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Abstract—Private Set Operations (PSO) are a hot research
topic and one of the most extensive research problems in data
mining. In the PSO, Multi-party Private Set Union (MPSU) is
one of the fundamental problems. It allows some participants to
learn the union of their data sets without leaking any useful
information. However, most of the existing works have high
communication, computation and round complexities. In this
paper, we first propose a novel and efficient protocol to securely
compute MPSU under the semi-honest model. In our system
model, there exist n participants where each participant has a
set of size k (k could be different among participants). There are
also up to t (0 ≤ t < n) participants which could collude with
each other. We suppose the communication channels among par-
ticipants are insecure and can easily suffer from eavesdropping
attacks. Our first protocol using element computing algorithm
and Homomorphic Encryption, i.e., HE-MPSU, only requires
O(1) rounds and has O(nNλ ) communication complexity which
almost matches the communication lower bound Ω(nN/ logn) for
the MPSU problem, where λ is a security parameter and N
(k≤N ≤ nk) is the set union cardinality. In addition, we note that
for the two-party case, i.e., n = 2, our HE-MPSU protocol has
the same complexities as the state-of-the-art work in [1]. For this
special case, i.e., two-party Private Set Union (PSU), we further
optimize and design a more efficient protocol using oblivious
transfer (OT) protocol, i.e., OT-PSU. It only requires O(1) rounds
and O(kλ ) communication complexity which almost matches
the communication lower bound Ω(k). More importantly, it
avoids using computationally expensive public-key operations
(exponentiations). In other words, the number of exponentiations
in this protocol is independent of the size of the data sets.
Compared with the existing protocols, our two protocols have
the lowest communication, computation and round complexities.

Index Terms—Set union, Bloom Filter, homomorphic encryp-
tion, multi-party secure computation

I. INTRODUCTION

Private set operations (PSO) deal with a class of problems
by using sensitive data of distributed participants. They contain
private set intersection [2], [3], private set union [4], private set
union/intersection cardinality (PSU-CA/PSI-CA) [5], and so
on. These problems have many important application scenarios
and efficient solutions are highly desirable. Here is a simple
example for MPSU [6], [7]. In cyber risk assessment and
management, organizations want to optimize their security
updates and to minimize vulnerabilities. The usual method is
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to compute a joint list of their blacklisted IP addresses and
other relevant data information. While they are unwilling to
expose some sensitive network data. Furthermore, PSO has
been used in the privacy-preserving graph algorithm [4] and
data mining [8].

This line of research has drawn a significant amount of
attention in the community and several relevant techniques
to solve these problems have been proposed. Secure Multi-
party Computation [9], [10] can be used to solve PSO [4].
However, it usually incurs too high computation overhead to
apply to practical applications. Homomorphic Encryption (HE)
techniques can be applied to tackle PSO. It can allow addition
or multiplication operations directly on ciphertexts without
decrypting operations. Freedman et al. [11] utilize oblivious
polynomial evaluation (OPE) and HE techniques to solve PSI.
In [2], [12], [13], these authors introduced adaptable ways
to compute the multi-party PSO or PSU based on similar
methods. However, their works still require high computation
overhead.

In this paper, we revisit the classic MPSU. There exist n
participants who want to compute the union of all partici-
pants’ private datasets. Meanwhile, the process does not reveal
additional information other than what can be obtained from
the set union. We propose two privacy-preserving and more
efficient protocols with low communication, computation and
round complexities, to solve MPSU and PSU, respectively. In
our HE-MPSU protocol, we design a novel element computing
algorithm and construct a global Bloom Filter. A brief com-
parison of the complexities between previous protocols and
our protocols is shown in Table I.

We make the following contributions:
• We give two efficient protocols, i.e., HE-MPSU in the

multi-party and OT-PSU in the two-party, which can
obtain the set union with probability at least 1−δ , where
0 < δ < 1.

• Our HE-MPSU protocol can resist up to t collusive
participants which collude with each other and try to learn
more privacy information of other participants.

• The HE-MPSU protocol only requires O(1) rounds.
• The HE-MPSU and OT-PSU protocols almost match

the lower bound Ω(nN/ logn) and Ω(k) in terms of
communication complexity, respectively.

• The number of exponentiations of the OT-PSU protocol
does not depend on the size of the datasets.978-1-6654-6824-4/22/$31.00 ©2022 IEEE
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The remainder of our paper is organized as follows. Section II
briefly discusses related works. Section III outlines the system
model, problem definition, security model, design goals and
related techniques. Our protocols’ overview is presented in
section IV. The HE-MPSU and OT-PSU protocols are given
in Sections V and VI, respectively. Section VII gives more
detailed analyses for the correctness, security and complexities
of the two protocols. Section VIII discusses how to apply our
algorithms to the case where the set sizes are different for each
participant. We summarize our work in Section IX.

II. RELATED WORK

Private set operations are a very hot research topic. They
contain private set union, private set intersection, private
set union or intersection cardinality, and so on. Kissner et
al. [2] and Sang et al. [13] have presented several multiparty
protocols for computing PSO including the PSU and PSU-
CA, based on OPE and additively homomorphic encryption
(AHE). A similar idea is used by Frikken in [12]. In [3], multi-
party PSO protocols were proposed by using generic secure
multi-party computation. Their schemes can also compute
MPSU making use of oblivious sorting and basic comparison
operations. In [16], an MPSU protocol with constant-round
was proposed by using the secret-sharing scheme and Reversed
Laurent Series. However, they consume high communication
overhead and computation costs.

There exist some works which were proposed by relaxing
privacy requirements. The protocol in [8] can reveal super-
fluous information, such as set intersection cardinality among
participants. Many et al. [18] proposed an MPSU protocol
based on Bloom Filters, but it needs to traverse the entire
data space for computing set union. Shishido et al. [19]
presented an MPSU protocol for multisets based on Bloom
Filters. However, their protocol needs to traverse the entire
data space for computing set union as well and can expose the
multiplicities of all elements in the set union. Two works [20]
and [5] study the approximate PSU-CA and cannot be used for
computing PSU. In [15], the authors proposed new protocols
for computing private set operations by using the vector
encoding method. But the computation and communication
complexities of their protocols are related to the size of
the entire data space. Note that, in [21], [22], the authors
presented privacy-preserving data aggregation protocols which
can compute arbitrary functions, including the set union. But
their schemes can expose the multiplicity of each element in
the set union.

Additionally, there exist many works for two-party proto-
cols. Brickell et al. in [4] have proposed two PSU schemes
based on the iterative and the tree-pruning methods. Hazay et
al. [23] utilized oblivious pesudorandom function evaluation
and ElGamal encryption under the malicious model. Davidson
et al. have proposed PSU/PSI protocols based on Bloom Filter
and AHE in [1], [24]. In [7], a new efficient protocol for
computing PSU is designed based on oblivious transfer tech-
niques. However, these protocols have high communication
and computation costs.

