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ABSTRACT
Minimum-Latency Aggregation Scheduling (MLAS) is a prob-
lem of fundamental importance in wireless sensor networks.
There however has been very little effort spent on design-
ing algorithms to achieve sufficiently fast data aggregation
under the physical interference model which is a more re-
alistic model than traditional protocol interference model.
In particular, a distributed solution to the problem under
the physical interference model is challenging because of the
need for global-scale information to compute the cumulative
interferences at any individual node. In this paper, we pro-
pose a distributed algorithm that solves the MLAS problem
under the physical interference model in networks of arbi-
trary topology in O(K) time slots, where K is the logarithm
of the ratio between the lengths of the longest and shortest
links in the network. We also give a centralized algorithm
to serve as a benchmark for comparison purposes, which ag-
gregates data from all sources in O(log3n) time slots (where
n is the total number of nodes). This is the current best
algorithm for the problem in the literature. The distributed
algorithm partitions the network into cells according to the
value K, thus obviating the need for global information. The
centralized algorithm strategically combines our aggregation
tree construction algorithm with the non-linear power as-
signment strategy in [9]. We prove the correctness and ef-
ficiency of our algorithms, and conduct empirical studies
under realistic settings to validate our analytical results.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication, network
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Complexity]: Nonnumerical Algorithms and Problems—
geometric problems and computations, sequencing and schedul-
ing
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Algorithms, Theory, Performance

Keywords
Minimum Latency, Data Aggregation, Wireless Sensor Net-
works, Physical Interference Model

1. INTRODUCTION
Data aggregation is a habitual operation of practical use in

all wireless sensor networks, which transfers data (e.g., tem-
perature) collected by individual sensor nodes to a sink node.
The aggregation typically follows a tree topology rooted at
the sink. Intermediate sensor nodes of the tree may sim-
ply merge and forward all received data or perform certain
operations (e.g., computing the sum, maximum or mean)
on the data. In a wireless environment, because of the in-
terferences among wireless transmissions, transmissions to
forward the data need to be meticulously coordinated. The
fundamental challenge can be stated as: How to schedule
the aggregation transmissions in a wireless sensor network
such that no undesired interference may occur and the total
number of time slots used (referred to as aggregation latency)
is minimized? This is known as the Minimum-Latency Ag-
gregation Scheduling (MLAS) problem in the literature [1,
5, 15, 16, 17]. Note that we divide the time into time slots,
which makes the design and analysis more tractable.

The MLAS problem is typically approached in two steps:
(i) data aggregation tree construction, and (ii) link trans-
mission scheduling. For (ii), we assume the simplest mode
where every non-leaf node in the tree will make only one
transmission which is after all the data from its child nodes
have been received. To solve the MLAS problem, we require
that no collision of transmissions should occur due to wire-
less interference. If the above two steps are being carried
out simultaneously, we have a “joint” design.
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To model the interferences, most existing literature as-
sume the protocol interference model. The best results known
for the MLAS problem or similar ones ([5, 15, 16, 17]) bound
the aggregation latency in O(Δ + R) time slots, where R is
the radius of the sensor network counted by hop count and
Δ is the maximal node degree. A more realistic model than
the protocol interference model is the physical interference
model [14]. So far, however, very little research has been
done to address the MLAS problem under the physical in-
terference model.

The protocol interference model considers only interfer-
ences within a limited region, whereas the physical inter-
ference model tries to capture the cumulative interferences
from all other currently transmitting nodes or links. More
precisely, in the physical interference model, the transmis-
sion of link ei can be successful if the following Signal-to-
Interference-plus-Noise-Ratio (SINR) condition is satisfied:

Pi/dα
ii

N0 +
∑

ej∈Λ−{ei} Pj/dα
ji

≥ β (1)

Here Λ denotes the set of links that transmit simultaneously
with ei. Pi and Pj denote the transmission powers at the
transmitter of link ei and that of link ej , respectively. dii

(dji) is the distance between the transmitter of link ei (ej)
and the receiver of link ei. α is the path loss ratio, which has
a typical value between 2 and 6. N0 is the ambient noise. β
is the SINR threshold for a successful transmission, which
is at least 1.

A solution to the MLAS problem can be a centralized
one, a distributed one, or something in between. For a
large sensor network, a distributed solution is certainly the
desired choice. Distributed scheduling algorithm design is
significantly more challenging with the physical interference
model, as “global” information in principle is needed by each
node to compute the cumulative interferences at the node.
The only work targeting the physical interference model we
are aware of is [7] which presents an efficient distributed solu-
tion to the MLAS problem with latency bound of O(Δ+R).
One of the drawbacks of their work is that no efficiency guar-
antee can be given for arbitrary topologies.

