
A New Method for Independent Task Scheduling in Nonlinearly DAG Clustering

Qiang-Sheng Hua1, Zhi-Gang Chen1, and Francis C.M. Lau2

1School of Information Science & Engineering,
Central South University, Changsha, P.R. China, 410083

2Department of Computer Science & Information Systems,
The University of Hong Kong, Pokfulam Road, Hong Kong

fcmlau@csis.hku.hk

Abstract

For the parallel tasks represented by the Directed
Acyclic Graph (DAG), if it is linearly clustered, the
ordering of the execution time of the tasks in each cluster
is based on their arrows in the DAG. But for nonlinearly
clustering, the ordering of the independent tasks in each
cluster is not easily decided. Improper ordering of these
independent tasks will greatly increase the scheduling
length of the DAG. We discuss the shortcomings of
current scheduling algorithms and the reason behind
poor performance, and then propose some new node
information to be extracted which is used by a new
independent tasks scheduling algorithm based on the
Maximized Parallelism Degree (MPD). Experimental
results show that the MPD algorithm can yield better
performance than the previous algorithms.

1. Introduction

There are two different methods in DAG
clustering[1,2,4,12]: linearly clustering and nonlinearly
clustering. If there are no independent tasks in each
cluster (two nodes independent if there are no
dependence paths between them[2]), then it is linearly
clustering; otherwise nonlinearly clustering. Generally
speaking, for coarse grain tasks, linearly clustering is
better than the nonlinearly clustering[5,6,8,9]. For fine
grain tasks, nonlinearly clustering is better[11].

It is well known that, if the tasks have been linearly
clustered, the order of the time to execute is from the end
task of the arrows to the front task of the arrows because
there are dependence paths between the tasks of each
cluster[3,7]. Figure 1(d) shows a linearly clustered task
graph, where node n1,n2 and n4 have been mapped into
one cluster, and node n3 is in another cluster. But for
nonlinearly clustering, there exist at least two
independent tasks in some cluster. Different orderings of
these independent tasks always greatly influence the task
scheduling length of the DAG. So how to order these
tasks in the nonlinearly clustered DAG is crucial.

Although some algorithms have been proposed to address
the problem using different strategies[2], we found that
they cannot satisfy all kinds of DAGs. In this paper, we
first discuss the shortcomings of current task scheduling
algorithms, point out the reasons why they could lead to
poor performance, and then propose some new node
information to be extracted which is based a modification
of the tlevel and blevel values; finally, the paper presents
a new independent task scheduling algorithm for
nonlinearly DAG clustering based on the concept of
Maximized Parallelism Degree (MPD). Experimental
results show that our algorithm yields better performance
than previous algorithms.

2. Definitions and Assumptions

Examples of DAG are shown in Figure 1.We suppose
that the DAG has been nonlinearly clustered, and there is
one processor per cluster. Now we need to order the
execution times of the independent tasks in each cluster.

DEFINITION 1: A weighted DAG is a tuple
G=(V,E,W,C), where V=(V1,V2,…,V|v|) is the set of
nodes, |V| is the number of the nodes, E={eij|vi,vj�

V} ⊆ V�V� is the set of communication edges, and |E|
is the number of edges. The set C is the set of edge
communication costs and W the set of node computation
costs. The value Cij� C is the communication cost
incurred along the edge eij�E, which is zero if both
nodes are mapped in the same processor. The value Wi�

W is the computation cost for node Vi�V. We use
PRED(Vi) for the set of immediate predecessors of Vi and
SUCC(Vi) the set of immediate successors of Vi. If
PRED(Vi)=� , then node Vi is an entry node, and
symmetrically if SUCC(Vi)=�, then node Vi is an exit
node. Two nodes are called independent if there are no
dependence paths between them.

DEFINITION 2: tlevel(Vi) is the length of the longest
path from an entry node to Vi excluding the weight of Vi

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

in a DAG. blevel(Vi) is the length of the longest path
from Vi to an exit node. Because the communication edge
on the path may be zeroed during the clustering, both
tlevel(Vi) and blevel(Vi) could be dynamically changed.
If the calculation of blevel(Vi) does not take the edge
weights into account, then it is a static blevel which is
abbreviated as sbl. The tlevel value of an entry node is
zero, and the blevel value of an exit node is its
computation cost.

