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Abstract—Dynamicity is one of the critical characteristics
and a major challenge in designing communication protocols in
wireless networks. Most of the previous works had focused on
the internal node changes (e.g., mobility, arrival, or departure)
and not considered the effect of external environmental change.
However, the external environmental change, in general, is a more
complex phenomenon that can impede nodes from successful
communication, implying the protocols of the previous dynamic
models do not work well in practice. In this paper, we give an
algorithm for distributed broadcasting in a more general model
with fully dynamic wireless networks, called FD-Broadcast.
Specifically, we present a fully dynamic model which allows
node mobility and churns (due to node arrivals/departure) and
external environmental change. In contrast to the previous works
on dynamic networks, our model defines the full dynamicity
in terms of localized topological changes of each node and
can tolerate some external environmental change. The external
environment changes are captured by the random jamming
method. We show that FD-Broadcast can achieve broadcasting
in O(DS) rounds with a high probability guarantee under the
assumption of constant dynamic rate in the SINR model, where
DS is the dynamic diameter, a parameter proposed to depict
the complexity of dynamic broadcasting. Moreover, the lower
bound of dynamic broadcasting is proved to be Ω(DS), thus,
FD-Broadcast is asymptotically optimal with high probability.

I. INTRODUCTION

Dynamicity is an essential part of wireless networks in
real-life and affects the communication capabilities of var-
ious mobile devices. Dynamic of wireless network comes
from internal node changes (churn and mobility) and external
environmental change. Churn, representing nodes arrival and
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departure, comes from many situations including nodes failure
and/or intermittent participation of nodes. Mobility is a basic
function in wireless networks, always leading to link changes
continually and unpredictably over time in the network topol-
ogy. External environmental change is quite complicated and
might significantly affect the communication among nodes.

Roughly speaking, there are two kinds of external envi-
ronmental changes, unintentional and intentional. Uninten-
tional environmental changes mainly come from: (a) agents
selfishly use the resource without considering other partici-
pants, (b) electromagnetic interference from unrelated sources
(e.g., transformer, power supply, radar) and (c) others (e.g.,
movement of objects, temperature increasing). Unintentional
environmental changes are not easy to predict, a well adopted
idea is to assume a non-trivial adversarial component to
represent the dynamicity. Intentional environmental changes,
or jamming attacks, can result in more severe problems for
communication networks over a shared medium, and are much
harder to defend against. Jamming attacks may occur at the
physical layer or at the MAC layer. Physical layer jamming
may block the communication in some region by transmitting
a high power signal. MAC layer jamming may significantly
decrease the throughput by destroying the control packet or
reserving the channel for maximum allowable number time
slots.

We investigating the fundamental communication primitive
of the broadcast, which is to disseminate a particular message
from a source node to all the other nodes in the network,
in fully dynamic wireless networks contain internal nodes’
changes and external environmental changes. Designing a
MAC protocol under such dynamicity is not trivial and not978-1-5386-6808-5/18/$31.00 c©2018 IEEE



considered in previous works. In fact, even a simple oblivious
adversary which jams only a small portion of time slots
can block the transmission in the widely used IEEE 802.11
MAC protocol. The SINR (Signal-to-Interference-plus-Noise-
rate) model depicts the accumulative and fading features of
wireless interference. It defines that the interference fades with
distance and the interference is derived from all simultaneously
transmitting nodes, not only from nearby nodes. Hence, the
SINR model reflects the wireless network in a more precise
and accurate way than traditional graph-based models which
simplify the interference to be a local and binary phenomenon.

The main contributions of the paper are summarized as
follows.
• We propose a fully dynamic network framework under

the SINR model that considers localized topological
changes of each node and random jamming to capture
external environmental changes. The dynamic rate is used
to reflect the constrain that describes the magnitude of
changing on the local network cumulative transmissions
probabilities around each node. In addition to change of
nodes, there are some external environmental adversaries
that can jam any node individually with probability
p (0 ≤ p < 1). The fully dynamic model we propose
is a more general framework to capture various more
realistic dynamic networks, specially, a nature scenario is
mobile networks with some adversaries, where the nodes
move around unpredictably and nodes are jammed by
adversaries.

• We investigate the fundamental task in distributed al-
gorithm, in particular, we focus on the hard case of
asynchronous wake up with non-spontaneous broadcast-
ing. For broadcast problem we use a parameter S to
depict the time a link can keep stable, and propose a
parameter, dynamic diameter DS , to depict the complex-
ity of dynamic broadcasting. We present a randomized
distributed algorithm for fully dynamic broadcasting that
need Θ(DS) rounds with a high probability guarantee.

The remaining part of this paper is organized as follows. The
closely related works are shown in Section II. The network
model and definitions are given in Section III. The broadcast
algorithm and analysis are presented in Section IV. Finally,
the whole paper is concluded in Section V.