In this paper, we tackle the minimum-latency aggregation
scheduling problem under the physical interference model,
by designing both a centralized and a distributed schedul-
ing algorithms. Our algorithms are applicable to arbitrary
topologies. Our main focus is on the proposed distributed
algorithm; the centralized algorithm is included for the pur-
pose of serving as a benchmark in the performance compari-
son, which however may be a practical solution for situations
where centralization is not a problem. The distributed algo-
rithm we propose, Cell-AS, circumvents the need to collect
global interference information by partitioning the network
into cells according to a parameter called link length di-
versity (K) which is the logarithm of the ratio between the
lengths of the longest and the shortest links. Our centralized
algorithm, NN-AS, has the best aggregation performance
with respect to the current literature. It combines our ag-
gregation tree construction algorithm with the non-linear
power assignment strategy proposed in [9].

We conduct theoretical analysis to prove the correctness
and efficiency of our algorithms. We show that the dis-
tributed algorithm Cell-AS achieves a worst-case aggrega-
tion latency bound of O(K) (where K is the link length
diversity), and the centralized algorithm NN-AS achieves a

worst-case bound of O(log3 n) (where n is the total number
of sensor nodes). In addition, we derive a theoretical opti-
mal lower bound for the MLAS problem under any interfer-
ence model—log(n). Given this optimal bound, the approx-
imation ratios of Cell-AS and NN-AS are O(K/ log n) and
O(log2 n), respectively. We also compare our distributed al-
gorithm with Li et al.’s algorithm in [7] both analytically
and experimentally. We show that both algorithms have an
O(n) latency upper bound for their respective worst cases
while Cell-AS can still be effective in Li et al.’s worst cases.
Our experiments under realistic settings demonstrate that
Cell-AS can achieve up to a 35% latency reduction as com-
pared to Li et al.’s.

The remainder of this paper is organized as follows. We
discuss related work in Sec. 2 and formally present the prob-
lem model in Sec. 3. The Cell-AS and NN-AS algorithms
are presented in Sec. 4 and 5, with extensive theoretical
analysis given in Sec. 6. We report our empirical studies of
the algorithms in Sec. 7. Finally, we conclude the paper in
Sec. 8.

2. RELATED WORK

2.1 Data Aggregation
Data aggregation is a prominent problem in wireless sen-

sor networks. There exist a lot of exciting work trying to
solve the problem [1, 5, 7, 15, 16, 17]. Minimizing the ag-
gregation scheduling length is one of the most important
concerns.

To the best of our knowledge, all except one paper [7] as-
sume the protocol interference model. [1] proposed a data
aggregation algorithm with latency bound of (Δ−1)R, where
R is the network radius by hop count and Δ is the maximal
node degree. The NP-hard proof of the MLAS problem is
also presented. The current best contributions [5, 15, 16,
17] bound the aggregation latency by O(Δ + R).

[5] is the first work that converted Δ from a multiplicative
factor to an additive one. The algorithm builds on the basis
of maximal independent set which is also used in [17]. The
latter one actually gives a distributed solution.

In [15], the MLAS problem is cast in multihop wireless
networks with the assumption that each node has a unit
communication range and an interference range of ρ ≥ 1.
[16] proposes an aggregation schedule for a distributed so-
lution and proves a lower-bound of max{log n, R} on the
latency of data aggregation under any graph-based interfer-
ence model; n is the network size.

The only solution for the MLAS problem under the physi-
cal interference model is [7] by Li et al. They have proposed
a distributed aggregation scheduling algorithm with con-
stant power assignment, which can achieve a latency bound
of O(Δ+R). However, the efficiency of their algorithm can-
not be guaranteed in arbitrary topologies, which is a conse-
quence of constant power assignment.

2.2 Link Scheduling under the Physical
Interference Model

The physical interference model has received increased at-
tention in recent years for its more realistic abstraction of
wireless networks [14]. For the physical interference model,
some have focused on the maximum achievable network ca-
pacity which is primarily determined by the result of the
Minimum Length link Scheduling (MLS) problem. The MLS
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problem is closely related to the link scheduling step of our
MLAS problem here. Recent results [9, 10, 11] demonstrate
that, with the physical interference model, as opposed to
the protocol interference model, the network capacity can
be greatly increased.

Moscibroda et al. formally propose the problem of link
scheduling complexity in [10]. In [11], Moscibroda et al.
study topology control for the physical interference model
and obtain a theoretical upper bound on the scheduling com-
plexity of arbitrary topologies in wireless networks.

In [9], Moscibroda applies link scheduling to the data
gathering tree in wireless sensor networks with an O(log2n)
complexity. It was the first time a scaling law that describes
the achievable data rate in worst-case sensor networks was
derived. Goussevskaia et al. [3] make the milestone contri-
bution of proving the NP-completeness of a special case of
the MLS problem.

