q

Check for
updates

Incremental Distributed Algorithms
for Game-Theoretic Betweenness
Centralities in Dynamic Graphs

Yefei Wang, Qiang-Sheng Hua(™), Wenjie Gao, and Hai Jin

National Engineering Research Center for Big Data Technology and System, Service

Computing Technology and System Lab, Cluster and Grid Computing Lab, School of

Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China

gshua@hust.edu.cn

Abstract. Maintaining game-theoretic betweenness centralities in
highly dynamic networks is challenging due to the high computational
cost of recalculating it from scratch. This paper presents distributed
incremental algorithms in the classic CONGEST model for maintain-
ing Shapley- and semi-value-based betweenness centralities. By address-
ing the challenges of parallel traversal congestion and communication
overhead, we propose incremental algorithms with round complexities
of O(DY(AZ*+ DE™) + |Fpaten| + |Batch|) for multi-edge updates.
Here, D€, A%2* and DE** denote the diameter of the graph, the maxi-
mum number of articulation points, and the maximum diameter of the
biconnected components, respectively. | Fpatcn| and |Batch| represent the
number of affected vertices resulting from insertions and the number of
inserted edges, respectively. Experimental results demonstrate that the
proposed multi-edge incremental algorithm achieves speedup factors of
up to 7x and 16X compared to the single-edge incremental algorithm
and the static algorithm, respectively.

Keywords: Distributed algorithms - Dynamic graphs + Network
centrality

1 Introduction

Game-theoretic betweenness centralities [1] rooted in cooperative game theory—
such as Shapley-value and semi-value based measures—model node interactions
by capturing cooperative behaviors. Compared with ordinary betweenness cen-
trality, they more accurately identify critical nodes under multi-node failure
scenarios, thereby optimizing network stability and resource allocation.

To illustrate the advantage of game-theoretic betweenness centralities, we
present a toy example depicted in Fig. 1. Every edge is labeled with its direction

This project is funded in part by the National Science and Technology Major Project
(Grant No. 2022ZD0115301).

© IFIP International Federation for Information Processing 2026
Published by Springer Nature Switzerland AG 2026

X. Wang et al. (Eds.): NPC 2025, LNCS 16305, pp. 116-128, 2026.
https://doi.org/10.1007/978-3-032-10459-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-10459-5_10&domain=pdf
https://doi.org/10.1007/978-3-032-10459-5_10

Incremental Distributed Algorithms for Game-Theoretic 117

Fig. 1. Toy example

and weight. Since a vertex’s ordinary betweenness centrality can be decomposed
into dependencies contributed by different source—destination pairs, we focus,
for simplicity, on the single pair (s,t). In this setting, vertex a and each vertex
b; obtain an ordinary betweenness centrality of 1/2. Yet it is evident that their
importance for sustaining communication between s and ¢ is not equal: if multi-
ple vertices b; fail, s and ¢ can still communicate as long as a remains operational;
however, if a fails, the failure of any single b; will disconnect s and ¢t. Thus, in
scenarios where multiple nodes may fail simultaneously, ordinary betweenness
centrality fails to distinguish their varying importance. Game-theoretic between-
ness centralities address this limitation by drawing on cooperative game theory:
the group betweenness centrality is used as the value function for different coali-
tions, providing a principled way to assess vertex importance under multi-node
failures. Specifically, the semi-value-based betweenness centrality of vertex v is
defined as follow:

besu(v) = Y pju (be(U U {o}) = be(U))

UcVv\{v}

where pjy| denotes the weight assigned to all subsets of size |U| and satis-
fies ZOSkS\V|71pk(|VI‘<_1) = 1, with |V| being the number of vertices in the
graph, and be(U) is the group betweenness centrality of subset U. Intuitively,
be(U U {v}) — be(U) measures the marginal contribution of vertex v to the
betweenness centrality of coalition U U {v}. By taking a weighted sum of these
marginal contributions over all coalitions, the semi-value-based betweenness cen-
trality provides a principled basis for prioritizing node protection in multi-node
failure scenarios.

Beyond the multi-node failure scenarios, another common challenge in real-
world networks is their dynamic nature. Specifically, as nodes are added or
removed, the relationships between nodes continuously evolve. Evidently, recal-
culating these metrics from scratch every time the network changes is pro-
hibitively costly. For unweighted graphs G = {V, E'}, the complexity of comput-
ing semi-value-based betweenness centrality is O(|V|*) [2]. Although distributed
algorithms can calculate this in O(|V|) rounds [3], this remains impractical for
large-scale networks. Thus, efficient incremental algorithms are crucial for updat-
ing game-theoretic betweenness centralities in real time.

