pair(1,2). Now since the new single element(12) does

not appear with any other elements in the set /, we have m=0. Then

sincec,(F,)=c,(F)=2>0, according to step 11, we just pick the first subset

98




in F which is{1,2}. Similarly, we can pick the second subset in F which

is{2,3}. This finishes the execution of the ESMC algorithm.

5.8 A Polynomial Time Polynomial Space Approximation

Algorithm for the MLSAT Problem

In this section, we will give a polynomial time polynomial space algorithm

for the MLSAT problem. First, we know the set multi-cover problem can be
exactly solved inO'((2¢)") time and O ((¢ +1)") space where tis the maximum
integer in the coverage requirement vector 7. Note that since finding and
storing all the link independent sets takes O (2")time and O (2")space, we
know that exactly solving the MLSAT problem also takes O'((2f)") time
andO'((¢ +1)")space. Thus if we partition all the links inton/log, n groups
where each group contains log,, 77links, we can find the minimum number of

timeslots to schedule all the links in each group with polynomial time and
polynomial space. Then similar to Section 4.4.1, we know this algorithm can
give a polynomial time polynomial space algorithm for the MLSAT problem
with approximation ratioO(n /logn) .

Compared with the approximation algorithm given in [137], our
approximation ratio is independent of the links’ lengths. Note that, the

approximation ratio given in [137] could become O(n) in the worst case.
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Chapter 6 A Nonlinear Power Assignment based
Link Scheduling Algorithm for the MFSTT Problem

in Wideband Networks

6.1 Ultra-Wideband Networks and Its SINR Model

The MFSTT problem in narrowband networks has been studied in [56,58],
but it has not been examined in (ultra)-wideband networks. So in this chapter,
we consider the MFSTT problem for ultra-wideband networks (UWB) which
are drawing increasing attention in the wireless communications area due to
their many promising features [116]. Specifically, since a UWB network is an
inherent spread-spectrum network [114], the aggregate interferences caused
by other simultaneous transmissions at the intended receiver can be reduced
by a processing gain factor, thus making it very competitive in wireless
communications (potentially improved throughput capacity while not
sacrificing the energy-efficiency and the quality-of-service) [117]. And unlike
the narrowband networks, where the interference range is larger than the
transmission range, as will be shown later, the interference range of UWB
networks around the receiver is much shorter than the transmission range,
making more simultaneous transmissions at the receiver possible. For more
information about UWB networks, please refer to [116].

Also recently, one of the main findings in UWB network research [115] is
that the design of optimal MAC is independent of the choice of routing. Thus

the use of ultra-wideband can re-introduce the notion of layer separation

between these two layers just like the traditional wire line networks. This will —
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make the resultant network more scalable and it will certainly be a good
choice for the generic sensor networks. Furthermore, UWB is multi-path
fading resistant, and as the following SINR model shows, it is more flexible in
terms of adapting its parameters to meet different requirements (e.g., change
in processing gain).

In our analyses, we also adopt the physical signal-to-interference-plus-
noise ratio (SINR) model, which means that only when the received power is
above the SINR ratio threshold can the message be successfully received.
The SINR model in UWB networks was first given in [120], and it is different
from the narrowband case in [56,58]. Specifically, the achieved signal-to-

interference-plus-noise ratio at the receiver of link /can be represented as:

Pd(x,x)"
SINR, = //axx)) > g

Rln+T.c* 3 B /d(x,.x)]

k=1,k=i

where P denotes the average transmission power of link /’s transmitter x ;
R, denotes link /’s data rate, and R =1/(N.N,T); N, denotes the number of
pulses per symbol; N, denotes the number of time slots per Pulse Repetition
Interval (PR)); T, denotes the pulse duration; 7.is the PRI, and 7,=N, T_; ¢°
is a parameter depending on the shape of the monocycle; n is the
background noise plus interference from other non-UWB systems;

a’(x,,x/.)denotes the Euclidean distance between transmitter x;, and X, a is
the path loss exponent and fis the SINR threshold.
If we set N =n/(T,c*)andm =1/(R,T,c*), the above SINR model can be

transformed to a form similar to the spread-spectrum SINR model given in

Chapter 1 (cf. Inequality (1.1)):
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PJd(x,x,)
N+ Y Pd(x.x,)

k=1k=i

SINR = > P (6.1)
m

Here mis the processing gain of the UWB network. If 7=1, this becomes
a traditional narrowband SINR model, as used in [56,58]. The processing
gain in (ultra)-wideband networks can be regarded as the signal’s ability to
combat the aggregate interferences. So in this chapter, we will see how this
processing gain can help to reduce the scheduling length of the MFSTT
problem. In addition, since all the previously used nonlinear power
assignment based scheduling algorithms have not taken care of their total
power consumption, we will also pay attention to the energy consumption
analysis of the nonlinear power assignment.

The rest of this chapter is as follows. In Section 6.2, for both narrowband
and wideband networks, we explore different power assignments and their
impacts on pair-wise interference models which play a very important role in
the design of wireless protocols and wireless network capacity analyses. In
Section 6.3, we continue to compare the narrowband and wideband networks
in terms of power limitations in improving the spatial reuse. In Section 6.4, in
the context of wideband networks, we will give a nonlinear power assignment
based link scheduling algorithm for the MFSTT problem, with the guarantee
that all the simultaneous transmissions can be successfully scheduled based
on the SINR model. Specifically, our algorithm proves that the scheduling

length for the MFSTT problem for wideband networks is O(log(n/m)-logn).

This result represents an improvement over that for the narrowband networks.
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In the same section, we also analyze the total power consumption of our
nonlinear power assignment based scheduling algorithm. In particular, we
show that the poly-logarithmic scheduling length was achieved at the
expense of the exponential total power consumption. And in wideband
networks, the upper bound of the total power consumption can be reduced by
a processing gain factor. Section 6.5 concludes the chapter and discusses

some future tasks that could make our algorithm practical.