3. THE PROBLEM MODEL
We consider a wireless sensor network of n arbitrarily

distributed sensor nodes v0, v1, . . . , vn−1 and a sink node
vn. Let directed graph G = (V, E) denote the tree con-
structed for data aggregation from all the sensor nodes to
the sink, where V = {v0, v1, . . . , vn} is the set of all nodes,
and E = {e0, e1, ..., en−1} is the set of transmission links
in the tree with ei representing the link from sensor node vi

to its parent.
Our problem at hand is to pick the directed links in E

to construct the tree and to come up with an aggregation
schedule S = {S0, S1, ..., ST−1}, where T is the total time
span for the schedule and St denotes the subset of links in
E scheduled to transmit in time slot t,∀t = 0, . . . , T − 1. A
correct aggregation schedule must satisfy the following con-
ditions. First, any link should be scheduled exactly once,
i.e.,

⋃T−1
t=0 St = E and Si ∩ Sj = ∅ where i �= j. Second, a

node cannot act as a transmitter and a receiver in the same
time slot, in order to avoid the primary interference. Let
T (ei) and R(ei) be the transmitter and the receiver of link
ei, respectively, and T (St) and R(St) denote the transmitter
set and receiver set for the links in St, respectively. We have
T (St)∩R(St) = ∅, ∀t = 0, . . . , T − 1. Third, a non-leaf node
vk transmits to its parent only after all the links in the sub-
tree rooted at vk have been scheduled, i.e., T (Si)∩R(Sj) = ∅
where i < j. Finally, each scheduled transmission in time
slot t, i.e., link ei ∈ St, should be correctly received by
the corresponding receiver under the physical interference
model considering the aggregate interference from concur-
rent transmissions of all links ej ∈ St − {ei} i.e., the condi-

tion
Pi/dα

ii
N0+

∑
ej∈St−{ei} Pj/dα

ji
≥ β should be satisfied.

The minimum-latency aggregation scheduling problem can
be formally defined as follows:

Definition 1. Minimum-Latency Aggregation Scheduling:
Given a set of nodes {v0, v1, . . . , vn−1} and a sink vn, con-
struct an aggregation tree G = (V, E) and a link schedule

S = {S0, S1, ..., ST−1} satisfying
⋃T−1

t=0 St = E, Si∩Sj = ∅
where i �= j, and T (Si) ∩ R(Sj) = ∅ where i ≤ j, such
that the total number of time slots T is minimized and all
transmissions can be correctly received under the physical in-
terference model.

Without loss of generality, we assume that the minimum
Euclidean distance between each pair of nodes is 1. As our

algorithm design targets at arbitrary distribution of sensor
nodes, we assume the upper bound of the transmission power
at each node to be large enough to cover the maximum node
distance of the network, such that no node would be isolated.
Each node in the network knows its location. This is not
hard to achieve during bootstrapping stage in a network
where the sensors are stationary.

4. DISTRIBUTED AGGREGATION
SCHEDULING

Our main contribution is an efficient distributed scheduling
algorithm called Cell Aggregation Scheduling (Cell-AS) for
solving the MLAS problem with arbitrary distribution of
sensor nodes.

Our distributed algorithm features joint tree construction-
link scheduling-power control in a phase-by-phase fashion
to achieve minimum aggregation latency; whereas tree con-
struction and link scheduling are separate steps in [7]. We
first present the key idea behind our algorithm design and
then discuss important techniques to implement the algo-
rithm in a fully distributed fashion.

4.1 Design Idea
Our distributed algorithm first aggregates data from sen-

sor nodes in each small area with short transmission links,
and then further aggregates data in a larger area by collect-
ing from those small ones with longer transmission links;
this process repeats until the entire network as the largest
area is covered.

We classify the lengths of all possible transmission links
in the network into K + 1 categories: [30, 2 · 30], (2 · 30, 2 ·
31], . . . , (2 · 3K−1, 2 · 3K ], where K is bounded by the net-
work’s maximum node distance D with 2·3K−1 < D ≤ 2·3K .
A link from node vi to node vj falls into category k if
the Euclidean distance between these two nodes lies within
(2 · 3k−1, 2 · 3k] with k = 1, . . . , K or [30, 2 · 30] with k = 0.
We define K as the link length diversity which is propor-
tional to the logarithm of the ratio between the lengths of
the longest and the shortest possible links in the network. In
our design, aggregation links in category k are treated and
their transmissions are scheduled (to aggregate data in the
smaller areas) before links in category k + 1 are processed
(to aggregate data in the larger areas).

