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Abstract 

For the parallel tasks represented by the Directed 
Acyclic Graph (DAG), if it is linearly clustered, the 
ordering of the execution time of the tasks in each cluster 
is based on their arrows in the DAG. But for nonlinearly 
clustering, the ordering of the independent tasks in each 
cluster is not easily decided. Improper ordering of these 
independent tasks will greatly increase the scheduling 
length of the DAG. We discuss the shortcomings of 
current scheduling algorithms and the reason behind 
poor performance, and then propose some new node 
information to be extracted which is used by a new 
independent tasks scheduling algorithm based on the 
Maximized Parallelism Degree (MPD). Experimental 
results show that the MPD algorithm can yield better 
performance than the previous algorithms. 

1. Introduction 

There are two different methods in DAG 
clustering[1,2,4,12]: linearly clustering and nonlinearly 
clustering. If there are no independent tasks in each 
cluster (two nodes independent if there are no 
dependence paths between them[2]), then it is linearly 
clustering; otherwise nonlinearly clustering. Generally 
speaking, for coarse grain tasks, linearly clustering is 
better than the nonlinearly clustering[5,6,8,9]. For fine 
grain tasks, nonlinearly clustering is better[11].

It is well known that, if the tasks have been linearly 
clustered, the order of the time to execute is from the end 
task of the arrows to the front task of the arrows because 
there are dependence paths between the tasks of each 
cluster[3,7]. Figure 1(d) shows a linearly clustered task 
graph, where node n1,n2 and n4 have been mapped into 
one cluster, and node n3 is in another cluster. But for 
nonlinearly clustering, there exist at least two 
independent tasks in some cluster. Different orderings of 
these independent tasks always greatly influence the task 
scheduling length of the DAG. So how to order these 
tasks in the nonlinearly clustered DAG is crucial. 

Although some algorithms have been proposed to address 
the problem using different strategies[2], we found that 
they cannot satisfy all kinds of DAGs. In this paper, we 
first discuss the shortcomings of current task scheduling 
algorithms, point out the reasons why they could lead to 
poor performance, and then propose some new node 
information to be extracted which is based a modification 
of the tlevel and blevel values; finally, the paper presents 
a new independent task scheduling algorithm for 
nonlinearly DAG clustering based on the concept of 
Maximized Parallelism Degree (MPD). Experimental 
results show that our algorithm yields better performance 
than  previous algorithms. 

2. Definitions and Assumptions

Examples of DAG are shown in Figure 1.We suppose 
that the DAG has been nonlinearly clustered, and there is 
one processor per cluster. Now we need to order the 
execution times of the independent tasks in each cluster. 

DEFINITION 1: A weighted DAG is a tuple 
G=(V,E,W,C), where V=(V1,V2,…,V|v|) is the set of 
nodes, |V| is the number of the nodes, E={eij|vi,vj�

V} ⊆ V�V� is the set of communication edges, and |E| 
is the number of edges. The set C is the set of edge 
communication costs and W the set of node computation 
costs. The value Cij� C is the communication cost 
incurred along the edge eij�E, which is zero if both 
nodes are mapped in the same processor. The value Wi�

W is the computation cost for node Vi�V. We use 
PRED(Vi) for the set of immediate predecessors of Vi and 
SUCC(Vi) the set of immediate successors of Vi. If 
PRED(Vi)=� , then node Vi is an entry node, and 
symmetrically if SUCC(Vi)=�, then node Vi is an exit 
node. Two nodes are called independent if there are no 
dependence paths between them. 

