



# Incremental Distributed Algorithms for Game-Theoretic Betweenness Centralities in Dynamic Graphs

Yefei Wang, Qiang-Sheng Hua<sup>(✉)</sup>, Wenjie Gao, and Hai Jin

National Engineering Research Center for Big Data Technology and System, Service Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan 430074, China

[qshua@hust.edu.cn](mailto:qshua@hust.edu.cn)

**Abstract.** Maintaining game-theoretic betweenness centralities in highly dynamic networks is challenging due to the high computational cost of recalculating it from scratch. This paper presents distributed incremental algorithms in the classic CONGEST model for maintaining Shapley- and semi-value-based betweenness centralities. By addressing the challenges of parallel traversal congestion and communication overhead, we propose incremental algorithms with round complexities of  $O(D^G(\mathcal{A}_{\mathcal{B}}^{\max} + \mathcal{D}_{\mathcal{B}}^{\max}) + |F_{Batch}| + |\text{Batch}|)$  for multi-edge updates. Here,  $D^G$ ,  $\mathcal{A}_{\mathcal{B}}^{\max}$  and  $\mathcal{D}_{\mathcal{B}}^{\max}$  denote the diameter of the graph, the maximum number of articulation points, and the maximum diameter of the biconnected components, respectively.  $|F_{Batch}|$  and  $|\text{Batch}|$  represent the number of affected vertices resulting from insertions and the number of inserted edges, respectively. Experimental results demonstrate that the proposed multi-edge incremental algorithm achieves speedup factors of up to 7× and 16× compared to the single-edge incremental algorithm and the static algorithm, respectively.

**Keywords:** Distributed algorithms · Dynamic graphs · Network centrality

## 1 Introduction

Game-theoretic betweenness centralities [1] rooted in cooperative game theory—such as Shapley-value and semi-value based measures—model node interactions by capturing cooperative behaviors. Compared with ordinary betweenness centrality, they more accurately identify critical nodes under multi-node failure scenarios, thereby optimizing network stability and resource allocation.

To illustrate the advantage of game-theoretic betweenness centralities, we present a toy example depicted in Fig. 1. Every edge is labeled with its direction

---

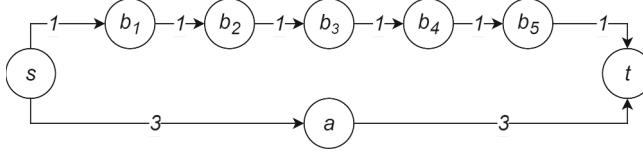
This project is funded in part by the National Science and Technology Major Project (Grant No. 2022ZD0115301).

© IFIP International Federation for Information Processing 2026

Published by Springer Nature Switzerland AG 2026

X. Wang et al. (Eds.): NPC 2025, LNCS 16305, pp. 116–128, 2026.

[https://doi.org/10.1007/978-3-032-10459-5\\_10](https://doi.org/10.1007/978-3-032-10459-5_10)



**Fig. 1.** Toy example

and weight. Since a vertex's ordinary betweenness centrality can be decomposed into dependencies contributed by different source–destination pairs, we focus, for simplicity, on the single pair  $(s, t)$ . In this setting, vertex  $a$  and each vertex  $b_i$  obtain an ordinary betweenness centrality of  $1/2$ . Yet it is evident that their importance for sustaining communication between  $s$  and  $t$  is not equal: if multiple vertices  $b_i$  fail,  $s$  and  $t$  can still communicate as long as  $a$  remains operational; however, if  $a$  fails, the failure of any single  $b_i$  will disconnect  $s$  and  $t$ . Thus, in scenarios where multiple nodes may fail simultaneously, ordinary betweenness centrality fails to distinguish their varying importance. Game-theoretic betweenness centralities address this limitation by drawing on cooperative game theory: the group betweenness centrality is used as the value function for different coalitions, providing a principled way to assess vertex importance under multi-node failures. Specifically, the semi-value-based betweenness centrality of vertex  $v$  is defined as follow:

$$bc_{SM}(v) = \sum_{U \subset V \setminus \{v\}} p_{|U|} (bc(U \cup \{v\}) - bc(U))$$

where  $p_{|U|}$  denotes the weight assigned to all subsets of size  $|U|$  and satisfies  $\sum_{0 \leq k \leq |V|-1} p_k \binom{|V|-1}{k} = 1$ , with  $|V|$  being the number of vertices in the graph, and  $bc(U)$  is the group betweenness centrality of subset  $U$ . Intuitively,  $bc(U \cup \{v\}) - bc(U)$  measures the marginal contribution of vertex  $v$  to the betweenness centrality of coalition  $U \cup \{v\}$ . By taking a weighted sum of these marginal contributions over all coalitions, the semi-value-based betweenness centrality provides a principled basis for prioritizing node protection in multi-node failure scenarios.