1 20

1

10

n2

20

n1

5

n3

10

n4

8

1 20

1

10

n2

20

n1

5

n3

20

n4

8

(a)O riginal D AG (b)W (n3) changed to 20

1 5

1

10

n2

20

n1

5

n3

10

n4

8

1 1

1

10

n2

20

n1

5

n3

10

n4

8

(c)C(n1,n3)changed to 5 (d) linearly clustered D AG

Figure1 Four clustered D AG (Fig a,b,c nonlinearly

clustered, Fig d linearly clustered)

3. Current Task Scheduling Strategies

The node information defined in Section 2 such as
tlevel, blevel and sbl comes from previous task
scheduling algorithms[2]. Since then, nearly all
subsequent scheduling algorithms made use of these node
values. These values have played a great role in both the
clustering step and the scheduling step. Because the node
value “tlevel” decides the earliest start time of a task,
many algorithms such as MCP[2] give higher priority to
the node which has a lower “tlevel” value, to make sure
that the node can be executed earlier than other tasks,
which also means to execute the tasks in a DAG with a
topological order. Because the node value “blevel” is
closely related to the critical path of a DAG, in order to
schedule the tasks on the critical path (CP), some
algorithms such as Sarkar[3] give higher priority to the
node which has a higher “blevel” value; this is also to

make sure that this task can be executed earlier than
other tasks. And because of the clustering step, the node
values have to be changed during the process. Some
algorithm such as EZ (Edge Zeroing) and ETF (Earliest
Time First)[2] give higher priority to the node which has a
higher “sbl” value. In addition, in order to
comprehensively consider the earliest start time of a node
and the critical path node, other algorithms[2] give higher
priority to the node which has a higher “btlevel” value
(btlevel is represented by blevel minus tlevel). In order to
give a clearer picture in which to present our MPD
algorithm, some detailed applications of these current
scheduling strategies are given below. Note that the DAG
in Figure 1(a), (b) and (c) has been nonlinearly clustered.

For Figure 1(a), tasks n1,n2 and n3 have been merged
into a cluster, and the remaining task n4 becomes another
cluster. It is obvious that node n2 and n3 are independent
tasks. Their node information is shown in Table 1.
Because tlevel(n2)=5 and tlevel(n3)=5, so it is impossible
to order their execution times based on their tlevel values.
Because blevel(n2)=29 and blevel(n3)=28, if we give
higher priority to the node which has a higher blevel
value, then node n2 will be executed earlier than node n3.
Then the scheduling length of this DAG would be
5+20+10+10+8=53 (note that the communication value
in a cluster has become zero). If we give higher priority
to the node which has a higher sbl value or higher btlevel
(blevel-tleve) value, then because sbl(n2)=28,
sbl(n3)=18�btlevel(n2)=24 and btlevel(n3)=23, node n2

would still be executed earlier than node n3, and the
scheduling length would still be 53. But if we tried to
schedule n3 earlier, then the scheduling length becomes
5+10+20+1+8=44, this scheduling strategy greatly
reduces the scheduling length. But all of the current
scheduling strategies would fail to make sure that n3

should be executed earlier than n2.
Now one may think that if we give lower priority

instead of higher priority to these nodes which have a
higher blevel, sbl or btlevel value, we can make sure that
n3 would be executed earlier than n2. It is true for this
example, but what about if we changed some costs of the
nodes in Figure 1(a)?

For Figure 1(b), we changed the value of n3 from 10
to 20, and Table 2 shows their new node information.
Because now sbl(n2) equals sbl(n3), it is impossible to
order their execution times based on the sbl values. But
because blevel(n2)<blevel(n3) and btlevel(n2)<btlevel(n3),
if we choose to first execute the nodes with a lower blevel
or btlevel value, node n2 would still be executed earlier
than node n3, and the scheduling length would be
5+20+20+10+8=63. But if we try to first execute node n3,
then the scheduling length becomes 5+20+20+1+8=54.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

So this strategy cannot work either. And scheduling task
n3 first is still better than scheduling task n2 first.

For Figure 1(c), let us try to schedule the task which
has a lower tlevel value to see if it can give a better result.
We now change C(n1,n3) from 20 to 5, and now there
exist three clusters, tasks n2 and n3, task n1 and task n4.
Task n2 and n3 are still independent tasks. The new node
information is shown in Table 3. Because
tlevel(n2)<tlevel(n3), blevel(n2)>blevel(n3), sbl(n2)>sbl(n3)
and btlevel(n2)>btlevel(n3), it is easy to see that task n2

should be executed earlier than task n3. And if we try to
schedule the task which has a higher blevel, sbl or btlevel
value, n2 would still be executed earlier than n3. The
scheduling length would be 5+1+20+10+10+8=54. But if
we tried to execute task n3 first, then the scheduling
length would become 5+5+10+20+1+8=49. So
scheduling the task which has a lower tlevel value cannot
make sure that the scheduling length of the parallel tasks
would be the shortest either.