6.2 Protocol Interference Models in Narrowband and Wideband

Networks

In this section, we focus on the impact of the power assignments on the
pair-wise interference models, which was often neglected in wireless
scheduling algorithm design. Specifically, we will show how the protocol
interference models introduced in Chapter 1 for narrowband networks behave
in wideband networks. Through this comparison, we will find that there is
more room for wideband networks to take advantage of power control to

reduce the scheduling length. We first consider narrowband networks.

6.2.1 Protocol interference models in narrowband networks

According to inequality (1.4), in order to ensure a successful
transmission (x_, x,), the protocol interference model with constant power

assignment in narrowband networks is:

dy.,x)>p"-d(x,,x,)
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Since in narrowband networks, usually the threshold g >1 and
consequently the range pB"*-d(x_,x,) is greater than the sender’s
transmission range d(x_,x,). Thus to ensure a successful transmission, a
disc of radius at least 8"“ - d(x_, x,)around each successful receiver x, must
not contain other transmitters. So we denote 5"'“ -d(x_, x,) as the interference
range (or exclusion region) around each receiver x,. For example, in Figure
6-1(a), assuming constant power assignment, since d(x_,y,) <d(y..y.),
transmission (), y,)is not successful, whereas, sinced(y.,x,)>d(x_,x,),
transmission (x_, x,) is successful. With this we can distinguish the other

graph-based interference models from the protocol interference model which
was considered the same in [10]. Notice that the protocol interference model
originates from the physical SINR model, and so it can reflect the physical
reality including the “capture effect” (cf. Section 1.1.1), while all the other
graph-based interference models cannot reflect this reality. For example,

since node x, is in the transmission range of y_, it suffers from the secondary

interference problem, so transmission (x_, x, ) is not successful.

(8) d(x,,x,)=1d(y,.y,)=4d(x,.y,)=2,d(y, x,) =3

(b) d(x,,x,)=2d(y..y)=4d(x,,y,)=1d(y,x,)=1
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(c) d(x,,x,)=1d(y,.y,)=1d(x,,y,)=1d(y,.x,)=3

W

(d) d(Xs’Xr) = 2’d(ys’yr) = 4’d(Xs’yr) = 3’d(ys’Xr) = 3
Figure 6-1: Pair-wise transmissions examples

Now according to inequality (1.5), in order to ensure a successful

transmission (x_,x,) , the protocol interference model with linear power

assignment in narrowband networks is:

dy,.x,)>p"-dy..y,)

This protocol model was used in [64]. But compared with the first protocol
interference model, it has attracted much less attention mostly because many
capacity analysis papers assume the constant power assignment. Note that

here the interference range of receiver x has been changed
from g"“ -d(x_,x )to ' -d(y.,y,). For example, in Figure 6-1(a), assuming
linear power assignment, since d(y,,x,)<d(y,,y,), transmission (x_,x,)is

not successful. And since d(x_,y,) > d(x,,x,) , transmission (y_,y,) is

successful.

6.2.2 Protocol interference models in wideband networks

Now we turn to UWB networks. According to inequality (6.1), in order to

ensure a successful transmission (x_, x,), the following inequality must hold.
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Px/d(Xs’Xr)a
N+P, |d(y,.x)

Y a(y,.x,) By ig
Lo S Ly 6.2)

We first consider the protocol interference model with constant power
assignment in UWB networks. With the constant power assignment, by

inequality (6.2), we have

dy,.x.)>(BIm" d(x,x,) (6.3)

1

The interference range " -d(x_, x,)around the receiver x, is replaced

with(B/ m)"“-d(x,,x,). Hence the interference range becomes smaller than
the transmission range.

For example, in Figure 6-1(a), ifa =4, =2, n=100, since

d(x.,y,) =2> (BIm)"-d(y,,y) = 1.5, the previously unsuccessful
transmission(y., y,) with constant power assignment in narrowband networks

becomes successful in UWB networks. As a result, the two transmissions can
be scheduled in parallel.
Second, we take a look at the protocol interference model with linear

power assignment in UWB networks. Also by inequality (6.2), we have

Ayux) Ly AV y) .
d(xs,x,)>(m) dx.x) d(y,x)>E) -dy.y,) (6.4)

The interference range around receiver x, is changed
from(B/m)"*-d(x,,x )to(B/m)'“-d(y,,y,). For example, in Figure 6-1(a),
if « =4, p =2, n=100, since d(y,,x,) =3> (B/m)"“-d(y.,y,) = 1.5, the

previously unsuccessful transmission (x_, x,) with linear power assignment in
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narrowband networks becomes successful in UWB networks. So the two
transmissions can be simultaneously scheduled.

From the above analyses, on one hand, due to the large processing gain
m when using the constant or linear power assignment, many unsuccessful
simultaneous transmissions in narrowband networks become successful in
UWB networks, thus leading to increased spatial reuse in UWB networks. On
the other hand, as the examples in [65] have shown, even in narrowband
networks, the unsuccessful simultaneous transmissions can also become
successful with a proper arbitrary power assignment. For example, for Figure

6-1(a), ifa =4, =2, N=1, and P, =80, P,=3150, the two transmissions can be
successfully scheduled in parallel. And for Figure 6-1(c), ifa =3, =4, N-=1,

and P =14, P =64, the two transmissions can also take place simultaneously.

6.3 Limitations of Power Control in Narrowband and Wideband

Networks

From the last section, it is shown that we can benefit a lot from power
control to reduce the scheduling length in wireless networks. In this section,
we will show that power control, however, has its limitations in improving the
network throughput when some conditions are met. For example, for

narrowband networks, according to Theorem 2.6, we know that for any two
transmissions (x,,x,) and (y.,y ), if dx,,y ) -dy, , x )< g7
adx,,x ) dy,,y ) then there exists no feasible power assignment for

simultaneous transmissions; otherwise, there always exists a feasible power

assignment to have a simultaneous schedule. For example, in Figure 6-1(d),
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if « =4, p =2, and N=1, there will be no feasible power assignment to
simultaneously schedule transmission (x_, x,) and (., y,). The same is true
of Figure 6-1(b).

