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Abstract—In this paper, we present the first algorithm for
exactly implementing the abstract MAC (absMAC) layer in the
physical SINR model. The absMac layer, first presented by Kuhn
et al. in [15], provides reliable local broadcast communication,
with timing guarantees stated in terms of a collection of abstract
delay functions, such that high-level algorithms can be designed
in terms of these functions, independent of specific channel
behavior. The implementation of absMAC layer is to design a
distributed algorithm for the local broadcast communication
primitives over a particular communication model that defines
concrete channel behaviors, and the objective is minimizing the
bounds of the abstract delay functions. Halldórsson et al. [10]
have shown that in the standard SINR model (synchronous
communication, without physical carrier sensing or location
information), there cannot be efficient exact implementations.
In this work, we show that physical carrier sensing, a com-
monly seen function performed by wireless devices, can help
get efficient exact implementation algorithms. Specifically, we
propose an algorithm that exactly implements the absMAC
layer. The algorithm provides asymptotically optimal bounds
for both acknowledgement and progress functions defined in
the absMAC layer. Our algorithm can lead to many new faster
algorithms for solving high-level problems in the SINR model. We
demonstrate this by giving algorithms for problems of Consensus,
Multi-Message Broadcast and Single-Message Broadcast. It de-
serves to point out that our implementation algorithm is designed
based on an optimal algorithm for a General Local Broadcast
(GLB) problem, which takes the number of distinct messages into
consideration for the first time. The GLB algorithm can handle
much more communication scenarios apart from those defined
in the absMAC layer. Simulation results show that our proposed
algorithms perform well in reality.

I. INTRODUCTION

In distributed algorithm domain, most wireless algorithms

nowadays are directly for the physical network. This way

efficiently avoids the problem faced by the traditional manner

assuming message-passing models (reliable message exchange

between neighbors in each round) that realistic performance

may dramatically differ from theoretical analysis. But on the

other hand, algorithm designers have to consider issues of mes-

sage dissemination at higher levels together with contention

§The corresponding author is Qiang-Sheng Hua (qshua@hust.edu.cn).

management at the physical level. Consequently, algorithm

design and analysis becomes extremely complicated, even for

simple tasks, prohibiting elegant solution studies for complex

high-level problems.

To overcome the difficulty, Kuhn et al. [15] proposed a new

approach, the abstract MAC layer service, which expresses

key guarantees of real MAC layers with respect to local

broadcast. These guarantees include two message delivery

latency bounds: the acknowledgement bound fack that is

the time for a sender’s message to be received by all its

neighbors, and the progress bound fprog that is the time for

a receiver to receive one message when there is at least one

neighbor sending. The absMAC layer decomposes wireless

algorithm design and analysis into two independent and man-

ageable pieces, i.e., implementing the absMAC layer over

a physical network and solving higher-level problems based

on the local broadcast services and time guarantees provided

by the absMAC layer. Benefiting from the absMAC layer

approach, many new efficient algorithms developed for some

fundamental problems, such as Single-Message Broadcast and

Multiple-Message Broadcast [10], [13], [8], and Consensus

[19].

In this work ,we focus on the low-level task, i.e., implement-

ing the absMAC layer over concrete communication models.

Obviously, the reality of the physical network model where

the absMAC layer is implemented in determines how well the

designed higher-level algorithms perform when deploying in

real networks. Recently, Halldórsson et al. [10] made efforts

to implement the absMAC layer in the Signal-to-Interference-

plus-Noise (SINR) model. The SINR model well depicts the

accumulated and fading natures of physical interference, and

hence is more realistic than graph-based models commonly

used in wireless algorithm studies. However, because of the

defined global interference, it is very hard to directly de-

sign and analyze local distributed algorithms for higher-level

problems. Halldórsson et al. showed that absMAC layer can

help mask the complexity and hence the algorithm can be

designed in an easier way. But they also showed that it is
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impossible to get exact efficient implementation algorithms

(on the communication graph) under the standard SINR model

(synchronous communications, without physical carrier sens-

ing or location information), and they tackled the difficulty by

introducing approximate implementation, by implementing the

absMAC layer on a graph constructed by connecting each pair

of nodes within a distance smaller than the communication

range. In other words, the approximate implementation can

only ensure the message dissemination in a range smaller

than the communication range defined by the SINR model.

Clearly, this approximate implementation may greatly increase

the dissemination delay of messages in the network. A natural

question will then be: is it possible to get efficient “exact”
implementation of the absMAC layer with the facilitation of
some functions commonly possessed by wireless devices? We

answer this question affirmatively by employing the function

of physical carrier sensing in the algorithm design.
In this work, instead of directly focusing on the two local

broadcast primitives defined in the absMAC layer, we intend

to solve a more general local broadcast problem defined as

follows.
Definition 1 (General Local Broadcast): We are given a

network with n nodes. Each node has a message that it

wants to deliver to all its neighbors within the communication

range R (refer to the definition in Sec. III). The number

of distinct messages at nodes in the neighborhood of each

node is upper bounded by a parameter k (k can be a non-

constant). The problem is to make each node receive all

distinct messages stored at neighbors, and the objective is

minimizing the accomplishment time.
The GLB problem generalizes the local broadcast problem

studied in previous work, which assumes each node has a

distinct message. With this generalization, we can study the

key factor that determines the time for local broadcast: the

number of distinct messages or the local contention. Clearly,

the acknowledgement and the progress bounds correspond to

the accomplishment time of GLB in the cases of k = Δ
and k = 1 respectively, where Δ is the maximum number

of neighbors of nodes.
Our contributions are summarized as follows. The algo-

rithms are randomized ones, whose performances are guar-

anteed with high probability (w.h.p.), i.e., with probability

1− n−c for some constant c > 0.