Beyond the multi-node failure scenarios, another common challenge in real-world networks is their dynamic nature. Specifically, as nodes are added or removed, the relationships between nodes continuously evolve. Evidently, recalculating these metrics from scratch every time the network changes is prohibitively costly. For unweighted graphs  $G = \{V, E\}$ , the complexity of computing semi-value-based betweenness centrality is  $O(|V|^4)$  [2]. Although distributed algorithms can calculate this in  $O(|V|)$  rounds [3], this remains impractical for large-scale networks. Thus, efficient incremental algorithms are crucial for updating game-theoretic betweenness centralities in real time.

**Table 1.** A summary of the complexities of SPBC and SMBC

|            | Centralized       | Distributed (round complexity) |                                                                        |                                                                                         |
|------------|-------------------|--------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Centrality | Static            | Static                         | Single-Edge Insertion(SEI)                                             | Multi-Edge Insertion(MEI)                                                               |
| SPBC       | $O( V ^3)$<br>[2] | $O( V )$                       | $O(D^G(\mathcal{A}_B^{max} + \mathcal{D}_B^{max}))$<br>$+ F_{Batch} )$ | $O(D^G(\mathcal{A}_B^{max} + \mathcal{D}_B^{max}))$<br>$+ F_{Batch}  +  \text{Batch} )$ |
| SMBC       | $O( V ^4)$<br>[2] | [3]                            | (this article)                                                         | (this article)                                                                          |

Addressing this challenge, the goal of this paper is to design efficient incremental algorithms within the CONGEST model, a classical distributed communication model where each edge transmits a message of size  $O(\log n)$  bits per round. Table 1 summarizes the computational complexities of the Shapley value-based betweenness centrality (SPBC) and semi-value-based betweenness centrality (SMBC) algorithms for undirected, unweighted graphs.

## 2 Preliminaries

In this section, we introduce the relevant notations, the system model, and the definition.

We consider an undirected, unweighted graph  $G(V^G, E^G)$ , where  $V^G$  and  $E^G$  represent the vertex and edge sets, respectively. The graph's diameter is denoted as  $D^G$ .  $G$  can be decomposed into biconnected components, each connected by articulation points. For a biconnected component  $B$ ,  $G_a^B$  denotes the subgraph of  $G$  that is connected through articulation point  $a$  in  $B$ . When the context clearly identifies the biconnected component, the superscript is omitted.

For brevity, we omit the definitions of betweenness centrality and group betweenness centrality. In the various versions of betweenness centrality, the *dependency* of  $s$  on  $v$  is defined as the sum of  $v$ 's betweenness centrality where  $s$  is either the source or the destination. This is denoted by  $\delta_s[v]$ , and it reflects the degree to which  $s$  depends on  $v$ . Similarly,  $\delta_G[v]$  denotes the dependency of vertex  $v$  within graph  $G$ .

Shapley value is a fundamental method for fairly allocating values in cooperative games. However, it may not fully capture complex relationships or constraints in some practical scenarios, which led to the semi-value.

**Definition 1 (Semi-value).** Given a game  $(A, v)$ , where  $A$  is the player set and  $v$  is the characteristic function, the semi-value of player  $i \in A$  is given by

$$\text{semi-value}(i) = \sum_{S \subset A \setminus \{i\}} p_{|S|} (v[S \cup \{i\}] - v[S])$$

where  $p_{|S|}$  denotes the weight assigned to a coalition of size  $|S|$ . When the weight function is set to  $\frac{1}{|A| \binom{|A|-1}{|S|}}$ , all subsets are assigned equal weights, and the semi-value becomes the Shapley value.

Assuming that each vertex in the graph represents a player and the set of vertices corresponds to the set of players, we then can derive the semi-value-based betweenness centrality by treating the group betweenness centrality as the characteristic function defined on subsets of players.

**Definition 2 (Semi-value-based betweenness centrality).** For a vertex  $v \in V^G$ , the semi-value-based betweenness centrality  $bc_{SM}[v]$  is defined as

$$bc_{SM}[v] = \sum_{U \subset V \setminus \{v\}} p_{|U|} (bc[U \cup \{v\}] - bc[U])$$

Here,  $bc[U]$  is the group betweenness centrality of  $U$ . Formulas for Shapley value-based betweenness centrality can be derived, but are omitted due to space constraints.