118 Y. Wang et al.

Table 1. A summary of the complexities of SPBC and SMBC

Centralized Distributed (round complexity)
Centrality|Static Static |Single-Edge Insertion(SEI) Multi-Edge Insertion(MEI)
SPBC O(|V[) O(DY(AE* +DE*) O(DS(AE™* + DE*")

2] O(IV]) +|Fpaten]) +[Fpaten| 4 [Batchl)
SMBC O(|V]") [3] |(this article) (this article)

2]

Addressing this challenge, the goal of this paper is to design efficient incre-
mental algorithms within the CONGEST model, a classical distributed com-
munication model where each edge transmits a message of size O(logn) bits
per round. Table 1 summarizes the computational complexities of the Shapley
value-based betweenness centrality (SPBC) and semi-value-based betweenness
centrality (SMBC) algorithms for undirected, unweighted graphs.

2 Preliminaries

In this section, we introduce the relevant notations, the system model, and the
definition.

We consider an undirected, unweighted graph G(V¢, ES), where V¢ and E¢
represent the vertex and edge sets, respectively. The graph’s diameter is denoted
as D%. G can be decomposed into biconnected components, each connected by
articulation points. For a biconnected component B, G2 denotes the subgraph
of G that is connected through articulation point a in B. When the context
clearly identifies the biconnected component, the superscript is omitted.

For brevity, we omit the definitions of betweenness centrality and group
betweenness centrality. In the various versions of betweenness centrality, the
dependency of s on v is defined as the sum of v’s betweenness centrality where
s is either the source or the destination. This is denoted by d5[v], and it reflects
the degree to which s depends on v. Similarly, dg[v] denotes the dependency of
vertex v within graph G.

Shapley value is a fundamental method for fairly allocating values in coop-
erative games. However, it may not fully capture complex relationships or con-
straints in some practical scenarios, which led to the semi-value.

Incremental Distributed Algorithms for Game-Theoretic 119

Definition 1 (Semi-value). Given a game (A,v), where A is the player set
and v is the characteristic function, the semi-value of player i € A is given by

semi — value(i) = Z ps)(v[S U {i}] —v[S])
SCA\{i}

where p|g| denotes the weight assigned to a coalition of size |S|. When the weight

function is set to W, all subsets are assigned equal weights, and the semi-
IS
value becomes the Shapley value.

Assuming that each vertex in the graph represents a player and the set of
vertices corresponds to the set of players, we then can derive the semi-value-
based betweenness centrality by treating the group betweenness centrality as
the characteristic function defined on subsets of players.

Definition 2 (Semi-value-based betweenness centrality). For a vertex
v € VY, the semi-value-based betweenness centrality besar[v] is defined as

besa[v] = Z pju|(be[U U {v}] — be[U])
UcCV\{v}

Here, bc[U] is the group betweenness centrality of U. Formulas for Shapley
value-based betweenness centrality can be derived, but are omitted due to space
constraints.

Directly computing begps[v] is infeasible due to the exponential time com-
plexity of calculating betweenness centrality for all subsets U. To address this,
Szczepanski et al. [2] proposed an alternative method based on analyzing the
marginal contributions of vertex v, which enables computing bcg s [v] and begp[v]
in polynomial time.

k s,t s
ost|v
besll = S Al S @i S gsar(dalel k)

ke[0n—1] stevifey 5t seV\{v}

n—ds[t]<k n—ds[v]<k

s,t o [’U] s
besplo] = > ;tifSP(ds)+ > gsp(ds])

steV\{v} = seV\{v}
(n—d)l(n—-k—-1)! E—n+1

where fsn(d, k) = gsm(d, k) = fsm(d, k) +

)

(n—d—Fk)l(n—1)V
1 2 —
fsp(d) = 7 gsp(d) = 57 We work in the CONGEST model: each round,
every node can send an O(logn)-bit message to each neighbor.