• We present a randomized distributed algorithm for GLB,

with running time of O(k + log n). The algorithm is

asymptotically optimal comparing with the lower bound

Ω(k+log n) [20]. Our algorithm shows that it is the num-

ber of distinct messages that determines the complexity of

locally broadcasting messages, rather than the contention

around a node as illustrated in previous local broadcast

results.

• Using the GLB algorithm as subroutine, we propose the

first algorithm for exactly implementing the absMAC

layer. The algorithm is asymptotically optimal in terms of

both acknowledgement and progress bounds. Comparing

with the result in [10], our algorithm not only improves

the delay bounds, but also needs less global information.1

• Based on the implementation algorithm, faster algorithms

for solving several fundamental problems are given, in-

cluding Consensus, Multiple-Message Broadcast (MMB)

and Single-Message Broadcast (SMB).

The comparisons of our results with previous ones are sum-

marized in Table I.

The remaining part of the paper is organized as follows. In

Section II, some closely related results will be introduced. The

network model and definitions will be given in Section III.

The GLB algorithm and the absMAC layer implementation

algorithm will be presented in Section IV and Section V,

respectively. Simulation results on these two algorithms will

be analyzed in Section VI. We illustrate the applications of

our absMAC layer implementation in Section VII. The whole

paper will be concluded in Section VIII.

II. RELATED WORK

Abstract MAC Layer. The absMAC layer was proposed

by Kuhn et al. in [15]. Thereafter, several variants of the

basic absMAC layer model have been proposed for different

deployment scenarios, such as the conditional absMAC layer

[4], the enhanced absMAC layer [8] and the probabilistic

absMAC layer [13]. Based on the abstraction of absMAC

layer, several fundamental problems have been studied and

efficient algorithms were proposed, such as Single-Message

Broadcast, Multiple-Message Broadcast [10], [13], [8], and

Consensus [19].

For the implementation of absMAC layers, basic imple-

mentations of a probabilistic absMAC layer were given by

Khabbazian et al. [13] using the classical Decay strategy and

in [14] using Analog Network Coding. Lynch and Newport

studied the implementation problem in a network model con-

sidering unreliable links in [18]. But all these implementation

algorithms are devised under the graph-based models, where

the interference is oversimplified to be a local and binary

phenomenon. Halldórsson et al. first studied the implemen-

tation of probabilistic absMAC layer under the SINR model

in [10]. They first gave a negative result which implies that it

is impossible to get efficient implementations in the standard

SINR model (synchronous communication, without physical

carrier sensing or location information), and then presented

algorithms for approximate implementation.

Local Broadcast. The local broadcast problem has been

extensively studied in both graph-based radio network models

[1], [5], [7], [24] and the SINR model [3], [11], [9], [20],

[21], [22], [25]. All these results assume that each node

have a distinct message, and do not consider the impact

of distinct message number on local broadcast time. In the

SINR model, the best known result is O(Δ logn + log2 n)
time [11], [20], which improves to O(Δ + log2 n) [11] with

free acknowledgments. When Δ is known, this was further

1The algorithm in [10] needs to know the ratio Λ of the communication
range and the minimum range between any two nodes, which is not needed
in this work.
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TABLE I

Task/Bound Lower bound Upper bound presented here Upper bound in [10]†
fack Ω(Δ + logn) [20] O(Δ + logn) O(Δ(logn+ log Λ) + log Λ(logn+ log Λ))
fprog Ω(logn) [20] O(logn) O(Δ(logn+ log Λ) + log Λ(logn+ log Λ))
fapprog — — O((logα Λ + log∗ n) log Λ logn)

GLB+ Ω(k + logn)∗ O(k + logn) —
CONSENSUS — O(D(Δ + logn)) O(D(Δ + log Λ)(logn+ log Λ))

MMB(�) Ω(D log( n
D
) + k logn+ log2 n)‡ O(D logn+ k(Δ + log2 n+ logn log k)) O(D logα+1 Λ + k(Δ + polylog(nkΛ))(logn+ log k))

SMB(§) Ω(D log( n
D
) + log2 n)‡ O(D logn+ log2 n) O((D + logn) logα+1 Λ)

† fapprog is the delay bound for approximate progress defined in [10]; Notice that the results for SMB, MMB and CONSENSUS are given based on the approximate
implementation in [10], and hence the diameter D is larger than that in our result; Λ is the ratio of the communication range and the minimum distance between
any two nodes, which can be exponential in n; + GLB is General Local Broadcast; ∗ Combination of trivial lower bound k and the one given in [20]; § SMB is
Single-Message Broadcast; � MMB is Multi-Message Broadcast; ‡ Combinations of lower bounds of [2], [6], [16] for graph based models.

improved recently to O(Δ+log n·log log n) in the spontaneous

setting [3].

III. MODEL AND PROBLEM DEFINITION

We consider a network of n nodes, which are deployed on a

plane arbitrarily. The time is divided into synchronous rounds,

each of which might contain a constant number of slots. Each

node is equipped with a half-duplex transceiver. This means

that in each slot, a node can only transmit or listen on the

shared channel, but cannot do both. For two nodes u, v, let

d(u, v) denote the distance between u and v.

