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Abstract. Maintaining game-theoretic betweenness centralities in 
highly dynamic networks is challenging due to the high computational 
cost of recalculating it from scratch. This paper presents distributed 
incremental algorithms in the classic CONGEST model for maintain-
ing Shapley- and semi-value-based betweenness centralities. By address-
ing the challenges of parallel traversal congestion and communication 
overhead, we propose incremental algorithms with round complexities 
of O(DG (Amax 

B + Dmax 
B )  +  |FBatch| + |Batch|) for multi-edge updates. 

Here, DG , Amax 
B and Dmax 

B denote the diameter of the graph, the maxi-
mum number of articulation points, and the maximum diameter of the 
biconnected components, respectively. |F Batch| and |Batch| represent the
number of affected vertices resulting from insertions and the number of
inserted edges, respectively. Experimental results demonstrate that the
proposed multi-edge incremental algorithm achieves speedup factors of
up to 7× and 16× compared to the single-edge incremental algorithm
and the static algorithm, respectively.

Keywords: Distributed algorithms · Dynamic graphs · Net work
centrality

1 Introduction 

Game-theoretic betweenness centralities [1] rooted in cooperative game theory— 
such as Shapley-value and semi-value based measures—model node interactions 
by capturing cooperative behaviors. Compared with ordinary betweenness cen-
trality, they more accurately identify critical nodes under multi-node failure
scenarios, thereby optimizing network stability and resource allocation.

To illustrate the advantage of game-theoretic betweenness centralities, we 
present a toy example depicted in Fig. 1. Every edge is lab eled with its direction
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Fig. 1. Toy e xample

and weight. Since a vertex’s ordinary betweenness centrality can be decomposed 
into dependencies contributed by different source–destination pairs, we focus, 
for simplicity, on the single pair (s, t). In this setting, vertex a and each vertex 
bi obtain an ordinary betweenness centrality of 1/2. Yet it is evident that their 
importance for sustaining communication between s and t is not equal: if multi-
ple vertices bi fail, s and t can still communicate as long as a remains operational; 
however, if a fails, the failure of any single bi will disconnect s and t.  Thus,  in  
scenarios where multiple nodes may fail simultaneously, ordinary betweenness 
centrality fails to distinguish their varying importance. Game-theoretic between-
ness centralities address this limitation by drawing on cooperative game theory: 
the group betweenness centrality is used as the value function for different coali-
tions, providing a principled way to assess vertex importance under multi-node 
failures. Specifically, the semi-value-based betweenness centrality of vertex v is 
defined as follow: 

bcSM (v)  =
∑

U ⊂V \{v} 

p|U | (bc(U ∪  {v}) − bc(U)) 

where p|U | denotes the weight assigned to all subsets of size |U | and satis-
fies

∑
0≤k≤|V |−1 pk

(|V |−1
k

)
= 1, with |V | being the number of vertices in the

graph, and bc(U) is the group betweenness centrality of subset U . Intuitively,
bc(U ∪ {v}) − bc(U) measures the marginal contribution of vertex v to the
betweenness centrality of coalition U ∪ {v}. By taking a weighted sum of these
marginal contributions over all coalitions, the semi-value-based betweenness cen-
trality provides a principled basis for prioritizing node protection in multi-node
failure scenarios.

Beyond the multi-node failure scenarios, another common challenge in real-
world networks is their dynamic nature. Specifically, as nodes are added or 
removed, the relationships between nodes continuously evolve. Evidently, recal-
culating these metrics from scratch every time the network changes is pro-
hibitively costly. F or unweighted graphs G = {V,E}, the complexity of comput-
ing semi-value-based betweenness centrality is O(|V |4) [2]. Although distributed 
algorithms can calculate this in O(|V |) rounds [3], this remains impractical for 
large-scale networks. Thus, efficient incremental algorithms are crucial for updat-
ing game-theoretic betweenness centralities in real time.
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Table 1. A summary of the complexities of SPBC and SMBC

Centralized Distributed (round complexit y)

