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ABSTRACT
Rendezvous is a fundamental process in constructing Cog-
nitive Radio Networks (CRNs), through which the user can
communicate with its neighbors by establishing a link on
some licensed frequency band (channel). Most of the ex-
isting elegant rendezvous algorithms assume each user is e-
quipped with a single radio. Nowadays the multi-radio cog-
nitive radio architecture, where each user can access k ≥ 2
channels at the same time, has become a reality. In this pa-
per, we study the rendezvous problem in multi-radio CRN
to see whether and to what extent the multi-radio capability
can improve the rendezvous performance. To begin with, we
propose a family of deterministic distributed algorithms for
two special situations when k = 2 and k = O(

√
n), where n

is the number of all channels. These algorithms show that
the maximum time to rendezvous (MTTR) can be reduced
(largely) in multi-radio CRN. Then we derive a lower bound

of MTTR as Ω(
|Vi||Vj |

k2 ) for arbitrary k (Vi, Vj represents t-
wo users’ available channel sets) and present a distributed

algorithm to guarantee rendezvous in O(
|Vi||Vj |

k2 ) time slot-
s, which meets the lower bound. Extensive simulations are
conducted to corroborate our theoretical analyses.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

Keywords
Multi-Radio; Cognitive Radio Network; Rendezvous

1. INTRODUCTION
Due to the rapid growth of wireless devices and the in-

creasing demand for wireless services, the wireless spectrum
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has become very scarce. The unlicensed spectrum has been
overcrowded such as the Industrial Scientific and Medical
(ISM) band [11], while the utilization of some licensed spec-
trum is pretty low. Cognitive Radio Network (CRN) is such
a promising paradigm to tackle the spectrum scarcity prob-
lem [2], where primary users (PUs) who own the licensed
spectrum coexist with secondary users (SUs) that can op-
portunistically exploit and access the unused licensed spec-
trum. For convenience, “user” mentioned hereafter in the
paper refers to SU.

Rendezvous is a fundamental process in constructing a
CRN, through which two neighboring users can establish a
link on some common frequency band (channel) for commu-
nication. Being a key role, rendezvous is the cornerstone
of many interesting problems, such as message broadcast-
ing [15, 24], routing [14], and data collection [6]. Generally
speaking, the licensed spectrum is assumed to be divided
into n non-overlapping channels (frequency bands) and the
users are equipped with cognitive radios that can sense the
usage of these channels. After the spectrum sensing stage,
the users can find out the unused channels by the PUs,
which we called available channels and they can access these
channels for rendezvous at any time. Once two users access
the same channel at the same time, rendezvous is achieved
and they can communicate with each other. Time to ren-
dezvous(TTR) is used to measure the time cost before ren-
dezvous and denote maximum time to rendezvous(MTTR)
as the worst situation of the rendezvous algorithm, consid-
ering two users may have different sets of available channels
when the spectrum usage of the PUs varies temporally and
geographically.

The state-of-the-art rendezvous algorithms can be main-
ly divided into two categories: global sequence (GS) based
algorithms [13, 19, 23] and local sequence (LS) based ones
[7, 12]. GS algorithms design channel access strategies on
the basis of all licensed channels, regardless of whether they
are available. The best result [13] guarantees rendezvous for
any two users in O(n2) time slots if their available chan-
nels sets intersect. LS algorithms make use of each user’s
available channels and they can reduce the TTR largely
when the portion of available channels counts for a small
fraction. Specifically, for two users with available channel
sets Vi, Vj , [12] guarantees rendezvous in O(|Vi|2) (suppose
|Vi| ≥ |Vj |) time slots when each user has a distinct iden-
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tifier and [7] guarantees rendezvous in O(|Vi||Vj | log log n)
time slots. However, all these works are proposed for single-
radio CRN setting, which means each user can only access 1
channel in each time slot. In this paper, we focus on design-
ing distributed rendezvous algorithms for multi-radio CRN,
where each user can access k ≥ 2 channels at the same time.

In recent years, multi-radio architecture has been widely
used in wireless mesh networks [10,22]. Due to the hardware
limitations, most works use the single-radio architecture for
cognitive radio network, which implies only 1 channel can
be accessed at the same time. However, [16] has implement-
ed a multi-radio cognitive radio network at UCLA where
each node is equipped with multiple radios to sense and ac-
cess channels. [1] also proposed robust channel assignment
for multi-radio cognitive radio network. To the best of our
knowledge, only two papers considered the rendezvous pro-
cess for multi-radio CRN, which should play an important
role in constructing the CRN. [20] proposed a multi-interface
rendezvous in self-organizing CRN. And [25] investigated
multiple radios for effective rendezvous in CRN. However,
these two works either did not give the theoretic MTTR
bound regarding the benefits of using multi-radios [20] or did
not show how far their rendezvous performance is away from
the optimal [25]. In our paper, we aim to answer one ques-
tion: to what extent could multi-radio improve the MTTR
compared to single-radio CRN.