We now give another theorem to show that, although there is much more
room for UWB networks to reduce the scheduling length through power
control, the power control strategy also has its limitations in wideband
networks.

THEOREM 6.1. In UWB (or any spread-spectrum) networks, for any two

transmissions (x,, x,)and (y.,y,), if

Adx.,y)dy. ,x)>BIm* -dx,x) dy,,y ) there always exists a
power assignment to schedule these transmissions in parallel; no feasible
power assignments for simultaneous schedule, otherwise.

PROOF. Similar to the proof of Theorem 2.6, if the two transmissions can

be successfully scheduled, the following two inequalities must follow:

P/d(x,x) _ B Rldy.y.) B
m

N+P |d(y,x) m N+P/d(x,,y)

From these inequalities, we have

ﬂPM<P <ﬂ,P,d(Xs’yr)

m “dy,x) 7 p T dy.,y)

ﬁ_ ax,,x,) <Q. ax,.y)

Therefore, if » »
m d(ys’Xr) ﬂ d(ys’yr)

, there always exists a power

assignment to simultaneously schedule these two transmissions; otherwise,

there is no valid power assignment to give a parallel schedule. This ends the

proof.
For example, in Figure 6-1(d), if a« =4, f =2, N=1, and m=10,

P,=P,=1000, the two transmissions can be simultaneously scheduled.
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Therefore, given any two transmissions in narrowband networks where
power control cannot guarantee a simultaneous schedule, they can be
scheduled in parallel in UuwB networks as long as
dx.,y)dy, ,x)>BIm* -dx,, x ) dy.,y ) Given this result, we will
discuss how these benefits can help to reduce the scheduling length for the

MFSTT problem in the context of (Ultra)-Wideband networks in the next

section.

6.4 The NPAW Scheduling Algorithm for the MFSTT Problem in

Wideband Networks

We consider an arbitrarily distributed network with nodes

X={x,,x,,..,x,,} in the Euclidean plane, and one of them is a sink node.

Here by a sink node, we mean there are no outgoing edges (links) from this

node. For any links 7. =(x,, x,),{(f,)=d x,, x,) denotes the distance between
node x,and node x,. Now before going into the details of the scheduling

algorithm, it is important to distinguish between /ink length class and link
length class set which are used in our algorithm. A /ink length class is a set of
transmission links such that the lengths of these links differ by at most a
factor of 2 (line 8 of the main algorithm). A number of link length classes form
a link length class set. The three kinds of link length class set L, Sand /used

in our algorithm, and their relationships, are described in Figure 6-2.
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L:| Lo Ly Ly Ly Ly ...] L]...[L.)

Figure 6-2: Three kinds of link length class set and their relationships

In Figure 6-2, L, Sk and k denote the respective length classes in each
set. L is renamed to S because the empty length classes (containing no
transmission links) in L were deleted (line 9 of the main algorithm). For
example, the length classes Li and L3 were deleted. S is renamed to /
because in each round, the scheduling algorithm only selects the length
classes in S with a certain length class separation. The separation value is
log(4,8n) in [58] but we use log(3n6/m) in our algorithm (line 11 of the main
algorithm). The solid arrows from S to / mean we select the length classes
S0 S S«... in the first round, while the dashed arrows mean we select the length

classes S15+15+1.. in the second round (the details are in Table 6-1 and

Table 6-2). Note that only links in L have the property 2 < /(f) <2, but

not those in S or 4 (because 2“"'upper bound would not hold for them).

Our scheduling algorithm also uses a nonlinear power assignment. For
convenience, we refer to the scheduling algorithm in [55,56,58,59] as “NPAN”
(nonlinear power assignment for narrowband networks), and our algorithm
“‘NPAW” (nonlinear power assignment for (ultra)-wideband networks). Note
that only the works in [56,58] directly investigate the MFSTT problem. Our
main algorithm is different from [56] in the sense that we start the scheduling

process after the tree topology has been constructed. Thus, compared with
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the result in [56], the scheduling length upper bound can be reduced by

aO(logn)factor. In addition, we need to point out that, as shown in step 1 to

step 6 in the main algorithm, if the remaining single node in the established
tree topology is not the designated sink node, we just need to add an
outgoing link from this single node to the pre-determined sink and then to
remove the outgoing edge (link) from the sink node.

The challenging part of the algorithm is how to schedule all the links both
successfully and efficiently. Just as Figure 6-2 has demonstrated, we first
partition all the links into length classes of L which is then renamed to S (lines
8 and 9). Then we use the subroutine Schedule() to schedule the links in

length classes S in the A" round (lines 10, 11 and Table 6-2). The

hiog(3npIm)+k
trick of this algorithm lies in two aspects: one is the nonlinear power
assignment scheme (line 14 of the subroutine). This power assignment uses
a power scaling factor z which depends on the position of the scheduling links
in link length class set / (lines 1 and 2 of the subroutine and Figure 6-2).
Because short links have a highr value and long links have a low z value,
this power assignment can increase the power of the short links relative to
the long ones so that it makes simultaneous transmissions of very different
lengths possible. Furthermore, because this power assignment takes the
parameter n (total number of the nodes) into account, it can bound the
aggregate interferences through the properly designed protocol interference
model (line 10 of the subroutine). But as discussed in Section 6.2, traditional
pair-wise protocol interference models cannot guarantee the successful

transmission due to the aggregate interference effect.
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The second part of the trick is the selection of the simultaneous
transmitting links in length class set / (Figure 6-2). With the proper length
class separation, for each link 7, the algorithm can bound the total number of

blocking links for this link which is O(logn) (line 11 of the main algorithm and
line 10 of the subroutine), thus guaranteeing that after at most (O(logn))
timeslots, all the links can be successfully scheduled. Therefore the poly-
logarithmic scheduling length can be arrived at. Here for the blocking links of

link /, we mean the links which can not be simultaneously scheduled with link

/.