Interference. The Signal-to-Interference-plus-Noise-Ratio

(SINR) model is used to depict the interference between

concurrent transmissions. Specifically, it defines that a receiver

v can successfully receive a message transmitted by node u if

SINRu,v =
Pu/d(u, v)

α

N +
∑

w∈S\{u} Pw/d(w, v)α
≥ β. (1)

where Pu (Pw) is the transmission power of u (w), N is

the ambient noise, β ≥ 1 denotes the minimum signal to

interference ratio required for decoding a message, and α > 2
is the path loss exponent.

We assume the uniform power assignment, i.e., all nodes

take the same transmission power P . Uniform power as-

signment is one of the most common power assignments in

practice. The nodes can perform physical carrier sensing, i.e.,

they can detect the interference when listening on the channel.

And when a node receives a message, it knows the distance

of the transmitter.

By RT = (P/βN)1/α we denote the transmission range,

i.e. the maximum distance at which two nodes can com-

municate assuming no other nodes are sending at the same

time. Because the transmission has to tolerate some amount

of interference, the links that are used for communication

have to be ‘stronger’ than those defined by the transmission

range. Hence, we define a communication range R with

R = (1− ε)RT , where ε ∈ (0, 1) is a constant determined by

the environment. We consider only communications between

nodes within distance R. Strong connectivity is a common

assumption in related literatures [10], [12], [23]. Furthermore,

we define a constant ε̂ such that (1 + 2ε̂)R = (1 − ε
2 )RT . ε̂

will be used in the algorithm design and analysis.

With the communication range R, we can define the com-
munication graph G = (V,E), by connecting each pair of

nodes within distance R. Let D denote the diameter of G.

Abstract MAC layer. As introduced before, there have been

several models presented for absMAC layer, satisfying both

deterministic and randomized algorithm studies. Because we

focus on randomized solutions, here we adopt the probabilistic

absMAC layer model [13], [10], which is defined for the com-

munication graph G = (V,E) and provides acknowledgement

and progress primitives for communications in G.

The abstract MAC layer provides an interface to higher layer

with input bcast(m)i and outputs ack(m)i, rcv(m)i for any

node i ∈ V and message m ∈ M . When a node u ∈ V
broadcasts a message m, the model delivers the message to all

its neighbors in G. If all neighbors of u receive the message,

the abstract MAC returns an acknowledgement ack(m)u to

higher layer informing that the broadcasting of u is completed.

Similarly, it returns rcv(m)v for higher layer that v receives

message m. The model provides two timing bounds, the

acknowledgement bound fack and the progress bound fprog . In

particular, the acknowledgement bound guarantees each node’s

broadcast can be completed and acknowledged within fack
time. The progress bound bounds the time for a node to receive

a message when there is at least one neighbor sending. More

formally, let (u, v) ∈ E and u broadcasts a message m during

an interval of length fprog . It ensures that v receives some

message (not necessarily m) during the interval. fprog is much

smaller comparing with fack [10], [13]. Further details about

the definition of the absMAC layer and motivations for these

delay bounds, please refer to [8], [13], [15] .

In the probabilistic absMAC layer, two parameters ξprog and

ξack are defined to indicate the error probabilities for satisfying

the delay bounds fprog and fack, respectively. In particular, the

MAC layer guarantees that progress is made with probability

1− ξprog within fprog time, and with probability 1− ξack the

absMAC layer correctly outputs an acknowledgment within

fack time steps. In this paper, we require that the progress and

acknowledgement primitives can be accomplished with high

probability, i.e., ξprog, ξack ∈ n−c for some constant c > 0.

General Local Broadcast. Our implementation of absMAC

layer is based on an algorithm for solving the GLB problem

as defined in Definition 1. Considering the reality that in an

ad hoc network, it is hard to make each node know how many

distinct messages stored at its neighbors, we studied the GLB

problem in the harsh scenario that the parameter k or any non-

trivial upper bound on k is unknown to nodes, though this

harsh case is clearly more challenging for algorithm design.
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Notations. For a node v, a node u is called a r-neighbor

of v if d(u, v) ≤ r. Denote by Nc(v) the set of v’s cR-

neighbors. Specifically, if two nodes are R-neighbors, i.e., they

are neighbors on the communication graph, we simply say they

are neighbors. A set of nodes is called an r-independent set

if for any pair of nodes u, v ∈ S, d(u, v) > r. And, if for any

node w /∈ S, there exists a node u ∈ S, such that d(w, u) ≤ r,

then S is called an r-maximal independent set.

IV. GLB PROTOCOL

In this section, we present an algorithm for solving the GLB

problem. This algorithm will be used as a subroutine in the

absMAC layer implementation given later.

A. Algorithm

The GLB algorithm is given in Algorithm 1.

In the algorithm, in each round t, every node v holds a

probability pt(v) with which it determines to transmit on the

channel. Let Dc(v) be the disk with radius cR that is centered

at v. Denote by Pt(v) be the sum of the transmission proba-

bilities of nodes in Dε̂/2(v), i.e., Pt(v) =
∑

u∈Nε̂/2(v)
pt(u).

We will also consider the contention in a larger region.

Specifically, let P ρ
t (v) be the sum of transmission probabilities

of nodes in Nρ(v) for a constant ρ > 1 that will be specified

later.

