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Abstract—Privacy-preserving data aggregation has been ex-
tensively studied in the past decades. However, most of these
works target at specific aggregation functions such as additive
or multiplicative aggregation functions. Meanwhile, they assume
there exists a trusted authority which facilitates the keys and
other information distribution. In this paper, we aim to devise
a communication efficient and privacy-preserving protocol that
can exactly compute arbitrary data aggregation functions without
trusted authority. In our model, there exist one untrusted aggre-
gator and n participants. We assume that all communication
channels are insecure and are subject to eavesdropping attacks.
Our protocol is designed under the semi-honest model, and it can
also tolerate k (k ≤ n − 2) collusive adversaries. Our protocol
achieves (n−k)-source anonymity. That is, for the source of each
collected data aparting from the colluded participants, what the
aggregator learns is only from one of the (n − k) non-colluded
ones. Compared with recent work [1] that computes arbitrary
aggregation functions by collecting all the participants’ data using
the trusted authority, our protocol increases merely by at most
a factor of O(( logn

log logn
)2) in terms of computation time and

communication cost. The key of our protocol is that we have
designed algorithms that can efficiently assign unique sequence
numbers to each participant without the trusted authority.

I. INTRODUCTION

Data aggregation has gained a lot of attentions in the past
decades, and it has been used in many real life applications
such as mobile cloud computing and smart grid [2]. In these
applications, customers provide sensitive data (e.g., electricity
usage information by the smart meter) to the control center.
Then the control center calculates some functions such as
the average or maximum power consumption of customers.
In the problem of data aggregation, the participant acts like
customers and the aggregator just likes control center.

Generally, participants are distributed in a network. They
communicate with the aggregator in each time interval. These
communications occupy the network bandwidth and consume
energy, which will be a big problem if the communication is
heavy, especially in today’s data center. Thus, how to design
a communication-efficient protocol is an important problem.
In addition, if the aggregator is untrusted, it might abuse
these data from the participants. What’s worse, hackers or
eavesdroppers might tamper the data which participants send
to the aggregator. This causes the aggregator to produce a
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wrong result. Therefore, privacy protection is another key
problem that should be considered.

Most of previous works on privacy-preserving data aggre-
gation focus on specific functions such as Sum, Min and Max
functions [3] [4] [5] [6] [7]. The limitation is that we have
to customize the algorithm according to different functions,
which makes the system hard to extend. To let the system more
scalable, we prefer to devise a protocol for handling arbitrary
functions. One straightforward idea is that the aggregator
collects all the data of participants, and then it computes
arbitrary functions. Based on this idea, the method of secure
sum computation can realize the goal [6] [4] [5]. Using these
protocols, we can obtain all the participants’ data by traversing
the entire data space. However, this method will lead to high
communication cost and computation time when the data space
is large.

Very recently, Zhang et al. [1] proposed a new privacy-
preserving protocol that can exactly compute arbitrary aggre-
gation functions. They assign a unique sequence number to
each participant. Then based on these unique sequence num-
bers, their approach can effectively reduce the communication
cost and computation time compared with the straightforward
method. However, their approach needs a trusted authority,
which is used to send unique sequence numbers and keys to
every participant. Note that a totally trusted authority is hard
to find in practice [8].

There are some techniques which can achieve efficient key
distribution and management without the trusted authority,
such as public key schemes. Xiao et al. [9] provided a
comprehensive survey for these key management techniques.
But all of these techniques cannot fulfill the task of assigning
unique sequence numbers to all participants, which is a key
ingredient in designing an algorithm for handling arbitrary
aggregation functions. Thus, how to generate unique sequence
numbers without the trusted authority is a big challenge for
designing the data aggregation protocol.

In this paper, we propose a randomized privacy-preserving
protocol which can process arbitrary aggregation functions.
Our protocol mainly consists of three phases. In the first
two phases, a unique sequence number for each participant
is generated. According to the unique sequence numbers, our
protocol can collect all the participants’ data and process
arbitrary aggregation functions in the final phase. Different
from [1], no trusted authority is required in our protocol.
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TABLE I: Comparison with the Previous Work

Computation time Communication cost (bits) TA†† Method
O(kn2)∗ O(n2 logM)† Yes [1]

O(kn2( logn
log logn

)2) O(n2( logn
log logn

)2 logM) No Our
∗Although, the computation time of each participant is O(kn) in [1], the total
computation time of both the aggregator and the participants is O(kn2). ††TA denotes
trusted authority. †M denotes a security parameter.