Centrality Static Static Single-Edge Insertion(SEI) Multi-Edge Insertion(MEI) 
SPBC O(|V |3 ) O(DG (Amax 

B + Dmax
B ) O(DG (Amax 

B + D max
B )

[ 2] O(|V | ) +|FBatch|) +|FBatch| + |Batch |)
SMBC O(|V |4 ) [ 3] (this article) (this article) 

[ 2] 

Addressing this challenge, the goal of this paper is to design efficient incre-
mental algorithms within the CONGEST model, a classical distributed com-
munication model where e ach edge transmits a message of size O(log n) bits
per round. Table 1 summarizes the computational complexities of the Shapley 
value-based betweenness centrality (SPBC) and semi-value-based betweenness 
cen trality (SMBC) algorithms for undirected, unweighted graphs.

2 Preliminaries 

In this section, we introduce the relevant notations, the s ystem model, and the
definition.

We consider an undirected, unweighted graph G(V G ,  EG), where V G and EG 

represent the vertex and edge sets, respectively. The graph’s diameter is denoted 
as DG. G can be decomposed into biconnected components, each connected by 
articulation points. For a biconnected component B, G Ba denotes the subgraph
of G that is connected through articulation point a in B. When the context
clearly identifies the biconnected component, the superscript is omitted.

For brevity, we omit the definitions of betweenness centrality and group 
betweenness centrality. In the various versions of betweenness centrality, the 
dependency of s on v is defined as the sum of v’s betweenness centrality where 
s is either the source or the destination. This is denoted by δs[v], and it reflects
the degree to which s depends on v. Similarly, δG[v] denotes the dependency of
vertex v within graph G.

Shapley value is a fundamental method for fairly allocating values in coop-
erative games. However, it may not fully capture complex relationships or con-
straints in some practical scenarios, which led to the semi-value.
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Definition 1 (Semi-value). Given a game (A, υ),  where  A is the player set 
and υ is the characteristic function, the semi-value of player i ∈ A is given by 

semi − value(i)  =
∑

S⊂A\{i} 

p|S|(υ[S ∪  {i}] − υ[S]) 

where p|S| denotes the weight assigned to a coalition of size |S|.When the weight 
function is set to 1

|A|(|A|−1
|S| ) , all subsets are assigned equal weights, and the semi-

value becomes the Shapley value.

Assuming that each vertex in the graph represents a player and the set of 
vertices corresponds to the set of players, we then can derive the semi-value-
based betweenness centrality b y treating the group betweenness centrality as
the characteristic function defined on subsets of players.

Definition 2 (Semi-value-based betweenness centrality). For a vertex 
v ∈ V G, the semi-value-based betweenness centrality bcSM [v] is defined as 

bcSM [v]  =
∑

U⊂V \{v} 

p|U |(bc[U ∪ {v}] − bc[U ])

Here, bc[U ] is the group betweenness centrality of U . Formulas for Shapley 
value-based betweenness centrality can be derived, but are omitted due to space
constraints.

Directly computing bcSM [v] is infeasible due to the exponential time com-
plexity of calculating betweenness centrality f or all subsets U . To address this,
Szczepanski et al. [2] proposed an alternative method based on analyzing the 
marginal contributions of vertex v, which enables computing bcSM [v]  and  bcSP [v] 
in polynomial time. 

bcSM [v]  =  
k∑

k∈[0,n−1] 

Pk( 
s,t∑

s,t∈V \{v} 
n−ds[t]≤k 

σst[v] 
σst 

fSM (ds[t ], k) +
s∑

s∈V \{v}
n−ds[v]≤k

gSM (ds[v], k))

bcSP [v]  =  
s,t∑

s,t∈V \{v} 

σst[v] 
σst 

fSP (ds[t]) + 
s∑

s∈V \{v} 

gSP (ds[v]) 

where fSM (d, k)  =  (n − d)!(n − k − 1)! 
(n − d − k)!(n − 1)! 