Basically, in the algorithm, each node uses an exponential

backoff manner to adjust its transmission probability, based on

detected interference. With the exponential backoff adaption

strategy, it can be shown that for a node v, it satisfies in

most rounds that 1) (Bounded Contention.) P ρ
t (v) ≤ g for

specified constants ρ and g, and 2) (Bounded Interference)

the expected interference at v is upper bounded by T for

a specified constant T . In each of these rounds, it can be

then shown that a successful local broadcast occurs with some

constant probability guarantee.

In the algorithm, each round consists of three slots: the

first one is for message transmission (Slot T ); the second

one is for acknowledgement transmission (Slot A), to inform

the transmitter that it has successfully perform local broadcast

within distance (1+ ε̂)R; and the third one is for a successful

transmitter (that received the ack in Slot A) to inform nearby

nodes (within distance ε̂R) with the same message to halt.

In Slot T of a round, every node v determines to transmit

with a probability pt(v). pt(v) is doubled after the slot if

v senses an idle channel and halves in other cases. A node

detects a busy channel if the interference it sensed exceeds

the threshold Tb = P · (ε̂R)−α.

Define E as the event that a node v receives a message

from a neighbor u with d(u, v) ≤ ε̂R and detects that the

interference is upper bounded by Ta = min{(3/4)α · ((1 −
ε
2 )

−α−1)N,P ·(4R(1+2ε̂))−α}. In Slot A of a round, every

node v that has received a message will try to transmit an

ack message to the transmitter if E occurs. In this case, it

can be shown that the message is also received by (1 + ε̂)R-

neighbors of the transmitter. And if the received message is

the same with v’s own, it does not need to transmit by itself,

as all its neighbors has received this message. Hence, v will

halt after the slot.

In Slot I of a round, every node v that transmitted in Slot

T and received an ack message in Slot A transmits again.

This transmission is to inform the nodes within distance ε̂R
that have the same message with v of stopping the execution.

Because in the stated case, v’s message has been received

by all its neighbors within distance (1 + ε̂)R, i.e., the R-

neighbors of v’s ε̂R-neighbors has received the message, v’s

ε̂R neighbors are no longer necessary to transmit, if they

possess the same message.

Other parameters in Algorithm 1 are set as follows: pmax =
8ε̂2p̂
ρ2 with p̂ = log4

10
9 and ρ is a sufficiently large constant

determined in the analysis; pmin = 1
4n ;γ ≥ 40/(pmax · κ1),

where κ1 = 1
2 · (1/4)g and g is sufficiently large constant

determined in the analysis.

B. Analysis

We next analyze the time complexity of the algorithm.

Overview. Let Īρt (v) be the expected interference at node

v that are caused by nodes outside Nρ
t (v), i.e., Īρt (v) =∑

u/∈Nρ
t (v)

Su,v · pt(u), where Su,v = P/d(u, v)α.

Basically, we first show that in most rounds of an interval

I ∈ Ω(log n), there exists constants ρ and g such that for

each node v, the bounded contention and bounded interference

properties hold. Formally, in most rounds, 1) P ρ
t (v) is upper

bounded by a constant g and 2) Īρt (v) is upper bounded by

T , where T = min{P (4(1 + 2ε̂)R)−α, P ((1+ε̂)R)−α−βN
2β(4/3)α , Ta ·

2−1( 1+ε̂
1+ 5

8 ε̂
)−α, Tb/10}. If the bounded contention and bound-

ed interference properties hold for a node v in a round t, the

round t is called good for v.

We then divide the algorithm execution into phases of

γ log n rounds. The phases are further classified into two types:

high and low. A phase is called high if in at least 1/10-fraction

of the good rounds, P ρ
t (v) ≥ p̂; Otherwise, the phase is called

low. We say a node successfully transmits if its transmission is

received by all nodes within distance (1 + ε̂)R in Slot T of a

round t and it receives an ack message in the subsequent Slot

A. With a proved sufficient condition, it can be shown that

for each node v, 1) in a high phase, there are Ω(log n) nodes

in Nρ(v) successfully transmitting and making nodes within

distance ε̂R that have the same message stop executing the

algorithm, and 2) v will halt in a low phase. Hence, with 1), we

can get that there are at most O(k/ log n) high phases, as all

nodes in Nρ(v) have stopped the execution after these phases,

and then a low phase emerges by the end of which v halts.

Hence, the total running time for each node is O(k + log n).
Formally, we have the following result.

Theorem 1: For each node v, w.h.p., its message will be

received by all its neighbors within distance R in O(k+log n)
rounds.

We next give the detailed analysis for the time complexity

and prove Theorem 1 at the end of this section.

Detailed Analysis. We first show a result on the contention

balancing strategy. This result shows that for each node, most
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Algorithm 1: GLB

Initially, p0(v) = pmax;

In round t, v does:

1 In Slot T
2 Let X ← 1 or 0 with probability pt(v) and 1− pt(v),

respectively.

3 if X = 1 then
4 Transmit the message; pt+1(v) ← max{pt(v)

2 , pmin};

else
5 Listen to the channel:

6 if detected busy channel then
7 pt+1(v) ← max{pt(v)

2 , pmin};

8 else
9 pt+1(v) ← min{2pt(v), pmax}

10 In Slot A
11 if in Slot T , E occurs then
12 Let Y ← 1 or 0 with probability pt(v) and 1− pt(v),

respectively;

13 if Y = 1 then
14 Transmit ack.