III. PRELIMINARIES

In the section, we introduce our system model, problem
definition, security model, design goals and some related
techniques used in our paper.

A. System Model

We consider a classical model which contains n participants
p0, p1, ..., pn−1. Each p j ( j ∈ {0, ...,n− 1}) holds a private
data set S j = {x j,1, ...,x j,k} of size k. Note that, for simplicity,
we suppose that the private data sets of all participants
are equal in size, i.e., |S j| = k for all j ∈ {0,1, ...,n− 1}.
We will discuss how to extend our algorithms to the case
where the sizes of each participant’s data set are different in
Section VIII. There exist bi-direction communication channels
between participants. For any positive integer a, we use [a]
and [1,a] to denote the sets {0,1, ...,a− 1} and {1, ...,a},
respectively. W.l.o.g., we suppose Si is obtained from the
universal set [1,M], i.e., Si ⊆ [1,M], for all i ∈ [n], where M
is a positive integer. Let l = dlogMe and y ∈R Y represent the
element y randomly sampled from the set Y . We denote the set
union ∪ j∈[n]S j by U . The notations are summarized in Table
II.

B. Problem Definition

All participants want to compute the set union U based
on their own private sets and do not reveal additional privacy
information (other than what can be obtained from the set
union).

Now, we formally introduce the multi-party private set union
definition as follows.

Definition 1. In the MPSU problem, participants only obtain
the set union U = S0 ∪ S1 ∪ ·· · ∪ Sn−1 = {β1, ...,βN} without
obtaining extra knowledge (other than what can be obtained
from the set union), where N = |S0 ∪ S1 ∪ ·· · ∪ Sn−1|, βi 6= β j
and βi, β j ∈ S0∪S1∪·· ·∪Sn−1 for any i 6= j ∈ [1,N].

C. Security Model

We focus on the semi-honest model. That is, participants
faithfully perform a protocol and are interested in obtaining
additional information of other participants. Furthermore, our
multi-party protocol can tolerate up to t collusive participants
which could share their own private data with each other and
try to get more privacy information of other participants.

To prove the security for a protocol, we employ the standard
simulation paradigm [25]. Let M denote an MPSU protocol.
We use viewi (i ∈ [n]) to represent the view of the participant
pi, respectively. viewi includes (Si,ri,m1,i, ...,m j,i), where Si
is the private data set of participant pi, ri is the result of pi’s
internal random coin tosses and m j,i is the j-th message pi
received. For I = {i1, ..., is} ⊆ {0,1, ...,n− 1} (s ≤ t), let PI ,
XI , viewI denote the participants {pi1 , ..., pis}, {Si1 , ...,Sis}, the
view of the s collusive participants, respectively. Let

c≡ denote
computational indistinguishability.

Definition 2. A protocol M can securely compute the MPSU
problem and can tolerate up to t colluding participants PI , if
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TABLE I
RESULT COMPARISONS FOR MPSU AND PSU

Communication Computation Threshold Round Protocol Multi-party? Communication Complexity Lower Bound
O(n2kλ ) O(n2k2)‡ t < n O(n) [12] Y

Ω(nN/ logn)+ [14]
O(nMλ ) O(nM)‡ t < n O(n) [15] Y

O
(
n3k2λ

)
O
(
n4k2)∗ t < n/2 O(1) [16] Y

O(nNλ ) O(nN)‡ t < n O(1) HE-MPSU Y
O(kλ logk) O(k logk)∗ − O(1) [7] N

Ω(k) [11]O(kλ logk) O(k logk)∗ − O(1) [17] N
O(kλ ) O(k)‡ − O(1) [1] N
O(kλ ) O(λ )‡ − O(1) OT-PSU N

λ represents the security parameter. ∗The upper bounds mean the number of modular multiplication operations. ‡These upper bounds denote the number of modular exponentiation
operations. +This is the communication lower bound for exactly computing multi-party PSU-CA. However, since |S0∪S1∪·· ·∪Sn−1|= N, it is also the communication lower bound
for computing MPSU.

TABLE II
NOTATIONS

Symbols Descriptions
n, t Total number of participants, number of collusive partic-

ipants
p j , S j j-th participant, private data set of participant p j
[n], λ Set {0,1,2, ...,n−1}, security parameter
k Size of each p j’s private data set, i.e., |S j|, for all j ∈ [n]
y ∈R Y The element y randomly sampled from the set Y
U , N The set union

⋃
j∈[n] S j , cardinality of the set union U

c≡ Computational indistinguishability
H Hash functions {h0(·),h1(·), ...,hk1−1(·)}
[t+1], [1,m] Set {0, ..., t}, set {1, ...,m}
p, q Two large primes
n The product of the two large primes p and q, i.e., n = pq

there exists a probabilistic polynomial-time (PPT) simulator S
such that

S
(

PI ,XI ,M(S0, ...Sn−1)

)
c≡ viewπ

I (S0, ...Sn−1). (1)

D. Design Goals

1) Correctness: The proposed protocols should generate the
set union with probability at least 1−δ , where 0< δ < 1.

2) Security: The proposed protocols should satisfy the se-
curity model, i.e., Definition 2. No participants can learn
any extra knowledge other than what can be obtained
from the set union. In other words, the protocol mainly
focuses on two aspects for security. One is that it needs
to hide the multiplicities of all elements in the set union.
The other is that it preserves the information of which
element comes from which participant.

3) Efficiency: The proposed protocols should have a low
communication complexity (total number of sent bits),
low computation complexity (total number of compu-
tation operations) and low round complexity (a round
means a phase in which all participants can simultane-
ously exchange messages).

E. FM Sketches

First, let’s briefly recall FM sketches presented in [26]. They
are used to estimate the cardinality of a multiset S. FM sketch
is built on an l-bit binary vector (b0, ...,bl−1). Meanwhile a
function h(·) is used. For any element y, the probability that

h(y)= i (i∈ [l] = {0, .., l−1}) is equal to Pr[h(y)= i] = 2−(i+1)

(the function h(·) can be constructed from a uniform hash
function by counting the number of trailing zeroes). Initially,
all bits in the vector (b0, ...,bl−1) are set to zero. For each
element y of the multiset S, anyone uses h(·) to compute h(y)
and sets bh(y) = 1. By using the smallest index z which meets
bz = 0, we can estimate |S| by 2z

φ
, where φ = 0.77351. For the

standard deviation, it could be reduced by using m0 sketches in
parallel and get m0 estimators z〈1〉, . . . ,z〈m0〉. Then, we utilize
Z

m0
to estimate |S| and the standard deviation is reduced to

1.12√
m0

, where Z = z〈1〉+ . . .+ z〈m0〉. To improve accuracy, the
authors in [27] give a modified formula as follows,

Ñ =
2

Z
m0 −2−κ· Z

m0

φ
,where κ = 1.75. (2)

According to the equation, the authors in [20] give the below
lemma.