In order to solve the rendezvous problem in multi-radio
CRN, we first design different algorithms for two special sit-
uations. When k = 2, which means the user can access two
channels in the same time slot, we design both GS and LS
algorithms, where the GS algorithm guarantees rendezvous
in O(n2) time slots (only constant factor lower than single-
radio CRN [13]) and the LS one guarantees rendezvous in
O(|Vi||Vj |) time slots (log log n factor lower than [7]). For
the other case k = O(

√
n), rendezvous is guaranteed in O(n)

time slots based on the quorum system method. Second, we

derive the lower bound as Ω(
|Vi||Vj |

k2 ) when the user can ac-
cess arbitrary k channels at the same time, and we present
how to meet the bound based on the LS algorithm. Finally,
we conduct extensive simulations and these results corrobo-
rate our theoretical analyses.

The rest of the paper is organized as follows. The next
section introduces some related works. Model and problem
formulation are provided in Section 3. We show the algo-
rithms for two special situations in Section 4. The lower
bound is derived in Section 5 and a general construction for
rendezvous to meet this lower bound is presented in Sec-
tion 6. Simulation results are depicted in Section 7 and we
conclude the paper in Section 8.

2. RELATED WORK
Rendezvous algorithms can be divided into two categories:

centralized and decentralized algorithm. Assuming a central
controller or a dedicated Common Control Channel (CCC)
exists [17,21], centralized algorithm can be realized by com-
municating through the central controller or the CCC, but
it’s vulnerable to adversary attacks and easily overcrowded
when the number of users increases.

The main part of decentralized algorithms is blind ren-
dezvous algorithm, where no centralization or CCC exists.
The common technique used in blind rendezvous algorithms
is Channel Hopping (CH), which means each user can gener-

Table 1: MTTR for Single-Radio Rendezvous
Algorithms MTTR

GOS [9] n(n+ 1) = O(n2)

Jump-Stay [19] 3nP 2 + 3P = O(n3)

CRSEQ [23] P (3P − 1) = O(n2)

DRDS [13] 3P 2 = O(n2)

AHW [8] 3P 2 logM = O(n2 logM)

MLS [12] O(|Vi|2) = o(n2)

Result [7] O(|Vi||Vj | log log n) = O(n2 log log n)

Remarks: 1)P is the smallest prime number P ≥ n,
n ≤ P < 2n; 2)M is the maximum value of the users’
identifiers; 3) Vi, Vj represents two users’ available chan-
nels sets and supposing |Vi| ≥ |Vj |;

Table 2: MTTR for Multi-Radio Rendezvous
Algorithms MTTR

RPS [25] O(� P
max{m,n}� × (Q−G))

EAR [20] No explicit MTTR bound but simulations

Remarks: 1)Q is the number of total channels, P is the
smallest prime number larger than Q, m,n are the num-
ber of radios each user is equipped with; 2) G is the
number of common channels.

ate a specific sequence and hop among the available channels
according to it. The state-of-the-art distributed rendezvous
algorithms for single-radio CRN are summarized in Table 2.
Generally speaking, there are two types of sequences used
in extant works: global sequence (GS) is constructed based
on all channels’ information, and local sequence (LS) is gen-
erated on the basis of the user’s available channels. Thus
different users generate the same global sequence, but they
could have different local sequences.

Generated Orthogonal Sequence (GOS) [9] is a pioneering
work which generates a GS of length n(n+1) based on a ran-
dom permutation of {1, 2, · · · , n}. However, this algorithm
is limited to the situation that all these channels are avail-
able. Quorum-based Channel Hopping (QCH) [4, 5] works
efficiently for synchronous users (i.e. the users start the ren-
dezvous algorithm at the same time), which generates the
GS based on the quorum system. Asynchronous QCH [3] is
modified for asynchronous users (i.e. the users’ start time is
different), but only applicable to two available channels.