15 if the received message is the same with its own one
then

16 Halt.

17 if transmitted in Slot T then
18 Listen to the channel;

19 In Slot I
20 if transmitted in Slot T and received an ack for its Slot

T -transmission then
21 Transmit;

22 Halt.

23 if (had pt(v) = pmax in 1
10 -th of last γ log n rounds)

then
24 Halt.

25 if received a message from a neighbor within distance
ε̂R and same with its own then

26 Halt.

rounds are good. The proof of Lemma 1 is very technical. Due

to space limitation, we put the proof in the full version [26].

Lemma 1: Given an interval I with |I| ∈ Ω(log n) suffi-

ciently large, then there exists constants g and ρ such that for

any constant σ > 0, w.h.p., for a node v, at least (1 − σ)
fraction of rounds in I are good.

Based on Lemma 1, we can analyze successful transmis-

sions during the algorithm execution.

Lemma 2: If a node u receives a message from an ε̂R-

neighbor v and the interference at u is Ta, then all (1 + ε̂)R-

neighbors of v also receive the transmission of v.

Proof: By the value of Ta, it can be obtained that

there are no other transmitters in N4(1+2ε̂)(u). Let w be

a node simultaneously transmitting with v. For each node

u′ ∈ N1+ε̂(v),

d(w, u′) ≥ d(w, u)− d(u, u′)
≥ d(w, u)− (d(u, v) + d(v, u′))
≥ d(w, u)− (1 + 2ε̂)R

≥ 3

4
d(w, u).

(2)

Denote by Su,v as the interference at v caused by node u,

i.e., Su,v = P/d(u, v)α. The interference at u′ caused by w
is bounded as follows.

Sw,u′ = Sw,u · d(w, u)α

d(w, u′)α
≤ Sw,u · (4/3)α. (3)

Then, the interference experienced by u′ is

Iu′ =
∑

w∈V \{v}
Sw,u′ ≤

∑

w∈V \{v}
Sw,u · (4/3)α = (4/3)α · Ta.

Then we can compute whether u′ can receive the transmission

of v as follows.

P/d(v, u′)α

N + Iu′
≥ P/d(v, u′)α

N + (4/3)α · Ta

≥ NβRα
T /((1− ε̂)RT )

α

(1− ε/2)−αN

≥ Nβ/(1− ε/2)α

(1− ε/2)−αN

= β.

(4)

The Lemma then follows.

Lemma 3: For a node v, if a node v′ ∈ Nε̂/2(v) transmits in

a good round for v, with constant probability κ1 = 1
2 · (1/4)g ,

v′ can make all nodes within distance (1 + ε̂)R receive its

message, and all nodes within distance ε̂R detect interference

not larger than Ta.

Proof: Consider a good round t. In round t, P ρ
t (v) ≤

g and Īρt (v) ≤ T . We claim that if there is not any other

transmitter in Nρ(v), with probability at least 1/2, all nodes

in N1+ε̂(v
′) will receive its message, and all nodes in Nε̂(v

′)
detect interference not larger than Ta.

We consider the first claim. Using Markov Inequality, with

probability at least 1/2, the interference at node v is at most

2T . Then by T ≤ 1
2Ta and Lemma 2, all nodes in N1+ε̂(v

′)
receives the transmission of v′.

We next prove the second claim. For a node u′ ∈ Nε̂(v
′),

using triangle inequality argument as above, we can show

that for each transmitter w, d(w, u′) ≥ d(w, v) − d(v, u′) ≥
d(w, v) − 3ε̂/2

4(1+ε̂) · d(w, v) =
1+ 5

8 ε̂

1+ε̂ · d(w, v). Hence, the

interference at u′ can be upper bounded as follows.

∑

w∈V \{v′}
Sw,u′ =

∑

w∈V \{v′}
Sw,v ·

dαw,v

dαw,u′

≤ (
1 + ε̂

1 + 5
8 ε̂

)α · 2T
(5)

Hence, u′ senses an interference not larger than Ta.
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The above results are obtained based on the condition that

the interference at v is at most 2T and there are no other

transmitters in Nρ(v) except v′. This happens with probability
1
2 ·

∏
x∈Nρ(v)\{v′}(1− pt(x)) ≥ 1

2 · (1/4)
∑

x∈Nρ(v)\{v′} pt(x) ≥
1
2 · (1/4)g .

We now start analyzing successful transmissions in high and

low phases.

Lemma 4: In a high phase I for a node v, at least Ω(log n)
nodes in Nρ(v) successfully transmit w.h.p.

Proof: Let S be an ε̂
2R-maximal independent set in

Nρ(v). Using an area argument, it can be obtained that

|S| ∈ O(1). Let σ = 1
20|S| . By Lemma 1, by setting g and ρ

large enough, we can get that for each node u, the number of

good rounds in I is at least (1− σ)|I|. Then, we can get that

for all nodes in S, there are at least 1
10 − |S| · 1

20|S| = 1
20 -

fraction of rounds in I that are good for all nodes in S and

has high contention w.r.t. v. We denote the set of these rounds

as I ′.
Now consider a round t ∈ I ′. Because it is a high contention

round w.r.t. v, which means that P ρ
t (v) ≥ p̂. Then, we can get

that there is a node v̂ ∈ S such that Pt(v̂) ≥ p̂
|S| . We next

consider the transmissions of nodes in Nε̂/2(v̂).