DEFINITION 2: tlevel(Vi) is the length of the longest 
path from an entry node to Vi excluding the weight of Vi
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in a DAG. blevel(Vi) is the length of the longest path 
from Vi to an exit node. Because the communication edge 
on the path may be zeroed during the clustering, both 
tlevel(Vi) and blevel(Vi) could be dynamically changed. 
If the calculation of blevel(Vi) does not take the edge 
weights into account, then it is a static blevel which is 
abbreviated as sbl. The tlevel value of an entry node is 
zero, and the blevel value of an exit node is its 
computation cost. 
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Figure1   Four clustered D AG  (Fig a,b,c nonlinearly  

clustered, Fig d linearly clustered) 

3. Current Task Scheduling Strategies

The node information defined in Section 2 such as 
tlevel, blevel and sbl comes from previous task 
scheduling algorithms[2]. Since then, nearly all 
subsequent scheduling algorithms made use of these node 
values. These values have played a great role in both the 
clustering step and the scheduling step. Because the node 
value “tlevel” decides the earliest start time of a task, 
many algorithms such as MCP[2] give higher priority to 
the node which has a lower “tlevel” value, to make sure 
that the node can be executed earlier than other tasks, 
which also means to execute the tasks in a DAG with a 
topological order. Because the node value “blevel” is 
closely related to the critical path of a DAG, in order to 
schedule the tasks on the critical path (CP), some 
algorithms such as Sarkar[3] give higher priority to the 
node which has a higher “blevel” value; this is also to 

make sure that this task can be executed earlier than 
other tasks. And because of the clustering step, the node 
values have to be changed during the process. Some 
algorithm such as EZ (Edge Zeroing) and ETF (Earliest 
Time First)[2] give higher priority to the node which has a 
higher “sbl” value. In addition, in order to 
comprehensively consider the earliest start time of a node 
and the critical path node, other algorithms[2] give higher 
priority to the node which has a higher “btlevel” value 
(btlevel is represented by blevel minus tlevel). In order to 
give a clearer picture in which to present our MPD 
algorithm, some detailed applications of these current 
scheduling strategies are given below. Note that the DAG 
in Figure 1(a), (b) and (c) has been nonlinearly clustered. 

For Figure 1(a), tasks n1,n2 and n3 have been merged 
into a cluster, and the remaining task n4 becomes another 
cluster. It is obvious that node n2 and n3 are independent 
tasks. Their node information is shown in Table 1. 
Because tlevel(n2)=5 and tlevel(n3)=5, so it is impossible 
to order their execution times based on their tlevel values. 
Because blevel(n2)=29 and blevel(n3)=28, if we give 
higher priority to the node which has a higher blevel 
value, then node n2 will be executed earlier than node n3.
Then the scheduling length of this DAG would be 
5+20+10+10+8=53 (note that the communication value 
in a cluster has become zero). If we give higher priority 
to the node which has a higher sbl value or higher btlevel 
(blevel-tleve) value, then because sbl(n2)=28, 
sbl(n3)=18�btlevel(n2)=24 and btlevel(n3)=23, node n2

would still be executed earlier than node n3, and the 
scheduling length would still be 53. But if we tried to 
schedule n3 earlier, then the scheduling length becomes 
5+10+20+1+8=44, this scheduling strategy greatly 
reduces the scheduling length. But all of the current 
scheduling strategies would fail to make sure that n3

should be executed earlier than n2.
Now one may think that if we give lower priority 

instead of higher priority to these nodes which have a 
higher blevel, sbl or btlevel value, we can make sure that 
n3 would be executed earlier than n2. It is true for this 
example, but what about if we changed some costs of the 
nodes in Figure 1(a)? 

For Figure 1(b), we changed the value of n3 from 10 
to 20, and Table 2 shows their new node information. 
Because now sbl(n2) equals sbl(n3), it is impossible to 
order their execution times based on the sbl values. But 
because blevel(n2)<blevel(n3) and btlevel(n2)<btlevel(n3), 
if we choose to first execute the nodes with a lower blevel 
or btlevel value, node n2 would still be executed earlier 
than node n3, and the scheduling length would be 
5+20+20+10+8=63. But if we try to first execute node n3,
then the scheduling length becomes 5+20+20+1+8=54. 
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So this strategy cannot work either. And scheduling task 
n3 first is still better than scheduling task n2 first. 