6.4.1 Correctness analysis

Compared with narrowband networks, there are more links that can be
scheduled in each timeslot in wideband networks (link 10 in the Subroutine).
In this case, guaranteeing the successful simultaneous transmissions in the

same timeslot is of fundamental importance.

Main Algorithm: A Nonlinear Power Assignment based Link Scheduling
Algorithm for (Ultra)-Wideband Networks (NPAW)

Input: An arbitrarily distributed set of nodes X

Output: A data gathering tree with the number of timeslots ¢ to schedule all
the links in this tree under the SINR model

1. F=0

2: While | X]>1 do

3: For each x, e X find its closest neighbor x, such that

F:=FUf,; {fisadirected edge from x,to x .}

VR
4: |If F contains bi-directional edges then remove one edge of them; {To
make F a directed nearest neighbor forest}

5: Delete all the nodes from node set X except the sink node in each tree of
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the directed nearest neighbor forest F;
6: End While {Step 2 to step 6 is to construct a tree topology}
7: Define a constantv :=4N and a variable x4 which is a function of the

processing gain msuch that u:=2+¢+4. (72) - gLl - ¢ >2: t=0;

m (a-2) ?
{Nis the background noise from the Inequality (6.1) and ¢is a small positive
parameter.}

8: Partition all the transmission Ilinks in F into length class

setL ={L,L,...,L, .}, such that L, contains all links £, of length 2 <u(f)) < 2",
{A=[log(/,,.)], and /_ means the maximum link length in .}
9: Delete all empty length classes L, in F and rename L to

$={S,,S,...,S,,...}such that S, is the k" smallest non-empty length-class in
S;

10: For A=0to log(3npg/ m)—1do

11: Schedule all the links

feUps s

i hiog(3npIm)+k
using subroutine Schedule();

12: End For

13: Return ¢

Subroutine Schedule():

1: Let F, be the set of links to be scheduled, rename these link length

classes in S to /={/,/,.../,} with at most g+1 length classes where

g=| n/log(3nB/m)-1]|. / is the k”"smallest length-class in / {line 11 of the

main algorithm}

2:foreach 7, e/ do r(x,)=q—k+1;
{Links within the smallest length class /, have the highest ¢
value[ 7/log(3n/m)], and links within the largest length class/, have

the lowest 7 value 1.}
3:while F, = Jdo
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4. E, =,

9: Consider all £, € F,in an increasing order of their lengths

6: Boolean:=true;

7. IfE =0
8: Foreach link £, € £,
9: 0, =t(x,)—1(x,);
10: if ,=0andd(x,,x,)< u-Uf))
or if §, #0and d(x,,x,)<(3np/ m)*"" - U(f))
Boolean:=false;
11: End For
12: EndIf
13: If Boolean==True then £, = £, U{7}; F, =F \{f}

14: Schedule all £, € £,in timeslot ¢ with the transmission power

P(x,)=v(BnB I my" ()

15: t=t+1;

16: End While

LEMMA 6.2: Consider a scheduled link /, with intended sender x_ and

receiver x, . Let/ (y,) be the interference caused at x, by simultaneously

transmitting nodes y, for which «z(y,)<z(x,) . It  holds

that/ (y,) <ov(Bnp 1 m)y*",

PROOF: In our main algorithm, because every node y, transmits

messages to its nearest neighbor, we have d y,, x,)>((f,)) . Hence the

interference at x, caused by y, is at most

1.(y))

Tdyx) ury

/DI. < U(3/7ﬂ / m)f(y/) . g(f:v )a _ U(a%)r(yi) g U(%)T(XSH |
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LEMMA 6.3: Consider a scheduled link /, with intended sender x_and
receiver x, . Let/ (y,) be the interference caused at x, by simultaneously
transmitting nodes y, for which «z(y,)>7(x,) . It holds
that/ (y,) <v(BnpB ! my ™",

PROOF: Assume for contradiction that there exists a
node y,withz(y,) > z(x,)and/ (y,) > v(3np 1 m)**". Then

___ B _u@nplmy )
d(y/’Xr)a d(y/’Xr)a

From this, we have d(y,,x,) < (3np 1 m)* """ - ((f,).

> oy

1y,

However, this contradicts the definition of our algorithm. In line 10 of the

subroutine, if node y, has been scheduled (because it has short link length,
line 5 of the subroutine), from the above inequality, node x_should not have
been scheduled, which establishes the contradiction. Therefore,
1.(y,)<uvBnp 1 m)y™" holds.

LEMMA 6.4: Consider a scheduled link 7, with intended sender x_ and

receiver x, . Let/’ be the total interferences caused at x, by simultaneously
transmitting nodes y, for which z(y,) = z(x,) . The following holds:
1P <(0!13)-(BIm)y™".(3n)™,

PROOF: The proof of this lemma is similar to that of Lemma 4.4 in [58].
The main idea is that because the lengths of the links in the same length
class differ by at most a factor of 2, according to a simple geometric area
argument, the blocking links must be bounded by a certain number. The

difference is that we change the ring width from
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Hw—-3)-Uf) o (u—2-¢&)-4(f,) . And more importantly, the u value is
greatly reduced due to the introduction of the processing gain m in the
denominator. Thus the blocking links in the same length class are greatly
reduced. Plugging in the value of win line 7 of the main algorithm, the results
follow.

THEOREM 6.5: For an arbitrary timeslot ¢ all scheduled transmissions
E,in t are received successfully by the intended receivers, and thus the
computed schedule is correct.