, gSM (d, k)  =  fSM (d, k)  +  k − n +  1  
n − 1 

, 

fSP (d)  =  1 
d 
, g SP (d) =

2 − d

2d
. We work in the CONGEST model: each round,

every node can send an O(logn)-bit message to each neighbor.
Table 2 lists the notations used in the subsequent pseudocode and descrip-

tions of this paper.
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Table 2. Notations 

Notation Definition 
DG The diameter o f G

BG The set of biconnected comp onents of G

GB 
a The subgraph connected through articulation p oint a in B

AG The set of articulation po ints of G

ds[v] The distance from s to v

δs[v]\δG[v] The dependency of s\ G on v

σst The number of the shortest p aths from s to t

σst[v] The number of the shortest paths from s to t passing through v

fSM (h, k),  gSM (h, k) The auxiliary functions o f SMBC

fSP (h),  gSP (h) The auxiliary functions o f SPBC

3 Related Work 

Cooperative game theory has been applied to network ve rtex centrality, starting
with [1]. Szczepanski et al. [4] defined Shapley value-based betweenness centrality 
and expanded it to weighted and un weighted graphs with a polynomial-time
algorithm [2]. Tarkowski et al. [5] further extended these measures to other game-
theoretic centralities, like the Banzhaf index. Wang et al. [3] proposed static 
algorithms on the CONGEST model for Shapley-based betweenness centrality 
and semi-value-based betweenness centrality, with a round complexity of O(n). 
They also proved the lower bound of the r ound complexity for calculating SPBC
and SMBC in the CONGEST model, demonstrating that their algorithm is near-
optimal.

Although algorithms for game-theoretic betweenness centralities in dynamic 
graphs are not yet fully developed, dynamic algorithms for betweenness cen tral-
ity have been extensively studied. Jamour et al. [6] introduced the iCentral algo-
rithm to update betweenness centrality after single-edge changes. The algorithm 
identifies affected vertices, computes their dependencies, and updates centrality 
by adjusting these dependencies. The key idea is to partition the betweenness 
centrality change based on whether the source and destination vertices are in
the same biconnected component as v, and handle each component separately.
iCentral is restricted to undirected graphs, whereas Pons et al. [7] extended it 
to directed graphs. Shukla et al. [8] further generalized the iCentral to handle 
multiple edge updates, introducing redundant nodes and redundant chains to 
reduce the n umber of nodes that must be traversed.

4 Challenges and Mitigation Strategies 

The single-edge incremental algorithm in this paper is based o n the iCentral
algorithm [6]. However, the iCentral algorithm involves a large number of parallel
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tasks, which can lead to congestion when these tasks are e xecuted simultaneously
in the CONGEST model.

Moreover, compared to the ordinary betweenness centrality, the game-
theoretic betweenness centralities require the distances between a specified ver-
tex and other vertices. H owever, the iCentral algorithm does not maintain this
information.

Both the iCentral algorithm and the multi-edge version [8] rely on bicon-
nected components, which must be updated whenever the graph undergoes 
changes. In centralized environments, these components can be recalculated from 
scratch without significantly affecting the overall time complexity of centrality 
maintenance. However, in the CONGEST model, this recalculation approach 
requires a linear number of rounds, making it prohibitively expensive for cen-
trality main tenance, especially when dealing with multi-edge insertions, where
obtaining updated biconnected components is non-trivial. Therefore, a bicon-
nected component maintenance algorithm with low-round complexity is crucial
for efficient operation within the CONGEST model.

To address the three aforementioned challenges—congestion arising from par-
allel tasks, the absence of distance information, and the high cost of updating 
biconnected components—we introduce the following solutions. First, conges-
tion is mitigated through a scheduling mechanism that serializes otherwise con-
flicting communications. Second, a distance-list procedure maintains, for every 
vertex, its up-to-date shortest-path distances to all others, thereb y guaranteeing
the correctness of game-theoretic betweenness centrality. Third, a low-round-
complexity routine for the maintenance of biconnected components—adapted
from the shared-memory algorithm of Haryan et al. [9]—ensures efficient graph-
structural updates, particularly under multi-edge insertions, while curbing over-
all round complexity.