II. RELATED WORKS

Dynamic networks. Due to the popularity of large-scale
wireless devices increased significantly, dynamicity in dis-
tributed algorithm has become a very hot topic in wireless
networks. During these years, several kinds of dynamic mod-
els had been proposed to reflect the dynamicity in wireless
network. for churn of nodes [4], [6], [17]. In [17] , Kuhn
et al. first proposed the unstructured model to describe the
nodes’ insertions under unit disk setting. The node crash
failures were considered in [6]. Other models mainly focused
on the impact of mobility, unreliable links and assumes the
statical node set [3], [15], [16], [19]. The dual graph model
was introduced in [8]. It defines two graphs on the same

node set, one is composed by reliable links, and the other
is composed by unreliable links. This model extends the
radio networks model to the dynamic case. The T -interval
connectivity model given in [16] modeled the dynamic net-
works in an adversarial manner, under the constraint that the
network contains a stable connected spanning subgraph in
every interval of T consecutive rounds. Very recently, Yu el al.
[25] proposed a dynamic model that admits both node churn
and move. However, this model works in a very restricted
environment and cannot model various dynamic scenarios.
Some surveys on dynamic network models are given in [18].
On the other hand, due to the importance of network security
with the advent of Internet-of-Things and the ubiquity of
mobile devices, jamming attack in wireless networks has been
extensively studied in the field of applied research ([5]). To
against (or detect) jamming, the traditional mechanisms are
often designed on the physical layer [20]. Some previous
works have investigated the protocols on the MAC layer,
e.g., coding strategies, channel surfing and spatial retreat. In
[23], mechanisms had been designed to encrypt messages
and reduce the impact of corrupted messages, or evade the
attacker’s search. In adversarial attack, two assumptions are
considered, one is randomly corrupt messages [21], i.e., each
message will be attacked with some probability, the other
is randomly jam time slots [1], i.e., each time slot will be
jammed with some probability. These theoretical works are
more relevant to the studies in this paper.

Broadcasting. Broadcasting is one of the fundamental oper-
ations in wireless communication networks and is extensively
studied during these years. In static networks, many researches
have been focused on broadcasting, in both graph-based model
([10]) and the SINR model ([9]). For non-spontaneous broad-
casting under the graph-based model, the best randomized
results are O(D log(n/D) + log2 n) [14] and O(D + log6 n)
[10] without and with collision detection, respectively. Under
the SINR model, the best known algorithm was given in [13],
with the round cokmplexity O(D log2 n).

As for the broadcasting in dynamic networks, under a basic
assumption that there exists at least one stable link between
nodes with and without the message, Clementi et al. gave a
randomized algorithm in [7], which can solve the broadcast
problem in O(n2/ log n) rounds w.h.p., In the dual graph
model, an O(n3/2

√
log n)-time deterministic algorithm and an

O(n log2 n)-time randomized algorithm were given in [15].

III. MODELS AND PROBLEM DEFINITION

Consider nodes are arbitrarily placed on two dimensional
Euclidean space, possibly in a worst-case fashion. Nodes
can transmit messages in rounds, but synchronization is not
needed, i.e., global clock is not a must. But we assume that
each node is associated with its own clock and the difference
of round length among nodes is at most by a factor of 2.
Each node is equipped with a half-duplex transceiver. In each
round, a node may either transmit a message or sense the
channel, but it cannot do both. The nodes communicate via
a shared channel. Denote Vt to be the set of nodes at time t



and assume that |Vt| = poly(n) for any time t, where poly()
is a polynomial function. Each node is either active (state
A), or inactive (state I). As defined by the non-spontaneous
broadcast problem, only active nodes have some massages to
be disseminated to other nodes in the network and inactive
nodes do nothing except for listening to the channel. For each
active node u, its transmission probability at round t is pt(u),
i.e., node u transmits with probability pt(u), and listens with
probability 1− pt(u).

Notations. Let d(u, v) be the distance between nodes u
and v. Node u is called a r-neighbor of v if d(u, v) ≤ r.
Denote by Nc(v) the set of v’s cR-neighbors, where R will
be determined later. Specifically, if two nodes are R-neighbors,
we simply say they are neighbors. The communication graph
is a dynamic graph Gt(Vt, Et), where (u, v) ∈ Et if and only
if v ∈ N1(u) at round t. A set of nodes D is called an r-
independent set if for any pair of nodes u, v ∈ D, d(u, v) > r.
And, if for any node w /∈ D, there exists a node u ∈ D, such
that d(w, u) ≤ r, then D is called an r-maximal independent
set.

Dynamicity. In this paper, we consider a fully dynamic
model that not only contain the system internal nodes
change (churn and mobility) but also the external environment
changes.