Our algorithm carries out its actions in an iterative fash-
ion: In round k (k = 0, . . . , K), we divide the network into
hexagonal cells of side length 3k. In each cell, a node with
the shortest distance to the sink is selected as the head, re-
sponsible for data aggregation; the other nodes in the cell
directly transmit to the head with links no longer than 2 ·3k.
In the next round (k + 1), only the head nodes in the pre-
vious round remain in the picture. The network is covered
by hexagonal cells of side length 3k+1 and a new head is se-
lected for data aggregation in each cell. After K + 1 rounds
of the algorithm, only one node will remain, which should
have collected all the data in network, and will transmit the
aggregated data to the sink node in one hop. Fig. 1 gives
an example of the algorithm in a sensor network with 3 link
length categories, in which selected head nodes are in black.

In each round k of the algorithm, links of length cate-
gory k are scheduled as follows to avoid interference and to
minimize the aggregation latency. We assign colors to the
cells and only cells with the same color can schedule their
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(a) Round 0.

(b) Round 1.

(c) Round 2.

Figure 1: The iterations of Cell-AS: an example with
3 link length categories with sink in the center.

link transmissions concurrently. To bound the interference
among concurrent transmissions, cells of the same color need
to be sufficiently far apart. We use 16

3
X2 +12X +7 colors in

total, such that cells of the same color are separated by a dis-
tance of at least 2(X +1)3k with X = (6β(1+( 2√

3
)α 1

α−2
)+

1)1/α, as illustrated in Fig. 2. (The grey cell in the cen-
ter represents a landmark cell in Sec. 4.B.) We will show
in Sec. 6 that by using these many colors, we are able to
bound the interferences and thus prove the correctness and
efficiency of our algorithm. Inside each cell, the transmis-
sion links from all other nodes to the head are scheduled
sequentially.

The Cell-AS algorithm is summarized as Algorithm 1 where
the scheduling of links in cells of the same color is carried
out according to Algorithm 2.

4.2 Distributed Implementation
The algorithm can be implemented in a fully distributed

fashion. The key is to decide at each peer the following:

4.2.1 Location and synchronization
In the bootstrapping phase, the origin (0, 0) is set to a

central position in the sensor network. Each node learns its
location coordinates (x, y) with respect to the origin, using
GPS. In fact, only a small number of nodes need to use

2(X+1)3^k

(0,0) x

y

Figure 2: Link scheduling in one round of Cell-AS:
cells with the same color are separated by a distance
of at least 2(X + 1)3k.

Algorithm 1 Distributed Aggregation Scheduling (Cell-
AS)

Input: Node set V with sink vn.
Output: Tree link set E and link schedule
S.

1: k := 0; V := V − {vn}; t := 0;

2: X := (6β(1 + ( 2√
3
)α 1

α−2
) + 1)1/α;

3: while |V | �= 1 do
4: Cover the network with cells of side length 3k and color

them with 16
3

X2 + 12X + 7 colors;

5: for i := 1 to 16
3

X2 + 12X + 7 do

6: Ei := ∅, where Ei is link set in cells of color i;
7: for each cell j with color i do
8: Select node vh in cell j closest to sink vn as head;
9: Construct links from all other nodes in cell j to vh;
10: Add the links to Ei and E;
11: Remove all the nodes in cell j except vh from V ;
12: end for
13: S := S ∪ Same-Color-Cell-Scheduler(Ei, t);
14: end for
15: k := k + 1;
16: end while
17: vh := the only node in V ; Construct link eh from vh to vn;
18: E := E ∪ {eh}; S := S ∪ {{eh}};
19: return E and S;

Algorithm 2 Same-Color-Cell-Scheduler

Input: Link set Ei and time slot index t.
Output: Partial link schedule PSi for links in
Ei.

1: X := (6β(1 + ( 2√
3
)α 1

α−2
) + 1)1/α;

2: Define constant c := N0βXα;
3: PSi := ∅;
4: while Ei �= ∅ do
5: St := ∅;
6: for each cell j with color i do
7: Choose one non-scheduled link em in cell j;
8: Assign transmission power Pm := c × dα

mm;
9: St := St ∪ {em}; Ei := Ei − {em};
10: end for
11: PSi := PSi ∪ {St}; t := t + 1;
12: end while
13: return PSi;

GPS, while the others can obtain their coordinates through
relative positioning. (e.g., [13]).

Each node in the sensor network carries out the distributed
algorithm in a synchronized fashion—i.e., it knows the start
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of each round k. Such synchronization can be achieved us-
ing one of the effective synchronization algorithms in the
literature (e.g., [8]).

4.2.2 Neighbor discovery
In each round k, the network is divided into cells of side

length 3k in the fashion as illustrated in Fig. 2. Each node
can determine the cell it resides in in this round based on
its location. It can then discover its neighbors in the cell via
local broadcasting [2]. The broadcasting range is 2 · 3k+1,
such that all nodes in the same cell can be reached.