For Figure 1(c), let us try to schedule the task which 
has a lower tlevel value to see if it can give a better result. 
We now change C(n1,n3) from 20 to 5, and now there 
exist three clusters, tasks n2 and n3, task n1 and task n4.
Task n2 and n3 are still independent tasks. The new node 
information is shown in Table 3. Because 
tlevel(n2)<tlevel(n3), blevel(n2)>blevel(n3), sbl(n2)>sbl(n3)
and btlevel(n2)>btlevel(n3), it is easy to see that task n2

should be executed earlier than task n3. And if we try to 
schedule the task which has a higher blevel, sbl or btlevel 
value, n2 would still be executed earlier than n3. The 
scheduling length would be 5+1+20+10+10+8=54. But if 
we tried to execute task n3 first, then the scheduling 
length would become 5+5+10+20+1+8=49. So 
scheduling the task which has a lower tlevel value cannot 
make sure that the scheduling length of the parallel tasks 
would be the shortest either. 

In short, node information such as blevel and tlevel 
extracted in the DAG is not sufficient for ensuring the 
shortest scheduling length. We need to extract new node 
information and to design a new scheduling algorithm 
based on the new node values. 

4. A New Scheduling Algorithm based on 
Maximized Parallelism Degree (MPD) 

From the examples shown in Section 3, we can see 
that previous algorithms cannot ensure the shortest 
scheduling lengths. And scheduling task n3 first is always 
better than scheduling task n2. The reason is that the 
current scheduling strategies fail to consider the 
maximized parallelism degree in the scheduling process, 
or we can say that they fail to maximize the parallelism 
among the computations of the nodes and the 
communications of the nodes. 

Because the tasks have been clustered, the 
computation time of each node and the communication 
time between nodes have been decided, and they cannot 
be changed during the scheduling process; the only way 
then to reduce the scheduling length of the DAG is to 
maximize the parallelism degree. In order to maximize 
the parallelism degree, we need to extract new node 
information from the DAG. 

4.1 New node information extracted from the 
DAG 

 In order to maximize the parallelism degree of the 
nodes in the DAG and to measure the values of the 
parallelism degree, we introduce the following definition. 

DEFINITION 3: televel(Vi) is the length of the longest 
path from an entry node to Vi including the weight of Vi

in a DAG. Symmetrically belevel(Vi) is the length of the 
longest path from Vi to an exit node excluding the weight 
of Vi in a DAG. The televel value of an entry node is its 
computation cost, and the belevel value of an exit node is 
zero. 

       N o d e s

N o d e  v a lu e  

n 1  n 2  n 3  n 4

t le v e l  0  5  5  2 6

b le v e l  3 4  2 9  2 8  8  

( b t le v e l )  

b le v e l - t le v e l  

3 4  2 4  2 3  -1 8

S ta t ic _ b le v e l  3 3  2 8  1 8  8  

t e le v e l  5  2 5  1 5  3 4

b e le v e l  2 9  9  1 8  0  

   T a b le 1   N o d e  in f o r m a t io n  f r o m  F i g 1 ( a )  

       N o d e s

N o d e  v a lu e  

n 1  n 2  n 3  n 4

tle v e l 0  5  5  3 5

b le v e l 4 3  2 9  3 8  8  

 (b tl e v e l)  

b le v e l- tle v e l 

4 3  2 4  3 3  -2 7

S ta t ic _ b le v e l 3 3  2 8  2 8  8  

te le v e l 5  2 5  2 5  4 3

b e le v e l 3 8  9  1 8  0  

  Ta b le 2   N o d e  in fo rm a t io n  f ro m  F ig 1 (b )  

       N o d es

N o d e  v a lu e  

n 1 n 2  n 3  n 4

tle v e l 0  6  1 0  3 0

b le v e l 3 8  2 9  2 8  8  

 (b tle v e l)  

b le v e l- tle v e l 

3 8  2 3  1 8  -2 2

S ta tic _ b le v e l 3 3  2 8  1 8  8  

te le v e l 5  2 6  2 0  3 8

b e le v e l 3 3  9  1 8  0  

Ta b le 3   N o d e  in fo rm a tio n  f ro m  F ig 1 (c )  

4.2 The MPD algorithm

     Suppose node Vi and node Vj are the independent 
tasks in a cluster, the ordering of their execution times is 
decided by the following algorithm (where function 
min(a, b) returns the smaller value between a and b). 