Directly computing  $bc_{SM}[v]$  is infeasible due to the exponential time complexity of calculating betweenness centrality for all subsets  $U$ . To address this, Szczepanski et al. [2] proposed an alternative method based on analyzing the marginal contributions of vertex  $v$ , which enables computing  $bc_{SM}[v]$  and  $bc_{SP}[v]$  in polynomial time.

$$bc_{SM}[v] = \sum_{k \in [0, n-1]} P_k \left( \sum_{\substack{s, t \in V \setminus \{v\} \\ n - d_s[t] \leq k}} \frac{\sigma_{st}[v]}{\sigma_{st}} f_{SM}(d_s[t], k) + \sum_{\substack{s \in V \setminus \{v\} \\ n - d_s[v] \leq k}} g_{SM}(d_s[v], k) \right)$$

$$bc_{SP}[v] = \sum_{s, t \in V \setminus \{v\}} \frac{\sigma_{st}[v]}{\sigma_{st}} f_{SP}(d_s[t]) + \sum_{s \in V \setminus \{v\}} g_{SP}(d_s[v])$$

where  $f_{SM}(d, k) = \frac{(n-d)!(n-k-1)!}{(n-d-k)!(n-1)!}$ ,  $g_{SM}(d, k) = f_{SM}(d, k) + \frac{k-n+1}{n-1}$ ,  $f_{SP}(d) = \frac{1}{d}$ ,  $g_{SP}(d) = \frac{2-d}{2d}$ . We work in the CONGEST model: each round, every node can send an  $O(\log n)$ -bit message to each neighbor.

Table 2 lists the notations used in the subsequent pseudocode and descriptions of this paper.

**Table 2.** Notations

| Notation                            | Definition                                                           |
|-------------------------------------|----------------------------------------------------------------------|
| $D^G$                               | The diameter of $G$                                                  |
| $\mathcal{B}^G$                     | The set of biconnected components of $G$                             |
| $G_a^B$                             | The subgraph connected through articulation point $a$ in $B$         |
| $A^G$                               | The set of articulation points of $G$                                |
| $d_s[v]$                            | The distance from $s$ to $v$                                         |
| $\delta_s[v] \setminus \delta_G[v]$ | The dependency of $s \setminus G$ on $v$                             |
| $\sigma_{st}$                       | The number of the shortest paths from $s$ to $t$                     |
| $\sigma_{st}[v]$                    | The number of the shortest paths from $s$ to $t$ passing through $v$ |
| $f_{SM}(h, k), g_{SM}(h, k)$        | The auxiliary functions of SMBC                                      |
| $f_{SP}(h), g_{SP}(h)$              | The auxiliary functions of SPBC                                      |

### 3 Related Work

Cooperative game theory has been applied to network vertex centrality, starting with [1]. Szczepanski et al. [4] defined Shapley value-based betweenness centrality and expanded it to weighted and unweighted graphs with a polynomial-time algorithm [2]. Tarkowski et al. [5] further extended these measures to other game-theoretic centralities, like the Banzhaf index. Wang et al. [3] proposed static algorithms on the CONGEST model for Shapley-based betweenness centrality and semi-value-based betweenness centrality, with a round complexity of  $O(n)$ . They also proved the lower bound of the round complexity for calculating SPBC and SMBC in the CONGEST model, demonstrating that their algorithm is near-optimal.

Although algorithms for game-theoretic betweenness centralities in dynamic graphs are not yet fully developed, dynamic algorithms for betweenness centrality have been extensively studied. Jamour et al. [6] introduced the iCentral algorithm to update betweenness centrality after single-edge changes. The algorithm identifies affected vertices, computes their dependencies, and updates centrality by adjusting these dependencies. The key idea is to partition the betweenness centrality change based on whether the source and destination vertices are in the same biconnected component as  $v$ , and handle each component separately. iCentral is restricted to undirected graphs, whereas Pons et al. [7] extended it to directed graphs. Shukla et al. [8] further generalized the iCentral to handle multiple edge updates, introducing redundant nodes and redundant chains to reduce the number of nodes that must be traversed.

### 4 Challenges and Mitigation Strategies

The single-edge incremental algorithm in this paper is based on the iCentral algorithm [6]. However, the iCentral algorithm involves a large number of parallel

tasks, which can lead to congestion when these tasks are executed simultaneously in the CONGEST model.

Moreover, compared to the ordinary betweenness centrality, the game-theoretic betweenness centralities require the distances between a specified vertex and other vertices. However, the iCentral algorithm does not maintain this information.