Channel Rendezvous Sequence (CRSEQ) [23] is the first
one guaranteeing rendezvous in bounded time. It firstly
computes the smallest prime P > n and constructs the GS
with P periods. For each period, 3P − 1 elements are then
generated based on the triangle number and modular op-
eration. Jump-Stay (JS) [19] generates the GS of P pe-
riods and each period contains two jump frames and one
stay frame, where each frame contains P numbers. CRSEQ
guarantees rendezvous in O(n2) time slots for any two users
and it works badly for symmetric users (i.e. the users have
the same available channels). JS guarantees rendezvous for
symmetric users in O(n) time slots but in O(n3) time slots
for two asymmetric users (i.e. the users may have differen-
t available channels). This result is later improved in [18].
Disjoint Relaxed Difference Set (DRDS) [13] is the first al-
gorithm guaranteeing quick rendezvous for both symmetric
and asymmetric users. It reveals the equivalence between
DRDS and GS. By constructing an appropriate DRDS and
transforming it into a GS, rendezvous can be guaranteed in
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O(n2) time slots for asymmetric users and in O(n) time slots
for symmetric users.

There are mainly three LS based algorithms. Alternate
Hop-and-Wait (AHW) [8] generates different sequences when
each user has a distinct identifier that can be represented as
a unique binary string. However, it also uses the informa-
tion of all channels to construct the sequence. [12] gener-
ates different sequences on the basis of each user’s identifier
and the available channels. For two sets Vi, Vj (suppose
|Vi| ≥ |Vj |), it guarantees rendezvous in O(li|Vi|2) time slot-
s (li is a constant for most situations), which doesn’t rely on
the n channels. [7] constructs different sequences based on
edge coloring without the user’s identifer and it guarantees
rendezvous in O(|Vi||Vj | log log n) time slots.

For multi-radio rendezvous algorithm, [25] first studies
how to generalize the existing algorithms to use multiple ra-
dios to achieve rendezvous. It used two strategies: (1)applying
an existing algorithm to each radio independently; (2) first
applying an existing algorithm to generate a CH sequence,
then in each time slot the user accesses m consecutive chan-
nels of the sequence, where m is the number of user’s radios.
In this way, theMTTR is reduced to 1

m
of an existing single-

radio algorithm. Then [25] proposed a new algorithm. The
key idea is dividing the radios into 1 dedicated radio and
m− 1 general radios. Users stay in a specific channel in the
dedicated radio for a duration while hop on consecutivem−1
channels in the general radios. From table 2 we can see the
MTTR is also about 1

m
of an existing single-radio algorithm.

Besides, [20] also proposed a multi-interface rendezvous al-
gorithm based on Jump-and-Stay algorithm [19], where each
user is equipped with 3 radios. The main idea is sorting the
available channels by the channel quality. Channel sequence
is composed of jump sequence and stay sequence. Compared
to JS algorithm in [19], the difference is user hops on better
channels more often. And the available channel sets are di-
vided among 3 radios. This paper only gives a performance
simulation that shows the TTR is reduced compared to JS
algorithm. From the above, we can see both of the algo-
rithms didn’t study whether their rendezvous performance
is optimal or not.

3. MODEL AND PROBLEM DEFINITION
We consider the blind rendezvous problem where the users

try to discover each other without a dedicated common con-
trol channel and the knowledge of each other. Assume the
licensed spectrum is divided into a set of n non-overlapping
channels as U={1,2,...,n}, where the indices are known to
all the users. Supposing time is divided into slots of equal
length 2t where t is the sufficient time to establish a link if
two users access the same channel at the same time. Each
user i is equipped with multiple cognitive radios to sense
the licensed spectrum and it results in an available channel
set Vi ⊆ U . Two users i and j can discover each other if
they have overlapping channels, i.e., Vi ∩ Vj 	= ∅. Differen-
t from extant works, assuming each user is equipped with
k(k ≥ 2) cognitive radios, which implies the user can access
k channels simultaneously in a single time slot, rather than
1 channel in previous works.

We mainly discuss whether the rendezvous time can be
improved under the k-radio scenario and to what extent it
could help. Different users may not have the same available
channel sets as they are distributed in different positions and
may have different interferences, which we call it asymmetric

Figure 1: Channel hopping sequence and time slots
with k = 2 in asynchronous model. User i can access
2 channels simultaneously each time slot, it hops to
channel set Sr

i at tri .

case. As all the users are independent, they may “wake up”
at different time, then their channel-hopping sequences may
have a shift. In order to be more close to reality, we focus
on asymmetric and asynchronous scenarios.