In the algorithm, min[televel(Vi),tlevel(Vj)] stands for 
the first part of the parallelism degree where node Vi has 
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been executed but node Vj has not been executed; 
min[belevel(Vi) + blevel(Vj)] stands for the remaining 
parallelism degree where node Vj has also been executed; 
and the sum of the two functions represents the whole 
parallelism degree where node Vi is executed earlier than 
node Vj. Let us use sum1 to denote this sum. And 
symmetrically, min[televel(Vj), tlevel(Vi)] stands for the 
first part of the parallelism degree where node Vj has 
been executed but node Vi has not been executed; 
min[belevel(Vj) + blevel(Vi)] stands for the remaining 
parallelism degree where node Vi has also been executed; 
and the sum of the two functions stands for the whole 
parallelism degree where node Vj is executed earlier than 
node Vi. Let us use sum2 to denote this sum. Now we can 
compare the sum1 with the sum2 to see which is larger, 
and the larger sum certainly stands for the maximized 
parallelism degree. And the absolute value of the 
difference between sum1 and sum2 stands for the 
difference between the different scheduling lengths. 

MPD Algorithm:
Step 1: If there exist independent tasks Vi and Vj in a 
cluster, then compute the televel and belevel values; 
If 
min[televel(Vi),tlevel(Vj)]+min[belevel(Vi)+blevel(Vj)]>=

min[televel(Vj),tlevel(Vi)]+min[belevel(Vj)+blevel(Vi)]
then               schedule task Vi first                  

 else       schedule task Vj first; 
Step 2: Add a dashed line from the first scheduled node to 
the second scheduled node; 
Step 3: Recompute the node information, and goto step1.    

The MPD algorithm can ensure that the node which 
has the larger parallelism degree is executed earlier than 
other independent nodes in the same cluster. Thus the 
scheduling length of the parallel tasks will definitely be 
the shortest. The new node information, “televel” and 
“belevel” has been calculated in Table 1, Table 2 and 
Table 3 for the three DAGs in Figure 1(a), (b) and (c) 
respectively. 

For Figure 1(a), 
Sum1=min[televel(n3),tlevel(n2)]+min[belevel(n3)+ 
blevel(n2)]= min[15,5]+ min[18,29]=5+18=23 
Sum2=min[televel(n2),tlevel(n3)]+min[belevel(n2)+ 
blevel(n3)]= min[25,5]+ min[9,28]=5+9=14 
So, node n3 should be executed earlier than node n2

The absolute value of the difference between sum1 and 
sum2 is 9, which is equal to the difference between the 
two different scheduling lengths (53-44=9). 

For Figure 1(b), 
Sum1=min[televel(n3),tlevel(n2)]+min[belevel(n3)+ 
blevel(n2)]= min[25,5]+ min[18,29]=5+18=23 
Sum2=min[televel(n2),tlevel(n3)]+min[belevel(n2)+ 
blevel(n3)]= min[25,5]+ min[9,38]=5+9=14 
So, node n3 should be executed earlier than node n2.

The absolute value of the difference between sum1 and 
sum2 is 9, which is equal to the difference between the 
two different scheduling lengths (63-54=9). 

4.3 Time complexity of MPD Algorithm 

Because there is another step to recompute the belevel 
and televel value of the independents nodes in a cluster, 
it is obvious that the time complexity of the proposed 
algorithm is O((|V|+|E|)*|V|), where |V| and |E| stand for 
the number of the nodes and the number of edges 
respectively. For the coarse grain DAGs, the complexity 
of this algorithm is comparable to that of the previous 
algorithms which need to compute the node information 
such as blevel and tlevel.