For system internal nodes changes, we assume that both
churn and mobility of nodes may occur in the network with an
unpredictable way. Moved nodes may become new neighbors
and changes the network links, which might significantly
increase the interference in a short time. Thus, in this work,
the mobilities of nodes are assumed to be bounded. We define
the dynamic behaviors in the network in a local view that
consider the cumulative transmission probabilities in N1/2(v)
for any node v ∈ V . W.l.o.g., we may assume that the network
changes at the end of every round, and remains unchanged
during the round. We define a dynamic rate to capture the
change of network topology. Consider a period of rounds F
and for any round t ∈ F , denote by Pt(v) =

∑
u∈N1/2(v)

pt(u)

and let P ρt (v) be the sum of transmission probabilities of
nodes in Nρ(v) at round t for a constant ρ > 1 that will be
specified later. Specially if node u ∈ I, we simple let pt(u) = 0
for convenience. Let Pt(v) and P̂t(v) denote the sum of the
transmission probabilities at the beginning and at the end of
round t respectively, then the dynamic rate λ is defined as

λ = max
t∈F,v∈V

{|Pt+1(v)− P̂t(v)

P̂t(v)
|} (1)

For external environment changes, as mentioned before,
there are various ways to change the environment so that
two nodes cannot communicate. In this work, we consider a
reasonable random jamming model to capture the environment
changes ([2], [12], [21]). In the random jamming model, each
listener may be jammed with a constant probability, each
sender may be jammed with a constant probability too. The
jammed probabilities are independently among nodes and up-
per bounded by a fixed parameter p ∈ [0, 1). Whenever nodes
are jammed, these nodes will notice a blocked channel and

cannot send or receive any useful message. In the mean time,
these jammed nodes cannot determine whether the blocked
channel is from collision or jamming from the adversary.

With the concept of dynamic rate and random jamming, our
dynamic model can fit various dynamic networks.

Stable Diameter. To measure the complexity of dynamic
broadcasting algorithm, we introduce the concept of stable
path to depict the connectivity of the dynamic networks.

Given a positive integer S as the stable parameter, the S-
stable path from node u to node v is defined as follows. For
a node sequence v0 = u, v1, ..., vk = v, if there is a sequence
I0, I1, ..., Ik−1 of time intervals with Ii = [bi, ei], such that for
each i, ei−bi ≥ S, and ei−ei−1 ≥ S, nodes vi−1 and vi keep
alive and being neighbors during Ii−1, then v0 → v1 → ...→
vk is a S-stable path. The length of the S-stable path from
u to v is then defined as ek−1 − b0. Each link on a S-stable
path is called a stable link. The stable parameter S depicts the
time duration for two nodes to be connected. Larger S means
the connection between two nodes can be stable for a longer
time. We consider the case that S ∈ Ω(log n), since Ω(log n)
is the minimum time needed for two nodes to communicate
successfully with high probability even if without interference
[22]. Note that a stable path may not be connected at any time.

Given the stable parameter S, we define the stable S-
distance DS(u, v) as the minimum length of S-stable paths
between u and v. If there is not any S-stable path connecting
u and v, then DS(u, v) = ∞. The S-stable diameter of the
network is then defined as DS = maxu,v∈VDS(u, v). If DS

is finite, then the network is called S-stable connected.
Interference Model. Under the SINR model [9], a node can

successfully get a message if the strength of the message is
strong enough comparing with the noise and the interference.
Formally speaking, transmitter u’s message can be success-
fully received by receiver v if and only if

Pu/d(u, v)α

N +
∑
w∈S Pw/d(w, v)α

≥ β (2)

where Px is the transmission power of node x, α > 2 is the
pass loss exponent, N is the ambient noise, β ≥ 1 denotes
the minimum signal to interference and noise ratio required
for decoding a message, S is node set in V \ {u, v} that are
currently transmitting.

In this paper, we assume the uniform power assignment, i.e.,
all nodes take the same transmission power P . Uniform power
assignment is one of the most common power assignments
in practice. With the help of physical carrier sensing, nodes
can detect the interference when listening to the channel and
determine the distance from the sender if successfully receives
a message.

Denote RT = (P/βN)1/α to be the maximal transmission
range, which is the maximum possible distance a node can
successfully receive a message from another node. However,
even with a little interference, two nodes with distance RT
cannot communicate. Thus, the links that are used for com-
munication have to be ‘stronger’ than those defined by the
transmission range. We define a communication range R with



R = (1− ε)RT , where ε ∈ (0, 1) is a constant determined by
the environment.

For a successful message transmission within a distance R,
the following inequality must be hold.

N +
∑

w∈S\{u}

Pw/d(w, v)α ≤ P/βRα.

Assume that the ambient noise level N is upper bounded
by a fraction of the maximum tolerable interference level.
Let N ≤ P

2βRα · ( 2
(ρ+1)α −

1
2 · ( ρ

ρ+1 )
α−2
2 · k), where ρ

is a large constant determined in the analysis and k <
min{2, 4

ρ(α−2)/2·(ρ+1)(α+2)/2 }.
Problem. In the fully dynamic multi-hop wireless ad hoc

network, a source node has a message Ms to be sent to all
the other nodes, the objective is to minimize the broadcasting
time.

In the following, we give some useful facts which will be
used in the latter analysis.

Fact 1: Given a set of probabilities p1, ..., pn, where pi ∈
[0, 12 ] for all i , the following inequalities hold:

(1/4)
∑n
k=1 pk ≤

n∏
k=1

(1− pk) ≤ (1/e)
∑n
k=1 pk .