Both the iCentral algorithm and the multi-edge version [8] rely on biconnected components, which must be updated whenever the graph undergoes changes. In centralized environments, these components can be recalculated from scratch without significantly affecting the overall time complexity of centrality maintenance. However, in the CONGEST model, this recalculation approach requires a linear number of rounds, making it prohibitively expensive for centrality maintenance, especially when dealing with multi-edge insertions, where obtaining updated biconnected components is non-trivial. Therefore, a biconnected component maintenance algorithm with low-round complexity is crucial for efficient operation within the CONGEST model.

To address the three aforementioned challenges—congestion arising from parallel tasks, the absence of distance information, and the high cost of updating biconnected components—we introduce the following solutions. First, congestion is mitigated through a scheduling mechanism that serializes otherwise conflicting communications. Second, a distance-list procedure maintains, for every vertex, its up-to-date shortest-path distances to all others, thereby guaranteeing the correctness of game-theoretic betweenness centrality. Third, a low-round-complexity routine for the maintenance of biconnected components—adapted from the shared-memory algorithm of Haryan et al. [9]—ensures efficient graph-structural updates, particularly under multi-edge insertions, while curbing overall round complexity.

## 5 Single-Edge Incremental Algorithm

This section presents **SEI-SPBC** and **SEI-SMBC** for incrementally updating game-theoretic betweenness centralities for single-edge insertions.

**SEI-SPBC** is presented in Algorithm 1. Before the update, each vertex must be aware of its old SPBC,  $|V|$ ,  $f_{SP}$ ,  $g_{SP}$ , and which biconnected component it belongs to. The biconnected components can be obtained through a Depth-First Search. Upon the insertion of an edge  $e$  into the original graph  $G$ , resulting in the updated graph  $G'$ , the maintenance of the biconnected components in  $G'$  is achieved through the **SEI-UB**. To capture the distance information, we define a data structure: for each component, each articulation point  $a$  maintains a dictionary  $DL_a$ , where  $v$  denotes the number of vertices in  $G_a^B$  at distance  $k$  from  $a$ . This structure facilitates the computation of  $f_{SP}$  and  $g_{SP}$ .

The **Distancelist** procedure computes  $DL_a$  for each articulation point (Algorithm 2). More details regarding the algorithms presented in this paper, including Algorithm 2, will be provided in the full version<sup>1</sup>. Once all articula-

<sup>1</sup> <https://qiangshenghua.github.io/papers/npcfull.pdf>.

**Algorithm 1.** SEI-SPBC( $G, e$ )

---

- 1: **Input:** Graph  $G(V, E)$  each vertex  $v$  in graph  $G$  knows  $bc_{SP}^G[v]$  and new edge  $e = \langle p, q \rangle$
- 2: **Output:** each vertex  $v$  in the new graph  $G'$  knows  $bc_{SP}^{G'}[v]$  after inserting  $e$
- 3:  $G' \leftarrow G \cup \{e\}$
- 4:  $\mathcal{B}^{G'} \leftarrow \text{SEI-UB}(G, e)$
- 5:  $B_e \leftarrow B_e^{G'}/e$
- 6:  $\{DL_a\} \leftarrow \text{Distancelist}(G')$  for  $a \in A_{G'}$
- 7: Perform BFS( $p$ ) and BFS( $q$ )
- 8: Mark  $s$  as an affected vertex and  $S \leftarrow S \cup \{s\}$  if  $d_p(s) \neq d_q(s)$  for  $s \in G$
- 9:  $\text{BrandesSPBC}(G, B_e, S, +)$
- 10:  $\text{BrandesSPBC}(G', B_e^{G'}, S, -)$
- 11: **return**  $bc_{SP}^{G'}[v]$

---

**Algorithm 2.** Distancelist( $G$ )

---

- 1: **Input:** Graph  $G(V, E)$
- 2: **Output:**  $DL_a$ : Dictionary of distances for articulation point  $a$
- 3: Aggregate distance lists along the block-cutpoint tree [11] at the root component
- 4: Exchange distance lists among articulation points within each component
- 5: Send aggregated distance lists back to other components along the block-cutpoint tree

**return**  $DL_a$

---

tion points of a component have correctly updated their dictionaries, according to the definition of biconnected components, every vertex within that component can determine the number of vertices in the entire graph that are at distance  $k$  from itself,  $k \in [1, D^G]$ . This information will be used in Algorithm 3. The BFS in Algorithm 1 is a Breadth-First Search that determines distances from the endpoints of the inserted edge and marks vertices with differing distances as affected vertices. These vertices signify changes in their BFS trees, affecting shortest paths originating or terminating at them.