5. Experimental Results

A parallel program represented by a DAG is shown 
in Figure 2(a)[10], it has been merged into two clusters, 
PE0 and PE1. (In the PE1 cluster, because nodes n1, n2,
n5 and n6 are in one cluster, their communication time is 
zero.) And their node information is shown in Table 4. 
From Figure 2(a), we can see that nodes n3 and n4  in the 
PE0 cluster are independent tasks, while in the PE1 
cluster, there are two pairs of independent tasks -- n1 and 
n2, and n2 and n5. Based on the Maximized Parallelism 
Degree algorithm, the first node to be executed in each 
cluster is decided by the following formula. 

For the PE0 Cluster: 
Sum1=min[televel(n3),tlevel(n4)]+min[belevel(n3), 
blevel(n4)]=min[3,3]+min[2,4]=3+2=5
Sum2=min[televel(n4)+tlevel(n3)]+min[belevel(n4), 
blevel(n3)]=min[5,2]+min[2,3]=2+2=4
So, node n3 should be executed earlier than node n4

The absolute value of the difference between sum1 and 

For Figure 1(c), 
Sum1=min[televel(n3),tlevel(n2)]+min[belevel(n3)+ 
blevel(n2)]= min[20,6]+ min[18,29]=6+18=24 
Sum2=min[televel(n2),tlevel(n3)]+min[belevel(n2)+ 
blevel(n3)]= min[26,10]+ min[9,28]=10+9=19
So, node n3 should be executed earlier than node n2

The absolute value of the difference between sum1 and 
sum2 is 5, which is equal to the difference between the 
two different scheduling lengths (54-49=5).
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sum2 is 1, which is equal to the difference between the 
two different scheduling lengths (8-7=1). 

The scheduling Gantt graph based on the presented 
algorithm is shown as Figure 2(b), where the scheduling 
length is 7. If we randomly select the node to be executed 
during the clusters, then its scheduling length could be 
12, as shown as Figure 2(c). But if we schedule the tasks 
in the cluster based on the previous algorithms, then 
node n4 should be executed earlier than node n3, and the 
scheduling length is 8 which is shown in Figure 2(d). 

6. Conclusion 

Motivated by the shortcomings of the current 
independent tasks scheduling strategies under 
nonlinearly clustering, this paper first points out why the 
current scheduling algorithms cannot produce the 
shortest scheduling length. It is because that they cannot 
maximize the whole parallelism degree of the 
independent tasks in the clustered DAG. In order to 
achieve a better result, this paper proposes to extract new 
node information from the DAG and a new task 
scheduling algorithm called MPD which is based on the 
Maximized Parallelism Degree. Experimental results 
show that the presented algorithm is better than any other 
scheduling algorithm. 

           N odes 

N ode value 

n1 n2 n3 n4 n5 n6

tlevel 0 0 2 3 1 6

blevel 7 5 3 4 2 1

(btlevel) blevel-tlevel 7 5 1 1 1 -5

Static_blevel 4 5 2 3 2 1

televel 1 4 3 5 2 7

belevel 6 1 2 2 1 0

   Table 4    N ode Information from  Figure2(a) 

  PE1 

 PE0 

     1   2 

1 1 

(a) two clusters of the DAG  (b) scheduling length (7)  

(c) scheduling length (12)    (d) scheduling length (8) 

Figure2 Three Gantt Graphs based on different independent
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For the PE1 cluster: 
Sum1=min[televel(n1),tlevel(n2)]+min[belevel(n1), 
blevel(n2)]=min[1,0]+min[6,5]=0+5=5 
Sum2=min[televel(n2),tlevel(n1)]+min[belevel(n2), 
blevel(n1)]=min[4,0]+min[1,7]=0+1=1 
So, node n1 should be executed earlier than node n2,

The absolute value of the difference between sum1 
and sum2 is 4, which is equal to the difference between 
the two different scheduling lengths (12-8=4). 

Add a dashed line from n1 to n2, and then 
recompute the node information. 
Sum1=min[televel(n2),tlevel(n5)]+min[belevel(n2), 
blevel(n5)]=min[5,1]+min[1,2]=1+1=2 
Sum2=min[televel(n5),tlevel(n2)]+min[belevel(n5), 
blevel(n2)]=min[2,1]+min[1,5]=1+1=2 
So nodes n2 and n5 are randomly selected to schedule. 
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