Our contributions are briefly summarized as below and the
comparison of our work with [1] is listed in Table I.
• We present a randomized privacy-preserving protocol that

can exactly compute arbitrary aggregation functions. Our
protocol does not rely on trusted authority. Compared
with the work in [1] which employs trusted authority,
our protocol increases merely by at most a factor of
O(( logn

log logn )2) in terms of computation time and com-
munication cost.

• Our protocol can protect the privacy of participants’ data
against the untrusted aggregator, even if the aggregator
colludes with k (k ≤ n− 2) participants.

This paper is organized as follows: Section II briefly intro-
duces the related work. Section III presents the problem defi-
nition, models and our protocol goals. In Section IV, we show
how to generate secure unique sequence numbers without the
trusted authority and give the protocol of exactly computing
arbitrary aggregation functions. The detailed analyses for the
correctness, security and complexities are given in Section
V. Section VI shows the practical performance evaluation.
Finally, we conclude our paper in section VII.

II. RELATED WORK

There are three main techniques which are used to compute
the data aggregation: secure multi-party computation, homo-
morphic encryption, and anonymous broadcast.

Yao [10] firstly proposed the notion of secure two-party
computation in order to solve millionaires’ problem in 1982.
Then it was extended to secure multi-party computation
(SMC). The millionaires’ problem can be converted into
secure multi-party sort problem. The secure multi-party sort
can be used as our subroutine of assigning unique sequence
numbers. Liu et al. [11] presented two protocols solving secure
multi-party sort problem by vectorization method and Paillier
encryption scheme. Compared with Yao’s works, these works
have low computation overhead. Most proposed protocols for
SMC including those given in [10] and [11] have high commu-
nication and computation cost in our model. In addition, most
of the previous protocols solving millionaires’ problem cannot
handle our problem. These works may expose the information
of the rank in an ordered sequence. For example, if participant
i knows that the data of participant j (j 6= i) is less than
its data and the rank of participant i is the second in the
ordered sequence, then participant i can deduce the rank of
participant j in the ordered sequence. Thus, the information
of j is exposed.

During the past decades, many privacy-preserving data
aggregation protocols were designed with an untrusted ag-

gregator. In some ways, most of these protocols can be
attributed to homomorphic encryption. Shi et al. [5] presented
a protocol of verifiable privacy-preserving data aggregation
based on the data slicing and mixing technique. The protocol
supports additive and non-additive aggregation functions. Li et
al. [6] proposed a protocol for Sum aggregation function by
homomorphic encryption, which could handle the case that
the aggregator is untrusted. In addition, it can be extended to
solve the Min aggregation function. He et al. [12] proposed
two novel privacy-preserving data aggregation protocols in
wireless sensor networks. Groat et al. [3] presented a privacy-
preserving protocol for Min and Max aggregation functions
using k-indistinguishability. In mobile sensing systems, Zhang
et al. [7] designed an efficient and privacy-preserving scheme
by XOR homomorphic encryption and probabilistic coding
technique. Jung et al. [13] [14] presented a collusion-tolerable
and privacy-preserving protocol based on the hardness of
CDH (Computational Diffie-Hellman) problem without secure
channel. The majority of these works only deal with the
specific aggregation functions such as Sum, Min and Product
aggregation functions. Zhang et al. [15] designed a privacy-
preserving protocol that can handle additive and non-additive
aggregation functions approximately. Very recently, Zhang
et al. [1] proposed a new privacy-preserving protocol that
can solve arbitrary aggregation functions exactly. However, it
needs a trusted authority.

In addition, some works had been done with respect to pro-
tecting source privacy. Conti et al. [16] presented a complete
survey on protecting source privacy. In this comprehensive
survey, some protocols that support anonymous broadcast are
included [17] [18] [19] [20] [21]. The majority of these works
require a multi-hop path in their model, which cannot be
applied in our model. In addition, DC-Net [19] will suffer
from collision problems if applied to solve our problem.
Crowds [20] cannot defend against the global eavesdropper.
Thus, anonymous broadcast protocol is not applicable for our
problem.