Table 2 lists the notations used in the subsequent pseudocode and descrip-
tions of this paper.

n—1

Qu

120 Y. Wang et al.

Table 2. Notations

Notation Definition

D¢ The diameter of G

B¢ The set of biconnected components of G

GE The subgraph connected through articulation point a in B
A The set of articulation points of G

ds[v] The distance from s to v

0s[v]\dc[v] The dependency of s\G on v

Ost The number of the shortest paths from s to ¢

ost[V] The number of the shortest paths from s to ¢ passing through v
Ffsm(h, k), gsa(h, k)| The auxiliary functions of SMBC

fsp(h),gsp(h) The auxiliary functions of SPBC

3 Related Work

Cooperative game theory has been applied to network vertex centrality, starting
with [1]. Szczepanski et al. [4] defined Shapley value-based betweenness centrality
and expanded it to weighted and unweighted graphs with a polynomial-time
algorithm [2]. Tarkowski et al. [5] further extended these measures to other game-
theoretic centralities, like the Banzhaf index. Wang et al. [3] proposed static
algorithms on the CONGEST model for Shapley-based betweenness centrality
and semi-value-based betweenness centrality, with a round complexity of O(n).
They also proved the lower bound of the round complexity for calculating SPBC
and SMBC in the CONGEST model, demonstrating that their algorithm is near-
optimal.

Although algorithms for game-theoretic betweenness centralities in dynamic
graphs are not yet fully developed, dynamic algorithms for betweenness central-
ity have been extensively studied. Jamour et al. [6] introduced the iCentral algo-
rithm to update betweenness centrality after single-edge changes. The algorithm
identifies affected vertices, computes their dependencies, and updates centrality
by adjusting these dependencies. The key idea is to partition the betweenness
centrality change based on whether the source and destination vertices are in
the same biconnected component as v, and handle each component separately.
iCentral is restricted to undirected graphs, whereas Pons et al. [7] extended it
to directed graphs. Shukla et al. [8] further generalized the iCentral to handle
multiple edge updates, introducing redundant nodes and redundant chains to
reduce the number of nodes that must be traversed.

4 Challenges and Mitigation Strategies

The single-edge incremental algorithm in this paper is based on the iCentral
algorithm [6]. However, the iCentral algorithm involves a large number of parallel

Incremental Distributed Algorithms for Game-Theoretic 121

tasks, which can lead to congestion when these tasks are executed simultaneously
in the CONGEST model.

Moreover, compared to the ordinary betweenness centrality, the game-
theoretic betweenness centralities require the distances between a specified ver-
tex and other vertices. However, the iCentral algorithm does not maintain this
information.

Both the iCentral algorithm and the multi-edge version [8] rely on bicon-
nected components, which must be updated whenever the graph undergoes
changes. In centralized environments, these components can be recalculated from
scratch without significantly affecting the overall time complexity of centrality
maintenance. However, in the CONGEST model, this recalculation approach
requires a linear number of rounds, making it prohibitively expensive for cen-
trality maintenance, especially when dealing with multi-edge insertions, where
obtaining updated biconnected components is non-trivial. Therefore, a bicon-
nected component maintenance algorithm with low-round complexity is crucial
for efficient operation within the CONGEST model.

To address the three aforementioned challenges—congestion arising from par-
allel tasks, the absence of distance information, and the high cost of updating
biconnected components—we introduce the following solutions. First, conges-
tion is mitigated through a scheduling mechanism that serializes otherwise con-
flicting communications. Second, a distance-list procedure maintains, for every
vertex, its up-to-date shortest-path distances to all others, thereby guaranteeing
the correctness of game-theoretic betweenness centrality. Third, a low-round-
complexity routine for the maintenance of biconnected components—adapted
from the shared-memory algorithm of Haryan et al. [9]—ensures efficient graph-
structural updates, particularly under multi-edge insertions, while curbing over-
all round complexity.

5 Single-Edge Incremental Algorithm

This section presents SEI-SPBC and SEI-SMBC for incrementally updating game-
theoretic betweenness centralities for single-edge insertions.

SEI-SPBC is presented in Algorithm 1. Before the update, each vertex must
be aware of its old SPBC, |V|, fsp, gsp, and which biconnected component it
belongs to. The biconnected components can be obtained through a Depth-First
Search. Upon the insertion of an edge e into the original graph G, resulting in
the updated graph G’, the maintenance of the biconnected components in G’
is achieved through the SEI-UB. To capture the distance information, we define
a data structure: for each component, each articulation point a maintains a
dictionary DL,, where v denotes the number of vertices in G2 at distance k
from a. This structure facilitates the computation of fsp and gsp.