As the most rendezvous algorithms do, we also adopt
channel hopping sequences. In each time slot, each user
i hops on k channels in Vi to attempt rendezvous with their
neighbors. For example, user i obtains its own channel hop-
ping sequence Si = [S0

i , S
1
i , · · · , Sx

i , · · · ], where set Sx
i ⊆ Vi

and |Sx
i | = k. When user i wakes up, it hops to channel set

S0
i at time slot t0i , then hops to channel set S1

i at t1i , and so
on. Now we give an example of k = 2, as shown in Fig. 1.

Definition 1. Given a pair of users i and j, Vi ∩ Vj 	= ∅,
the users i and j rendezvous if Sx

i ∩Sy
j 	= ∅ for some finite

integers x, y, considering the different “wake-up” time.

Time to rendezvous(TTR) is an important metric to eval-
uate the rendezvous algorithms. In this paper, we mainly
focus on asynchronous case, so our goal is to minimize the
Maximum Time to rendezvous(MTTR) for two users. When
MTTR is bounded, rendezvous is guaranteed.

4. SPECIAL CASES FOR MULTI-RADIO
RENDEZVOUS

In this section, we present different distributed rendezvous
algorithms for two special cases k = 2 and k = O(

√
n).

4.1 Special Case 1: k = 2

When each user can access 2 channels at each time s-
lot, we extend previous single radio rendezvous algorithm
to this problem and compare their performances. Firstly,
we consider the global sequence (GS) based rendezvous al-
gorithm [13]. Before presenting the algorithm, we give the
definition of Disjoint Relaxed Difference Set(DRDS).

Definition 2. A setD = {a1, a2, ..., ak} ⊆ Zn(Zn = [0, n−
1]) is called a Relaxed Difference Set(RDS) if for every d 	= 0
(mod n), there exists at least one ordered pair (ai, aj) such
that ai − aj ≡ d (mod n), where ai, aj ∈ D.

Lemma 1. If D is an RDS under Zn, then Dk = {(ai+k)
mod n|ai ∈ D} is also an RDS under Zn.
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Definition 3. A set S = {D1, D2, · · · , Dh} is called a Dis-
joint Relaxed Difference Set(DRDS) under Zn if ∀Di ∈ S,
Di is an RDS under Zn and ∀Di, Dj ∈ S, i 	= j, Di∩Dj = ∅.

[13] reveals the equivalence of DRDS and GS that can be
used in rendezvous scheme. We present the asynchronous
rendezvous algorithm based on the DRDS construction [13].
The set of all licensed channels is U = {1, 2, · · · , n}. Find
the smallest prime P such that P ≥ n

2
.

Algorithm 1 Global sequence based rendezvous algorithm

1: Divide the total channel set U = {1, 2, ..., n} into two
parts U1 = {1, 2, ..., n

2
} and U2 = {n+1

2
, ..., n};

2: Construct DRDS of Zm where m = 3P 2;
3: For each user i, apply the DRDS based Rendezvous Al-

gorithm in [13] to channel set U1 and U2 simultaneously,
and denote the outputs to be CH1 = {c01, c11, . . . , ct1, . . .},
CH2 = {c02, c22, . . . , ct2, . . .};

4: For any t, pick two channels from CH1 and CH2 respec-
tively to form St

i = {ct1, ct2};

Theorem 1. For two users i and j with available channel
sets Vi, Vj ⊆ U , whenever they start Alg. 1, they can achieve
rendezvous in O(n2) time slots if Vi

⋂
Vj 	= ∅.

Proof. In Alg. 1, we divide the channels U into two
parts U1 and U2. Then we construct a DRDS DR1 of Zm

where m = 3P 2, P ≥ n
2
. Based on DR1 we can get a global

channel hopping sequence CH1 for channel set U1. Accord-
ing to Lemma 1, we can get a similar DRDS DR2 used for
channel set U2, then get CH2. At each time slot,the user
can access two channels from CH1 and CH2 respectively,
and from the rendezvous guarantee in [13], we can get the
MTTR = 3P 2 = O(n2).

It’s easy to verify that n
2
≤ P < n, and thus the MTTR ∈

[ 3n
2

4
, 3n2), which is nearly 4 times lower than single-radio

CRN as Table 2. Moreover, when the number of available
channels is not large, we can use the following local sequence
(LS) based rendezvous algorithm to achieve a better result.