III. SYSTEM MODEL

A. System Model and Problem Definition

We use the One Aggregator model, which consists of one
untrusted aggregator and n participants. Let pi (i ∈ [n] =
{1, ..., n}) represent the i-th participant. The aggregator is
denoted as A. Each participant pi generates one input data
Di ∈ {0, 1}d in a time interval. Meanwhile every participant
pi can communicate with the aggregator via a bi-directional
communication channel. The aggregator is mainly responsible
for calculating and publishing the final result of aggregation
functions.

We aim to solve the problem that the aggregator com-
putes arbitrary aggregation functions, while preserving the
participants’ privacy. Here, arbitrary aggregation functions
include two types of functions. One is additive aggregation
functions such as mean and variance, and the other is non-
additive aggregation functions such as Max/Min, Percentile
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TABLE II: Frequently Used Notations

Notation Description
n The number of participants

A The aggregator
pi The i-th participant

Di The input data where the participant pi generates
c
≡ Computational indistinguishability

[n] The set {1, 2,..., n}

F F = {fc : {0, 1}d → {0, 1}d}
c∈{0,1}d is a

pseudo-random function family

fe A pseudo-random function indexed by e from Fc
ϕ The nonce information {1, 2, ...}
M A security parameter larger than 2dlog(max(Di,n)·n)e

I The interval [1, nα+2]

Qi The i-th subinterval [(i− 1) · nα+1 + 1, i · nα+1]

si The sample value of participant pi in the interval I
Seq(i) The unique sequence number of participant pi
|Qi| The number of sample values where Qi contains

β
The maximum number of sample values where Qi contains
for all i ∈ [n]

Φi, θi The two shared key sets for participant pi (i ∈ [n])

and Histogram. We summarize the notations used in the paper
in Table II.

B. Threat Model

This paper focuses on the so-called “semi-honest
model” [22], which means that the adversary is honest-
but-curious. The adversary has three features: (1) She (He)
faithfully executes a protocol and does not intentionally
terminate the protocol at any time; (2) She (He) does not
tamper the results of the computations; (3) She (He) is curious
about the private content of others (e.g., other participants or
the aggregator). For any participant, we assume it does not
trust others, including the aggregator. The aggregator could
collude with some participants. They can communicate with
each other hoping to compute other participants’ data. We
assume that there are at most n − 2 participants conspiring
with the aggregator. Otherwise, they can deduce the private
data of the other participants in our model.

C. Security Model

We adapt a simulation paradigm [22] to justify the security
of our protocol as follows.

Definition 1 (Privacy preserving). In the one aggregator
model, there are n participants and one aggregator A. For
a deterministic function f = {f1, ..., fn}, suppose that there
are k (k ≤ n − 2) participants colluding with the aggre-
gator. Let I = {p1, ..., pk} denote the set of participants
colluding with A. X = {x1, ..., xn} represents the input. Let
f0 = {f1(X), ..., fk(X), fA(X)}, where fi(X) (i = 1, ..., k)
and fA(X) denote the output of pi and A, respectively. Any
probabilistic polynomial time protocol π privately computes
function f , if there exists a polynomial time simulator S, on
input {x1, ..., xk}, such that

S(I ∪ {A}, {x1, ..., xk}, f0)
c≡ viewπ0 (X) (1)

where
c≡ denotes computational indis-

tinguishability and viewπ0 (X) = {I ∪
{A}, viewπ1 (X), ..., viewπk (X), viewπA(X)}. viewπi is
the view of participant pi that executes the protocol π on
the input X . viewπi contains {xi, ri,mi

1,m
i
2, ...,m

i
t}, where

ri is the outcome of her (his) internal coin tosses, and mi
j

(j ∈ {1, 2, ...}) represents the i-th message she (he) obtained
during the implementation of the protocol π and the view of
the aggregator is denoted as viewπA(X) similarly.