Fact 2: Consider two disks DR1 and DR2 where R1 > R2.
Define χR1,R2 to be the smallest number of disks DR2

needed
to cover a large disk DR1

. Because the ratio between the area
of large disk DR1

and the area of small disks DR2
is 2π/3

√
3

[11], and all small disks DR2
intersecting DR1

are completely
inside the area of radius R′ = R1 + 2R2, it holds that

χR1,R2 ≤ 2π

3
√

3
· (R1 + 2R2)2

R2
2

.

Fact 3: Given a set of random variables X1, ..., Xn. Suppose
that there are values p1, ..., pn, (pi ∈ [0, 1] for all i), with
E[

∏
i∈S Xi] ≤

∏
i∈S pi for every set S ⊆ {1, ..., n}. Then it

holds for X =
∑n
i=1Xi, µ =

∑n
i=1 pi and any δ > 0 that

P [X ≥ (1 + δ)µ] ≤ [
eδ

(1 + δ)1+δ
]µ ≤ e−

δ2µ
2(1+δ/3) .

If, on the other hand, it holds that E[
∏
i∈S Xi] ≥

∏
i∈S pi for

every set S ⊆ {1, ..., n}. Then it holds for any 0 < δ < 1 that

P [X ≤ (1− δ)µ] ≤ [
e−δ

(1− δ)1−δ
]µ ≤ e−

δ2µ
2 .

IV. BROADCAST PROTOCOL

In this section, we present the algorithm to handle the
broadcast problem in fully dynamic wireless networks. We call
the algorithm FD-Broadcast, which stand for fully dynamic
broadcasting. Moreover, the algorithm is proved asymptotical
optimal by showing the matched upper and lower bounds of
the accomplish time.

A. Algorithm

The broadcasting algorithm is to disseminate the message by
letting an active node locally broadcast the source message to
its neighboring inactive node, until the message is successfully
received by all nodes in the network. If more than one
transmission happens in a round and the signal strengths at
a node v are large enough, node v cannot successfully receive
the message since the SINR values from each transmitter is
less than β.

If the contention in some area is high, the active nodes’
cumulative transmission probabilities in this local region is
high due to dynamicity or initially setting, the message dis-
semination in this region might be hindered due to plenty of
collisions. On the other hand, if the contention in some area
is low, according to Fact 1, the probability of no transmission
is large and the message cannot be successfully transmitted
too. However, if the active nodes’ cumulative transmission
probabilities in some area is a constant, not too large and
not too low, by some simple computation, the probability
of successfully transmission is a constant if the receiver and
the transmitter are not jammed. Hence, the critical core of
handling the broadcast problem is balancing the contention in
each local region.

In our algorithm, a randomized contention balancing pro-
cedure is implemented. Each node adjusts its transmission
probability according to the environmental status. Formally
speaking, every node v ∈ A determines to transmit with a
probability pt(v) ≤ pmax in every round, which is initialized
as pt(v) = pmax when v start the algorithm. pt(v) will be
doubled after the slot if v senses an idle channel and be halved
in other cases. A node detects a busy channel if the interference
it sensed exceeds the threshold Tb = P ·R−α or jammed.

For the convenience of analysis, we set the parameters in the
algorithm as follows: pmax = 1/2 (actually, pmax can be set
to any constant satisfying 0 < pmax ≤ 1/2); p̂ = log4

10(1−p)
9 ;

pmin = 1
4n ; γ = 20 ·max{ 4g

(1−p)2pmax ,
4χ

(ρ+1)R,ρR·g

(1−p)2p̂ }, where
g is sufficiently large constant determined in the analysis. λ ≤
21−w − 1; w = 16(1+δ)(ρ+1/2)2

σ e−φ; φ, δ and σ are constants
and will be determined later.

The time of algorithm implementation is bounded and
asymptotically optimal when the stable parameter S ≥ γ log n.

By the randomized contention balancing from Algorithm
FD-Broadcast, we will show in Lemma 7 that in most rounds
of an interval I = Ω(γ log n), there exists sufficiently large
constants ρ and g such that for each node v, the following
two properties hold.

1) Bounded Contention. P ρt (v) ≤ g for specified constants
ρ and g, and

2) Bounded Interference. The expected interference at v is
upper bounded by T for a specified constant T .

Formally, let Īρt (v) be the expected interference at node
v that are caused by nodes outside Nρ

t (v), i.e., Īρt (v) =∑
u/∈Nρt (v)

Su,v · pt(u), where Su,v = P/d(u, v)α. Thus in
most rounds of an interval I = Ω(γ log n),



Algorithm 1: FD-Broadcast: for each active node v
Initially, p0(v) = pmax;
In round t, v does:

1 Let X ← 1 or 0 with probability pt(v) and 1− pt(v),
respectively.

2 if X = 1 then
3 Transmit the message; pt+1(v)← max{pt(v)2 , pmin};

else
4 Listen to the channel:
5 if detected busy channel then
6 pt+1(v)← max{pt(v)2 , pmin};
7 else
8 pt+1(v)← min{2pt(v), pmax}

1) P ρt (v) is upper bounded by a constant g and
2) Īρt (v) is upper bounded by T , where T = P

4βRα ≤
Tb
10

when β ≥ 2.5.
In O(γ log n) rounds, if the surrounding contention of a

node v is small for sufficiently large number of rounds, the
transmission probability of node v will be doubled many
times and may achieves pmax a constant portion of O(γ log n)
rounds. Thus, node v might successfully transmit the message
to its neighbors in O(γ log n) rounds. If the surrounding
contention of a node v is a constant, not too small, for
sufficiently large number of rounds, some active neighbor of
v might transmit the message to inactive neighbor of v. Under
the fully dynamic environment, each node v will be jammed
independently with the probability p. The above statement will
be proved in Lemma 8.