In short, node information such as blevel and tlevel
extracted in the DAG is not sufficient for ensuring the
shortest scheduling length. We need to extract new node
information and to design a new scheduling algorithm
based on the new node values.

4. A New Scheduling Algorithm based on
Maximized Parallelism Degree (MPD)

From the examples shown in Section 3, we can see
that previous algorithms cannot ensure the shortest
scheduling lengths. And scheduling task n3 first is always
better than scheduling task n2. The reason is that the
current scheduling strategies fail to consider the
maximized parallelism degree in the scheduling process,
or we can say that they fail to maximize the parallelism
among the computations of the nodes and the
communications of the nodes.

Because the tasks have been clustered, the
computation time of each node and the communication
time between nodes have been decided, and they cannot
be changed during the scheduling process; the only way
then to reduce the scheduling length of the DAG is to
maximize the parallelism degree. In order to maximize
the parallelism degree, we need to extract new node
information from the DAG.

4.1 New node information extracted from the
DAG

 In order to maximize the parallelism degree of the
nodes in the DAG and to measure the values of the
parallelism degree, we introduce the following definition.

DEFINITION 3: televel(Vi) is the length of the longest
path from an entry node to Vi including the weight of Vi

in a DAG. Symmetrically belevel(Vi) is the length of the
longest path from Vi to an exit node excluding the weight
of Vi in a DAG. The televel value of an entry node is its
computation cost, and the belevel value of an exit node is
zero.

 N o d e s

N o d e v a lu e

n 1 n 2 n 3 n 4

t le v e l 0 5 5 2 6

b le v e l 3 4 2 9 2 8 8

(b t le v e l)

b le v e l - t le v e l

3 4 2 4 2 3 -1 8

S ta t ic _ b le v e l 3 3 2 8 1 8 8

t e le v e l 5 2 5 1 5 3 4

b e le v e l 2 9 9 1 8 0

 T a b le 1 N o d e in f o r m a t io n f r o m F i g 1 (a)

 N o d e s

N o d e v a lu e

n 1 n 2 n 3 n 4

tle v e l 0 5 5 3 5

b le v e l 4 3 2 9 3 8 8

 (b tl e v e l)

b le v e l- tle v e l

4 3 2 4 3 3 -2 7

S ta t ic _ b le v e l 3 3 2 8 2 8 8

te le v e l 5 2 5 2 5 4 3

b e le v e l 3 8 9 1 8 0

 Ta b le 2 N o d e in fo rm a t io n f ro m F ig 1 (b)

 N o d es

N o d e v a lu e

n 1 n 2 n 3 n 4

tle v e l 0 6 1 0 3 0

b le v e l 3 8 2 9 2 8 8

 (b tle v e l)

b le v e l- tle v e l

3 8 2 3 1 8 -2 2

S ta tic _ b le v e l 3 3 2 8 1 8 8

te le v e l 5 2 6 2 0 3 8

b e le v e l 3 3 9 1 8 0

Ta b le 3 N o d e in fo rm a tio n f ro m F ig 1 (c)

4.2 The MPD algorithm

 Suppose node Vi and node Vj are the independent
tasks in a cluster, the ordering of their execution times is
decided by the following algorithm (where function
min(a, b) returns the smaller value between a and b).

In the algorithm, min[televel(Vi),tlevel(Vj)] stands for
the first part of the parallelism degree where node Vi has

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

been executed but node Vj has not been executed;
min[belevel(Vi) + blevel(Vj)] stands for the remaining
parallelism degree where node Vj has also been executed;
and the sum of the two functions represents the whole
parallelism degree where node Vi is executed earlier than
node Vj. Let us use sum1 to denote this sum. And
symmetrically, min[televel(Vj), tlevel(Vi)] stands for the
first part of the parallelism degree where node Vj has
been executed but node Vi has not been executed;
min[belevel(Vj) + blevel(Vi)] stands for the remaining
parallelism degree where node Vi has also been executed;
and the sum of the two functions stands for the whole
parallelism degree where node Vj is executed earlier than
node Vi. Let us use sum2 to denote this sum. Now we can
compare the sum1 with the sum2 to see which is larger,
and the larger sum certainly stands for the maximized
parallelism degree. And the absolute value of the
difference between sum1 and sum2 stands for the
difference between the different scheduling lengths.

MPD Algorithm:
Step 1: If there exist independent tasks Vi and Vj in a
cluster, then compute the televel and belevel values;
If
min[televel(Vi),tlevel(Vj)]+min[belevel(Vi)+blevel(Vj)]>=

min[televel(Vj),tlevel(Vi)]+min[belevel(Vj)+blevel(Vi)]
then schedule task Vi first

 else schedule task Vj first;
Step 2: Add a dashed line from the first scheduled node to
the second scheduled node;
Step 3: Recompute the node information, and goto step1.