Algorithm 2 Local sequence based rendezvous algorithm

1: For each user i, the available channel set Vi =
{a1, ..., a|Vi|}, time slot t0i , t

1
i , · · · , tri , · · · , channel hop-

ping sequence Si = [S0
i , S

1
i , · · · , Sr

i , · · · ]
2: Choose primes p, p′ from [|Vi|, 3|Vi|], p 	= p′

3: For each time slot tri (stage r), f = r mod p, g = r mod
p′

4: if either f or g is not in [1, |Vi|] then
5: choose af or ag randomly from channel set Vi

6: end if
7: Sr

i = {af , ag}

Theorem 2. For arbitrary two users i, j, Vi ∩ Vj 	= ∅,
if they execute Alg.2 asynchronously, they can achieve ren-
dezvous in O(|Vi| · |Vj |) time slots.

Proof. Consider two users i, j, available channel sets
Vi = {a1, ..., a|Vi|}, Vj = {b1, ..., b|Vj |}. For user j, suppose

the primes are q, q′.

Suppose Vi ∩ Vj = ax = by. In synchronous model, in
order to guarantee rendezvous, we need to find a time slot
r such that r ≡ x mod p and r ≡ y mod q, where p 	= q.
According to Chinese Remainder Theorem, we can find a
solution of r in no more than pq steps. As for Sr

i , S
r
j , we

can judge whether they rendezvous in single time slot, so we
need no more than pq = O(|Vi| · |Vj |) time slots to guarantee
rendezvous.

In asynchronous model, we can double each stage r in the
above construction, that is, we should execute Sr

i = {af , ag}
for 2 time slots. Assume user i and j “wake up” in t0i and
t0j respectively, t0i < t0j , then we can find r such that the

rth stage of user i and the {r − t0j−t0i
2

}th stage of user j
overlap for at least 1 time slot. Like the proof above, we

can guarantee rendezvous between Sr
i and S

r− t0j−t0i
2

j in pq
steps. Therefore, we need no more than 2pq = O(|Vi||Vj |)
time slots to guarantee rendezvous.

After applying both GS and LS rendezvous algorithms to
2-channel scenario, we compare their performance as follows.
Given two users i, j with available channel sets Vi, Vj , if they
can access 2 channels in each time slot, for GS based ren-
dezvous Alg. 1, MTTR is O(3P 2), where P is the smallest
prime larger than n

2
, which is improved 4 times compared

to the scenario of accessing 1 channel each time slot. For
LS based rendezvous Alg. 2, MTTR is O(|Vi| · |Vj |), while
accessing 1 channel is O(|Vi||Vj |loglogn) [7], which implies
the performance has been improved with log log n factor.
Generally speaking, when each user can access 2 channels
at each time slot, the performance is improved and the L-
S based algorithm improves more than GS ones when n is
larger, for example n > 16.

4.2 Special Case 2: k = O(
√
n)

When the number of channels the user can access at the
same time is much larger, such as k = O(

√
n), we show

that the rendezvous can be guaranteed much more quickly.
The main technique used is quorum system, which has in-
tersection property and the size of each quorum is O(

√
n),

we can utilize this property to provide rendezvous between
two channel hopping sequences. A quorum system can be
defined as follows:

Definition 4. Given a set S = {s1, s2...sn}(n ≥ 1), a set
system QS is a quorum system over S, if and only if

∀Q1, Q2 ∈ QS : Q1 ∩Q2 	= ∅.
Denote the total channel set U = {1, 2, ..., n}, arrange the
channels in U in a square matrix A√

n×√
n, ap,q = channel

(p − 1) ∗ √
n + q is a element in row p and column q. Now

we consider the case when k = 2
√
n− 1.

Theorem 3. The distributed rendezvous algorithm based
on quorum system can guarantee rendezvous asynchronously
in O(n) time slots.

Proof. Consider two users i and j with Vi ∩ Vj = ap,q.
According to the construction above, the channel hopping
sequences we obtained are periodic with period

√
n×√

n =
n, and denote them as Si = {Qp,q}, Sj = {Q′

p,q}. Con-
sider a period, let Qp = {Qp,1, · · · , Qp,

√
n}, the same for

Q′
p(1 ≤ p ≤ √

n). And the channel hopping sequence Si =
{Q1, Q2, · · · , Q√

n} = {Q1,1, · · · , Q1,
√

n, Q2,1, · · · , Q2,
√
n, · · · ,
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Algorithm 3 Quorum system based rendezvous algorithm