Setting the stable parameter S ≥ γ log n, we will show
(Theorem 1) that the message Ms can be successfully transmit-
ted from the source node u to any other node v if there exist an
S-stable path from u to v. Moreover, Algorithm FD-Broadcast
is asymptotic optimal (Theorem 2) by showing Ω(DS) rounds
is needed for successful transmission w.h.p. in a constructed
structure.

B. Analysis

In this part, we analyze the round complexity and correct-
ness of Algorithm FD-Broadcast. Let ρ be a constant defined
as follows.

ρ = [β · 25+α
′/2πφ · 1

α′
]

2
α′ ,where α′ = α− 2 (3)

If Pt(v) ≥ φ, Pt+1(v) will be decreased with large
probability in the next round.

Lemma 1: In a round t and for a node v, if Pt(v) ≥ φ, then
Pr[Pt+1(v) ≤ (1+λ)Pt(v)

2 ] ≥ 1− e−φ.
Proof: We need to analyze the probability that each

node in N1/2(v) halves its transmission probability. By the
detection threshold Tb, if there is at least one node in N1/2(v)
transmitting or all nodes in N1/2(v) jammed, then all nodes in
N1/2(v) will sense a busy channel. Denote by E1 and E0 the
events that there is at least one node in N1/2(v) transmitting

and there are no nodes in N1/2(v) transmitting, respectively.
We have Pr[P̂t = Pt/2] ≥ Pr[E1] = 1− Pr[E0].

We next bound Pr[E0]. The probability that a node u ∈
N1/2(v) does not transmit is 1− pt(u). Thus, the probability
that no node transmits in round t is equal to

Pr[E0] =
∏

v∈N1/2(v)

(1− pt(v)) ≤
∏

v∈N1/2(v)

e−pt(v)

= e−Pt(v) ≤ e−φ.
(4)

So Pr[P̂t(v) = Pt(v)/2] ≥ 1− Pr[E0] ≥ 1− e−φ.
Due to the dynamicity, we have

(1− λ)P̂t(v) ≤ Pt+1(v) ≤ (1 + λ)P̂t(v).

Thus,

Pr[Pt+1(v) ≤ (1 + λ)Pt(v)

2
]

≥ Pr[
(1− λ)Pt(v)

2
≤ Pt+1(v) ≤ (1 + λ)Pt(v)

2
]

≥ 1− e−φ

We next consider the variant of Pr(v) in an interval I of size
Θ(γ log n) for a particular node v. W.l.o.g., let I = {1, . . . , t}.
Assume initially P0(v) = φ0. It is clearly that φ0 ≤ n. We can
show that during a sufficiently large interval there is a time
satisfy Pr(v) ≤ φ w.h.p..

Lemma 2: For any node v and any constant φ ≥ 2, executing
Algorithm FD-Broadcast for Θ(γ log n) rounds, there is a
round r ∈ I satisfying Pr(v) ≤ φ w.h.p.

Proof: In each rounds, the transmission probability of
each node either double or half. Pr(v) will be either increasing
or decreasing for each round r ∈ {1, ..., t}. Since P0(v) =
φ0 ≤ n and φ ≥ 2, if the number of decreasing rounds is
sufficiently larger than the number of increasing rounds, we
can claim that there is a round r ∈ I satisfying Pr(v) ≤ φ.

For round r ∈ I , define the binary random variable Yr as
follows.

Yr =


0 if Pr(v) < φ or

Pr(v) ≥ φ and Pr+1(v) ≤ (λ+1)Pr(v)
2

1 otherwise

Thus,

Pr[Yr = 0] = Pr[Pr(v) < φ] +

Pr[Pr(v) ≥ φ ∧ Pr+1(v) ≤ (λ+ 1)Pr(v)

2
]

= Pr[Pr(v) < φ] + Pr[Pr(v) ≥ φ] ·

Pr[Pr+1(v) ≤ (λ+ 1)Pr(v)

2
|Pr(v) ≥ φ]

≥ Pr[Pr(v) < φ] + Pr[pr ≥ φ] · (1− e−φ)

≥ 1− e−φ,

From the above analysis, we have Pr[Yr = 1] ≤ e−φ for
all r ∈ I . Furthermore, for any set S ⊆ I .