Definition 2 ((n−k)-source anonymity). In the one aggregator
model, there are n participants and one aggregator, where
participant pj (j ∈ [n]) has one input data Dj ∈ {0, 1}d
and let I = {p1, ..., pk} denote the set of the k participants
which collude with the aggregator. For a protocol π, it achieves
(n − k)-source anonymity, if for any pair of participants pi
and pj (pi, pj /∈ I) such that

viewπA(Y )
c≡viewπA(Z) (2)

where Y = {pi(Bi) : i ∈ [n]} , Z = {pl(Bl) : l ∈ [n], l 6=
i, l 6= j} ∪ {pi(Bj), pj(Bi)}. Bi represents the data of the
participant pi containing Di and her (his) unique sequence
number, and viewπA(· ) denotes the view of the aggregator.

We assume that the Decision Diffie-Hellman (DDH) as-
sumption holds for any probabilistic polynomial time adver-
sary. For the DDH assumption, it is described as follows.

Definition 3 (DDH assumption). Let G denote a cyclic group
with the prime order q, and g be a generator of the group
G. Given only the elements g, gx, gy ∈ G, no probabilis-
tic polynomial time adversaries can distinguish between the
Diffie-Hellman tuples (gx, gy, gxy) and the random tuples
(gx, gy, gz), where x, y, z are sampled from Zq at random.

D. Complexity Measure

We mainly consider two measures of efficiency of the
protocol, i.e., computation time and communication cost. They
are defined as follows:

Definition 4 (Computation Time). The computation time of a
protocol is the total time that the aggregator and participants
perform a computational process from the beginning of the
execution to the end.

Definition 5 (Communication Cost). The communication cost
of a protocol is the total number of bits which are sent by
the aggregator and all participants from the beginning of the
execution to the end.

E. Our Design Goals

In this paper, we propose a protocol to compute arbitrary
aggregation functions on the aggregator. We focus on three
aspects about designing a protocol as follows.

1) Result Accuracy: exactly computing arbitrary aggrega-
tion functions.

2) Data Privacy: achieving (n− k)-source anonymity.
3) Communication Efficiency: realizing low communica-

tion cost.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1252



IV. OUR PROTOCOL

A. Protocol Overview

In this section, we will describe our protocol for computing
arbitrary aggregation functions. There are three phases in
our protocol: the initialization phase, creating the unique
sequence numbers phase and computing the aggregation func-
tions phase. In the first two phases, each participant produces
a unique sequence number and does not know the unique
sequence numbers of other participants. In the last phase,
the aggregator can collect all participant’s data based on the
unique sequence numbers. Our protocol can defend against an
untrusted aggregator that even colludes with n−2 participants.

We next explain our protocol in detail as follows.

B. The Initialization Phase

First, we need to distribute the system parameters to each
participant so that they can establish shared keys with each
other. We adopt the Diffie-Hellman key exchange algorithm
[23] to establish the shared keys. Using their techniques, we
will produce a q-order cyclic (multiplicative) group G. It is
constructed as follows:

Two large primes p, q are picked such that q|(p− 1). Then,
a number h ∈ Zp is randomly selected. Finally, the generator
g of the group G is computed:

g = h
p−1
q mod p,

where g 6= 1 mod p.
Then, the aggregator sends the system parameters

(p, q,G, g, n and a constant α) to all participants, where G
denotes a description of the group G.

Second, using the techniques as shown in [23], participants
pi and pj (i 6= j) can obtain shared keys.

The detailed operations are described as follows. Specif-
ically, participant pi samples the 2(n − 1) secret numbers
from Zq uniformly at random. The numbers are divided into
the first set {ri,j : j ∈ [n], j 6= i} and the second set
{ti,j : j ∈ [n], j 6= i}. Using the generator g, participant
pi generates ciphertext bi,j = gri,j mod p (j 6= i) via
modular exponentiation operation and sends the ciphertext
bi,j to the aggregator. When the aggregator receives the
ciphertext, it forwards the ciphertext bi,j to the participant pj .
When the participant pj receives the ciphertext, it computes
ci,j = (bi,j)

tj,i mod p = gri,jtj,i mod p by using the secret
number tj,i and sends the ciphertext dj,i = gtj,i mod p to pi
by the aggregator. The participant pi obtains ci,j by calculating
(dj,i)