Lemma 1 ( [20]). For n sets S0, ...,Sn−1, let Ñ be the
estimation for N = |S0∪S1∪·· ·∪Sn−1| by using Equation (2).
For any ε,δ1 ∈ (0,1), we have Pr

[
|Ñ−N| ≤ εN

]
≥ 1− δ1,

where m0 ≥ 2.5088 · ( erf−1(1−δ1)
min(− log(1−ε),log(1+ε)) )

2 and erf−1(x) is
the inverse error function.

F. Bloom Filter

The Bloom Filter (BF) [28] is a probabilistic data structure.
It can efficiently represent sets and allow for membership
check. To be specific, it uses an m-bit array BF = (b1, ...,bm)
to represent a set Y = {y1, ...,yn} of size n. Initially, each
bit in the array BF is set 0 and k1 independent uniform
hash functions H = {hi(·) | i ∈ [k1]} map elements to range
[1,m] = {1, ...,m}. To represent any element y ∈ Y in this
filter, for all i = [k1] = {0,1, ...,k1 − 1}, the bits bhi(y) set
to one, i.e., bhi(y) = 1. To check an element y whether it
belongs to Y , anyone only needs to check values of all bits
bhi(y) (i ∈ [k1]). If all bits are 1, y ∈ Y and y /∈ Y otherwise.
Because k1 hash functions may cause collisions, they introduce
false positives, i.e., y does not belong to S but bhi(y) = 1
for all i = [k1]. The probability that any bit is set to 1 is
p1 = 1− (1−1/m)k1n in the Bloom Filter. As shown in [29],
the upper bound of the probability that the filter returns a false
positive is ε ′ = pk1

1 ×
(
1+O( k1

p1

√
(lnm− k1 ln p1)/m)

)
, which
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is negligible for k1. To decrease the false positive probability
ε ′, k1 is set to k1 = (m/n) ln2 and m ≥ n log2(1/ε ′) · log2 e.
We can set the optimal parameters k1 = log2(1/ε ′) and m =
n log2(1/ε ′) · log2 e [29].

G. Cryptographic Building Blocks

In our protocols, we use an additively homomorphic encryp-
tion, such as Paillier cryptosystem [30]. It permits anyone to
execute computations on its ciphertexts without decrypting it.
To be precise, given the ciphertexts Enc(m1) and Enc(m2),
anyone can compute Enc(m1 + m2) = Enc(m1) · Enc(m2),
where Enc(m j) denotes the ciphertexts of the plaintext mes-
sage m j ( j ∈ {1,2}), and +, · denote modular addition
and modular multiplication operations on the plaintexts and
ciphertexts, respectively. For convenience, we omit the mod-
ular multiplication operation symbol, i.e., Enc(m1 + m2) =
Enc(m1)Enc(m2). Moreover, (Enc(m1))

c = Enc(m1× c) for
any constant c, where (Enc(m1))

c denote modulo exponen-
tial operation on the ciphertext Enc(m1), and × refers to
modulo multiplication operation on the plaintexts. Similarly,
we omit the modular multiplication operation symbol, i.e.,
Enc(m1)

c = Enc(cm1). In addition, based on its additive
homomorphism, we can re-encrypt encryption of m1, i.e.,
Enc(m1), to generate another encryption of m1 by computing
Enc(m1)← Enc(m1)Enc(0) = Enc(m1 + 0) = Enc(m1) (we
still refer to it as Enc(m1)).

In order to withstand t colluding participants, we adopt the
(n, t)-threshold variant of Paillier cryptosystem [31]. In this
scheme, each participant possesses a share of a private key
for the cryptosystem and colluding participants cannot obtain
additional information of the private key. For any ciphertext, it
can only be decrypted when more than t participants perform
decryption operations together. Similar to the idea of [32],
we need a method that permits participants to determine
whether or not Enc(m) is encryption of zero without revealing
anything. This can be realized by randomizing the ciphertext
and by jointly decrypting it.

Note that, in [33], the authors propose a probabilistic
coding scheme for privacy-preserving Min computation based
on XOR operation. Specifically, a participant has a status
r ∈{“affirmative”, “negative”}. If r =“affirmative”, corre-
sponding code C(r) = 0q; otherwise, C(r) ∈R {0,1}q. In this
paper, a similar idea of the encryption technique is utilized.
But their method is not used to solve MPSU directly. Because
it can expose the multiplicity of each element in the set union.

Oblivious Transfer (OT) [34] [35] is an important primitive
for secure computation which involves sender and receiver.
The sender holds a λ -bit message pair (m0,m1) and the
receiver has a bit b. As the result of OT, the receiver gets
the message mb and learns nothing about m1−b. Meanwhile,
the sender does not acquire any information for the bit b. Let
OTm

λ
denote that this type of OT is executed m invocations

on m message pairs. Ishai et al. [36] present a practical OT
extension so that lots of OT protocols can be constructed by
using a few expensive OT protocols and cheap symmetric-key
operations. Namely, the OT extension can reduce OTm

λ
to OTλ

λ
.
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12

{1,3}
P1 P2 P3

{2,5} {2,3}
Participant:
Private set:

Run the app-PDCE protocol:  N ̃ =  4

h̄1(1)=3, h̄2(1)=7

P1 :

BF parameters:

h̄1(3)=5, h̄2(3)=1

h̄1(2)=4, h̄2(2)=4

h̄1(5)=1, h̄2(5)=2
P2:

h̄1(2)=4, h̄2(2)=4

P3: h̄1(3)=5, h̄2(3)=1

BF1=(1,0,1,0,1,0,1)

IBF1=(0,1,0,1,0,1,0)

EIBF1=(E(0),E(1),E(0),E(1),E(0),E(1),E(0))

EIBF2=(E(0),E(0),E(0),E(0),E(0),E(1),E(0))

EIBF3=(E(0),E(0),E(0),E(0),E(0),E(1),E(0))

BF2=(1,1,0,1,0,0,0)

BF3=(1,0,0,1,1,0,0)

d1,1,d1,2,d2,1,d2,2  ≠  0 , we have   |{1,2,3,5}|=4

d1,1=E(1), d1,2=E(1)

d2,1=EIBF1[2]=E(1), 
d2,2=EIBF1[1]·EIBF1[2]=E(1)

d3,1=EIBF2[2]=E(0), 
d3,2=EIBF2[1]·EIBF2[5]=E(0)

System setup Approximating
GBF 

constructing
Element 

computing

Generate private  
and pubic keys

Compute an 
approximate

union cardinality N ̃ 

Construct GBF 
based on the Ñ
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Fig. 1. An illustrating example of our protocols. There are 4 partici-
pants p0, ..., p3 which have elements 2,7,7,10, respectively. They construct a
(Global) Bloom Filter (which has 12 bits) by using two hash functions h0(x)
and h1(x) (we assume h0(x) = ((2x+ 1) mod 12)+ 1 and h1(x) = ((x+ 2)
mod 12)+1). According to the BF, they produce elements and only save the
elements that only this element is mapped to some bits in BF. In the BF, the
1-st, 4-th, 5-th, 6-th bit positions have unique elements mapped in. Thus we
can obtain 10,7,2. But in the 10-th bit positions of BF, there are two elements
7 and 10 which are mapped in.