The **BrandesSPBC** procedure (Algorithm 3) is inspired by the classic Brandes algorithm, executing a forward BFS and a backward BFS from each affected source vertex within the biconnected component. The **MSBFS** procedure, a distributed version of multi-source BFS [10], adapts to the CONGEST model with low-round complexity.

Lines 6–13 of Algorithm 3 correspond to the reverse phase. It is important to note that this component uses the  $\text{Schedule}_B$  from the **MSBFS** procedure to mitigate congestion problems. Finally, lines 14–21 encompass the local statistics phase. Returning to Algorithm 1, at line 9, the positive factor implies that a portion of the old dependencies is removed from the original SPBC. The first execution of **BrandesSPBC** on  $G$  eliminates the old dependencies. Similarly, the negative factor at line 10 implies the addition of the corresponding new dependencies. The second execution of **BrandesSPBC** on  $G'$  incorporates the new dependencies. Lemma 1 proves the correctness of the SEI-SPBC.

**Algorithm 3.** BrandesSPBC( $G, B, S, \text{factor}$ )

---

```

1: Initialize  $\delta_s[v], \delta_{G_s}[v]$  for  $v \in B, s \in S$ 
2:  $\{Schedule_B, P_s[v], d_s[v], \delta_s[v]\} \leftarrow \text{MSBFS}(S, B)$ 
3: if  $s$  and  $v \in \mathcal{A}^G$  then
4:   for  $i \leftarrow [0, |DL_s|], j \leftarrow [0, |DL_v|]$  do
5:      $\delta_{G_s}[v] = \delta_{G_s}[v] + DL_s[i] * DL_v[j] * f_{SP}(i + d_s[v] + j)$ 
    **The vertices in  $B$  send messages follow the reverse  $Schedule_B$ **
6: if  $v$  is scheduled to send  $msg_s$  to  $u \in P_s[v]$  then
7:    $msg_s \leftarrow \{\delta_s[v], d_s[v], \sigma_s[v]\}$ 
8:   if  $s \in \mathcal{A}^G$  then
9:      $msg_s \leftarrow msg_s \cup \{\delta_{G_s}[v]\}$ 
10: if  $u$  receive  $msg_s$  from  $v$  then
11:    $\delta_s[u] = \delta_s[u] + \frac{\sigma_s[u]}{\sigma_s[v]} * (f_{SP}(d_s[v]) + \delta_s[v])$ 
12:   if  $s \in \mathcal{A}^G$  then
13:      $\delta_{G_s}[u] = \delta_{G_s}[u] + \delta_{G_s}[v] * \frac{\sigma_s[u]}{\sigma_s[v]}$ 
    **Message transmission complete**
14: for affected vertex  $s \in S$  do
15:   if  $v \neq s$  then
16:      $bc_{SP}^{G'}[v] = bc_{SP}^{G'}[v] + \text{factor} * \frac{\delta_s[v]}{2} + \text{factor} * g_{SP}(d_s[v])$ 
17:   if  $s \in \mathcal{A}^G$  then
18:      $bc_{SP}^{G'}[v] = bc_{SP}^{G'}[v] + \text{factor} * \delta_s[v] * |G_s|$ 
19:     for  $i \leftarrow [0, |DL_s|]$  do
20:        $bc_{SP}^{G'}[v] = bc_{SP}^{G'}[v] + \text{factor} * DL_s[i] * g_{SP}(i + d_s[v])$ 
21:      $bc_{SP}^{G'}[v] = bc_{SP}^{G'}[v] + \text{factor} * \frac{\delta_{G_s}[v]}{2}$ 

```

---

**Lemma 1.** *Algorithm 1 is capable of accurately computing the SPBC for each vertex.*

The proofs of all the theorems and lemmas can be found in the full version.

We now extend the **SEI-SPBC** algorithm by proposing an incremental method to maintain SMBC. The most straightforward approach involves iteratively executing the **SEI-SPBC** algorithm  $n$  times [2]. However, this approach inevitably incurs prohibitively high round complexity. To address this issue, we introduce **SEI-SMBC**, which reduces the round complexity at the cost of increasing the local computation. The **SEI-SMBC** algorithm is similar to Algorithm 1, with the key difference being the inclusion of an additional  $k$ -loop and a conditional check when computing the auxiliary functions. Note that the  $k$  loop is performed locally at each node, rather than forming loops within the network. The above optimization effectively reduces the round complexity and eliminates redundant traversals. Lemma 2 proves the correctness of **SEI-SMBC** and Theorem 1 provides the round complexity of the single-edge incremental algorithms.