ri,j mod p. Thus, participants pi and pj obtain a shared
key ci,j = gri,jtj,i mod p. Similarly, the above process can
be applied to other ri,j for participant pi. Then, pi can get one
key set Φi = {ci,ν : ν ∈ [n], ν 6= i}, where ci,ν = gri,νtν,i

mod p.
For other participants pj (j 6= i, j ∈ [n]), they follow a

similar process for the first set {rj,l : l ∈ [n], l 6= j}. Then,
participants pi can also obtain another key set θi = {cl,i :
l ∈ [n], l 6= i}, where cl,i = grl,iti,l mod p. Thus, each
participant pi (i ∈ [n]) gets two shared key sets Φi and θi.

Next, each participant pi (i ∈ [n]) uses two key sets to
pick the corresponding pseudo-random functions {fcl,i : l ∈
[n], l 6= i} and {fci,ν : ν ∈ [n], ν 6= i} from the PRF
(Pseudo-Random Function) family F = {fc : {0, 1}d →
{0, 1}d}c∈{0,1}d . Then, it constructs the function Hi(ϕ) as
follows:

Hi(ϕ) =
(∑
j∈θi

fj(ϕ)−
∑
v∈Φi

fv(ϕ)
)

mod M, (3)

where ϕ represents the nonce information and M ≥
2dlog(max(Di,n))·ne is a security parameter (logM ≤ d).

Our idea for designing function Hi(ϕ) originates from
additive homomorphic encryption scheme which is proposed
by [24].

C. Creating the Unique Sequence Numbers Phase

In this phase, we will create a unique sequence number
for each participant. We use random sampling method and
partitioning technique to establish unique sequence numbers.
There are four steps in this phase. The detailed operations are
presented as follows.

The first step: each participant pi (i ∈ [n]) samples an
integer value si independently and uniformly from [1, nα+2]
at random.

We have the following Observation 1.

Observation 1. Let s1, s2, ..., sn be n numbers independently
and uniformly sampled from [1, nα+2] at random, then we
have si 6= sj for ∀i 6= j (i, j ∈ [n]) with probability at least
1− 1/nα.

Due to the lack of space, we put the proof in the full
version [25].

According to the sample value si, participant pi divides
interval I = [1, nα+2] into n disjoint subintervals, that is,
{Qi = [(i − 1)nα+1 + 1, i · nα+1] : i ∈ [n]} . Since the
sample value si is independently and uniformly sampled from
[1, nα+2] at random. Thus, the probability that si belongs to
subinterval Qj is 1

n for any i, j ∈ [n]. we can obtain that the
number of sample values in each subinterval {Qi : i ∈ [n]}
is at most O( lnn

ln lnn ) with high probability∗, according to the
following Lemma 1.

Lemma 1. Let β = 2(λ+ 1) lnn
ln lnn (λ ≥ 1) and χi (i ∈ [n])

be the number of sample values located in Qi. Then, we have
maxi∈[n]χi ≤ β with probability at least 1− 1

nλ
.

Due to the lack of space, we put the proof in the full
version [25].

The second step: participant pi takes the following opera-
tions. First, it produces an n-dimensional vector on the basis
of which subintervals the sample value locates. Without loss of
generality (W.l.o.g.), we assume that sample value si belongs
to subinterval Qj . Then, pi produces an n-dimensional vector

∗A high probability means a probability 1−1/nλ for some constant λ ≥ 1
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Vi where the value of the j-th coordinate sets 1 and the others
0, that is, it can be expressed in the following form:

Vi = (0, ..., 0︸ ︷︷ ︸
j−1

, 1, 0, ..., 0).

Next, participant pi encrypts Vi = (0, ..., 0, 1, ..., 0) by using
the Hi(ϕ) and produces a new n-dimensional vector V 1

i as
follows:

V 1
i = (v1

i , ..., v
l
i, ..., v

n
i ), (4)

where{
vli = (Hi(l) + 0) mod M (l ∈ [n], l 6= j),
vli = (Hi(l) + 1) mod M (l = j).

Finally, each participant pi sends V 1
i to the aggregator.