The MPD algorithm can ensure that the node which
has the larger parallelism degree is executed earlier than
other independent nodes in the same cluster. Thus the
scheduling length of the parallel tasks will definitely be
the shortest. The new node information, “televel” and
“belevel” has been calculated in Table 1, Table 2 and
Table 3 for the three DAGs in Figure 1(a), (b) and (c)
respectively.

For Figure 1(a),
Sum1=min[televel(n3),tlevel(n2)]+min[belevel(n3)+
blevel(n2)]= min[15,5]+ min[18,29]=5+18=23
Sum2=min[televel(n2),tlevel(n3)]+min[belevel(n2)+
blevel(n3)]= min[25,5]+ min[9,28]=5+9=14
So, node n3 should be executed earlier than node n2

The absolute value of the difference between sum1 and
sum2 is 9, which is equal to the difference between the
two different scheduling lengths (53-44=9).

For Figure 1(b),
Sum1=min[televel(n3),tlevel(n2)]+min[belevel(n3)+
blevel(n2)]= min[25,5]+ min[18,29]=5+18=23
Sum2=min[televel(n2),tlevel(n3)]+min[belevel(n2)+
blevel(n3)]= min[25,5]+ min[9,38]=5+9=14
So, node n3 should be executed earlier than node n2.

The absolute value of the difference between sum1 and
sum2 is 9, which is equal to the difference between the
two different scheduling lengths (63-54=9).

4.3 Time complexity of MPD Algorithm

Because there is another step to recompute the belevel
and televel value of the independents nodes in a cluster,
it is obvious that the time complexity of the proposed
algorithm is O((|V|+|E|)*|V|), where |V| and |E| stand for
the number of the nodes and the number of edges
respectively. For the coarse grain DAGs, the complexity
of this algorithm is comparable to that of the previous
algorithms which need to compute the node information
such as blevel and tlevel.

5. Experimental Results

A parallel program represented by a DAG is shown
in Figure 2(a)[10], it has been merged into two clusters,
PE0 and PE1. (In the PE1 cluster, because nodes n1, n2,
n5 and n6 are in one cluster, their communication time is
zero.) And their node information is shown in Table 4.
From Figure 2(a), we can see that nodes n3 and n4 in the
PE0 cluster are independent tasks, while in the PE1
cluster, there are two pairs of independent tasks -- n1 and
n2, and n2 and n5. Based on the Maximized Parallelism
Degree algorithm, the first node to be executed in each
cluster is decided by the following formula.

For the PE0 Cluster:
Sum1=min[televel(n3),tlevel(n4)]+min[belevel(n3),
blevel(n4)]=min[3,3]+min[2,4]=3+2=5
Sum2=min[televel(n4)+tlevel(n3)]+min[belevel(n4),
blevel(n3)]=min[5,2]+min[2,3]=2+2=4
So, node n3 should be executed earlier than node n4

The absolute value of the difference between sum1 and

For Figure 1(c),
Sum1=min[televel(n3),tlevel(n2)]+min[belevel(n3)+
blevel(n2)]= min[20,6]+ min[18,29]=6+18=24
Sum2=min[televel(n2),tlevel(n3)]+min[belevel(n2)+
blevel(n3)]= min[26,10]+ min[9,28]=10+9=19
So, node n3 should be executed earlier than node n2

The absolute value of the difference between sum1 and
sum2 is 5, which is equal to the difference between the
two different scheduling lengths (54-49=5).

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

sum2 is 1, which is equal to the difference between the
two different scheduling lengths (8-7=1).

The scheduling Gantt graph based on the presented
algorithm is shown as Figure 2(b), where the scheduling
length is 7. If we randomly select the node to be executed
during the clusters, then its scheduling length could be
12, as shown as Figure 2(c). But if we schedule the tasks
in the cluster based on the previous algorithms, then
node n4 should be executed earlier than node n3, and the
scheduling length is 8 which is shown in Figure 2(d).

6. Conclusion

Motivated by the shortcomings of the current
independent tasks scheduling strategies under
nonlinearly clustering, this paper first points out why the
current scheduling algorithms cannot produce the
shortest scheduling length. It is because that they cannot
maximize the whole parallelism degree of the
independent tasks in the clustered DAG. In order to
achieve a better result, this paper proposes to extract new
node information from the DAG and a new task
scheduling algorithm called MPD which is based on the
Maximized Parallelism Degree. Experimental results
show that the presented algorithm is better than any other
scheduling algorithm.