4.2.3 Head selection
The head of a cell in round k is the node in the cell closest

to the sink. All the nodes are informed of the sink’s location
in the bootstrapping stage of the algorithm, or even before
they have been placed in the field. Since each node knows
the location information of all its neighbors in the same cell,
it can infer whether itself is the head, or some other neighbor
is the head of the cell in this round.

4.2.4 Distributed link scheduling
In each round k, coloring of the cells are done as illus-

trated in Fig. 2. As each node knows which cell it resides
in, it can calculate color i of its cell in this round. Cells of
the same color are scheduled according to the sequence of
their color indices, i.e., cells with color i can schedule their
transmissions before those with color i + 1. The head node
in a cell is responsible to decide when the other nodes in its
cell can start to transmit, and to announce the completion of
transmissions in its cell to all head nodes within 2(X +1)3k

distance.
A head node in a cell with color i + 1 waits until it has

received completion notifications from all head nodes in cells
of color i within 2(X + 1)3k distance. It then schedules the
transmission of all the other nodes in its cell one by one, by
sending “pulling”messages. For a non-head node in the cell,
it waits for the “pulling” message from the head node and
then transmits its data to the head.

When the algorithm is executed round after round, only
the nodes that have not transmitted (the heads in previous
rounds) remain in the execution, until their transmission
time slots arrive.

5. CENTRALIZED AGGREGATION
SCHEDULING

When global information is assumed to be available at
each sensor, a centralized scheduling algorithm can achieve
the best aggregation latency for the MLAS problem. We
present in the following a centralized algorithm, Nearest-
Neighbor Aggregation Scheduling (NN-AS), which does ex-
actly that.

Our centralized algorithm progresses also in a phase-by-
phase fashion, with joint tree construction and link schedul-
ing. In each round, we find a nearest neighbor matching
among all the sensor nodes that have not transmitted their
data, and schedule all the links in the matching.

We start the algorithm with all the sensor nodes in V −
{vn}. We find for each node vi the nearest neighbor node
vj , where neither vi nor vj has already been included in the
matching, and establish a directed link from vi to vj . For
example, in Fig. 3 where a sensor network of 6 sensor nodes
is shown, the matching we identify in round 0 contains two

3

1 2

6

4 5

(a) Round 0

3

2

6

5

(b) Round 1

3 6

(c) Round 2

Figure 3: The iterations of NN-AS: an example of 6
sensor nodes.

Algorithm 3 Centralized Aggregation Scheduling (NN-AS)

Input: Node set V with sink vn.
Output: Tree link set E and link schedule
S.

1: k := 0; E := ∅; S := ∅; V = V − {vn};
2: while |V | �= 1 do
3: Mk := ∅;
4: for each vi ∈ V do
5: if vi /∈ T (Mk) ∪ R(Mk) then
6: Find vi’s nearest-neighbor vj ∈ V ;
7: if vj /∈ T (Mk) ∪ R(Mk) then
8: Construct link ei from vi to vj ; Mk := Mk ∪ {ei};
9: end if
10: end if
11: end for
12: E := E ∪ Mk; S := S ∪ Phase-Scheduler(Mk);
13: V := V − T (Mk); k := k + 1;
14: end while
15: vi := the only node in V ; Construct link ei from vi to vn;
16: E := E ∪ {ei}; S := S ∪ {{ei}};
17: return E and S;

links, from 1 to 3 and from 4 to 6, respectively. We then
schedule the links in matching M0 (of round 0), using the
link scheduling algorithm with non-linear power assignment
proposed in [9]. This algorithm schedules a set of links in
a network generated as the nearest neighbor matching as
in our case, with guaranteed scheduling correctness under
the physical model. After all transmissions in round 0 are
scheduled, all the nodes that have transmitted are removed,
and the algorithm repeats with the reduced node set. In
Fig. 3(b), nodes 2, 3, 5, and 6 remain, and two links are
generated using the nearest neighbor criterion and scheduled
for transmission. The process repeats until only one sensor
node remains, which will transmit the aggregate data to the
sink node in one hop.

The centralized algorithm is summarized as Algorithm 3,
where Phase-Scheduler calls upon the algorithm in [9] to
generate the schedule for links in matching Mk in round k.

Algorithm 4 Phase-Scheduler

Input: Link set Mk.
Output: Link schedule Sm.

1: For space limitation, please refer to [9] for details.

6. ANALYSIS
In this section, we prove the correctness of our distributed

and centralized algorithms and analyze their efficiency with
respect to the bound of aggregation latency. Due to space
limitation, we only present the major results and the outlines
of proof to each theorem. The analytical details can be found
in technical report [6].
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6.1 Correctness
Theorem 1 (Correctness of Cell-AS). The distributed

Cell-AS in Algorithm 1 can construct a data aggregation tree
and correctly schedule the transmissions under the physical
model.