PROOF: Consider a scheduled link 7, with intended sender x_ and

receiver x, . The aggregate interferences at this receiver x can be calculated
through Lemmas 6.2, 6.3 and 6.4.
By Lemmas 6.2 and 6.3, we know that for

all y, with z(y,) > z(x,) and z(y,) < z(x,) , the interference / (y,) is bounded

byu(3np 1 m)*™)'. Hence, because there are at most n nodes in these sets, it

holds that
n (X, )— U (X, )— T(X,
S L) noyer =2 Ly gpye
Ve, 3 m

Therefore the aggregate interference at x, is

[ =I13)-(BIm)y*™""-3n)y™ +(v/3)-(B/m)*™" (3n)™
=2-(v/3)- (B! m)y"*.(3n)™’

And S/INRat x, is

SINR = U,(snﬁ/m)f()@) f(f;( )a /K(f;( )a
N+2-(013)-(B1m)y*".(3n) ™

Since v:=4 N (line 7 of the main algorithm)
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i o(x,)
SINR = v-(3np I m) _ 5 Yij
N+2-(13)- (B! m)y* " (3n)™ m

From this, we conclude that the computed schedule is correct.

6.4.2 Efficiency analysis

COROLLARY 6.6: In each timeslot, the blocking links in the same length
class in the NPAW algorithm are strictly fewer than the deleted links in the
NPAN-INFOCOMO6 algorithm in [58].

PROOF: This conclusion is from the proof of Lemma 6.4.

LEMMA 6.7: In each timeslot, the blocking links in different length classes
in the NPAW algorithm are fewer than or at most equal to the deleted links in
the NPAN-INFOCOMO6 algorithm in [58].

PROOF: From line 10 of the subroutine, on one hand, if the difference of
the power scaling factors between different length classes is the same,
because we have introduced the processing gain /m as the denominator in the
base, the blocking links must be fewer than its counterpart in NPAN-

INFOCOMOS6. On the other hand, since

(3/7,3 / m)(b‘,kﬂ)/a < (3/7,5 / m)(n/log(Snﬁ/m)—‘lH)/a = 2n/a ’ and Since

(4np) Ve < (4nB)rosintiie = 27« “the deleted links must be at most equal
to its counterpart in NPAN-INFOCOMO6.

THEOREM 6.8: The scheduling length for the MFSTT problem in (Ultra)-
Wideband networks is O(log(r/m)-logn).

PROOF: First of all, according to Corollary 6.6 and Lemma 6.7, for each
link in a scheduling round (each k™ iteration in the for loop in line 10 of the

main algorithm), the total number of blocking links must not
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exceed O(logn) which is the result of the NPAN-INFOCOMO6 algorithm.
Hence, after at mostO(log n7) timeslots, all the transmission links that remain

to be scheduled in the A" scheduling round can be successfully scheduled.

And since there are at most log(3n4/m) scheduling rounds, the total

scheduling length of this algorithm is:

O(logn)-log(3np/ m)e O(log(n/m)-logn).

6.4.3 Total power consumption analysis

In this section we will analyze the total power consumption for the NPAN-
INFOCOMO6 algorithm and our NPAW algorithm. First, we will give the
analysis for the NPAN-INFOCOMOG6 algorithm [58].

THEOREM 6.9: For the strong connectivity scheduling algorithm for

narrowband networks, i.e., NPAN-INFOCOMO06, the lower bound of the total

power consumption is Q(n-2") ; and the upper bound of the total power

consumption is O(n* -2™), where nis the number of the nodes.

PROOF: In the NPAN-INFOCOMO6 algorithm, only links in link length

class S, ..z« Can be simultaneously scheduled in the K" scheduling round

(kis from O tolog(45n)—1, represented by the columns of Table 6-1). And A
is from 0 to n/log(4£n)—1(represented by the rows of Table 6-1). In

particular, let's consider the link length classes S, andS, which are

—log(48n)+k ?
the shortest length class and the longest length class in the " scheduling

round, respectively.
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According to Figure 6-2, suppose the length class S, is mapped

from [, ,we have v >k ; And suppose the length classS, . ,,...iS mapped
from”,  ..m. W€ have v >u >k . According to the power scaling factorz of

their algorithm, length class S, has the highestz value n/log(4 £n); and length
class S, ;. m.« Nas the lowestr value, of 1. So according to the nonlinear
power assignment scheme in the algorithm, the power P(S,)assigned to the
links in S, has the property

U(4ﬁn)nllog(4ﬁn) .Que < P(Sk) < U(4ﬂn)n/log(4ﬂn) . 2(u+1)a -
U'2" ,2ua < P(Sk) < U.2n .2(U+1)a

The power P(S, . .;..«) @ssigned to links in S has the property

n-log(4 pn)+k
P(S, wgiams) = - (450) (274"} and
P(Sﬂflog(4/jn)+k ) <U- (4[5’/’])1 . (2”*'09(4ﬂn)+v+1 )a _
D - 2”a . 2Va /(4,3/7)0571 < P(S”—Iog(4/3n)+k) <v- 2"!1 . 2(I/+1)a /(4ﬂn)a71

Because 0< k <u<v<log(44n)—1, we have
v-2"2°<p-2"-2" <P(S,)<v-2" -2 <

-2 .2 [ (48n)" < P(S <020 24 [(45n)" < v-(44n0)- 2™

n-log(4 pn)+k

From this, and because the sink node of the final directed spanning tree
transmits with the power NV - /7 ', which could be V- 5-2™ , we get the lower
bound of the total power consumption for the strong connectivity scheduling
problem in narrowband networks, which isQ(n-2"), and the upper bound of
the total power consumption, which isO(n* - 2™).