Because t is a good round for v̂, by Lemma 3, if a node

v′ ∈ Nε̂/2(v̂) transmits, the (1 + ε̂)R-neighbors of v′ can

receive the message of v′ with constant probability κ1. The

probability that there is a node in Nε̂/2(v̂) transmitting is p̂
|S| .

Then, with probability κ1p̂/|S|, v′ can send its message to all

(1 + ε̂)R-neighbors, and all nodes within distance ε̂R detect

an interference not larger than Ta.

We still need to show that v′ can receive an ack message

from its neighbors in Slot A of round t. By the algorithm,

the ε̂R-neighbors of v′ that detect an interference not larger

than Ta will transmit ack in Slot A. Because with constant

probability, all nodes in Nε̂(v̂) detect an interference not larger

than Ta in Slot T , these nodes will try to send back ack
messages. Using a similar argument as in Lemma 3, it can

be shown that if there is a node in Nε̂(v
′) transmitting, the

probability that v′ can receive the ack message is constant.

Because Nε̂/2(v̂) ⊆ Nε̂(v
′), there is a transmitter in Nε̂(v

′)
with probability Pt(v)−pt(v

′) ≥ p̂
|S|−pmax ≥ p̂/2|S|. Hence,

with constant probability, v′ will receive an ack message.

In above, we have shown that in a high contention and in a

good round, with some constant probability, there is a node in

Nρ(v) successfully transmitting. Denote by this constant prob-

ability as κ2. Then during a high phase, the expected number

of successfully transmitting nodes is (1 − σ)γ log n · 1
20 · κ2.

Using Chernoff bound, it can be shown that w.h.p, the number

of successfully transmitting nodes in Nρ(v) is Ω(logn) if γ
is sufficiently large.

Lemma 5: A node v will halt after a low phase I w.h.p.

Proof: We only need to show that during the low phase,

v can attain the maximum transmission probability in 1
10 -

fraction of rounds.

Let σ = 1
10 . Then by Lemma 1, there are at least (1− σ)-

fraction of rounds in I that are good for v. By the definition

of low phase, we can then obtain that in 4
5 -fraction of rounds

in I that are both good and low contention. Denote the set of

these rounds as I ′. We next consider the rounds in I ′.
For a round t ∈ I ′, denote by E1 the event that the

interference at v from nodes outside Nρ(v) is at most Tb,

and by E2 the event that there is not any transmitter within

distance ρR from v. When E1 and E2 occur, v will sense an

idle channel, and make its transmission probability double. We

next bound the probability that these two events occur.

Because t is a good round, the expect interference at v from

nodes outside Nρ(v) is at most T ≤ Tb/10. Using Markov

Inequality,

Pr(E1) ≥ 9/10. (6)

In t, we know that P ρ
t (v) ≤ p̂. Hence,

Pr(E2) =
∏

u∈Nρ(v)

(1− pt(u)) ≥ (
1

4
)
∑

u∈Nρ(v) pt(u) ≥ (
1

4
)p̂.

Hence, Pr(E2) ≥ 9/10.

Combining above results together, the probability that v
senses an idle channel is at least Pr(E1) · Pr(E2) ≥ 4/5.

Then, in expectation, there are at least 4
5 -fraction of rounds

in I ′ in which v senses an idle channel. Using Chernoff

bound, it can be shown that w.h.p., v senses an idle channel

in at least 7
10 -fraction of rounds in I ′. This means that v

doubles its transmission probability in at least 7
10 · 4

5 = 28
50

fraction of rounds in I . Notice that at the beginning of I ,

pt(v) ≥ pmin = 1
4n . And for other rounds, the worst case is

that in all these rounds, pt(v) is halved. Then if γ is sufficiently

large, there will be 28
50 − 22

50 − 1
50 = 1

10 fraction of rounds in

I in which v attains the maximum transmission probability

pmax, where the 1
50 |I| doubling is used for increasing the

initial transmission probability to the maximum one.

As above, we have shown that in a low phase, w.h.p., v will

attain the maximum transmission probability in 1
10 -fraction of

rounds in I . Here, we did not consider the case that v may

also halt after receiving ack messages. But this clearly make

v halt earlier. Hence, by the algorithm and the above analysis,

w.h.p., v will halt in a low phase.

In the algorithm, a node v halts when satisfying either of

the three conditions: (i) node v receives an ack message; (ii)

node v attains the maximum transmission probability in 1
10 -

fraction of rounds in the past γ log n rounds; (iii) v receives a

message from a neighbor within distance ε̂R that is the same

with v’s in Slot I. For condition (i), we have shown that v can

send the message to all its neighbors within distance (1+ ε̂)R.

For condition (iii), it also has been shown that the neighbors

of v within distance R receive the same message with v. We

still need to show that if v halts when satisfying condition (ii),

it have also sent its message to all neighbors within distance

(1 + ε̂)R.

Lemma 6: When a node v halts because that condition (ii)

is satisfied, it has sent its message to all neighbors within

distance (1 + ε̂)R and made all nodes within ε̂R stop the

algorithm execution, w.h.p.
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Proof: Consider the time interval in which condition (ii)

is satisfied for v, and denote the interval as I . Let σ = 1
20 . By

Lemma 1, there are (1 − σ)-fraction of rounds in I that are

good. This means that in at least 1
20 -fraction of good rounds

in I in which v attains the maximum transmission probability.