Proof. Algorithm 1 guarantees that each sensor node
transmits for exactly once and will not serve as a receiver
again after transmission. Hence the resulting transmission
links constitute a tree.

We further prove that 16
3

X2 + 12X + 7 colors are enough
to separate the cells with the same color by a distance of at
least 2(X + 1)d, where d = 3k is the side length of cells in
category k. With the distance of 2(X + 1)d, we can bound
the cumulative interference at each receiver, and prove that
each transmission is successful under the physical interfer-
ence model by satisfying the SINR requirement.

Theorem 2 (Correctness of NN-AS). The central-
ized NN-AS in Algorithm 3 can construct a data aggregation
tree and correctly schedule the transmission under the phys-
ical interference model.

Proof. Algorithm 3 guarantees that each node will be
removed from the node set V after selected for transmission
and hence will be the transmitter for exactly once. At the
end of each round, receivers and other non-scheduled nodes
remain in V , and all aggregated data resides on the remain-
ing nodes. Therefore, the generated transmission links cor-
rectly construct a data aggregation tree.

For link scheduling, Algorithm 3 applies the algorithm in
[9], whose correctness under the physical interference model
has been proven in [9].

6.2 Aggregation Latency
We now analyze the latency bound and approximation

ratio of the algorithms.

Theorem 3 (Aggregation Latency of Cell-AS). The
aggregation latency for the distributed Cell-AS in Algorithm
1 is upper bounded by O(K), where K is the link length di-
versity .

Proof. We first bound the number of time slots for link
schedule in each cell as a constant value. As the cells of the
same link length category are colored with 16

3
X2 + 12X + 7

colors, which is also constant, the aggregation latency for
each category is bounded as constant. So the overall aggre-
gation latency has an upper bound of O(K).

Theorem 4 (Aggregation Latency of NN-AS). The
aggregation latency for the centralized NN-AS in Algorithm
3 is upper bounded by O(log3 n).

Proof. We first show that each node can be the nearest
neighbor of at most 6 other nodes on a plane. Then, at least
1
7
|V | nodes are removed from node set V in each round of

NN-AS. So we can prove that the data aggregation tree can
be constructed with at most 	log 7

6
n
 rounds in NN-AS.

After demonstrating that the link scheduling latency in
each round of NN-AS is O(log2 n), we have that, in total,
NN-AS schedules the data aggregation in O(log3 n).

Theorem 5 (Optimal Lower Bound). The aggrega-
tion latency for the MLAS problem under any interference
model is lower bounded by log n.

Proof. Under any interference model, as a node cannot

transmit and receive at the same time, at most |V |
2

links can
be scheduled for transmission in one time slot. Since each
node only transmits for exactly once, at most |V |

2
nodes

complete their transmissions in one time slot.
Suppose we need k time slots to aggregate all the data. We

have 	 n
2k 
 = 1, and thus k = 	log n
, i.e., the aggregation

latency under any interference model is at least log n.

As compared to the optimal lower bound, our distributed
Cell-AS achieves an approximation ratio of O(K/ log n), and

the centralized NN-AS has an approximation ratio of O(log3 n)
log n

,

which is equivalent to O(log2 n). Note that O(K) is be-
tween O(log n) and O(n) based on the detailed analysis on
the range of K in technical report [6].

6.3 Comparison with Li et al.’s Algorithm in
[7]

We next analytically compare our distributed Cell-AS with
the distributed algorithm proposed by Li et al. [7] (referred
to as Li et al.’s algorithm hereinafter), which is the only ex-
isting work addressing the MLAS problem under the phys-
ical interference model, as far as we are aware of.

Li et al.’s algorithm includes four consecutive steps,
—Topology Center Selection: the node with the shortest

network radius in terms of hop counts is chosen as the topol-
ogy center.

—BFS Tree Construction: using topology center as the
root, BFS is executed over the network to build BFS tree.

—Connected Dominating Set (CDS) Construction: a CDS
is constructed as the backbone of aggregation tree by an
existing approach [12] based on BFS tree.

—Link Scheduling : the network is separated into grids
with side length l = δr/

√
2, where 0 < δ < 1 is a con-

figuration parameter, which is assigned before execution,
and r is the maximum achievable transmission range un-
der the physical interference model with constant power

assignment P and P/rα

N0
= β. The grids are colored with

	( 4βτP ·l−α

(
√

2)−αP ·l−α−βN0
)

1
α + 1 +

√
2
 colors and links are sched-

uled with respect to grid color. Here, τ = α(1+2
− α

2 )
α−1

+ π2
− α

2
2(α−2)

.