THEOREM 6.10: For our NPAW scheduling algorithm in UWB (or any
spread-spectrum) networks, the lower bound of the total power consumption

is still Q(n-2"); but the upper bound of the total power consumption is
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reduced toO(L-n*-2"), where nis the number of the nodes and m is the

processing gain.
PROOF: With our main algorithm, only links in link length class

S, i0aanpimy-« CAN b€ scheduled simultaneously in the K" scheduling round (k is

from 0 tolog(3n4/ m)—1, represented by the columns of Table 6-2); and Ais
from 0 to n/log(3np !/ m)—1(represented by the rows of Table 6-2). In

particular, let’s consider the link length classes S, and S which are

n-log(3npIm)+k
the shortest length class and the longest length class in the £" scheduling

round, respectively.

According to Figure 6-2, suppose the length class S, is mapped from<Z,

we have v > k ; and suppose the length class

is mapped from L we havev >u > k. From line 2 of the

n-log(3nplm)+k 'n—log(3npim)+v ?

subroutine Schedule(), the length class S has the

k

highest 7 value [ n/log(3np/m)| ,and the length class S has the

n—log(3npIm)+k
lowest r value, of 1. So according to the nonlinear power assignment scheme

in our algorithm, the power P(S,)assigned to the links in S, has the property
P(S,)= u(3nf | m)"=eml . gue and

P(S,) < v(3np 1 m) "o e -

D-27.2% < P(S,) <2 . 20

The power P(S, .. 35m.« ) @Ssigned to links in S ..« has the property

n-log(3npim

P(S ) >0v- (3/7ﬁ / m)1 . (2n—log(3nﬂ/m)+v )a and

n-log(3npIm)+k

P(S ) <D- (Bnﬂ / m)1 . (2ﬂ—log(3nﬂ/m)+v+1 )a _

n-log(3npIm)+k

L- 2(n+v)a /(3nﬁ / m)a—1 < P(Sn ) <v- 2(n+v+1)a /(3nﬂ / m)a—1

—log(3np/m)+k

Because 0< k <u<v<log(3npg/ m)—1, we have
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v-2"-2°<p-2"-2" <P(S,)<v-2"- 2 <
-2 [ (31 m) " < P(S, )<v-27 [ (3nplm)
v-(Bnplm)-2™

From this, we get the lower bound of the total power consumption for the

IA

—log(3npim)+k

MFSTT problem in (Ultra)-Wideband networks is Q(n-2"), and the upper

bound of the total power consumption is O( - n* - 2™).

Table 6-1: Link length classes scheduling (in order) in narrowband networks

(from left to right, from top to bottom).

SO Sog(4ﬂn) SZIog(4ﬂn) Sn—log(4ﬂn)
5‘1 Sog(4ﬂn)+1 SZIog(4,Bn)+1 Sn—log(4ﬂn)+1
Sk Sog(4ﬂn)+k SZIog(4ﬂn)+k Sn—log(4ﬂn)+/(
S|og(4ﬂn)4 SZIog(4ﬂn)—1 53I09(4,Bn)—1 Sn—1

Table 6-2: Link length classes scheduling (in order) in wideband networks

(from left to right, from top to bottom).

SO ‘S‘Iog(Snﬂlm) SZIog(Snﬂlm) Sn—log(Bnﬂ/m)
81 log(3npB1m)+1 2log(3np/m)+1 n-log(3npim)+1
Sk ‘S‘Iog(Snﬂlm)Jr/( SZIog(Snﬂlm)+k Sn—log(3nﬂ/m)+k
Sog(Snﬂlm)—1 SZIog(Snﬂ/m)—1 S3Iog(3n,b‘/m)—1 """ Sn—1

From the above two theorems, we can see that the poly-logarithmic

scheduling length comes at the expense of exponential total power
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consumption. But compared with narrowband networks, by Theorem 6.10, we
can see that the upper bound of the total power consumption can be reduced

by a processing gain factor in (Ultra)-Wideband networks.

6.5 Concluding Remarks

In this chapter, we show that the scheduling length for the MFSTT
problem in the context of (Ultra)-Wideband networks is O(log(n/m)-logn).
Compared with the currently smallest scheduling length for the MFSTT
problem in narrowband networks ,which is O(log® n)in [56], we can see that

higher processing gain in wideband networks does help to reduce the

scheduling length, especially whenm = ®(n). In addition, by considering the

impact of the arbitrary power assignment on pair-wise transmissions
scheduling, we explicitly show that when some node distance function is
satisfied, there does not exist any power assignment for simultaneous link
scheduling, and thus the scheduling length cannot be further improved via
the means of power assignment. Therefore, the scheduling algorithm must
take full advantage of the power assignment schemes so that it can
simultaneously schedule as many links as possible without violating the
physical SINR model. Compared to narrowband networks, we show that
there is more room for UWB networks to take full advantage of power control
to reduce the scheduling length. More importantly, we explicitly prove that the
poly-logarithmic scheduling lengths derived from the nonlinear power
assignments are gained at the expense of exponential total power

consumption in both narrowband networks and UWB networks.
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In order to turn our algorithm into a practical network protocol, some
problems need to be solved first, including the following.

1) Although in UWB networks, the upper bound of the total power
consumption can be reduced by a processing gain factor, the exponential
lower bound would not change. Thus reducing the total power consumption
without sacrificing the scheduling length is a very interesting and challenging
task. To take up this challenge, more refined power assignment strategies,
either a new nonlinear power assignment or some completely new power
assignment methods may need to be designed.

2) With the nonlinear power assignment, every transmitting node must
know its own power scaling factorz , which is based on some global picture,
thus making it difficult to implement the algorithm in a distributed manner. To
take up this challenge, implementing some randomized algorithm is a
possible method.