There have been many efficient OT extension protocols which
have been proposed such as [37] [38].

IV. PROTOCOLS OVERVIEW

Our two protocols use the Bloom Filter to compute pos-
sible elements belonging to a set union. But the use of the
Bloom Filter in our protocols is significantly different from
the previous works [24], [1], [18], [5]. The idea of our
protocols is based on a key observation which can be used
to reduce communication and computation complexities. The
key observation is that, for the Bloom Filter BF = (b1, ...bm)
produced by a set union, each element in the set union has at
least one bit bi (i ∈ [1,m]) where only this element is mapped
to with probability at least 1−δ3 (see Lemma 2). Based on the
proposed techniques and the key observation, we can compute
all elements of set union with low complexities. In some sense,
for each element in the set union, we only use one bit in the
Bloom Filter. However, the previous works for each element
use the Bloom Filter directly and need to use all bits which
are mapped to by using k1 hash functions. Thus, they are
very suitable for two-party computing. But it does not apply
in the multi-party case. Because it is difficult to restore all
elements in the union set (needs to traverse data space). Most
of the previous works rely on oblivious polynomial evaluation.
The methods inherently need the rounds which are dependent
on the number of participants. Fig. 1 shows an illustrating
example for our protocols.

V. HE-MPSU

In this section, we show our HE-MPSU protocol which
contains four stages: the system setup stage, the approximating
stage, the global BF (GBF) constructing stage and the element
computing stage. We show the overview of the four stages of
our HE-MPSU protocol in Fig.2. In the following, we describe
this four-stage process in detail.

A. The System Setup Stage

In order to protect participants’ privacy, participants invoke
the (n, t)-threshold Paillier cryptosystem [31] (more precisely,
its key generation algorithm) based on the secure parameter λ ,
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Fig. 2. The four stages overview of our HE-MPSU protocol

Algorithm 1: ORPE ({p j,b j,∗,sk j, pk} j∈[n])

Input: The bit b j,∗, private key sk j and public key pk of
participant p j ( j ∈ [n]);

Output: Perturbed data e∗;
1 for each p j ( j ∈ [n]) do
2 If b j,∗ = 0, p j computes b j,∗ = Enc(0);
3 If b j,∗ = 1, p j computes b j,∗ = Enc(e j,∗), where

e j,∗ ∈R Zn;
4 p j sends b j,∗ to p0;

5 p0 computes C∗ = ∏
n
j=0 b j,∗ and sends it to participants

p0,..., pt ;
6 for each pi ∈ {p0, ..., pt} do
7 pi samples yi ∈R Zn, then computes (C∗)yi and

re-encrypts it, i.e., (C∗)yi ← (C∗)yi ·Enc(0), and sends
to p0;

8 p0 computes D∗ = ∏
t
i=0(C∗)

yi ;
9 p0,..., pt jointly decrypt D∗ by computing Dec(D∗) to obtain

d∗ ;
10 If d∗ = 0, p0 sets e∗ = 0; Else, p0 sets e∗ = 1 ;
11 p0 outputs e∗;
12 return e∗

such that each p j ( j ∈ [n]) obtains its own private key sk j and
public key pk. Let Enc(·), Dec(·) and Zn denote the encryption
algorithm, the decryption algorithm and the plaintext space [n]
for this cryptosystem, respectively, where n = pq, and p and
q are two large primes. We assume that nM < n.

B. The OR Perturbation Encryption (ORPE)

Before we introduce the remaining three stages, let’s intro-
duce our ORPE algorithm (cf. Algorithm 1). This algorithm
can be used to enhance participants’ privacy. The algorithm
can securely compute ∨ j∈[n]b j,∗, where b j,∗ is a private bit of
participant p j and ∗ indicates the symbols after the subscript
letter j. Next, we explain the algorithm. Each participant p j
( j ∈ [n]) has a bit b j,∗, then it encodes b j,∗ and obtains b j,∗
(Lines 1-3 of Algorithm 1). Every p j sends b j,∗ to p0. Then,
p0 computes C∗ by aggregating all the received ciphertexts
and its own ciphertext b0,∗ and sends the calculated ciphertext
to participants p0,...,pt (Line 5 of Algorithm 1). Then each
pi (i ∈ [t + 1]) performs the randomization operations (Lines
6-7 of Algorithm 1). After completing the above process, p0
computes D∗ and all pi (i ∈ [t +1]) jointly decrypt it by using
its own ski, and p0 obtains d∗ (Lines 8-9 of Algorithm 1).
Finally, according to d∗, p0 computes e∗ which is a perturbed
data (Lines 10-11 of Algorithm 1).

Algorithm 2: Approximating Algorithm
Input: Private sets {S j} j∈[n], private keys {sk j} j∈[n], public

key pk, functions {h`′(·)}`′∈[1,m0]

Output: The cardinality estimate Ñ for the set union U
1 for `′ = 1 to m0 do
2 for each p j ( j ∈ [n]) do
3 Participant p j computes the FM sketch

FM j,`′ = (b j,0,`′ ,b j,1,`′ , ...,b j,l−1,`′) based on its
own S j and h`′(·).

4 for `= 0 to l−1 do
5 Invoke Algorithm 1: ORPE({p j,b j,`,`′ ,sk j, pk} j∈[n]).
6 Let e`,`′ denote the output of Algorithm 1 obtained

by p0.

7 p0 computes z〈`
′〉 = min

{
` | e`,`′ = 0, ` ∈ [l]

}
;

8 p0 computes Z = z〈1〉+ . . .+ z〈m0〉 and Ñ = 2
Z

m0 −2−κ· Z
m0

φ
;

9 p0 announces Ñ;
10 return Ñ

C. The Approximating Stage

In this stage, we do not solve the MPSU problem imme-
diately. On the contrary, we first study how to compute an
approximate set union cardinality Ñ. Because the approximate
set union cardinality Ñ could contribute to reducing communi-
cation and computation complexities. Thus, we first propose an
efficient algorithm which computes an approximate set union
cardinality Ñ by using the ORPE technique and FM sketches,
and it is shown in Algorithm 2. The input of the algorithm is
{S j,sk j} j∈[n], pk and m0 functions. The output of the algorithm
is the approximate set union cardinality Ñ.