5 Single-Edge Incremental Algorithm 

This section presents SEI-SPBC and SEI-SMBC for incrementally updating game-
theoretic betw eenness centralities for single-edge insertions.

SEI-SPBC is presented in Algorithm 1. Before the update, each vertex must 
be aware of its old SPBC, |V |, fSP, gSP, and which biconnected component it 
belongs to. The biconnected components can be obtained through a Depth-First 
Search. Upon the insertion of an edge e into the original graph G, resulting in 
the updated graph G′, the maintenance of the biconnected components in G′

is achieved through the SEI-UB. To capture the distance information, w e define
a data structure: for each component, each articulation point a maintains a
dictionary DLa, where v denotes the number of vertices in GB

a at distance k
from a. This structure facilitates the computation of fSP and gSP.

The Distancelist procedure computes DLa for each a rticulation point
(Algorithm 2). More details regarding the algorithms presented in this paper,
including Algorithm 2, will be provided in the full version1. Once all articula-
1 https://qiangshenghua.github.io/papers/npcfull.pdf. 

https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
https://qiangshenghua.github.io/papers/npcfull.pdf
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Algorithm 1. SEI-SPBC(G, e) 
1: Input: Graph G(V, E) each vertex v in graph G knows bcG 

SP [v] and new edge 
e =<  p,  q  >  

2: Output: each vertex v in the new graph G′ knows bcG′
SP [v] after inserting e 

3: G′ ← G ∪  {e} 
4: BG′ ← SEI-UB(G, e) 
5: Be ← BG′

e /e 
6: {DLa}  ←  Distancelist(G′)  for  a ∈ AG′

7: Perform BFS(p)  and  BFS( q)
8: Mark s as an affected vertex and S ← S ∪ {s} if dp(s) �= dq(s) for s ∈ G
9: BrandesSPBC(G, Be, S, +)

10: BrandesSPBC(G′, BG′
e , S, −)

11: return bcG′
SP [v]

Algorithm 2. Distancelist(G) 
1: Input: Graph G(V, E) 
2: Output: DLa: Dictionary of distances for articulation point a 
3: Aggregate distance lists along the block-cutpoint tree [11] at the root component 
4: Exchange distance lists among articulation points within each component 
5: Send aggregated distance lists back to other components along the block-cutpoint

tree
return DLa

tion points of a component have correctly updated their dictionaries, according 
to the definition of biconnected components, every vertex within that component 
can determine the number of vertices in the entire graph that are at distance
k from itself, k ∈ [1,DG]. This information will be used in Algorithm 3.  The  
BFS in Algorithm 1 is a Breadth-First Search that determines distances from 
the endpoints of the inserted edge and marks vertices with differing distances 
as affected vertices. These v ertices signify changes in their BFS trees, affecting
shortest paths originating or terminating at them.

The BrandesSPBC procedure (Algorithm 3) is inspired by the classic Brandes 
algorithm, executing a forward BFS and a backward BFS from each affected 
source vertex within the biconnected component. The MSBFS procedure, a dis-
tributed version of multi-source BFS [10], adapts to the CONGEST model with 
low-round complexity.

Lines 6–13 of Algorithm 3 correspond to the reverse phase. It is important 
to note that this component uses the ScheduleB from the MSBFS procedure to 
mitigate congestion problems. Finally, lines 14–21 encompass the local statistics
phase. Returning to Algorithm 1, at line 9, the positive factor implies that a por-
tion of the old dependencies is removed from the original SPBC. The first execu-
tion of BrandesSPBC on G eliminates the old dependencies. Similarly, the nega-
tive f actor at line 10 implies the addition of the corresponding new dependencies.
The second execution of BrandesSPBC on G′ incorporates the new dependencies.
Lemma 1 proves the correctness of the SEI-SPBC.
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Algorithm 3. BrandesSPBC(G,B,S,factor) 
1: Initialize δs[v],  δGs [v]  for  v ∈ B, s ∈ S 
2: {ScheduleB ,  Ps[v],  ds[v],  δs[v]}  ←MSBFS(S, B) 
3: if s and v ∈  AG then 
4: for i ← [0, |DLs|], j ← [0, |DLv|] do 
5: δGs [v]  =  δGs [v]  +  DLs[i] ∗ DLv[j] ∗ fSP (i + ds[v]  +  j) 