3) Our algorithm assumes one channel is used, but actually in MIMO
networks (e.g., 802.11n), a node can be equipped with multiple radios and
operate on multiple channels. Thus extending our algorithm to multi-radio

multi-channel scenarios is a natural idea.
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Chapter 7 MST_MDCS: A New Algorithm for the

MFSTT Problem

We have given a nonlinear power assignment based algorithm for the
MFSTT problem in (Ultra)-Wideband networks in the last Chapter. In this
chapter, we will give another heuristic algorithm for the MFSTT problem in the
context of narrowband networks. As described in the NPAW algorithm, for the
topology construction part, we iteratively connect all the nodes on the plane
by using a nearest neighbor forest algorithm. This tree topology construction
algorithm has also been used in the NPAN-INFOCOMO6 algorithm. As for the
latest joint link scheduling and topology control algorithm NPAN-IPSNO7, it
iteratively constructs the tree topology through the nearest component
connector (NCC) algorithm [60,61]. This algorithm, however, is almost the
same as the nearest neighbor forest algorithm. In addition, by using the
graph-based interference model called in-interference degree which is to
characterize a node’s interference by counting the number of transmitters
whose transmission range covers this node, Fussen et al. show that,
compared with the NCC algorithm, the minimum spanning tree (MST)
algorithm would cause a destructive O(n) in-interference [60,61]. However,
the NCC algorithm can only lead to a constant in-interference degree. Thus
they prefer to the NCC algorithm from the graph-based interference model’'s
point of view. In this chapter, from the SINR model's point of view, we can

greatly lower the scheduling length by using the MST topology.
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7.1 The MST_MDCS Algorithm for MFSTT

We now give the MST_MDCS algorithm for the MFSTT problem. As the
algorithm’s name shows, the proposed algorithm is based on the minimum
spanning tree algorithm. This means that, for the topology construction part in
the MFSTT problem, we choose to first connect all the nodes by using a
minimum spanning tree algorithm. After the tree topology has been
established, we seek to use the maximum directed cut based scheduling

framework MDCS to schedule all the links in the tree.

MST_MDCS: Joint Link Scheduling and Topology Construction for MFSTT

Input: A set of arbitrarily distributed nodes on a plane.

Output: A data gathering tree with the number of timeslots 7 to schedule all
the links in this tree under the SINR model.

1: Construct a directed minimum spanning tree over all the nodes;

2: Schedule all the links in this tree using the MDCS scheduling framework;

3: Return the number of used timeslots 7.

Since the MDCS framework finds a maximum directed cut which also
contains a maximum matching in each scheduling phase, we have the
following theorem for the number of scheduling phases used in our joint
topology construction and scheduling algorithm.

THEOREM 7.1: The number of scheduling phases for our joint topology

construction and scheduling algorithm is O(logn) .

PROOF: By using the following two results: (1) For a graph with 7 edges
and a degree 4, the number of edges in a maximum matching is lower
bounded by 41/(54+3) [98]; (2) The maximum degree of a minimum spanning

tree is bounded by 6, we can easily end the proof.
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Note that, as shown in [84], we can use a local algorithm to construct the
MST. And the degree of this local-MST is also bounded by 6 [84]. In addition,
even if we use maximal matching instead of maximum matching in the MDCS
scheduling framework, Theorem 7.1 still hold because the number of edges

in @ maximal matching is lower bounded by n/(24-1) [97].
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Figure 7-1: a) A tree link topology constructed via a nearest component
connector algorithm; b) A tree link topology constructed via a minimum

spanning tree algorithm.

7.2 Comparisons with Other Algorithms

First of all, all the nodes are arbitrarily located on a2000m x 2000m plane

and we set the path loss exponenta =4 and the threshold g = 20 . Compared

with the simulation setting in Section 3.4, the reason why we set a much
higher threshold value here is that the constructed tree topologies are very
sparse link topologies. In this case, if we set either a very high path loss
exponent or a very low SINR threshold, all the scheduling algorithms could

generate very short scheduling lengths which are almost the same as the | g
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maximum degree in the tree topology. Two different tree topologies have
been shown in Figure 7-1. Specifically, Figure 7-1 (a) gives a tree topology
iteratively constructed by the nearest component connector (NCC) algorithm
and Figure 7-1(b) shows a tree topology constructed by using a minimum
spanning tree algorithm over the same node set. Besides the MDCS
scheduling framework and the LDS algorithm, we also implement the NPAN-
IPSNO7 algorithm which is currently the fastest (in terms of the scheduling
length) nonlinear power assignment based link scheduling algorithm that can
schedule the NCC-tree (tree constructed with NCC algorithm) in time O(log® n)
[56]. Now since the in-interference degree (cf. Section 2.3.1) of a MST
topology can be Oo(n), we can not use the NPAN-IPSNO7 algorithm to
schedule the links in the MST topology since the SINR constraints may not
be satisfied [56]. So for the MST topology, we apply the MDCS and the LDS
scheduling algorithms, and for the NCC tree, we can also apply the NPAN-
IPSNO7 algorithm. But for the NPAN-IPSNO7 algorithm, we must pay

attention to the background noise value 77, since the scheduling length is also
dependent on this parameter. Note that, in this algorithm, when the
background noisen, <(a-2)/(24-(a—1)), the SNR constraints can not be
guaranteed by the proposed nonlinear power assignment (cf. Inequality 2.1).
So in this simulation, since we have tested that a much larger s value can
greatly increase the scheduling length, we set all the as the same value
which is a little bit larger than(a —2)/ (24 - (a -1)).