Aggregation Latency

Li et al.’s algorithm solves the MLAS problem in O(Δ+R)
time slots, where R is the network radius counted by node
hops and Δ is the maximum node degree. In the worst
case, either R or Δ can be O(n). And R = O(log n) in best
case. Our Cell-AS achieves an aggregation latency of O(K),
which also equals to O(n) in the worst case and O(log n) in
the best case. Therefore the two algorithms share the same
order of worst-case and best-case aggregation latency.

Computational and Message Complexity

Cell-AS can have an upper bound of O(min{Kn, 13K})
for both computational complexity and message complexity.
Since K = n in worst case, both computational complexity
and message complexity are at most O(n2).

Li et al.’s algorithm has a computational complexity of
O(n|E|) and message complexity of O(n + |E|). As |E| =
n2 in worst case, Li et al.’s algorithm’s computational and
message complexity are O(n3) and O(n2) respectively.

We can have that Cell-AS has a better computational
complexity while sharing the same order of message com-
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plexity with Li et al.’s algorithm. More detailed analysis by
case study in technical report [6] demonstrates that Cell-AS
outperforms Li et al.’s algorithm in its worst cases.

7. EMPIRICAL STUDY
We have implemented our proposed distributed algorithm

Cell-AS, centralized algorithm NN-AS, as well as Li et al.’s
algorithm, and carried out extensive simulation experiments
to verify and compare their efficiency empirically.

In our experiments, three types of sensor network topolo-
gies, namely Uniform, Poisson and Cluster, are generated
with n = 100 to 1000 nodes distributed in a square area
of 40000 square meters. The nodes are uniformly randomly
distributed in Uniform topologies, and are distributed with
the Poisson distribution in Poisson topologies. In Cluster
topologies [4], nC cluster centers are uniformly randomly lo-
cated in the square and n

nC
nodes are uniformly randomly

distributed within the disk of radius rC centered at each
cluster center. We use the same settings as in [4], nC = 10
and rC = 20, in our experiments. We set N0 to the same
constant value 0.1 as in [7] (which nevertheless would not
affect the aggregation latency). The transmission power in
our implementation of Li et al.’s algorithm is assigned the
minimum value to maintain the connectivity of the respec-
tive network, while δ is set to 0.6 in compliance with the
simulation settings in [7]. Since 2 < α < 6 (path loss ratio)
and β ≥ 1 (SINR threshold), we experiment with α set to 3,
4 and 5, and β to values between 2 to 20, respectively. All
our results presented are the average of 1000 trials.

We first compare the aggregation latency among the three
algorithms with different combinations of α and β values
in three types of topologies. The representative results at
α = 4 are presented in Fig. 4, and the complete sets of
plots can be found in our technical report [6] due to space
constraint.

From our plots in Fig. 4 and [6], we observe that with Cell-
AS algorithm, as expected, the aggregation latency is larger
with smaller α, which represents less path loss of power and
thus larger interference from neighbor nodes, and larger β,
corresponding to higher SINR requirement. However, simi-
lar latency performance is observed with NN-AS, at different
values of α and β. This shows that network topology is the
dominant influential factor to aggregation latency for NN-
AS, given its nearest-neighbor mechanism in tree construc-
tion and non-linear power assignment [9] for link scheduling.

For Li et al.’s algorithm, from Fig. 4(g)–(j), we observe
that most of the curves produced at different β values are
linear lines overlapping onto each other, except in the fol-
lowing cases with Uniform topologies: β = 2 when α =
4 (Fig. 4(g)), β = 2, β = 4 and β = 6 when α = 5
(Fig. 4(h)). The reason behind the linear overlapping lines
is that each grid is scheduled one by one without any con-
currency with Li et al.’s algorithm in cases of the Pois-
son and Cluster topologies, as well as the Uniform topolo-
gies with smaller α and larger β. The no-concurrency phe-
nomenon can be further explained: Since the number of

colors is 	( 4βτP ·l−α

(
√

2)−αP ·l−α−βN0
)

1
α + 1 +

√
2
 with l = δr/

√
2,

τ = α(1+2
− α

2 )
α−1

+ π2
− α

2
2(α−2)

and P/rα

N0
= β (See Sec. 6.C for

description of Li et al.’s algorithm), smaller α and larger β
lead to a larger number of colors needed. On the other hand,
in Poisson and Cluster topologies, the nodes are not evenly
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(a) Cell-AS, α = 4, Uniform
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(b) Cell-AS, α = 4, Poisson
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(c) Cell-AS, α = 4, Cluster
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(d) NN-AS, α = 4, Uniform
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(e) NN-AS, α = 4, Poisson
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(f) NN-AS, α = 4, Cluster
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(g) Li et al., α = 4, Uniform
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(h) Li et al., α = 5, Uniform
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(i) Li et al., α = 4, Poisson
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(j) Li et al., α = 4, Cluster

Figure 4: Aggregation latency for three algorithms
in different topologies.

distributed, thus requesting a larger r to maintain the net-
work connectivity as well, which leads to a smaller number
of grids since the side length of each grid is δr/

√
2. In these

cases, the number of required colors in the algorithm, as de-
cided by α and β, is larger than the total number of grids
in the network (which is proportional to 1/r). Therefore,
each grid is actually scheduled one by one. In comparison,
the number of cells in our Cell-AS is only related to the link
length diversity but not r. Therefore, our algorithm has
much more concurrency of link scheduling across different
cells, leading to the sublinear curves in Fig. 4(a)–(c).