**The vertices in B send messages follow the reverse ScheduleB** 
6: if v is scheduled to send msgs to u ∈ Ps[v] then 
7: msgs ←  {δs[v],  ds[v],  σs[v]} 
8: if s∈  AG then 
9: msgs ← msgs ∪  {δGs [v]} 

10: if u receive msgs from v then 
11: δs[u]  =  δs[u]  +  σs[u] 

σs[v] 
∗ (fSP (ds[v]) + δs[v]) 

12: if s∈  AG then 
13: δGs [u]  =  δGs [u]  +  δGs [v] ∗ σs[u] 

σs[v] 

**Message transmission complete** 
14: for affected vertex s ∈ S do 
15: if v �= s then 
16: bcG′

SP [v]  =  bcG′
SP [v]  +  f  actor  ∗ δ s[v]

2
+ factor ∗ gSP (ds[v])

17: if s ∈ AG then
18: bcG′

SP [v] = bcG′
SP [v] + factor ∗ δs[v] × |Gs|

19: for i ← [0, |DLs|] do
20: bcG′

SP [v] = bcG′
SP [v] + factor ∗ DLs[i] ∗ gSP (i + ds[v])

21: bcG′
SP [v] = bcG′

SP [v] + factor ∗ δGs [v]

2

Lemma 1. Algorithm 1 is capable of accurately computing the SPBC for each
vertex.

The proofs of all the theorems and lemmas can b e found in the full version.
We now extend the SEI-SPBC algorithm by proposing an incremental method 

to maintain SMBC. The most straightforward approach i nvolves iteratively exe-
cuting the SEI-SPBC algorithm n times [2]. However, this approach inevitably 
incurs prohibitively high round complexity. To address this issue, we introduce 
SEI-SMBC, which reduces the round complexity at the cost of increasing the local
computation. The SEI-SMBC algorithm is similar to Algorithm 1, with the key 
difference being the inclusion of an additional k-loop and a conditional check 
when computing the auxiliary functions. Note that the k loop is performed 
locally at each node, rather than forming lo ops within the network. The above
optimization effectively reduces the round complexity and eliminates redundant
traversals. Lemma 2 proves the correctness of SEI-SMBC and Theorem 1 provides 
the round complexity of the s ingle-edge incremental algorithms.

Lemma 2. SEI-SMBC is capable of accurately computing the SMBC for each 
vertex. Furthermore, in contrast to Algorithm 1, SEI-SMBC does not require any 
additional communication.
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Theorem 1. The round complexity of SEI-SPBC and SEI-SMBC are 
O(DG(Amax 

B + Dmax 
B )  +  |FBatch|). Amax 

B and Dmax 
B denote the maximum num-

ber of articulation points and the maximum diameter of the biconnected compo-
nents, respe ctively. |FBatch| represents the number of affected vertices resulting
from insertion.

6 Multi-edge Incremental Algorithm 

This section presents MEI-SPBC and MEI-SMBC for incrementally updating game-
theoretic betweenness cen tralities for multi-edge insertions.

Haryan et al. [9] propose an incremental algorithm for shared-memory sys-
tems that builds a BFS tree T and, for every vertex v, maintains an auxiliary 
subgraph capturing the connectivity among v’s children in T .  A  vertex  u in this 
subgraph is safe if a non-tree edge joins u to an ancestor of v; a component is 
safe if it contains at least one safe vertex, and unsafe otherwise. Upon inser-
tion of a new edge, the algorithm updates the auxiliary subgraphs and identifies 
articulation poin ts by the following rules: 1. w is the root of T and its subgraph
has at least two components. 2. w is not the root and its subgraph contains at
least one unsafe component. 3. w is adjacent to a bridge and has a degree of at
least 2.