**Lemma 2.** ***SEI-SMBC** is capable of accurately computing the SMBC for each vertex. Furthermore, in contrast to Algorithm 1, **SEI-SMBC** does not require any additional communication.*

**Theorem 1.** The round complexity of SEI-SPBC and SEI-SMBC are  $O(D^G(\mathcal{A}_B^{\max} + \mathcal{D}_B^{\max}) + |F_{Batch}|)$ .  $\mathcal{A}_B^{\max}$  and  $\mathcal{D}_B^{\max}$  denote the maximum number of articulation points and the maximum diameter of the biconnected components, respectively.  $|F_{Batch}|$  represents the number of affected vertices resulting from insertion.

## 6 Multi-edge Incremental Algorithm

This section presents MEI-SPBC and MEI-SMBC for incrementally updating game-theoretic betweenness centralities for multi-edge insertions.

Haryan et al. [9] propose an incremental algorithm for shared-memory systems that builds a BFS tree  $T$  and, for every vertex  $v$ , maintains an auxiliary subgraph capturing the connectivity among  $v$ 's children in  $T$ . A vertex  $u$  in this subgraph is **safe** if a non-tree edge joins  $u$  to an ancestor of  $v$ ; a component is **safe** if it contains at least one safe vertex, and **unsafe** otherwise. Upon insertion of a new edge, the algorithm updates the auxiliary subgraphs and identifies articulation points by the following rules: 1.  $w$  is the root of  $T$  and its subgraph has at least two components. 2.  $w$  is not the root and its subgraph contains at least one unsafe component. 3.  $w$  is adjacent to a bridge and has a degree of at least 2.

---

### Algorithm 4. MEI-UB( $G, Batch$ )

---

- 1: **Input:** Graph  $G(V, E)$ , set of new edge set  $Batch$ , each vertex  $v$  knows the biconnected component  $B_v^G$  it belongs
- 2: **Output:** Each vertex  $v$  knows the biconnected component  $B_v^{G'}$  it belongs in the new graph  $G'$
- 3: **for** each edge  $e = \langle u, v \rangle \in Batch$  **do**
- 4:     Vertex  $u$  sends  $msg(u, v, \langle u, v \rangle, +)$  upwards along  $T$
- 5:     Vertex  $v$  sends  $msg(v, u, \langle u, v \rangle, +)$  upwards along  $T$
- 6: **if** Vertex  $w$  receives  $msg(u, v, \langle u, v \rangle, +)$  and  $msg(v, u, \langle u, v \rangle, +)$  **then**
- 7:     Mark  $w$  as a LCA vertex
- 8:     Update connectivity and propagate safety in the  $subgraph_w$  held by  $w$
- 9:     Vertex  $w$  transmits  $msg(u, v, \langle u, v \rangle, -)$  and  $msg(v, u, \langle u, v \rangle, -)$  along the path previously traversed by the message.
- 10: **for** each Vertex  $p$  receiving  $msg(u, v, \langle u, v \rangle, -)$  from vertex  $q$  **do**
- 11:     Update the bridge flag of  $\langle p, q \rangle$  if  $\langle p, q \rangle$  is a bridge
- 12:     Mark  $q$  as a safe point
- 13: Identify articulation points and propagate within the biconnected components

---

Algorithm 4 is designed to update the biconnected components of a graph  $G$  following the insertion of edge set  $Batch$ . Each vertex  $u$  and  $v$  communicates connection update information by sending upward messages. Upon receiving messages from both  $u$  and  $v$ , a vertex  $w$  is designated as the *least common*

*ancestor* (LCA) and updates the connectivity of the subgraph accordingly. Subsequently, vertex  $w$  propagates negative messages to update the bridge flags and propagate security information. Ultimately, the algorithm identifies articulation points and propagates updates within the biconnected components to ensure the consistency of the graph structure.

The MEI-SPBC algorithm is similar to Algorithm 1. The differences are as follows: First, MEI-SPBC replaces SEI-UB with Algorithm 4. Second, when inserting the edge set  $Batch$ , it is necessary to perform BFS instances for each pair of endpoints simultaneously. Due to congestion constraints, the MSBFS procedure must be invoked. Moreover, MEI-SMBC can also be derived from MEI-SPBC. Below, we analyze its complexity and show that the connectivity maintenance part does not dominate its complexity, which remains comparable to that of single-edge updates. Theorem 2 provides the round complexity of the multi-edge incremental algorithms.