The Distancelist procedure computes DL, for each articulation point
(Algorithm 2). More details regarding the algorithms presented in this paper,
including Algorithm 2, will be provided in the full version!. Once all articula-

! https://qgiangshenghua.github.io/papers /npcfull.pdf.

https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf

122 Y. Wang et al.

Algorithm 1. SEI-SPBC(G,e)

1: Input: Graph G(V,E) each vertex v in graph G knows bcSp[v] and new edge
e=<p,q>

: Output: each vertex v in the new graph G’ knows bc§; [v] after inserting e

i G'— GU{e}

BY — SEI-UB(G,e)

B. — BS /e

{DL,} < Distancelist(G’) for a € Ag

: Perform BFS(p) and BFS(q)

: Mark s as an affected vertex and S « S U {s} if dp(s) # dq(s) for s € G

: BrandesSPBC(G, B, S, +)

: BrandesSPBC(G’,BEI,S,—)

. return bcSp [v]

©W NP W

—_
= O

Algorithm 2. Distancelist(G)

: Input: Graph G(V, E)

: Output: DL,: Dictionary of distances for articulation point a

: Aggregate distance lists along the block-cutpoint tree [11] at the root component

. Exchange distance lists among articulation points within each component

: Send aggregated distance lists back to other components along the block-cutpoint
tree

QU W N~

return DL,

tion points of a component have correctly updated their dictionaries, according
to the definition of biconnected components, every vertex within that component
can determine the number of vertices in the entire graph that are at distance
k from itself, k € [1, DY]. This information will be used in Algorithm 3. The
BFS in Algorithm 1 is a Breadth-First Search that determines distances from
the endpoints of the inserted edge and marks vertices with differing distances
as affected vertices. These vertices signify changes in their BFS trees, affecting
shortest paths originating or terminating at them.

The BrandesSPBC procedure (Algorithm 3) is inspired by the classic Brandes
algorithm, executing a forward BFS and a backward BFS from each affected
source vertex within the biconnected component. The MSBFS procedure, a dis-
tributed version of multi-source BFS [10], adapts to the CONGEST model with
low-round complexity.

Lines 6-13 of Algorithm 3 correspond to the reverse phase. It is important
to note that this component uses the Schedulep from the MSBFS procedure to
mitigate congestion problems. Finally, lines 14-21 encompass the local statistics
phase. Returning to Algorithm 1, at line 9, the positive factor implies that a por-
tion of the old dependencies is removed from the original SPBC. The first execu-
tion of BrandesSPBC on G eliminates the old dependencies. Similarly, the nega-
tive factor at line 10 implies the addition of the corresponding new dependencies.
The second execution of BrandesSPBC on G’ incorporates the new dependencies.
Lemma 1 proves the correctness of the SEI-SPBC.

Incremental Distributed Algorithms for Game-Theoretic 123

Algorithm 3. BrandesSPBC(G,B,S,factor)
1: Initialize d5[v], 0a, [v] for v € B,s € S
2: {Schedules, Ps [v] ds[v], ds[v]} «—MSBFS(S, B)
if s and v € A® then
for i < [0,|DLs|], 7 < [0,|DL,|] do
bc.[v] = ba.[v] + DLs[i] * DLy[j] x fsp(i + ds[v] + j)
The vertices in B send messages follow the reverse Schedulep

6: if v is scheduled to send msgs to u € Ps[v] then
7 msgs — {0s[v], ds[v], os[v]}

8 if s€ A“ then

9: msgs < msgs U {0a, [v]}

10: if w receive msgs from v then
1 6fu] = Gsfu] + 2204« (fsp(ds[v]) + 6 [v])
12: if s€ A then

13 6, [u] = 8a,[u] + 6, [v] * 2212

Message transmission complete
14: for affected vertex s € S do
15: if v # s then

16: bcglla[v} = bcgp[| + factor = %<l 4 factor * gsp(ds[v))
17: if s € A% then

18: bcg}[v} = bcg}[v] + factor x ds[v] X |Gs|

19: for i — [0,|DLs H do

20: bcgjp[] —bcsp[v]—l—factor*DL [7] * gsp(i + ds[v])
21: bcg}[v} = bcsj—.,[| + factor x %H

Lemma 1. Algorithm 1 is capable of accurately computing the SPBC for each
verter.

The proofs of all the theorems and lemmas can be found in the full version.