1: For user i, denote time slot t0i , t
1
i , · · · , tri , · · · , Si =

[S0
i , S

1
i , · · · , tri , · · · ], k = 2

√
n− 1

2: Construct a quorum system QS={Qp,q, 1 ≤ p, q ≤ √
n}

as follows: Qp,q contains all elements in row p and col-
umn q of square matrix A√

n×√
n. Then QS contains√

n×√
n quorums, each quorum has 2

√
n− 1 elements

3: if there exist some channels in Qp,q that are not in Vi

then
4: Replace them by channels randomly selected from Vi

5: end if
6: At time slot tri , hopping sequence Sr

i = Qy+1,z+1, where
r = x · n+ y · √n+ z, x, y, z are integers

Figure 2: A period of Channel hopping sequence
with k = 2

√
n − 1, for user i, ap,q appears in every

element of Qp; for user j, ap,q appears in Q′
p′,q, Q

′
p′+1,q.

Q√
n,1, · · · , Q√

n,
√
n}. In synchronous model, it is obvious

that two users rendezvous in a period of O(n) time slot-
s. In asynchronous model, suppose user i wakes up earlier
than user j, as shown in Fig. 2. For user i, the common
channel ap,q will appear in consecutive

√
n time slots, which

correspond to channel hopping set sequence Qp.
For user j, in the above consecutive

√
n time slots, if there

exist two quorum sets Q′
p′ and Q′

p′+1 that intersect with Qp,

as shown in Fig. 2. As ap,q appears in Q′
p′,q ⊆ Q′

p′ and

Q′
p′+1,q ⊆ Q′

p′+1, either Q
′
p′,q or Q′

p′+1,q intersects with Qp,
then rendezvous can be achieved. Else if there exists only
one quorum set, it’s obvious. So it can guarantee rendezvous
asynchronously in O(n) time slots.

When k = O(
√
n), the MTTR can be reduced largely

(O(n) factor compared with the best result) and we try to
figure out to what extent multi-radio improves in the next
section.

5. LOWER BOUND
After we consider the capability of k-radio to speed up

rendezvous, we mainly focus on the limit of accelerated de-
gree when the k value is given, actually similar to [7], we
can get the following lower bound.

Theorem 4. Any deterministic rendezvous algorithms which
can access at most k channels in the single time slot re-

quire at least
|Vi||Vj |

k2 steps to guarantee rendezvous in asyn-
chronous setting when |Vi|+ |Vj | ≤ n+ 1.

Proof. Denote a = |Vi| and b = |Vj |. Firstly select Vi

uniformly at random from all subsets with a elements of
U = {1, 2, . . . , n}, then pick an element uniformly from Vi

and denote it as e, and select V ′
j uniformly at random from

all subsets with b− 1 elements of U \ Vi. Let Vj = V ′
j

⋃{e}.
Let S be the deterministic rendezvous algorithm that we

use, Si(t) be the channel S accesses in time slot t for user
i and Si(x, t) be the number of occurrence of the element x
in first t time slots, then for any t we have

Ex(Si(x, t)) = E(
∑

y∈Vi

Pr(x = y)Si(y, t))

= E(
1

a

∑

y∈Vi

Si(y, T ))

= E(
1

a
tk) =

tk

a

(1)

A similar result can be got for user j, denote Tm = MTTR
as the minimized rendezvous time and choose T � Tm. Be-
cause of the property of expectation, there exists an ele-

ment x such that aSi(x,T )
T

+ b
Sj(x,Tm)

Tm
≤ 2k which means

aSi(x,T )
T

× b
Sj(x,Tm)

Tm
≤ k2,thus

Si(x, T )× Sj(x, Tm) ≤ k2

ab
(2)

Finally we deal with the case that user i starts at time
0,and user j starts at time tj ∈ [0, T ). Considering the set
Q = {(t1, t2) ∈ [0, T ) × [0, Tm)|Si(t1) = Sj(t2) = x}. It’s
quite obvious that

|Q| ≤ T · Tm · Si(x, T )Sj(x, Tm)

≤ T · Tm
k2

ab

(3)

However since the algorithm guarantees rendezvous in time
Tm, for any tj ∈ [0, T − Tm) there must be a corresponding
point in Q which implies that

|Q| ≥ T − Tm (4)

Combining the two inequalities we get (using the fact that
T � Tm,let T goes to infinity)

T · Tm
k2

ab
≥ T − Tm

Tm ≥ ab

k2

(5)

Thus the theorem holds.

6. GENERAL CONSTRUCTION FOR

In order to meet the bound, we present a general con-
struction for distributed rendezvous process.