**Theorem 2.** *The round complexity of MEI-SPBC and MEI-SMBC are  $O(D^G(\mathcal{A}_B^{\max} + \mathcal{D}_B^{\max}) + |F_{Batch}| + |Batch|)$ .  $\mathcal{A}_B^{\max}$  and  $\mathcal{D}_B^{\max}$  denote the maximum number of articulation points and the maximum diameter of the biconnected components, respectively.  $|F_{Batch}|$  and  $|Batch|$  represent the number of affected vertices resulting from insertion and the number of inserted edges, respectively.*

## 7 Experimental Results

This section reports the experimental evaluation of the proposed algorithms on real-world graphs. All experiments are conducted on a 20-node cluster; each node is equipped with two 24-core, 3.0 GHz Intel Xeon Gold 6248R processors and 256 GB of DDR4 memory. The algorithms are implemented in the Gemini framework [12]. We select several real-world datasets from SNAP<sup>2</sup> and [13], covering social, communication, and road networks; their detailed statistics are summarized in Table 3.

**Table 3.** Dataset

| Graph          | $ V $ | $ E $ | Graph            | $ V $   | $ E $  |
|----------------|-------|-------|------------------|---------|--------|
| RoadNet-PA(PA) | 1.08M | 1.54M | web-Stanford(ST) | 281.90K | 2.312M |
| roadNet-TX(TX) | 1.37M | 1.92M | web-Google(GG)   | 875.71K | 5.105M |
| roadNet-CA(CA) | 1.96M | 2.76M | wiki-Talk(WK)    | 2.39M   | 5.02M  |

After randomly removing 10 edges from the graph, we pre-compute the SPBC and all auxiliary data on the resulting graph and then reinsert the edges. This experiment is executed with three approaches: (i) a static recomputation of the SPBC; (ii) SEI-SPBC, which performs incremental updates edge-by-edge; and

<sup>2</sup> <http://snap.stanford.edu/data>.

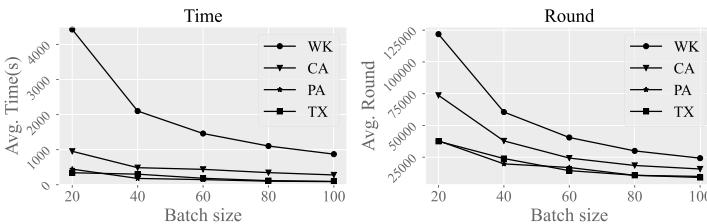
(iii) MEI-SPBC, which processes the edges in a single batch. The running time and number of iterations for each approach are reported in Table 4. Due to space limitations, the results of the ordinary betweenness centrality maintenance algorithm, SEI-SMBC and MEI-SMBC can be found in the full version.

**Table 4.** Performance of the static algorithm and the incremental algorithms for SPBC

| Graph        | Static   |            | SEI-SPBC |           | MEI-SPBC |           |
|--------------|----------|------------|----------|-----------|----------|-----------|
|              | Round    | Time(s)    | Round    | Time(s)   | Round    | Time(s)   |
| wiki-Talk    | 6704278  | 1443800.73 | 7590205  | 430874.66 | 2407238  | 111097.93 |
| road-CA      | 20698461 | 493276.30  | 11019734 | 245411.07 | 1295702  | 31129.25  |
| road-PA      | 14630532 | 221301.74  | 5415652  | 103085.63 | 745211   | 16832.63  |
| road-TX      | 14630532 | 264895.56  | 5214811  | 75409.95  | 791074   | 18276.79  |
| web-Stanford | 3354657  | 17673.51   | 6252892  | 64962.19  | 611092   | 6517.41   |
| web-Google   | 3207498  | 107198.35  | 21847093 | 507614.39 | 2277607  | 50745.06  |

Table 4 shows the multi-edge incremental algorithm improves efficiency compared to both static and single-edge algorithms. The maximum speedup over the static algorithm is 15.84, with a minimum of 13.00, indicating substantial reduction in execution time.

Compared to the single-edge incremental algorithm, the multi-edge incremental algorithm achieves a maximum speedup of 7.88 and a minimum of 4.13, further enhancing efficiency by reducing redundant traversals. The performance gain depends on the graph's structure; if single-edge updates affect disjoint sets, the speedup may be less, while batch processing in the multi-edge algorithm reduces unnecessary traversals.