E[
∏
r∈S

Yr] ≤ (e−φ)|S|. (5)



Let t = Θ(γ log n) and Y =
∑t
r=1 Yr, Pr+1(v) ≤ 2(λ +

1)Pr(v) is obvious for any case even the dynamic of nodes.
Assume that there is no Pr(v) < φ for all r ∈ I . Thus,

φ0 · (2(λ+ 1))Y · (λ+ 1

2
)t−Y ≥ φ,

which implies the number of rounds satisfies Yr = 1 is at
least ((1 − log(λ + 1))t − logdφ0/φe)/2 = Ω(γ log n). This
equation holds since φ0 ≤ n and φ ≥ 2. Let S be such rounds
with Yr = 1, according to Equation (5),

E[
∏
r∈S

Yr] ≤ (e−φ)|S| = O(n−φ).

Let µ = |I| · e−φ. From the Chernoff Bounds,

Pr[Y > (1 + δ)µ] ≤ e−
δ2µ

2(1+δ/3)

for any constant δ. By choosing sufficiently large constant γ,
the number of rounds with Yr = 1 can be small enough, i.e.,
S ≤ |I|/3 w.h.p. In another words, |I| > 2|S| + log n w.h.p.
Therefore, there are sufficiently large number of rounds to
decrease Pr(v) and make Pr(v) ≤ φ for some r ∈ I w.h.p.

Let Y =
∑t
r=1 Yr where Yr is the variable defined as

above. From Lemma 1 and Lemma 2, Pr(v) is limited by
the contention balancing strategy. Next we show that in
sufficiently large interval I , the expected number of rounds
r satisfying Pr(v) ≥ φ can be as less as we want.

Under the fully dynamic environment, Pt+1(v) <
2Pt(v)(λ+ 1). Combining with Lemma 2, we have

Lemma 3: The number of rounds r ∈ I with Pr(v) ≥ φ is
upper bounded by 2Y+logdφ0/φe+2

1−log(λ+1) .

Due to page limit, the detailed proof of Lemma 3, 4, 5, 6
and 7 can be found in [24].

Actually, in interval I , the expected number of rounds r
satisfying Pr(v) ≥ φ can be as less as we want. From the
Chernoff bound, we can prove the following conclusion.

Lemma 4: For any time interval I with
∑
u∈D1/2(v)

p0(u) =

φ0, let Xφ be the random variable on the number of rounds
r ∈ I satisfying Pr(v) ≥ φ. For any φ ≥ 2 and δ ≥ 2, the
following inequality holds

Pr[Xφ ≥
(1 + δ)2|I|/eφ + logdφ0/φe+ 2

1− log(λ+ 1)
]

≤ (e/(1 + δ))δ|I|/e
φ

The bound shown in Lemma 4 is not obvious since there is a
term log φ0, which can be as large as log(npmax). According
to Lemma 2, we know that for any time interval with length
Θ(γ log n), there exist a round r in this interval satisfying
Pr(v) ≤ φ w.h.p. for any φ ≥ 2. Consider two intervals,
I1 = [0, r0], I2 = [r0 + 1, 2r0]. In interval I1, there is a round
r such that r0 − r = O(log n) and Pr(v) ≤ φ w.h.p. Let
I = [r, r0]

⋃
I2, the length of I is Θ(γ log n), satisfying the

condition in Lemma 2. Thus, the additive term of log φ0 can
be avoided.

Lemma 5: Consider a time interval I starting at round t0,
suppose both |I| and t0 are sufficiently large, say Ω(γ log n).
Let Xφ be a random variable on the number of rounds in I
satisfying Pr(v) ≥ φ. For any φ ≥ 2, it holds that

E[Xφ] ≤ 1

1− log(λ+ 1)
(40|I|e−φ + 2).

Based on the above transmission probability analysis, we will
show that the number of rounds with large interference can
be sufficiently small. For any time interval I with |I| =
Ω(γ log n), let Z be the number of intervals with interference
no less than T , i.e., Īρt ≥ T . Partition the area outside Dρ(v)
into rings such that the difference between the outer radius
and the inner radius is exactly 1. Each ring will be further
partitioned into sectors such that the distance between any two
nodes in the same sector is at most R. Sum up the interference
on all sectors, we have the following lemma.

Lemma 6: Pr[Z ≥ σ|I|] can be polynomially small in n for
any constant σ > 0.

For a node v, a round t in I is called good if and only if
P ρt (v) ≤ g for some fixed constant g and Īρt (v) ≤ T .

Now, we can get the result from the contention balancing
strategy that for each node, most rounds are good.

Lemma 7: In the fully dynamic environment, for any con-
stant σ > 0, at least (1 − σ)|I| of the rounds in I are good
for v, w.h.p., if g and ρ are sufficiently large.

For the convenience of analysis, we divide the time into
phases of γ log n rounds, where γ is a sufficiently large
constant. The phases are further classified into two types: high
and low. A phase is called high if in at least 1/10-fraction of
the rounds, P ρt (v) ≥ p̂ for some small constant p̂. Otherwise,
the phase is called low.

Lemma 8: If the dynamic rate λ ≤ 21−w − 1 and the stable
parameter S ≥ γ log n, then a node u ∈ I can receive the
message Ms at the end of I , w.h.p., if its has a stable link
with an active node v.