The main idea of Alg. 4 is to generate k channels based
on special case k = 2 in Section 4. In the first place, the
available channel set Vi is divided into k

2
subsets with size

2|Vi|
k

(these subsets may not be exactly the same size, we
omit the details to tackle this), and then apply Alg. 2
on each subset to generate the corresponding sequences as
Si,j = {S0

i,j , S
1
i,j , . . . , S

t
i,j , . . .}. It’s obvious that each ele-

ment St
i,j has 2 channels and all these k

2
subsets can produce

k channels to access, as Line 4. We can conclude that:

317

RENDEZVOUS
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1: For user i, denote the available channel set as Vi;
2: Divide Vi into k/2 subsets as Vi,1, Vi,2, . . . , Vi, k

2
, where

|Vi,j | = 2|Vi|
k

;
3: For each Vi,j , use Alg. 2 to generate sequence as Si,j =

{S0
i,j , S

1
i,j , . . . , S

t
i,j , . . .};

4: For any time slot t, construct St
i =

⋃
1≤j≤k/2 S

t
i,j and

access the channels in St
i ;

Theorem 5. For any two users i, j with available chan-
nel sets Vi

⋂
Vj 	= ∅, Alg. 4 guarantees rendezvous in MTTR =

O(
|Vi||Vj |

k2 ) time slots.

Proof. Since Vi

⋂
Vj 	= ∅, there exist 1 ≤ k1, k2 ≤ k

2
such that Vi,k1

⋂
Vj,k2 	= ∅. When they apply Alg. 2 to

each subset, we can check that: for the corresponding se-
quences Si,k1 and Sj,k2 , there exist corresponding x, y such
that Sx

i,k1

⋂
Sy
j,k2

	= ∅ and they are actually in the same time
slot for different wake-up time, then rendezvous can be guar-

anteed in O(|Vi,k1 ||Vj,k2 |) = O(
|Vi||Vj |

k2 ) time slots according
to Theorem 2.

Theorem 5 shows that we can guarantee rendezvous for

any two users in O(
|Vi||Vj |

k2 ) time slots, which meets the low-
er bound in Theorem 4. Compared with the special cas-
es in Section 4, when k = 2, the LS algorithm guarantees
rendezvous in O(|Vi||Vj |) time slots, which corroborate the
analysis, and while k = O(

√
n), the quorum based algorithm

guarantees rendezvous in O(n) time slots, which meets the
lower bound when both |Vi|, |Vj | = Ω(n).

7. SIMULATION
In this section, we evaluate the performance of our pro-

posed distributed algorithms under multi-radio CRN cir-
cumstance and compare the results with the state-of-the-
art single-radio rendezvous algorithms. (The algorithms we
select is DRDS [13], which is a GS based rendezvous algo-
rithm.) Since it is difficult to synchronize timers in practice,
we focus on asynchronous environment.

For a multi-radio CRN, denote the total channel set U =
[1, 2, · · · , n] and k to be the number of cognitive radios each
user is equipped with. For two users i and j, denote the
available channel sets as Vi ⊆ U and Vj ⊆ U , where Vi ∩
Vj 	= ∅. Define θi = |Vi|

n
, θj =

|Vj |
n

. In each simulation,
Vi and Vj are generated randomly from U satisfying some
given conditions, and the wake-up time of each user is also
randomly selected. MTTR is counted as the maximum time
slots that it takes to achieve rendezvous since the second
wake-up user begins its hopping sequence. The simulation
results in the following figures are the maximal MTTR value
of 10000 runs.

Since we have presented two different distributed ren-
dezvous algorithms for the special case k = 2, we first e-
valuate the performance of GS based rendezvous algorithm
and compare it with single-radio scenario (i.e. k = 1). S-
ince the number of available channels for each user is an
important factor, we consider the situations |Vi|, |Vj | have
small and large differences respectively. Fig. 3 shows the
situation θi = θj = 0.8, while we set θi = 0.2, θj = 0.8 in
Fig. 4. When n increases from 10 to 100, the MTTR values
both increase as shown in Fig. 3 and Fig. 4. Compared
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Figure 3: GS based rendezvous algorithm, θi = θj =
0.8, MTTR as n increases
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Figure 4: GS based rendezvous algorithm, θi =
0.2, θj = 0.8, MTTR as n increases

with single-radio CRN, our 2-radio CRN has better perfor-
mance, which is in accordance with our theoretical analysis.
As depicted, our algorithm is nearly 4 times quicker than
the single-radio CRN, which verifies the analysis of Alg. 1.
When θi and θj have a great difference in Fig. 4, the MTTR
value increase enormously compared with θi = θj = 0.8 (Fig.
3), as the number of common channels decreases.