**Fig. 2.** Performance of MEI-SPBC across different batch sizes

Incremental algorithms are significantly influenced by the distribution of biconnected components within the graph. When the graph contains many uniformly sized biconnected components, the incremental algorithm is efficient. However, when there are only a few large components, the probability of update

edges falling within these large components increases, leading to excessive traversal and performance degradation to that of a static algorithm. As seen in web-Google and web-Stanford results, the incremental algorithm performs poorly, with **SEI-SPBC** exceeding the static algorithm’s execution time. The algorithm performs best in graphs with many uniformly sized biconnected components, whereas it underperforms in graphs with a few large biconnected components.

We evaluate the scalability of **MEI-SPBC** with edge sets of sizes 20, 40, 60, 80 and 100, as shown in Fig. 2. The x-axis shows batch size, and the y-axis shows the average time or rounds per inserted edge. **MEI-SPBC** scales efficiently with iterations, as processing speed improves with more edges, though it plateaus beyond a certain batch size. The algorithm demonstrates excellent scalability on wiki-Talk, but for road graphs, increasing batch size has little impact on processing speed.

## 8 Conclusion

This study explores the incremental algorithms for game-theoretic betweenness centralities in the CONGEST model. We introduce **SEI-SPBC**, a Shapley value-based algorithm for single-edge insertion that avoids congestion through efficient scheduling and includes a distance update procedure for accuracy. Building on this, we propose **SEI-SMBC**, a semi-value-based algorithm that reduces communication overhead at the cost of increased local computation, improving round complexity over general methods. Finally, we present a multi-edge insertion variant of **SEI-SMBC**, which updates biconnected components with low-round complexity, providing a scalable solution for large-scale network changes. Experimental results show that the multi-edge incremental algorithm achieves speedup factors of up to 7 $\times$  and 16 $\times$  compared to the single-edge and static algorithms, respectively.

Unlike edge insertion, which typically involves merging existing biconnected components, edge deletion destroys current components and necessitates their subsequent reconnection, making deletion significantly more challenging than insertion. More specifically, the destruction phase of a decremental algorithm requires extensive global information to modify the underlying data structures and update vertex states. Furthermore, the reconnection phase demands that different components select new edges to restore connectivity after the removal of the original connecting edge. These requirements pose substantial challenges for the design and implementation of distributed decremental algorithms. Hence, this paper focuses solely on incremental algorithms. Future work will extend the algorithm to decremental algorithms with low-round complexity and optimize communication strategies to reduce congestion and costs in distributed environments.

## References

1. Grofman, B.N., Owen, G.: A game theoretic approach to measuring degree of centrality in social networks. *Soc. Netw.* **4**(3), 213–224 (1982)

2. Szczepanski, P.L., Michalak, T.P., Rahwan, T.: Efficient algorithms for game-theoretic betweenness centrality. *Artif. Intell.* **231**, 39–63 (2016)
3. Wang, Y., Hua, Q., Gao, W., Jin, H.: Nearly optimal distributed algorithm for computing game-theoretic betweenness centralities. *Chin. J. Comput.* (2025, to appear)
4. Szczepanski, P.L., Michalak, T.P., Rahwan, T.: A new approach to betweenness centrality based on the Shapley value. In: *Proceedings of AAMAS 2012*, pp. 239–246 (2012)
5. Tarkowski, M.K., Szczepanski, P.L., Michalak, T.P., Harrenstein, P., Wooldridge, M.J.: Efficient computation of semi-values for game-theoretic network centrality. *J. Artif. Intell. Res.* **63**, 145–189 (2018)
6. Jamour, F.T., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for incremental betweenness centrality on large graphs. *IEEE Trans. Parallel Distrib. Syst.* **29**(3), 659–672 (2018)
7. Pons, R.G.: Space efficient incremental betweenness algorithm for directed graphs. In: *Proceedings of CIARP 2018*, pp. 262–270 (2018)
8. Shukla, K., Regunta, S.C., Tondomker, S.H., Kothapalli, K.: Efficient parallel algorithms for betweenness- and closeness-centrality in dynamic graphs. In: *Proceedings of ICS 2020*, pp. 10:1–10:12 (2020)
9. Haryan, C.A., Ramakrishna, G., Kothapalli, K., Banerjee, D.S.: Shared-memory parallel algorithms for fully dynamic maintenance of 2-connected components. In: *Proceedings of IPDPS 2022*, pp. 1195–1205 (2022)
10. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited bandwidth. In: *Proceedings of PODC 2013*, pp. 375–382 (2013)
11. Harary, F.: *Graph Theory*. Addison-Wesley Publishing Company (1969)
12. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed graph processing system. In: *Proceedings of OSDI 2016*, pp. 301–316 (2016)
13. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. *ACM Trans. Math. Softw.* **38**(1), 1:1–1:25 (2011)