When the aggregator receives n vectors {V 1
j : j ∈ [n]}, it

counts up the vectors by vector addition and obtains a new
vector V 1

agg = (v1
a, ..., v

l
a, ..., v

n
a ), where

vla =
n∑
i=1

vli mod M, l ∈ [n]. (5)

Note that the value of the i-th coordinate of vector V 1
agg

denotes the number of sample values in the subinterval Qi,
i.e., the following Lemma,

Lemma 2. In our first and second steps, the aggregator ac-
curately obtains the number of the sample values sj (j ∈ [n])
which belongs to corresponding subinterval Qi (i ∈ [n]).

Proof: W.l.o.g., we assume that there are s among all
participants whose sample values locate inQ1, and let p1, .., ps
denote the participants. The participant pi computes v1

i =
(Hi(1) + 1) mod M for any i ∈ {1, ..., s} and the remaining
participants pi (i ∈ {s+ 1, ..., n}) compute v1

i = (Hi(1) + 0)
mod M . The aggregator receives v1

i from all participants pi
(i ∈ [n]). Since we have

∑n
i=1Hi(1) = 0, the aggregator

computes

V 1
a =

n∑
i=1

v1
i mod M

=

( s∑
i=1

(
Hi(1) + 1

)
+

n∑
i=s+1

(
Hi(1) + 0

))
+ mod M

=
( n∑
i=1

Hi(1)
)

+ s mod M = s.

(6)

The third step: we will handle subintervals Qi (i ∈ [n])
which contains more than one sample value sj (j ∈ [n]). For
the subinterval Qi, it will be handled by using a partitioning
technique, which is presented in Algorithms 1 and 2. The
Algorithm 1 aims to partition subintervals and the Algorithm
2 counts the number of sample values in the subintervals
with privacy preservation. The aggregator starts partitioning
operations based on V 1

agg. The steps will be introduced as
follows.

Algorithm 1 PartitionIntervals(Qi, num )
Input: Qi, num
Output: T
1: L0 = d logn

log logne, L
′
0 = d logn

log logne, L
′′
0 = dlog ne3/2;

2: if num == 0 then
3: return;
4: else if num == 1 then
5: return T = T

⋃
Qi;

6: else if 2 ≤ num ≤ L0 then
7: Aggregator sets ξ1 = (L′0)2;
8: Aggregator partitions Qi into ξ1 disjoint subintervals
Qi,τ (τ = 1, 2, ..., ξ1) uniformly;

9: for τ = 1 : ξ1 do
10: PartitionIntervals (Qi,τ , CountNumber(Qi,τ ));
11: end for
12: else
13: Aggregator sets ξ2 = (L′′0)2;
14: Aggregator partitions Qi into ξ2 disjoint subintervals
Qi,τ (τ = 1, 2, ..., ξ2) uniformly ;

15: for τ = 1 : ξ2 do
16: PartitionIntervals(Qi,τ , CountNumber(Qi,τ ) );
17: end for
18: end if

Algorithm 2 CountNumbers(Qi,τ )

Input: Qi,τ
Output: V Sτa
1: Aggregator sends Qi,τ to all participants;
2: Each participant pj (j ∈ [n]) computes z = z + 1;
3: Each participant pj (j ∈ [n]) computes function Hj(z);
4: for j = 1 : n do
5: if sj ∈ Qi,τ then
6: Participant pj computes V Cτj =

(
Hj(z) + 1

)
mod M and sends to aggregator;

7: else
8: Participant pj computes V Cτj =

(
Hj(z) + 0

)
mod M and sends to aggregator;

9: end if
10: end for
11: Aggregator computes V Sτa =

∑n
i=1 V C

τ
i mod M ;

(1) When n is sufficiently large (ρ† ≥ 1/2).
The aggregator sets L0 = d logn

log logne, L
′
0 = d logn

log logne and
L′′0 = dlog ne3/2, and generates an empty set T which is used
to place subintervals in Algorithm 1. Each participant sets z =
n in Algorithm 2.