Each participant p j ( j ∈ [n]) creates its own FM sketches
by using {h`′(·)}`′∈[1,m0] and S j (Lines 2-3 of Algorithm 2).
Then, all participants invoke Algorithm 1, and p0 obtains the
corresponding output (Lines 5-6 of Algorithm 2). In order to
improve accuracy, this algorithm uses m0 FM sketches (Lines
1-7 of Algorithm 2). After executing m0 times FM-sketches,
p0 computes the estimator Ñ for the set union cardinality and
sends it to other participants (Lines 8-9 of Algorithm 2).

D. The Global Bloom Filter (GBF) Constructing Stage

In this stage, we will introduce the GBF constructing
algorithm, which can construct a global Bloom Filter GBF
and is presented in Algorithm 3. Based on the GBF, we can
compute all elements of the union of all participants’ sets. The
input of the algorithm for each p j is the private data set S j,
private key sk j and public key pk, Ñ and ε ′. The output of the
algorithm is the GBF .

Note that, in the above stage, we can obtain Ñ which
meets Pr

[
|Ñ−N| ≤ εN

]
≥ 1− δ1. In order to solve MPSU,

we only require that ε is set to 1/2. So all participants obtain a
cardinality estimate Ñ (N/2≤ Ñ ≤ 3/2N). Thus 3N ≥ 2Ñ ≥N
with probability 1−δ1. For the Bloom Filter parameters, each
p j sets k1 = log2(1/ε ′) and m = 2Ñ log2 e · log2(1/ε ′), where
ε ′ is a false positive probability (Lines 1-2 of Algorithm 3).
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Algorithm 3: GBF Constructing Algorithm
Input: Private sets {S j} j∈[n], private keys {sk j} j∈[n], public

key pk, the cardinality estimate Ñ, a false positive
probability ε ′

Output: Global Bloom Filter GBF
1 for each p j ( j ∈ [n]) do
2 p j computes k1 = log2(1/ε ′) and

m = 2Ñ log2 e · log2(1/ε ′).
3 for each p j ( j ∈ [n]) do
4 p j computes a local Bloom Filter BFj = (b j,1, ...,b j,m)

using H = {h0(·), ...,hk1−1(·)}, as follows;
5 for `= 1 to m do
6 p j sets b j,` = 0 (i.e.,local BF initialization).

7 for each x ∈ S j do
8 for `′ = 0 to k1−1 do
9 p j calculates h`′(x) and sets b j,h`′ (x) = 1.

10 for `= 1 to m do
11 Invoke Algorithm 1: ORPE({p j,b j,`,sk j, pk} j∈[n]).
12 Let e` denote output of Algorithm 1 obtained by p0.
13 p0 sets ω` = e`;

14 p0 sets GBF = (ω1, ...,ωm) and announces GBF .
15 return GBF

Then, each p j constructs a local Bloom Filter BFj by using
S j and H (Lines 3-9 of Algorithm 3). Then, each p j invokes
Algorithm 1 for each bit b j,` of BFj (`∈ [1,m]) and p0 obtains
the corresponding output (Lines 11-13 of Algorithm 3). Then,
according to {e` | ` ∈ [1,m]}, p0 obtains the global Bloom
Filter GBF = (ω1, ...,ωm) (Line 11 of Algorithm 3). Finally,
p0 sends the GBF to other participants (Line 14 of Algorithm
3).

E. The Element Computing Stage

Note that, given Ñ, the global Bloom Filter GBF which we
construct in the above stage is equivalent to another Bloom
Filter which is directly constructed by using the set union,
with probability at least 1−2m/n (cf. the analysis in Section
VII). Note that if ωu = 0, for any u∈ [1,m], it possibly implies
that there do not exist elements mapped to u (with probability
1− 2/n) and there must be at least one element otherwise
(Detailed analysis can be found in Section VII). The idea of
our HE-MPSU protocol is based on a key observation that for
Bloom Filter BF , each element in the set union has at least one
bit ωu (u ∈ [1,m]) where only this element is mapped to with
probability at least 1−δ3 (δ3 is a constant between 0 and 1, cf.
the subsequent Lemma 2). So we propose an efficient element
computing algorithm which can generate the corresponding
element which is mapped to for each bit ωu (u ∈ [1,m]) of
the GBF and is shown in Fig 3. The input of the algorithm
are GBF,{p j,S j,sk j, pk} j∈[n], hash functions H and an empty
set U1. The output of the algorithm is the set U1 which is
equal to the set union U , with probability at least 1−δ (see
Theorem 2).

Specifically, for each bit ωu of the GBF, if ωu = 0, this
means that there do not exist elements which are mapped to the

u-th bit of GBF with probability 1−2/n, and all participants
do nothing.

If ωu = 1, each p j ( j ∈ [n]) firstly needs to find the elements
{x j,rs}ι

s=1 where h`(x j,rs) = u and ` ∈ [k1], and performs the
following operations.

1) If there do not exist elements x j,rs ∈ S j such that
h`(x j,rs) = u and ` ∈ [k1], i.e., ι = 0, p j calculates two
ciphertexts E j,u = Enc(0) and N j,u = Enc(0).

2) If there only exists an element x j,rs ∈ S j such that
h`(x j,rs) = u and ` ∈ [k1], that is, ι = 1, p j calculates
two ciphertexts E j,u = Enc(x j,r1) and N j,u = Enc(1).

3) If there exist at least two elements x j,rs ∈ Si such that
h`(x j,rs) = 1, that is, ι ≥ 2, p j calculates two ciphertexts
E j,u = Enc(e j,u) and N j,u = Enc(1), where e j,u ∈R Zn.

Then, p j sends {E j,u,N j,u} to p0. p0 computes Eu =

∏ j∈[n] E j,u and Nu = ∏ j∈[n] N j,u and sends them to the rest
of the participants. Each p j ( j ∈ [n]) executes the below
operations.

1) If ι = 0 , p j calculates the ciphertext Ê j,u = Enc(0).
2) If ι = 1, p j calculates the ciphertexts N̂ j,u = N

x j,r1
u and

Ê j,u = (EuN̂−1
j,u )

r j,u , and re-encrypts Ê j,u, i.e., N̂ j,u← N̂ j,u ·
Enc(0), where r j,u ∈ Zn.