We now extend the SEI-SPBC algorithm by proposing an incremental method
to maintain SMBC. The most straightforward approach involves iteratively exe-
cuting the SEI-SPBC algorithm n times [2]. However, this approach inevitably
incurs prohibitively high round complexity. To address this issue, we introduce
SEI-SMBC, which reduces the round complexity at the cost of increasing the local
computation. The SEI-SMBC algorithm is similar to Algorithm 1, with the key
difference being the inclusion of an additional k-loop and a conditional check
when computing the auxiliary functions. Note that the k& loop is performed
locally at each node, rather than forming loops within the network. The above
optimization effectively reduces the round complexity and eliminates redundant
traversals. Lemma 2 proves the correctness of SEI-SMBC and Theorem 1 provides
the round complexity of the single-edge incremental algorithms.

Lemma 2. SEI-SMBC is capable of accurately computing the SMBC' for each
vertex. Furthermore, in contrast to Algorithm 1, SEI-SMBC does not require any
additional communication.

124 Y. Wang et al.

Theorem 1. The round complexity of SEI-SPBC and SEI-SMBC are
O(DC (AR + DE) + |Fpaten|). AR and DB denote the mazimum num-
ber of articulation points and the mazximum diameter of the biconnected compo-
nents, respectively. |Fpaien| represents the number of affected vertices resulting
from insertion.

6 Multi-edge Incremental Algorithm

This section presents MEI-SPBC and MEI-SMBC for incrementally updating game-
theoretic betweenness centralities for multi-edge insertions.

Haryan et al. [9] propose an incremental algorithm for shared-memory sys-
tems that builds a BFS tree T and, for every vertex v, maintains an auxiliary
subgraph capturing the connectivity among v’s children in T'. A vertex u in this
subgraph is safe if a non-tree edge joins u to an ancestor of v; a component is
safe if it contains at least one safe vertex, and unsafe otherwise. Upon inser-
tion of a new edge, the algorithm updates the auxiliary subgraphs and identifies
articulation points by the following rules: 1. w is the root of T" and its subgraph
has at least two components. 2. w is not the root and its subgraph contains at
least one unsafe component. 3. w is adjacent to a bridge and has a degree of at
least 2.

Algorithm 4. MEI-UB(G, Batch)

1: Input: Graph G(V, E), set of new edge set Batch, each vertex v knows the bicon-
nected component BS it belongs
2: Output: Each vertex v knows the biconnected component BUG, it belongs in the
new graph G’
: for each edge e = (u,v) € Batch do

Vertex u sends msg(u, v, (u,v), +) upwards along T'
Vertex v sends msg(v, u, {(u,v),+) upwards along T’
u,v),+) and msg(v, u, (u,v),+) then

Mark w as a LCA vertex

Update connectivity and propagate safety in the subgraph., held by w

Vertex w transmits msg(u, v, (u,v), —) and msg(v,u, (u,v), —) along the path
previously traversed by the message.

3
4
5
6: if Vertex w receives msg(u, v, (
7.
8
9

10: for each Vertex p receiving msg(u, v, (u,v), —) from vertex ¢ do

11: Update the bridge flag of (p, ¢} if (p, ¢) is a bridge

12: Mark q as a safe point

13: Identify articulation points and propagate within the biconnected components

Algorithm 4 is designed to update the biconnected components of a graph
G following the insertion of edge set Batch. Each vertex v and v communicates
connection update information by sending upward messages. Upon receiving
messages from both u and v, a vertex w is designated as the least common

Incremental Distributed Algorithms for Game-Theoretic 125

ancestor (LCA) and updates the connectivity of the subgraph accordingly. Sub-
sequently, vertex w propagates negative messages to update the bridge flags and
propagate security information. Ultimately, the algorithm identifies articulation
points and propagates updates within the biconnected components to ensure the
consistency of the graph structure.

The MEI-SPBC algorithm is similar to Algorithm 1. The differences are as fol-
lows: First, MEI-SPBC replaces SEI-UB with Algorithm 4. Second, when inserting
the edge set Batch, it is necessary to perform BF'S instances for each pair of end-
points simultaneously. Due to congestion constraints, the MSBFS procedure must
be invoked. Moreover, MEI-SMBC can also be derived from MEI-SPBC. Below, we
analyze its complexity and show that the connectivity maintenance part does
not dominate its complexity, which remains comparable to that of single-edge
updates. Theorem 2 provides the round complexity of the multi-edge incremental
algorithms.