Algorithm 4. MEI-UB(G, Batch) 
1: Input: Graph G(V, E), set of new edge set Batch, each vertex v knows the bicon-

nected component BG 
v it belongs 

2: Output: Each vertex v knows the biconnected component BG′
v it belongs in the 

new graph G′

3: for each edge e = 〈u, v〉 ∈  Batch do 
4: Vertex u sends msg(u, v, 〈u, v〉, +) upwards along T 
5: Vertex v sends msg(v, u, 〈u, v〉, +) upwards along T 
6: if Vertex w receives msg(u, v, 〈u, v〉, +) and msg(v, u, 〈u, v〉, +) then 
7: Mark w as a LCA vertex 
8: Update connectivity and propagate safety in the subgraphw held by w 
9: Vertex w transmits msg(u, v, 〈u, v〉, −)  and  msg(v, u, 〈u, v〉, −) along the path

previously traversed by the message.

10: for each Vertex p receiving msg(u, v, 〈u, v〉, −) from vertex q do
11: Update the bridge flag of 〈p, q〉 if 〈p, q〉 is a bridge
12: Mark q as a safe point

13: Identify articulation points and propagate within the biconnected components

Algorithm 4 is designed to update the biconnected components of a graph 
G following the insertion of edge set Batch. Each vertex u and v communicates 
connection update information by sending upward messages. Upon receiving
messages from both u and v, a vertex w is designated as the least common
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ancestor (LCA) and updates the connectivity of the subgraph accordingly. Sub-
sequently, vertex w propagates negative messages to update the bridge flags and 
propagate security information. Ultimately, the algorithm identifies articulation
points and propagates updates within the biconnected components to ensure the
consistency of the graph structure.

The MEI-SPBC algorithm is similar to Algorithm 1. The differences are as fol-
lows: First, MEI-SPBC replaces SEI-UB with Algorithm 4. Second, when inserting 
the edge set Batch, it is necessary to perform BFS instances for each pair of end-
points simultaneously. Due to congestion constraints, the MSBFS procedure must 
be invoked. Moreover, MEI-SMBC can also be derived from MEI-SPBC. Below, we 
analyze its complexity and show that the connectivity maintenance part does
not dominate its complexity, which remains comparable to that of single-edge
updates. Theorem 2 provides the round complexity of the m ulti-edge incremental
algorithms.

Theorem 2. The round complexity of MEI-SPBC and MEI-SMBC are 
O(DG(Amax 

B + Dmax 
B )  +  |FBatch| + |Batch|). Amax 

B and Dmax 
B denote the maxi-

mum number of articulation points and the maximum diameter of the biconnected 
components, respectively. |FBatch| and |Batch| r epresent the number of affected
vertices resulting from insertion and the number of inserted edges, respectively.

7 Experimental Results 

This section reports the experimental evaluation of the proposed algorithms on 
real-world graphs. All experiments are conducted on a 20-node cluster; each 
node is equipped with two 24-core, 3.0 GHz I ntel Xeon Gold 6248R processors
and 256 GB of DDR4 memory. The algorithms are implemented in the Gemini
framework [12]. We select several real-world d atasets from SNAP2 and [ 13], 
covering social, communication, and road networks; their detailed s tatistics are
summarized in Table 3. 

Table 3. Dataset 

Graph |V | |E| Graph |V | |E| 
RoadNet-PA(PA) 1.08M 1.54M web-Stanford(ST) 281.90K 2.312M 
roadNet-TX(TX) 1.37M 1.92M web-Google(GG) 875.71K 5.105M 
roadNet-CA(CA) 1.96M 2.76M wiki-Talk(WK) 2.39M 5.02M 

After randomly removing 10 edges from the graph, we pre-compute the SPBC 
and all auxiliary data on the resulting graph and then reinsert the edges. This 
experiment is executed with three approaches: (i) a static recomputation of the
SPBC; (ii) SEI-SPBC, which performs incremental updates edge-by-edge; and
2 http://snap.stanford.edu/data. 

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
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(iii) MEI-SPBC, which processes the edges in a single batch. The running time 
and number of iterations for each approach are reported in Table 4.  Due  to  
space limitations, the results of the ordinary betweenness centrality maintenance 
algorithm, SEI-SMBC and MEI-SMBC can be found in the full version.