3) If ι > 1 p j computes the ciphertext Ê j,u = E
r j,u
j,u and re-

encrypts it, i.e., N̂ j,u← N̂ j,u ·Enc(0), where r j,u ∈ Zn.
Then, p j sends Ê j,u to p0, and p0 computes Cu = ∏ j∈[n] Ê j,u

and sends to participants {pi | i ∈ [t + 1]}. Participants p0,...,
pt execute the perturbation operations of Algorithm 1 (Lines
6-11) and p0 obtains eu and shares it with other participants.

According to the calculated data eu, participants consider
the following two situations.

Case (1): If eu = 1 , this means that there exist at least
two distinct elements which are mapped to the u-th bit of
the GBF (Detailed analysis can be found in Section VII). All
participants do nothing.

Case (2): If eu = 0, this means that there exists only one
element which are mapped to the u-th bit of the GBF with
probability at least 1− 2/n (Detailed analysis can be found
in Section VII). Each p j ( j ∈ [n]) performs the following
operations.

1) If ι = 0, p j computes two ciphertexts {Ẽ j,u = Enc(0),
Ñ j,u = Enc(0)}.

2) If ι = 1, p j computes two ciphertexts {Ẽ j,u =
Enc(r̃ j,ux j,r1), Ñ j,u = Enc(r̃ j,u)}, where r̃ j,u ∈R Zn.

3) If ι > 1, p j computes two ciphertexts {Ẽ j,u = Enc(0),
Ñ j,u = Enc(0)}.

4) p j sends {Ẽ j,u, Ñ j,u} to p0.
Then, p0 calculates two ciphertexts Ñu = ∏ j∈[n] Ñ j,u and Ẽu =

∏ j∈[n] Ẽ j,u, and sends them to participants {p j | j ∈ [t + 1]}.
Each p j ( j∈ [t+1]) calculates two ciphertexts N j,u = Ñ

r j,u
u and

E j,u = Ẽ
r j,u
u , and re-encrypts them, i.e., N j,u ← N j,u ·Enc(0)

and E j,u ← E j,u ·Enc(0), where r j,u ∈ Zn, and sends them
to p0. Then, p0 computes Eu = ∏ j∈[t+1] E j,u and Nu =

∏ j∈[t+1] N j,u, and sends them to participants p0, ..., pt . All
pi (i ∈ [t +1]) jointly decrypt them to obtain eu and nu. Then,
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Algorithm 4: Our HE-MPSU Protocol
Input: Private sets {S j} j∈[n], functions {h`′(·)}`′∈[1,m0], a

false positive probability ε ′, a secure parameter λ ;
Output: Set U1

1 All participants invoke the (n, t)-threshold Paillier
cryptosystem based on λ to obtain their own corresponding
public and private keys;

2 All participants run Approximating Algorithm;
3 All participants run GBF Constructing Algorithm;
4 All participants run Element Computing Algorithm;
5 return U1

p0 computes tu = eu(nu)
−1 mod n and adds it to the set U1,

i.e, U1←U1∪{tu}.
Finally, p0 sends the set U1 to other participants.
For completeness, we formally show our HE-MPSU proto-

col in Algorithm 4.

VI. OT-PSU

Although our HE-MPSU protocol can be used to solve PSU,
it has the same complexities as the previous work in [1]. A
natural question is if we can solve this problem faster. Thus,
for the two-party case, we further optimize and design a more
efficient protocol using OT protocol, i.e., OT-PSU. It avoids
using computationally expensive public key operations.

In this section, we introduce our OT-PSU which is formally
presented in Fig 4. The protocol is simple and efficient. The
basic idea for our OT-PSU is based on the fact S = S0∪S1 =
S0 ∪ (S \ S0) = S0 ∪ (S1 \ S0). In other words, p0 only needs
to obtain the difference set between the set S1 of p1 and
its own set S0. We combine the basic idea and our key
observation which is used in our HE-MPSU to devise our
OT-PSU protocol.

A. Detailed Protocol Design

Our OT-PSU protocol contains four steps as follows.
Since k≤N≤ 2k, we do not require the approximating stage

which is used in our HE-MPSU. Thus, in the first step, p0 and
p1 create their own Bloom Filter BF0 and BF1, respectively.

In the second step, p1 will handle each bit of BF1 as follows.
For each ` = 1 to m, p1 finds the elements {x1,rs}ι

s=1 ∈ S1
where hl(x1,rs) = ` and l ∈ [k1], and performs the following
operations:

1) If b1,` = 0, p1 computes s0,` = s1,` = 0.
2) If b1,` = 1 and there exists a unique element {x1,rs}ι

s=1 ∈
S1, i.e., ι = 1, such that hl(x1,r1) = `, p1 sets s0,` = 0 and
s1,` = x1,r1 .

3) If b1,` = 1 and there exist at least two elements
{x1,rs}ι

s=1 ∈ S1, i.e., ι >= 2, such that hl(x1,rs) = `, p1
sets s0,` = s1,` = 0.

In the third step, p0 and p1 run m OT protocols. Specifically,
for each ` ∈ [1,m], p1 acts as the sender with the input
(s0,`,s1,`) and p0 acts as the receiver with the input 1− b0,`
in the `-th OT. Let x` denote the corresponding output of p0
in the `-th OT. After performing the OT protocols, p0 obtains
the data {x1, ...,xm}.

In the last step, p0 computes U1 = S0 ∪ {x1, ...,xm} \ {0}
(note that S0,S1 ⊆ [1,M]) and announces U1. With probability
1−δ3 (N,m ∈O(k)), we have U1 = S0∪S1 (Detailed analysis
can be found in Section VII).

VII. CORRECTNESS, SECURITY AND COMPLEXITY
ANALYSIS

In this section, we will analyze the correctness, security and
complexity of our two protocols in detail, respectively.

A. Correctness

We first consider the HE-MPSU protocol. For the approx-
imating algorithm about the set union cardinality N, we only
need to consider whether or not our algorithm can accurately
get the FM sketches of the set union. Because the correctness
of the estimated value for N can be easily obtained from
Lemma 1. We have a theorem as follows.

Theorem 1. In the approximating stage, participants can
obtain the m0 FM sketches of the set union U , with probability
at least 1−δ2, where δ2 = 2lm0/n.

Proof. W.l.o.g., we suppose that the FM sketch FM =
(g0, ...,gl−1) is produced by using the set union U and h(·)
directly. We mainly consider two different cases (1) gs = 0
and (2) gs = 1, for a fixed s ∈ [l].