Although the GS based rendezvous algorithm has a good
performance, the LS based rendezvous algorithm (Alg. 2)
achieves a better result. Like GS algorithm, we also consider
the two cases of |Vi| and |Vj |. Fig. 5 shows the situation
θi = θj = 0.8, while Fig. 6 shows the result when θi = 0.2,
θj = 0.8. Similar with Alg. 1, both Fig. 5 and Fig. 6 show
that the MTTR values increase as n increases from 10 to
100. However, as shown in Fig. 5, the LS based rendezvous
algorithm reduces the MTTR largely compared with Fig. 3
(for example, when n = 100, Alg. 1 shows the MTTR value
is about 350 time slots, while Alg. 2 has shorter MTTR
about 270 time slots.) This implies that Alg. 2 can improve
the performance of rendezvous in 2-radio CRN when n is
large. This is also verified from Fig. 6 when |Vi|, |Vj | have
great difference. All these results corroborate the analysis
and the comparison we make in Section 4.

Considering another special case k = O(
√
n). Since Alg.

3 works efficiently when k = 2
√
n − 1, we verify the per-

formance of the result when
√
n increases from 10 to 20 as
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Figure 5: LS based rendezvous algorithm, θi = θj =
0.8, MTTR as n increases
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Figure 6: LS based rendezvous algorithm, θi =
0.2, θj = 0.8, MTTR as n increases

Fig. 7. For this situation, we don’t compare this algorith-
m with single-radio ones, since the MTTR value is about
O(n2), which is very large. (For example, when n = 100,
the MTTR value for the multi-radio CRN can achieve ren-
dezvous in 100 time slots, while the previous result for single-
radio CRN has the smallest MTTR value about 1000 time
slots.) As shown in Fig. 7, the MTTR values increases
when

√
n increases and it’s almost bounded as O(n) time

slots as analyzed in Theorem 3.
Moreover, we evaluate the general construction in Alg. 4

for any arbitrary k. For this simulation, we fix n = 100
and θi = θj = 0.8. As shown in Fig. 8, the MTTR value
decreases when k increases from 1 to 20. When k = 1, which
is the previous single-radio CRN, the result shows that the
MTTR value is very large and it decreases largely when k
is large. This result corroborates the analysis of Theorem 5

where two users can rendezvous in O(
|Vi||Vj |

k2 ) time slots.
In a word, our simulation results show that rendezvous

can be improved in multi-radio CRN. For k = 2, both GS
and LS based algorithms can improve the state-of-the-art
result. For k = O(

√
n), the quorum system method (Alg.

3) reduces the MTTR value largely. For more general cases,
our proposed algorithm guarantees rendezvous in bounded
time with good performance and the MTTR value decreases
when the number of cognitive radio k increases.
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Figure 7: quorum based rendezvous algorithm, MT-
TR as n increases
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Figure 8: n = 100, θi = θj = 0.8, MTTR as k increases

8. CONCLUSIONS
In this paper, we study the rendezvous problem in multi-

radio Cognitive Radio Networks (CRNs), which is a fun-
damental process in constructing a CRN. First of all, we
show the improvement of MTTR in k-radio scenario by con-
sidering two special cases, where k ≥ 2 and k = O(

√
n).

When k = 2, we design both global sequence (GS) and lo-
cal sequence (LS) based distributed rendezvous algorithms,
where GS algorithm improves the time to rendezvous only
by a constant factor, whereas the LS algorithm improves by
log log n factor, where n is the number of all channels. For
another special case k = O(

√
n), the MTTR value can be

reduced largely when the quorum system method is used
to guarantee rendezvous. In order to figure out the limit
of the improvement, we show a lower bound of MTTR as

Ω(
|Vi||Vj |

k2 ), where Vi, Vj represents two users’ available chan-
nel sets. Moreover, we present the method for general con-
struction to rendezvous based on the LS algorithm, which
meets the lower bound. From these aspects, the rendezvous
time for CRN could be improved by using multiple radios
for each user, and the improvement can also be bounded.
Besides, compared to the existing multi-radio rendezvous
algorithm, our rendezvous algorithm improves time to ren-
dezvous by O(k) factor and is optimal. Finally, we conduct
extensive simulations to compare these algorithms and the
results corroborate our theoretical analyses.
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