The scheduling results can be seen from Figure 7-2. From this figure we

have the following observations: (1) the MST topology always yields much
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shorter scheduling lengths no matter which scheduling algorithm is used; (2)
compared with Figure 3-4, Figure 3-5 and Figure 3-6, since the MST and

NCC tree topologies have much lower p  disturbance values, LDS

generates shorter scheduling lengths; meanwhile, although the scheduling
lengths reductions for the LDS algorithm are not that significant, the
scheduling lengths reductions of the MDCS algorithm are quite large; (3) for
both MST and NCC tree topologies, the MDCS algorithm always achieves the
shortest scheduling lengths; (4) for NCC tree, compared with the NPAN-

IPSNO7 algorithm, MDCS achieves a much shorter scheduling length.
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Figure 7-2: Comparisons of scheduling lengths over different tree topologies
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7.3 Concluding Remarks

In this chapter, we show that connecting wireless devices with a
minimum spanning tree algorithm can significantly lower the scheduling
length compared with an iteratively nearest component connector algorithm.
This is due to the fact that MST generates shorter links, and shorter links
obviously generate much less interferences to other links thus making more
links scheduled in the same timeslot. One challenging task for future work is
to design local scheduling algorithms that can schedule the links in the tree

topology under SINR model both correctly and efficiently.
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Chapter 8 Conclusions and Future Work

8.1 Conclusions

The work presented in this thesis can be largely classified into four parts.
In the first part, we have reviewed the frequently-used interference models
and the minimum (frame) length wireless link scheduling algorithms under the
SINR model. The subsequent three parts are devoted for the MFSAT,
MLSAT and MFSTT problems. Specifically, the second part covers heuristic,
exact and approximate scheduling algorithms for the MFSAT problem; the
third part proposes both exact and approximation algorithms for the MLSAT
problem; and the fourth part incorporates two joint link scheduling and
topology construction algorithms for the MFSTT problem.

For the MFSAT problem, the heuristic maximum directed cut based
scheduling framework MDCS differs from all the previous heuristic link
scheduling algorithms in two aspects. First, the MDCS framework seeks to
find a maximum directed cut of the remaining links after finding a maximum
link matching. All the existing heuristic scheduling algorithms, however, either
find a maximum (maximal) link matching or a subset of the link matching. A
large body of them even tries to directly schedule the links without first finding
a link matching. The second difference is that the MDCS framework employs
the link incremental scheduling algorithm together with the number of
neighbors in the pair-wise link conflict graph as a scheduling metric.

Extensive simulation results have shown that the MDCS framework
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significantly outperforms all the previous heurist scheduling algorithms in
terms of the scheduling length.

For the MFSAT problem, by transforming it into a set cover problem, we
also give the first exact scheduling algorithm and the first polynomial time
approximate algorithm with a non-trivial approximation ratio.

For the MLSAT problem, by transforming it into a set multi-cover problem,
we also present both exact and polynomial time polynomial space
approximation algorithms. In addition, to our knowledge, the proposed exact
algorithm for the set multi-cover and the MLSAT problem are the first known
exact algorithm for these two problems. And different from the approximation
algorithm given in [137], the approximation ratio of our approximate
scheduling algorithm is independent of the links’ lengths.

For the MFSTT problem, we first generalize the nonlinear power
assignment based algorithm for narrowband networks into (Ultra)-Wideband
networks. The presented scheduling algorithm demonstrates that a large
processing gain in wideband networks can greatly lower the scheduling
length. Furthermore, we also prove that all the nonlinear power assignment
based scheduling algorithms achieve their poly-logarithmic scheduling
lengths at the expense of the total power consumption which is lower
bounded by the exponential function of the number of the nodes or links. We
also propose another joint link scheduling and topology construction
algorithm for the MFSTT problem. Different from all the previous algorithms,
this algorithm first construct the tee topology with a minimum spanning tree
algorithm rather than the frequently used nearest neighbor forest or nearest

component connector algorithm. The simulation results show that, the
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proposed MST_MDCS algorithm obtains the smallest scheduling length
across all the algorithms for the MFSTT problem. Moreover, this simulation
results show that connecting all the nodes with the MST algorithm is superior
to the nearest component connector algorithm and the nearest neighbor

forest algorithm.

8.2 Future Work

There are many open problems in the wireless scheduling area that
warrant further attention and investigation. Here we could only touch upon
some of them.

Let’s first restrict to the MFSAT, MLSAT and MFSTT problems.

First, until the time we are writing the thesis, the hardness of the MLSAT
problem is still open. So a rigorous proof is necessary. Second, although we
have proposed some polynomial time polynomial space approximation
algorithms for the MFSAT and MLSAT problems, they are centralized
algorithms. So a local approximation algorithm where each sensor only has
limited knowledge of the whole network is necessary for wireless ad hoc and
sensor networks that may experience many changes dynamically. For
example, we want a sensor node to decide its transmission power locally
while guaranteeing higher throughput capacity and lower power consumption.
In addition, all the joint link scheduling and topology construction algorithms
for the MFSTT problem are also centralized algorithms, thus it entails
distributed algorithms for practical network protocols.

We have imposed several assumptions on the wireless link scheduling

problems studied in this thesis. So it will be interesting to investigate some of
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the versions without some restrictions. For example, we can consider multi-
radio multi-channel wireless networks, and we can also consider the wireless
link scheduling with precedence constraints problem, i.e., some wireless links
can not be scheduled before some other links.

There are also many other challenging problems for wireless scheduling
under the SINR model.

First, we can consider the minimum length broadcasting (multicasting)
scheduling with SINR constraints problems. In these problems, different from
point to point link scheduling problems, we must ensure that all the receivers
successfully receive the packets from the corresponding sender. These
problems have been studied in some papers [53,110], but more work still
need to be done.

Second, for the joint scheduling and topology control problem, we can
consider some other frequently used topologies in wireless networks. For
example, we can consider the minimum length scheduling problem for the
dominating set [87], £spanner or a A~connectivity topology.

Third, just as the authors did in [17], since it becomes very difficult to
design an approximate algorithm for arbitrary link topologies, we can resort to
designing distributed approximation algorithms for some specific link
topologies. For example, we can take full advantage of useful properties of
these link topologies, such as the bounded independence number (the
number of pair-wisely non-adjacent nodes in each node’s A-hop
neighborhood) property in growth-bounded-graph [64] to help our algorithm

design.
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Finally, we can also consider the joint link scheduling, power control and

routing problems [19,20].
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