Theorem 2. The round complexity of MEI-SPBC and MEI-SMBC are
O(DY (AR + DERY + |Fpagen| + |Batch|). AB® and DE* denote the mai-
mum number of articulation points and the mazimum diameter of the biconnected
components, respectively. |Fpaien| and |Batch| represent the number of affected
vertices resulting from insertion and the number of inserted edges, respectively.

7 Experimental Results

This section reports the experimental evaluation of the proposed algorithms on
real-world graphs. All experiments are conducted on a 20-node cluster; each
node is equipped with two 24-core, 3.0 GHz Intel Xeon Gold 6248R. processors
and 256 GB of DDR4 memory. The algorithms are implemented in the Gemini
framework [12]. We select several real-world datasets from SNAP? and [13],
covering social, communication, and road networks; their detailed statistics are
summarized in Table 3.

Table 3. Dataset

Graph [Vl ||E| |Graph V| |E|
RoadNet-PA (PA)[1.08M|1.54M|web-Stanford (ST)281.90K[2.312M
roadNet-TX(TX)|[1.37M|1.92M web-Google(GG) (875.71K|5.105M
roadNet-CA(CA)|[1.96M|2.76M wiki-Talk(WK) [2.39M |5.02M

After randomly removing 10 edges from the graph, we pre-compute the SPBC
and all auxiliary data on the resulting graph and then reinsert the edges. This
experiment is executed with three approaches: (i) a static recomputation of the
SPBC; (ii) SEI-SPBC, which performs incremental updates edge-by-edge; and

2 http://snap.stanford.edu/data.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data

126 Y. Wang et al.

(iii) MEI-SPBC, which processes the edges in a single batch. The running time
and number of iterations for each approach are reported in Table4. Due to
space limitations, the results of the ordinary betweenness centrality maintenance
algorithm, SEI-SMBC and MEI-SMBC can be found in the full version.

Table 4. Performance of the static algorithm and the incremental algorithms for SPBC

Static SEI-SPBC MEI-SPBC
Graph Round |Time(s) |Round |Time(s) Round |[Time(s)
wiki-Talk 6704278 |1443800.73/7590205 |430874.66/2407238/111097.93
road-CA 20698461/493276.30 |11019734(245411.07/1295702(31129.25
road-PA 14630532/221301.74 5415652 |103085.63(745211 |16832.63
road-TX 14630532/264895.56 5214811 |75409.95 (791074 |18276.79
web-Stanford (3354657 [17673.51 |6252892 64962.19 611092 6517.41
web-Google (3207498 [107198.35 |21847093/507614.39227760750745.06

Table 4 shows the multi-edge incremental algorithm improves efficiency com-
pared to both static and single-edge algorithms. The maximum speedup over
the static algorithm is 15.84, with a minimum of 13.00, indicating substantial
reduction in execution time.

Compared to the single-edge incremental algorithm, the multi-edge incre-
mental algorithm achieves a maximum speedup of 7.88 and a minimum of 4.13,
further enhancing efficiency by reducing redundant traversals. The performance
gain depends on the graph’s structure; if single-edge updates affect disjoint sets,
the speedup may be less, while batch processing in the multi-edge algorithm
reduces unnecessary traversals.

Time Round

2, o, %
% " %
- T é
>
~ =
7 7
%, %, %y,
v % %

Avg. Time(s)

Z <
%
Avg. Round
%y, Y,
% %,

o
btﬂ\"! N

20 40 60 80 100 20 40 60 80 100
Batch size Batch size

1

Fig. 2. Performance of MEI-SPBC across different batch sizes

Incremental algorithms are significantly influenced by the distribution of
biconnected components within the graph. When the graph contains many uni-
formly sized biconnected components, the incremental algorithm is efficient.
However, when there are only a few large components, the probability of update

Incremental Distributed Algorithms for Game-Theoretic 127

edges falling within these large components increases, leading to excessive traver-
sal and performance degradation to that of a static algorithm. As seen in web-
Google and web-Stanford results, the incremental algorithm performs poorly,
with SEI-SPBC exceeding the static algorithm’s execution time. The algorithm
performs best in graphs with many uniformly sized biconnected components,
whereas it underperforms in graphs with a few large biconnected components.