Proof: From the previous lemmas, 1− log(λ+ 1) should
be a constant. When the dynamic rate λ ≤ 21−w − 1, these
lemmas are justified.

Case 1: If the phase is low phase for v.
Let σ = 1

20 . Then by Lemma 7, there are at least (1− σ)-
fraction of rounds in I that are good for v. By the definition
of low phase, we can then obtain that in 4

5 -fraction of rounds
in I that both good and low contention for v. Denote the set
of these rounds as I ′. We next consider the rounds in I ′.

For a round t ∈ I ′, denote by E1 the event that the
interference at v from nodes outside Nρ(v) is at most Tb,
and by E2 the event that there is not any transmitter within
distance ρR from v and v is not jammed. When E1 and E2
occur, v will sense an idle channel, and make its transmission
probability double. We next bound the probability that these
two events occur.



Because t is a good round, the expect interference at v from
nodes outside Nρ(v) is at most T ≤ Tb/10. Using Markov
Inequality,

Pr(E1) ≥ 9/10. (6)

In t, we know that P ρt (v) ≤ p̂. We have

Pr(E2) = (1− p)
∏

u∈Nρ(v)

(1− pt(u))

≥ (1− p)(1

4
)
∑
u∈Nρ(v) pt(u)

≥ (1− p)(1

4
)p̂.

Hence, Pr(E2) ≥ 9/10.
Combining the above results, the probability that v senses

an idle channel is at least Pr(E1) · Pr(E2) ≥ 4/5. Then,
in expectation, there are at least 4

5 -fraction of rounds in I ′

in which v senses an idle channel. Using Chernoff bound,
it can be shown that w.h.p., v senses an idle channel in
at least 7

10 -fraction of rounds in I ′. This means that v
doubles its transmission probability in at least 7

10 ·
4
5 = 28

50
fraction of rounds in I . Notice that at the beginning of I ,
pt(v) ≥ pmin = 1

4n . And for other rounds, pt(v) is halved
in the worst case. Then if γ is sufficiently large, there will
be 28

50 −
22
50 −

1
50 = 1

10 fraction of rounds in I in which v
attains the maximum transmission probability pmax, where the
1
50 |I| doubling is used for increasing the initial transmission
probability to the maximum one. As above, we have shown
that in a low phase, v will attain the maximum transmission
probability in 1

10 -fraction of rounds in I w.h.p. Thus, there
are at least 1

20 -fraction of rounds in I that both good for node
u and pv = pmax. Denote the set of these rounds as I

′′
, we

next show that at any t ∈ I ′′ , with constant probability, the
message sent by node v will be received successfully by node
u.

Consider a round t ∈ I ′′ , since t is a good round for node u,
the expected value of interference at the intended receiver u,
caused by transmissions outside Nρ(u) is at most P

4βRα . We
can use Markov inequality to show that the probability that
the interference at u caused by transmissions outside Nρ(u)
exceeds k · P

4βRα is less than 1/k. Consequently, if v is the
only transmitter in Nρ(u), with probability PSINR≥β ≥ 1/k,
the SINR at the intended receiver u can be lower bounded by

SINRv,u =

P
d(v,u)α

k · P
4βRα +N

≥ β.

The above inequality holds since d(v, u) ≤ R and ambient
noise N is upper bounded by P

2βRα ·(
2

(ρ+1)α−
1
2 ·(

ρ
ρ+1 )

α−2
2 ·k).

The probability that v is the only transmitter in Nρ(u) is at
least

pv
∏

w∈Nρ(u)\{v}

(1− pw) ≥ pmax(
1

4
)g

Combining the above analysis, the probability that node u
successfully receives message from node v at a time slot is

Psuccess ≥ (1− p)2 · PSINR≥β · pmax(
1

4
)g

≥ (1− p)2

k
· pmax(

1

4
)g

Thus, the probability Pfail after γ logn
20 rounds is

Pfail ≤ (1− (1− p)2

k
· pmax(

1

4
)g)

γ logn
20 ≤ 1/nk

where γ = 20 ·max{ 4g

(1−p)2pmax ,
4χ

(ρ+1)R,ρR·g

(1−p)2p̂ }.

Case 2: If the phase is high phase for v.
By Fact 2, Lemma 4, Lemma 6 and Lemma 7, there are

at least (1 − σ
′
)-fraction of rounds in I that P ρ+1

t (u) ≤
g ·χ(ρ+1)R,ρR and the expected value of interference at the in-
tended receiver u, caused by transmissions outside N(ρ+1)(u)

is at most T · ( ρ
ρ+1 )(

α−2
2 ). Let σ

′
= 1

20 . Since this is a
high phase for node v, we can then obtain that in 1

20 -fraction
of rounds in I that p̂ ≤ P

(ρ+1)
t (u) ≤ g · χ(ρ+1)R,ρR and

Īρ+1
t (u) ≤ T · ( ρ

ρ+1 )(
α−2
2 ). Denote the set of these rounds as

I
′′′

.
Consider a round t in I

′′′
. Similar to Case 1, we can use

Markov inequality to show the probability that the interference
at u caused by transmissions outside N(ρ+1)(u) exceeds k ·T ·
( ρ
ρ+1 )(

α−2
2 ) is less than 1/k. Consequently, provided that v′

is the only node transmission in N(ρ+1)(u), with probability
PSINR≥β ≥ 1/k, the SINR at the intended receiver u can be
lower bounded by

SINRv′,u =

P
d(v′,u)α

k · T · ( ρ
ρ+1 )(

α−2
2 ) +N

≥ β.