Table 4. Performance of the static algorithm and the incremen tal algorithms for SPBC

Static SEI-SPBC MEI-SPBC 

Graph Round Time(s) Round Time(s) Round Time(s) 
wiki-Talk 6704278 1443800.73 7590205 430874.66 2407238 111097.93 
road-CA 20698461 493276.30 11019734 245411.07 1295702 31129.25 
road-PA 14630532 221301.74 5415652 103085.63 745211 16832.63 
road-TX 14630532 264895.56 5214811 75409.95 791074 18276.79 
web-Stanford 3354657 17673.51 6252892 64962.19 611092 6517.41 
web-Google 3207498 107198.35 21847093 507614.39 2277607 50745.06 

Table 4 shows the multi-edge incremental algorithm improves efficiency com-
pared to both static and single-edge algorithms. The maximum speedup over 
the s tatic algorithm is 15.84, with a minimum of 13.00, indicating substantial
reduction in execution time.

Compared to the single-edge incremental algorithm, the multi-edge incre-
mental algorithm achieves a maximum speedup of 7.88 and a minimum of 4.13, 
further enhancing efficiency by reducing redundant traversals. The performance 
gain depends on the graph’s structure; if single-edge updates affect disjoint sets,
the speedup may be less, while batch processing in the multi-edge algorithm
reduces unnecessary traversals.

Fig. 2. Performance of MEI-SPBC across different batc h sizes

Incremental algorithms are significantly influenced by the distribution of 
biconnected components within the graph. When the graph contains many uni-
formly sized biconnected components, the incremental algorithm is efficient. 
However, when there are only a few large components, the probability of update
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edges falling within these large components increases, leading to excessive traver-
sal and performance degradation to that of a static algorithm. As seen in web-
Google and web-Stanford results, the incremental algorithm performs poorly, 
with SEI-SPBC exceeding the static algorithm’s execution time. The algorithm
performs best in graphs with many uniformly sized biconnected components,
whereas it underperforms in graphs with a few large biconnected components.

We evaluate the scalability of MEI-SPBC with edge sets of sizes 20, 40, 60, 80
and 100, as shown in Fig. 2. The x-axis shows batch size, and the y-axis shows 
the average time or rounds per inserted edge. MEI-SPBC scales efficiently with 
iterations, as processing speed improves with more edges, though it plateaus 
beyond a certain batc h size. The algorithm demonstrates excellent scalability
on wiki-Talk, but for road graphs, increasing batch size has little impact on
processing speed.

8 Conclusion 

This study explores the incremental algorithms for game-theoretic betweenness 
centralities in the CONGEST model. We introduce SEI-SPBC, a Shapley value-
based algorithm for single-edge insertion that avoids congestion through efficient 
scheduling and includes a distance update procedure for accuracy. Building on 
this, we propose SEI-SMBC, a semi-value-based algorithm that reduces communi-
cation overhead at the cost of increased local computation, improving round com-
plexity over general methods. Finally, we present a multi-edge insertion variant 
of SEI-SMBC, which updates biconnected comp onents with low-round complex-
ity, providing a scalable solution for large-scale network changes. Experimental
results show that the multi-edge incremental algorithm achieves speedup fac-
tors of up to 7× and 16× compared to the single-edge and static algorithms,
respectively.

Unlike edge insertion, which typically involves merging existing biconnected 
components, edge deletion destroys current components and necessitates their 
subsequent reconnection, making deletion significantly more challenging than 
insertion. More specifically, the destruction phase of a decremental algorithm 
requires extensive global information to modify the underlying data structures 
and update vertex states. Furthermore, the reconnection phase demands that 
different components select new edges to restore connectivity after the removal 
of the original connecting edge. These requirements pose substantial challenges
for the design and implementation of distributed decremental algorithms. Hence,
this paper focuses solely on incremental algorithms. Future work will extend the
algorithm to decremental algorithms with low-round complexity and optimize
communication strategies to reduce congestion and costs in distributed environ-
ments.
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