Denote by I ′ the set of these rounds. By Lemma 3, in each

good round, if v transmits, it can send its message to (1 +
ε̂)R-neighbors and make all nodes within distance ε̂R stop

executing the algorithm with constant probability κ1. Hence,

in each round t ∈ I ′, with probability pmax · κ1, the Lemma

holds. Then during I ′, the probability that the Lemma does

not hold is reduced to (1− pmax · κ1)
1
20γ logn ≤ n−2.

To finally get our result, we next prove that when a node

receives an ack message, it can make all nodes within distance

ε̂R stop the algorithm execution.

Lemma 7: For a node v, if it received an ack message in

Slot A of a round t, it can send its message to all nodes within

distance (1 + ε̂)R in Slot I.

Proof: Because v receives the ack message, there must

be an ε̂R-neighbor u receiving the message of v in Slot T , and

detects an interference not larger than Ta. By Lemma 2, all

nodes in N1+ε̂(v) have also received the message of v. Notice

that in Slot I, only nodes that transmit in Slot T transmit.

So in Slot I, the interference at every node will not increase.

Then all nodes in N1+ε̂(v) can still receive the transmission

of v in Slot I. The Lemma follows.

Now we are ready to prove the main result.

Proof of Theorem 1: As shown before, we have proved

that when a node v halts, w.h.p., its stored message has been

received by all nodes within distance R. Hence, we only need

to bound the time each node stays in the algorithm execution.

Specifically, for each node v, we bound the number of phases

that are high and low respectively. As shown in Lemma 5,

there can be at most one low phase. We next bound the number

of high phases.

By Lemma 4, in a high phase, there are Ω(log n) nodes

in Nρ(v) successfully transmitting w.h.p. By the definition of

successful transmission, each of these nodes u can send its

message to their (1+ ε̂)R-neighbors, and the ε̂R-neighbors of

u will not transmit the same message again. This means that

for a particular message, its successful transmitters constitute

an ε̂R-independent set. Because in the R-neighborhood of each

node, there are at most k distinct messages to disseminate, and

the ρR-neighborhood of a node can be covered by a constant

number of nodes’ R-neighborhoods, there are at most O(k)
distinct messages to disseminate in the ρR-neighborhood of

v. Hence, at most O(k) ε̂R-independent sets are used in the

dissemination of these messages. Finally, notice that the size

of an ε̂R-independent set in the ρR-neighborhood of a node

is a constant. This concludes that in Nρ(v), there are at most

O(k) nodes successfully transmitting. Based on this, we can

get that the number of high phases is at most O( k
logn ) w.h.p.

Combining all above together, after O( k
logn+1)·O(log n) =

O(k+log n) rounds, w.h.p., the message stored at v must have

been disseminated to all its R-neighbors.

V. IMPLEMENTING ABSMAC LAYER

By the definition of GLB and the primitives given in the

absMAC layer, the acknowledgement and progress primitives

correspond to the cases that nodes have distinct messages

and all nodes send the same message respectively. Based on

this observation, we propose the implementation algorithm for

absMAC layer.

In particular, the algorithm execution is divided into dual

rounds, each of which consists of two rounds, round A and

round P, for implementing the acknowledgement primitive

and the progress primitive respectively. The acknowledgement

primitive is implemented by letting nodes execute the GLB al-

gorithm given in Algorithm 1, where the steps judging whether

its message is the same with received message (Lines 15-16

and 25-26) is deleted, as all nodes have distinct messages.

The progress primitive is implemented by adapting the GLB

algorithm in Algorithm 1 in the way that whenever a node

receive a message in Line 15, it stops the algorithm execution,

as all nodes transmit the same message.

Notice that the dual round design can increase the acknowl-

edgement and progress bounds by a factor of at most 2. Then

based on Theorem 1, we can get the following result for

absMAC layer implementation.

Theorem 2: The absMAC layer can be exactly implemented

with fack = O(Δ + log n), fprog = O(log n), w.h.p.

VI. SIMULATION RESULTS

We conduct empirical studies for our proposed algorithms

in this section. Specifically, we compare the performances of

our algorithms and the best known result in previous work, and

evaluate the impact of network parameters on the algorithm

performance.

Specifically, for the absMAC layer implementation algorith-

m, we conduct the following simulations: 1) comparison with

the only known implementation algorithm given in [10]; 2)

evaluating the impact of the network density on the acknowl-

edgement bound fack; 3) evaluating the impact of parameter

ε on the progress bound fprog .

For the GLB algorithm, because it is the first known result,

we only evaluate the impact of parameters on the algorithm

performance, including the network size n, the number of

distinct messages k and the model parameter ε.
In the simulation, nodes are uniformly and randomly dis-

tributed in a square of 150*150. Over 20 runs of the simu-

lations were carried out for each reported result. The default

setting of model parameters are given in Table II.
TABLE II

PARAMETERS IN SIMULATION

parameter value parameter value
α 3 β 2
R 10 N 1
k 4 ε 0.5

AbsMAC Layer Implementation. The simulation results

for absMAC layer implementation are given in Fig. 1∼ Fig. 5.