 N odes

N ode value

n1 n2 n3 n4 n5 n6

tlevel 0 0 2 3 1 6

blevel 7 5 3 4 2 1

(btlevel) blevel-tlevel 7 5 1 1 1 -5

Static_blevel 4 5 2 3 2 1

televel 1 4 3 5 2 7

belevel 6 1 2 2 1 0

 Table 4 N ode Information from Figure2(a)

 PE1

 PE0

 1 2

1 1

(a) two clusters of the DAG (b) scheduling length (7)

(c) scheduling length (12) (d) scheduling length (8)

Figure2 Three Gantt Graphs based on different independent

 tasks scheduling algorithms

n1

1

n3

1

n4

2

n5

1

n2

4

n6

1

n1

n3

n2

n4

n5

n6

1

2

3

4

5

6

7

8

9

10

11

12

13

PE0 PE1

7

n2

n1

n5

n4

n3

 n6

1

2

3

4

5

6

7

8

9

10

11

12

13

PE0 PE1

12

1

2

3

4

5

6

7

8

9

10

11

12

13

n1

n4 n2

n3 n5

n6

PE0 PE1

8

References

For the PE1 cluster:
Sum1=min[televel(n1),tlevel(n2)]+min[belevel(n1),
blevel(n2)]=min[1,0]+min[6,5]=0+5=5
Sum2=min[televel(n2),tlevel(n1)]+min[belevel(n2),
blevel(n1)]=min[4,0]+min[1,7]=0+1=1
So, node n1 should be executed earlier than node n2,

The absolute value of the difference between sum1
and sum2 is 4, which is equal to the difference between
the two different scheduling lengths (12-8=4).

Add a dashed line from n1 to n2, and then
recompute the node information.
Sum1=min[televel(n2),tlevel(n5)]+min[belevel(n2),
blevel(n5)]=min[5,1]+min[1,2]=1+1=2
Sum2=min[televel(n5),tlevel(n2)]+min[belevel(n5),
blevel(n2)]=min[2,1]+min[1,5]=1+1=2
So nodes n2 and n5 are randomly selected to schedule.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

[1] Haluk Topcuoglu, Salim Hariri, Min-You Wu,
Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE
Transactions on Parallel and Distributed Systems, V13(3):
260-274 , 2002.

[2] Yu-Kwong Kwok and Ishfaq Ahmad, Static
Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors, ACM Computing Surveys,
1999, v31(4):406-471.

[3] Tao Yang and Apostolos Gerasoulis, DSC:
Scheduling Parallel Tasks on an Unbounded Number of
Processors � IEEE Transactions on Parallel and
Distributed Systems, 1994, V5(9):951-967.

[4] Tao Yang and Apostolos Gerasoulis, PYRROS: Static
Task Scheduling and Code Generation for Message
Passing Multiprocessors, Proceedings of 6th ACM
International Conference on Supercomputing (ICS
92):428-437, 1992, Washington D.C.

[5] Apostolos Gerasoulis and Tao Yang, On the
Granularity and Clustering of Directed Acyclic Task
Graphs, IEEE Transactions on Parallel and Distributed
Systems, 1993, V4(6):686-701.

[6] B. Kruatrachue and T. Lewis: Grain Size
Determination for Parallel Processing. IEEE
Software:23-32, 1988.

[7] Yu-Kwong Kwok, Ishfaq Ahmad: Dynamic Critical-
Path Scheduling: An Effective Technique for Allocating
Task Graphs to Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, V7(5): 506-521, 1996.

[8] J. Liou and M.A. Palis. An Efficient Clustering
Heuristic for Scheduling DAGs on Multiprocessors. Proc.
Symp. Parallel and Distributed Processing, 1996.

[9] R.L. Graham, Bounds on Multiprocessing Timing
Anomalies, SIAM J. Appl. Math., V17(2), March
1969:417-429.

[10] Yu-Kwong Kwok and Ishfaq Ahmad,
Benchmarking and Comparison of the Task Graph
Scheduling Algorithms. Journal of Parallel and
Distributed Computing 59(3): 381-422, 1999.

[11] Qiangsheng Hua and Zhigang Chen, Efficient
Granularity and Clustering of the Directed Acyclic
Graphs, Proceedings of the Fourth International
Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT'03), IEEE Press,
pp. 625-628, 2003, Chengdu, China.

[12] Chen Zhi-gang and Hua Qiang-Sheng�EZDCP:A
new static task scheduling algorithm with edge-zeroing
based on dynamic critical paths� Journal of Central
South University of Technology (English Edition),
V10(2):140-144, 2003.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