We evaluate the scalability of MEI-SPBC with edge sets of sizes 20, 40, 60, 80
and 100, as shown in Fig. 2. The x-axis shows batch size, and the y-axis shows
the average time or rounds per inserted edge. MEI-SPBC scales efficiently with
iterations, as processing speed improves with more edges, though it plateaus
beyond a certain batch size. The algorithm demonstrates excellent scalability
on wiki-Talk, but for road graphs, increasing batch size has little impact on
processing speed.

8 Conclusion

This study explores the incremental algorithms for game-theoretic betweenness
centralities in the CONGEST model. We introduce SEI-SPBC, a Shapley value-
based algorithm for single-edge insertion that avoids congestion through efficient
scheduling and includes a distance update procedure for accuracy. Building on
this, we propose SEI-SMBC, a semi-value-based algorithm that reduces communi-
cation overhead at the cost of increased local computation, improving round com-
plexity over general methods. Finally, we present a multi-edge insertion variant
of SEI-SMBC, which updates biconnected components with low-round complex-
ity, providing a scalable solution for large-scale network changes. Experimental
results show that the multi-edge incremental algorithm achieves speedup fac-
tors of up to 7x and 16x compared to the single-edge and static algorithms,
respectively.

Unlike edge insertion, which typically involves merging existing biconnected
components, edge deletion destroys current components and necessitates their
subsequent reconnection, making deletion significantly more challenging than
insertion. More specifically, the destruction phase of a decremental algorithm
requires extensive global information to modify the underlying data structures
and update vertex states. Furthermore, the reconnection phase demands that
different components select new edges to restore connectivity after the removal
of the original connecting edge. These requirements pose substantial challenges
for the design and implementation of distributed decremental algorithms. Hence,
this paper focuses solely on incremental algorithms. Future work will extend the
algorithm to decremental algorithms with low-round complexity and optimize
communication strategies to reduce congestion and costs in distributed environ-
ments.

References

1. Grofman, B.N., Owen, G.: A game theoretic approach to measuring degree of
centrality in social networks. Soc. Netw. 4(3), 213-224 (1982)

128

10.

11.
12.

13.

Y. Wang et al.

Szczepanski, P.L., Michalak, T.P., Rahwan, T.: Efficient algorithms for game-
theoretic betweenness centrality. Artif. Intell. 231, 39-63 (2016)

Wang, Y., Hua, Q., Gao, W., Jin, H.: Nearly optimal distributed algorithm for
computing game-theoretic betweenness centralities. Chin. J. Comput. (2025, to
appear)

. Szczepanski, P.L., Michalak, T.P., Rahwan, T.: A new approach to betweenness

centrality based on the Shapley value. In: Proceedings of AAMAS 2012, pp. 239-
246 (2012)

Tarkowski, M.K., Szczepanski, P.L., Michalak, T.P., Harrenstein, P., Wooldridge,
M.J.: Efficient computation of semi-values for game-theoretic network centrality.
J. Artif. Intell. Res. 63, 145-189 (2018)

Jamour, F.T., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for incremental
betweenness centrality on large graphs. IEEE Trans. Parallel Distrib. Syst. 29(3),
659-672 (2018)

Pons, R.G.: Space efficient incremental betweenness algorithm for directed graphs.
In: Proceedings of CIARP 2018, pp. 262-270 (2018)

Shukla, K., Regunta, S.C., Tondomker, S.H., Kothapalli, K.: Efficient parallel algo-
rithms for betweenness- and closeness-centrality in dynamic graphs. In: Proceed-
ings of ICS 2020, pp. 10:1-10:12 (2020)

Haryan, C.A., Ramakrishna, G., Kothapalli, K., Banerjee, D.S.: Shared-memory
parallel algorithms for fully dynamic maintenance of 2-connected components. In:
Proceedings of IPDPS 2022, pp. 1195-1205 (2022)

Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: Proceedings of PODC 2013, pp. 375-382 (2013)

Harary, F.: Graph Theory. Addison-Wesley Publishing Company (1969)

Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: Proceedings of OSDI 2016, pp. 301-316 (2016)
Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1-1:25 (2011)

	Incremental Distributed Algorithms for Game-Theoretic Betweenness Centralities in Dynamic Graphs
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Challenges and Mitigation Strategies
	5 Single-Edge Incremental Algorithm
	6 Multi-edge Incremental Algorithm
	7 Experimental Results
	8 Conclusion
	References