Case (1): When gs = 0, we know that there are no elements
x so that h(x)= s for any x∈U . Each pi (i∈ [n]) computes FM
sketches FMi =(bi,0, ...,bi,s, ...,bi,l−1). Then, each pi computes
bi,s = Enc(0) (since bi,s = 0) and sends it to p0. Then, p0
obtains Cs = ∏ j∈[n] b j,s = ∏ j∈[n] Enc(0) = Enc(0) based on
homomorphic properties. Next, after p0, ..., pt perform the
perturbation operations in lines 6-7 of Algorithm 1, p0 can
obtain Ds = ∏ j∈[t+1]C

y j
s = ∏ j∈[t+1] Enc(0) = Enc(0) (Line 8

of Algorithm 1). p0 can obtain ds = Dec(Ds) = 0 by using the
decryption algorithm. Thus we have es = 0 and must obtain a
correct result, in this case.

Case (2): When gs = 1, we know that there is at least
one element x so that h(x) = s for x ∈ U . W.l.o.g., we
suppose that participants p0 and p1 have such an element.
Then participant p0 (p1) samples e0,s ∈R Zn (e1,s ∈R Zn) and
computes b0,s = Enc(e0,s) (b1,s = Enc(e1,s)) and sends it
to p0. Similar to the analysis in Case (1), p0 can obtain
ds = (e0,s + e1,s)∑

t
i=0 yi. Because yi ∈R Zn for any i∈ {0, ..., t},

we have ds = 0 if and only if e0,s +e1,s mod n = 0 or ∑
t
i=0 yi

mod n = 0, with probability at most 2/n. Thus, in this case,
we obtain a correct result, with probability at least 1−2/n.

By a union bound, we can obtain an FM sketch of the set
union S0 ∪ S1 ∪ ·· · ∪ Sn−1, with probability at least 1− 2l/n.
Thus, we can obtain the m0 FM sketches of the set union U ,
with probability at least 1−2lm0/n.

Next, we consider the GBF and have the below lemma.

Lemma 2. For the global Bloom Filter, all elements in U have
at least one bit where the same element is mapped to with
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Element Computing Algorithm
Input: Global Bloom Filter GBF = (ω1, ...,ωm), {p j,S j,sk j, pk} j∈[n], hash functions H = {hi(·)}i∈[k1] and an empty set
U1
Output: Set union U1.

1) For each u = 1 to m, do:
a) If ωu = 0, all participants do nothing.
b) If ωu = 1, participants perform the following operations.

i) Each p j ( j ∈ [n]) finds the elements {x j,rs}ι
s=1 ∈ S j where h`(x j,rs) = u and `∈ [k1], and computes the following

ciphertexts:
A) If ι = 0, p j computes two ciphertexts {E j,u = Enc(0), N j,u = Enc(0)}.
B) If ι = 1, p j computes two ciphertexts {E j,u = Enc(x j,r1), N j,u = Enc(1)}.
C) If ι > 1, p j computes two ciphertexts {E j,u = Enc(e j,u), N j,u = Enc(1)}, where e j,u ∈R Zn.
D) p j sends {E j,u,N j,u} to p0.

ii) p0 computes {Eu = ∏ j∈[n] E j,u, Nu = ∏ j∈[n] N j,u} and sends to the rest of the participants.
iii) Every p j ( j ∈ [n]) computes the following ciphertexts:

A) If ι = 0 , p j calculates the ciphertext Ê j,u = Enc(0).
B) If ι = 1, p j calculates the ciphertexts N̂ j,u = N

x j,r1
u and Ê j,u = (EuN̂−1

j,u )
r j,u , and re-encrypts Ê j,u, i.e., Ê j,u←

Ê j,u ·Enc(0), where r j,u ∈ Zn.
C) If ι > 1 p j computes the ciphertext Ê j,u =E

r j,u
j,u , and re-encrypts Ê j,u i.e., Ê j,u← Ê j,u ·Enc(0), where r j,u ∈ Zn.

D) p j sends Ê j,u to p0.
iv) p0 computes Cu = ∏ j∈[n] Ê j,u and sends to participants p0, ..., pt .
v) p0,..., pt execute the perturbation operations of Algorithm 1 (Lines 6-11) to obtain data eu, and p0 sends it to

other participants.
vi) If eu = 1, all participants do nothing.
vii) If eu = 0, participants perform the following operations.

A) Each p j ( j ∈ [n]) computes the following ciphertexts:
(1) If ι = 0, p j computes two ciphertexts {Ẽ j,u = Enc(0), Ñ j,u = Enc(0)}.
(2) If ι = 1, p j computes two ciphertexts {Ẽ j,u = Enc(r̃ j,ux j,r1), Ñ j,u = Enc(r̃ j,u)}, where r̃ j,u ∈R Zn.
(3) If ι > 1, p j computes two ciphertexts {Ẽ j,u = Enc(0), Ñ j,u = Enc(0)}.
(4) p j sends {Ẽ j,u, Ñ j,u} to p0.

B) p0 calculates two ciphertexts Ñu = ∏ j∈[n] Ñ j,u and Ẽu = ∏ j∈[n] Ẽ j,u, and sends them to participants {p j | j ∈
[t +1]}.

C) Each p j ( j ∈ [t + 1]) calculates two ciphertexts N j,u = Ñ
r j,u
u and E j,u = Ẽ

r j,u
u , and re-encrypts them, i.e.,

N j,u← N j,u ·Enc(0) and E j,u← E j,u ·Enc(0), and sends to p0, where r j,u ∈ Zn.
D) p0 computes Eu = ∏ j∈[t+1] E j,u and Nu = ∏ j∈[t+1] N j,u and sends to participants p0, ..., pt .
E) All pi (i ∈ [t +1]) jointly decrypt Eu and Nu to obtain eu and nu, respectively.
F) p0 computes tu = eu(nu)

−1 mod n and adds it to the set U1, i.e., U1←U1∪{tu}.
2) p0 announces U1.

Fig. 3. The descriptions of the element computing algorithm.

probability at least 1− δ3, where p2 = 1− (1− 1/m)k1(N−1)

and δ3 = pk1
2 ×

(
1+O( k1

p2

√
lnm−k1 ln p2

m )

)
is negligible in k1.

The proof of this lemma is the same as that of Theorem 1
in [29] and we omit it here. What we want to emphasize is
that the use of Bloom Filter in their protocols is similar to that
of the previous works [24], [1], [18], [5] i.e., their protocols
need to use all bits which are mapped to by using k1 hash
functions for each element.

Theorem 2. In our HE-MPSU protocol, given nM < n, all
participants can obtain the set union U (i.e.,U1 = U ), with
probability at least 1− δ , where δ ≤ δ1 + δ2 + δ3 + δ4 and

δ4 = 4m/n+2m(1/q+1/p).

Theorem 3. In our OT-PSU protocol, participants p0 and p0
can obtain set union S= S0∪S1, with probability at least 1−δ ,
where δ = δ3 and N,m ∈ O(k).