Fig. 4 shows show that concurrent link scheduling (across
different cells/grids) occurs with all three algorithms only
in four cases in the Uniform topologies: (1) α = 4, β = 2;
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(a) α = 4, β = 2, Uniform
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(b) α = 5, β = 2, Uniform
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(c) α = 5, β = 4, Uniform
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(d) α = 5, β = 6, Uniform

Figure 5: Aggregation latency comparison among
three algorithms in selected network settings.

(2) α = 5, β = 2; (3) α = 5, β = 4; (4) α = 5, β = 6. We
next compare the aggregation latencies achieved by the three
algorithms in those four cases. Fig. 5 shows that our cen-
tralized NN-AS achieves a much lower aggregation latency
as compared to the other two algorithms, which remains at
a similar level regardless of the network sizes. The perfor-
mance of our distributed Cell-AS is similar to that of Li
et al.’s algorithm where n ≤ 200, but becomes up to 35%
better than the latter when the network becomes larger.

8. CONCLUDING REMARKS
This paper tackles the minimum-latency aggregation schedul-

ing problem under the physical interference model. Despite
the abundant results on the MLAS problem under the pro-
tocol interference model, they are much less relevant to real
networks than any solution under the physical model which
is much closer to the physical reality. The physical model
is favored also because of its potential to enhance the net-
work capacity [9, 10, 11]. Although the physical model adds
to the difficulty of a distributed solution for the problem,
we propose a distributed algorithm to solve the problem in
networks of arbitrary topologies. By strategically dividing
the network into cells according to the link length diversity
(K), the algorithm obviates the need for global informa-
tion and can be implemented in fully distributed fashion.
We also present a centralized algorithm that represents the
current most efficient algorithm for the problem, as well as
prove an optimal lower bound of the aggregation latency
for the MLAS problem under any interference model. Our
extensive analysis shows that the distributed algorithm ag-
gregates all the data in O(K) time slots (with approximation
ratio O(K/ log n) with respect to the optimal lower bound),
and the centralized algorithm in at most O(log3n) time slots
(with approximation ratio O(log2n)). Our empirical studies
under realistic settings further demonstrate that, both Cell-
AS and NN-AS outperform Li et al.’s algorithm in all three
topologies tested.
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flooding time synchronization protocol. In Proc. of
SenSys’04. ACM, Nov. 2004.

[9] T. Moscibroda. The worst-case capacity of wireless
sensor networks. In Proc. of IPSN’07. ACM/IEEE,
Apr. 2007.

[10] T. Moscibroda and R. Wattenhofer. The complexity of
connectivity in wireless networks. In Proc. of
INFOCOM’06. IEEE, Apr. 2006.

[11] T. Moscibroda, R. Wattenhofer, and A. Zollinger.
Topology control meets sinr: The scheduling
complexity of arbitrary topologies. In Proc. of
MOBIHOC’06. ACM, May 2006.

[12] W. P.-J, K. M. Alzoubi, and O. Frieder. Distributed
construction of connected dominating set in wireless
ad hoc networks. In Proc. of INFOCOM’02. IEEE,
Jun. 2002.

[13] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker,
and I. Stoica. Geographic routing without location
information. In Proc. of MOBICOM’03. ACM, Sept.
2003.

[14] S. Schmid and R. Wattenhofer. Algorithmic models
for sensor networks. In Proc. of WPDRTS’06. ACM,
Apr. 2006.

[15] P.-J. Wan, S. C.-H. Huang, L. X. Wang, Z. Y. Wan,
and X. H. Jia. Minimum-latency aggregation
scheduling in multihop wireless networks. In Proc. of
MOBIHOC’09. ACM, May 2009.

[16] X. H. Xu, S. G. Wang, X. F. Mao, S. J. Tang, and
X.-Y. Li. An improved approximation algorithm for
data aggregation in multi-hop wireless sensor
networks. In Proc. of FOWANC’09. ACM, May 2009.

[17] B. Yu, J. Li, and Y. Li. Distributed data aggregation
scheduling in wireless sensor networks. In Proc. of
INFOCOM’09. IEEE, Apr. 2009.

367