In the figures, ackcs and ackncs represent the implementations

of the acknowledgement primitive in our algorithm and the
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performance

one presented in [10] respectively, while progcs and progncs

represent the implementations of the progress primitive in

these two algorithms respectively.
The comparisons of our implementation algorithm with the

one presented by Halldórsson et al. in [10] are illustrated in

Fig. 1 and Fig. 2. The curves depict the acknowledgement

and progress bounds of the implementation algorithm as the

number of nodes in the network changes. As shown in the

figures, our algorithm reduce both the acknowledgement and

progress bounds for around 10 times. This corroborates our

analysis that our algorithm improves for at least an log n factor

in the running time over the algorithm in [10], in terms of both

acknowledgement and progress bounds. The figures also illus-

trates that the constant behind big O notation in the running

time bound is not very large, which is around 25. We can

also find that the acknowledgement bound increase roughly

linearly as the number of nodes changes, but the increase of

the progress bound is much slower. This corroborates with our

analysis, as the acknowledgement bound is mainly determined

by the number of neighbors, which increases linearly with the

network size, while the progress bound is logarithmic in the

number of nodes.

The impact of SINR parameters are illustrated in Fig. 3 and

Fig. 4. As shown in the figures, the delay bounds change very

slightly when α and β change. So our algorithm is insensitive

to the SINR parameters. In comparison, the acknowledgement

bound tends to be affected by the path-loss exponent α, while

the progress bound tends to be affected by the decoding

threshold β.

Finally, we investigate the impact of parameter ε on the

progress bound. The evaluation results are shown in Fig. 5.

ε is used in two places in the progress implementation: the

definition of communication range and determining the range

for a node to quit when receiving a message. As shown in

the figure, as ε gets larger, the progress bound decreases.

This is because larger ε means more nodes will quit from

the algorithm execution when a node successfully perform a

local broadcast in our algorithm.

General Local Broadcast. We evaluate the performance of

our GLB algorithm in Fig. 6∼ Fig. 8.

The impact of the number of distinct messages are illus-

trated in Fig. 6. As shown in the figure, the time needed

for accomplishing GLB increases roughly linearly with the

number of distinct messages. This corroborates with our

analysis. Furthermore, this figure also shows that the constant

behind the big O notation in the analyzed running time bound

is not large in all cases.

Fig 7 shows that α and β do not have significant impact

on the performance of our GLB algorithm. In comparison, β
impacts the algorithm performance heavier than α.

Fig 8 illustrates the running times of the algorithm in

different settings of ε. It can be seen that the running time

decreases as ε increases. This is because larger ε means when

a node successfully perform local broadcast, nodes in a larger

range with the same message will stop execution, and hence

the general local broadcast can be accomplished faster.

From Fig 7 and Fig 8, it can also be found that the running

time of the algorithm increases roughly logarithmically with

the number of nodes, which corroborates our analysis.

VII. APPLICATIONS

With our implementation and combining the algorithms

designed based on the absMAC layer, faster algorithms for

many fundamental problems can be devised in the physical

network. We here give some typical examples to illustrate the

widely application of our implementation algorithm.

Consensus.
Definition 2 (Consensus [10]): At the beginning, each n-

ode is assigned with an initial value from {0, 1}. Every node

can make a single irrevocable decision on a value in {0, 1}.
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The consensus problem requires the decisions of nodes satisfy

the following three properties: 1) agreement: no two nodes

decide on different values; 2) validity: if a node decides a

value x ∈ {0, 1}, then x must be the initial value of some

node; 3) termination: every node eventually decides on some

value.

In [10], Halldórsson et al. showed the following result.

Theorem 3: The wPAXOS algorithm given in [19] can

solve the consensus problem in O(D · fack) time in the

(probabilistic) abstract MAC layer model in any connected

network topology, w.h.p.

With the acknowledgement bound achieved by our imple-

mentation algorithm, we can get the following result for con-

sensus, which improves the O(D(Δ + log Λ)(log n+ log Λ))
time result in [10].

Corollary 1: The consensus problem can be solved in

fCONS = O(D(Δ + log n)) time w.h.p.

Broadcast.
Definition 3 (Multi-Message Broadcast (MMB)): Given k

messages that are initially stored at nodes, with k unknown

to nodes. The MMB problem requires to disseminate all

messages to all nodes in the network.

The BMMB protocol given in [13] can accomplish the

multi-message broadcast problem as stated below.

Theorem 4: (Theorem 8.20 in [13]). The MMB problem

can be solved in O(kfack+(D+k(log n+log k))fprog) time,

w.h.p.

Based on the bounds on fack and fprog , we can get the

following result. Our result improves the O(D logα+1 Λ +
k(Δ+polylog(nkΛ))(log n+log k)) time result given in [10].

Corollary 2: MMB can be accomplished in O(k(Δ +
log n) + (D + k(log n+ log k)) log n) time, w.h.p.

As for the special case that k = 1, which is also known

as the Single-Message Broadcast (SMB) problem, the BSMB

protocol given in [13] provides the following result.

Theorem 5: W.h.p., SMB can be performed in time O((D+
log n)fprog).

Then with the progress bound in our implementation, we

have the following result for SMB.

Corollary 3: The SMB problem can be solved in O((D +
log n) log n) time, w.h.p.

VIII. CONCLUSION

In this paper, we have shown how to use physical carrier

sensing to get efficient exact implementation algorithms for

absMAC layer. Our proposed algorithm is asymptotically

optimal in terms of both acknowledgement and progress delay

bounds. Hence, our implementation algorithm can support

higher-level algorithm design efficiently, as illustrated. Our

implementation algorithm is based on an algorithm for a

general local broadcast problem, which introduces distinct

messages into the problem definition for the first time. Our

GLB algorithm is potentially useful for solving many other

fundamental problems, such as data aggregation and collec-

tion. We make this as a future work.
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