Due to space constraints, detailed proof of the above two
theorems can be found in our technical report [39].

B. Security

Theorem 4. Our HE-MPSU protocol is secure if the (n, t)-
threshold Paillier cryptosystem is semantically secure.

Theorem 5. Our OT-PSU protocol is secure if the OT proto-
cols are secure.
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The OT-PSU Protocol
Input: Participants p0 and p1 which hold private data sets S0 and S1, respectively. Hash functions H = {h0(·), ...,hk1−1(·)}.
Output: Participants p0 and p1 learn the set union S0∪S1.

1) For all j ∈ [2], p j computes a Bloom Filter BFj = (b j,1, ...,b j,m), as shown below:
a) For all ` ∈ [1,m], p j sets b j,` = 0 (i.e., BF initialization).
b) For all x ∈ S j and all l ∈ [k1], p j calculates hl(x) and sets b j,hl(x) = 1.

2) p1 computes m messages pair {s0,`,s1,`}`∈[1,m] as shown below:
a) For each ` = 1 to m, p1 finds the elements {x1,rs}ι

s=1 ∈ S1, where hl(x1,rs) = ` and l ∈ [k1], and performs the
following operations:
i) If b1,` = 0, p1 sets s0,` = s1,` = 0.

ii) If b1,` = 1 and ι = 1, p1 sets s0,` = 0 and s1,` = x1,r1 .
iii) If b1,` = 1 and ι >= 2, p1 sets s0,` = s1,` = 0.

3) For each ` ∈ [1,m], p0 and p1 run an OT protocol as follows:
a) p1 acts as the sender with the input (s0,`,s1,`) for the OT.
b) p0 acts as the receiver with the input 1−b0,` for the OT.

Let x` denote the corresponding output of the OT obtained by p0.
4) p0 computes U1 = S0∪{x1, ...,xm}\{0} and announces U1.

Fig. 4. The descriptions of the OT-PSU protocol.

Due to space constraints, detailed proof of the above two
theorems can be found in our technical report [39].

Remark. The security requirement of our protocols is that
no participants can learn any extra knowledge other than what
can be obtained from the set union. Let’s look at a simple
example. Suppose that there are two participants p0 and p1,
which have S0 = {x1,x2,x3} and S1 = {x2,x4}, respectively.
After executing our OT-PSU protocol, p0 and p1 obtain the
set union U = {x1,x2,x3,x4}. Obviously, by using sets S0 and
U , p0 learns the knowledge that p1 has x4. According to
Definition 2, this knowledge is allowed to be learned, since it
is inferred from the set union. But other than that, p0 cannot
learn any extra knowledge from our protocol, such as whether
or not p1 holds elements x1, x2 and x3.

C. Complexities
1) Communication Complexity: For the HE-MPSU proto-

col, in the system setup stage, the communication complexity
is O(nλ ). Next, in the approximating stage, each pi needs to
send m0 l-bit FM sketches. And for each bit, each pi produces
ciphertexts of length O(λ ). Thus, the communication complex-
ity is O(m0nlλ ) in the stage. Similarly, the communication
complexity of the remaining stages is O(nmλ ). In summary,
for the given constant δ , the total communication complexity
is O(nNλ ) since m0 is a constant, l = dlogMe and m = O(N).

For our OT-PSU protocol, the communication complexity
is O(kλ ) since the communication complexity of one OT
protocol is O(λ ) and we need to run O(k) OT protocols, for
given constant δ .

2) Round Complexity: For the HE-MPSU protocol, our
system setup stage can be done in O(1) rounds. The approxi-
mating stage requires O(1) rounds since performing Algorithm
1 requires O(1) rounds and for each step, all messages required
to send by participants can be transmitted in parallel. Similarly,
for the rest of the stages, they need O(1) rounds. Thus, the
total round complexity is O(1).

For our OT-PSU protocol, it is not hard to see that round
complexity is O(1) since OT protocols can be done in constant
rounds and, for each step, all messages required to send by
participants can be transmitted in parallel.

3) Computation Complexity: For the HE-MPSU protocol,
we mainly consider modular exponentiation operations. When
each participant generates one ciphertext by using Enc(·),
it needs O(1) modular exponentiation operations. For each
j ∈ [t +1], p j needs O(1) modular exponentiation operations
to decrypt one ciphertext. According to the above analysis, we
have that each participant generates and decrypts at most O(N)
ciphertexts. Thus, the number of modular exponentiations
operations is O(nN).

For the OT-PSU protocol, the number of modular expo-
nentiations operations is O(λ ) thanks to OT extensions. The
number of exponentiations in this protocol is independent of
the size of the data sets.

VIII. DISCUSSION ON DIFFERENT SET SIZES OF EACH
PARTICIPANT

In this section, we discuss the case where the size of each
participant’s data set is different.

We mainly consider the multi-party case, i.e., our HE-
MPSU protocol. It is not difficult to see that the operation of
each participant in the system setup stage is independent of the
size of the participants’ sets. In the approximating stage, each
participant generates and sends m0 FM-Sketches, and each
FM-Sketch contains l = dlogMe ciphertexts. Note that M (or
the universal set [1,M]) is public. The number of messages
sent by each participant in this stage is independent of the
size of its own set. In the GBF constructing stage, participants
construct a GBF, and the GBF contains O(N) ciphertexts. Note
that N is public since it is easily calculated from |U |. The
number of messages sent by each participant in this stage is
also independent of the size of its own set. Similarly, in the
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element computing stage, the number of messages sent by
each participant is also independent of the size of its own
set since each participant sends O(N) ciphertexts. Therefore,
our HE-MPSU protocol can be directly applied to the case
where the sets of participants are of different sizes, and no
additional operations need to be added. In other words, our
protocol naturally hides the size of each participant’s set.

However, in the previous work [12], [16], the number of
messages sent by each participant is related to the size of
its own set. If the size of each participant’s set is privacy
information and needs to be protected, their schemes usually
require an additional step: padding operation. Namely, each
participant must add dummy elements to its private data set.
Obviously, this operation will increase the communication and
computation overheads.

IX. CONCLUSION

In this paper, we have revisited the classic MPSU prob-
lem and proposed nearly optimal protocols, which have the
lowest communication, computation and round complexities
compared with the existing work. Our protocols can securely
obtain the set union with probability at least 1−δ where δ is
a small constant between 0 and 1. Our protocols are based on
our key observation, i.e., for the Bloom Filter BF = (b1, ...bm)
produced by a set union, each element in the set union has at
least one bit bi (i ∈ [1,m]) where only this element is mapped
to with probability at least 1−δ3 (δ3 is also a constant between
0 and 1). In our future work, we will investigate the classic
MPSU problem in the malicious model.
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