The above inequality holds since d(v′, u) ≤ (ρ + 1)R and
ambient noise N is upper bounded by P

2βRα · (
2

(ρ+1)α −
1
2 ·

( ρ
ρ+1 )

α−2
2 · k), if v′ is the only transmitter in N(ρ+1)(u). The

probability that v′ is the only transmitter in N(ρ+1)(u) is at
least ∑

v′∈N(ρ+1)(u)

pv′
∏

h∈N(ρ+1)(u)\{v′}

(1− ph)

≥ p̂(1

4
)g·χ

(ρ+1)R,ρR

Combining the above analysis, the probability that node u
successfully receives message from a node v′ ∈ N(ρ+1)(u)
at a time slot is

Psuccess ≥ (1− p)2 · PSINR≥β · p̂(
1

4
)g·χ

(ρ+1)R,ρR

≥ (1− p)2

k
· p̂(1

4
)g·χ

(ρ+1)R,ρR

The probability Pfail after γ logn
20 rounds is

Pfail ≤ (1− (1− p)2

k
· p̂(1

4
)g·χ

(ρ+1)R,ρR

)
γ logn

20 ≤ 1/nk



where γ = 20 ·max{ 4g

(1−p)2pmax ,
4χ

(ρ+1)R,ρR·g

(1−p)2p̂ }.
Therefore, if a node u ∈ I has a stable link with an active

node v, it can receive node v’s message at the end of I , w.h.p.

Theorem 1: If the dynamic rate λ ≤ 21−w−1 and the stable
parameter S ≥ γ log n, each node can get the message Ms of
the source node in O(DS) rounds w.h.p.

Proof: From lemma 8, if an inactive node u has a stable
link with an active node v, it can receive the message Ms,
w.h.p. within O(γ log n) rounds. We then consider how long
it takes from the beginning of the algorithm till a node v
receives the message. Let L = {L1, L2, ..., Lk} be the stable
path with length DS(s, v) between the source s and v. By the
definition of the stable path, the stable links in L keep stable
for S rounds successively. Then based on the above analysis,
for each stable link Lk = (uk, vk) with 1 ≤ k ≤ d, vk will
get the message Ms after uk becomes active for O(γ log n)
rounds, w.h.p. Hence, after at most O(DS(s, v)) rounds, node
v will receive Ms w.h.p. Therefore, after O(DS) rounds, all
nodes can receive the message Ms of the source node, w.h.p.

C. Lower Bound

Theorem 2: There exists a dynamic graph satisfying the
above stable parameter such that any algorithm needs Ω(DS)
rounds to complete the broadcast w.h.p.

Proof: Consider 2n node sets V0, V1, ..., V2n, where V2k
contains n nodes while V2k+1 = {v2k+1}. Nodes in V2k have
the same fixed position p2k. The distance between p2k and
p2k+2 is 3R. Node v2k+1 has two possible positions, p2k+1

and p′2k+1 such that d(p2k, p2k+1) = d(p′2k+1, p2k+2) = R
and d(p2k, p

′
2k+1) = d(p2k+1, p2k+2) = 2R. In rounds

[2`γ log n, (2` + 1)γ log n − 1), v2k+1 is in p2k+1, while in
rounds [2`+1)γ log n, (2`+2)γ log n−1), v2k+1 is in p′2k+1,
where ` is any non-negative integer. From these descriptions,
a linear dynamic structure is constructed. Suppose the source
node s is with distance R to V0, thus, in a single round, the
message will be sent to all nodes in V0. However, it takes
Ω(log n) rounds for v1 to successfully receive this message
w.h.p. Note that v1 stays in p1 during [0, γ log n) rounds. This
time can guarantee v1 gets the message w.h.p. But nodes in
V2 cannot receive the message during this time.

The following procedures are similar. From the definition
DS of the length of S-stable path, the time to guarantee all
nodes in this linear dynamic network get the message w.h.p
is at least Ω(DS).

V. CONCLUSION

In this paper, an algorithm is given to handle the broadcast
problem in fully dynamic wireless networks. We consider
local change of nodes and external environmental changes,
which suit the fashion of distributed algorithms. With the
help of physical carrier sensing, the algorithm is proved to be
asymptotically optimal. The fully dynamic model is potentially

useful for solving many other fundamental problems in wire-
less networks, such as local broadcast and data aggregation,
which are the interesting future directions in this area.
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adaptation in wireless networks under comprehensive interference via
carrier sense. In IPDPS, 2017.