Then, the aggregator handles the subintervalQi for all i (i ∈
[n]). By Lemma 1, we have maxi∈[n] v

i
a ≤ β with probability

at least 1 − 1
nλ

. In the light of via (i ∈ [n]), we perform the
following operation:

†ρ =
log(logn−e log logn)

log logn
+

log(logn−log logn)
2 logn
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If via = 0, i.e., |Qi| = 0, in the Lines 2 − 3 of Algorithm
1, the aggregator returns.

If via = 1, i.e., |Qi| = 1, in the Lines 4 − 5 of Algorithm
1, the aggregator adds Qi to the set T and returns.

If 2 ≤ via ≤ L0, i.e., 2 ≤ |Qi| ≤ L0, in the Lines 6− 11 of
Algorithm 1, the aggregator sets ξ1 = (L′0)2 and divides Qi
into ξ1 uniform subintervals Qi,τ (τ ∈ [ξ1] = {1, 2, ..., ξ1}).
Then, for each Qi,τ (τ ∈ [ξ1]), the aggregator sends it to
all participants. Participant pi (i ∈ [n]) uses Algorithm 2 to
produce corresponding ciphertexts and sends them to the ag-
gregator. So the aggregator obtains V Sa = (V S1

a, ..., V S
ξ1
a ).

For V Sja ≤ 1 (j ∈ [ξ1]), the processing methods of the
aggregator is the same as that in Lines 2 − 4 of Algorithm
1 and Lines 5 − 7 of Algorithm 1. For 2 ≤ V Sja ≤ L0,
it reuses the Algorithm 1 and the Algorithm 2 to divide the
subintervals. The aggregator continues to divide subintervals
until V Sia ≤ 1 for any i ∈ [ξ1]. For subinterval Qi,τ , the
partitioning process is completed when V Sτa ≤ 1.

In Lines 13 − 17 of Algorithm 1, if via ≥ L0 + 1, i.e.,
|Qi| ≥ L0 +1, the aggregator sets ξ2 = (L′′0)2. The processing
methods used by the aggregator is similar to the above steps .

(2) When n is relatively small (ρ ≤ 1/2). We set L′0 =
ddlog ne2/3e and the rest remains the same in Algorithms 1
and 2.

The final step: After the aggregator and participants have
performed the above algorithms for all Qi (i ∈ [n]), the ag-
gregator gets a set T . The set T consists of the n subintervals,
where each subinterval contains only one sample value. The
aggregator sends the set T to every participant, and then each
participant obtains the rank of their sample values among all
sample values in an ascending order. It is the unique sequence
number Seq(i) (i ∈ [n]) for any participant pi (i ∈ [n]).

P1 P2 P3

1 0 0 0 0 1 0 0 1

Aggregator

1 0 21

0 0 0 0 1 0 0 0 1 0 1 12

[1,9]

[22,24][25,27]

4 22 25
[1,9]  [10,18]  

[19,27]

[19,21]  
[22,24]  
[25,27]

+ +

+ +

Fig. 1: An example of our Algorithms 1 and 2

An example to illustrate our four steps is displayed in Figure
1 while ignoring the privacy aspects of data. We consider
that there are three participants and one aggregator. The three
participants sample 4, 22 and 25 from [1, 33](α = 1) uniformly
at random, respectively. Each participant divides [1, 33] into
[1, 9], [10, 18], [19, 27]. Based on the subintervals, each partic-
ipant generates a vector as shown in the 1© and sends it to
the aggregator. The aggregator gets (1, 0, 2) by vector addition.
Thus, it adds subinterval [1, 9] to the set T . Furthermore, since
ddlog 3e 4

3 e = 3, it sets ξ1 = 3. Then, it divides [19, 27] into
[19, 21], [22, 24], [25, 27] and sends them to all participants.
Each participant generates a vector as shown in the 2© and

sends it to the aggregator. The aggregator gets (0, 1, 1) by
vector addition. It adds the subintervals [22, 24], [25, 27] to the
set T . Finally, the aggregator obtains the set T which contains
[1, 9], [22, 24], [25, 27] and sends it to every participant. Thus,
participant pi knows her own Seq(i). The unique sequence
numbers Seq(i) of participant pi (i = 1, 2, 3) are 1, 2 and 3,
respectively.

D. Computing the Aggregation Functions Phase

Algorithm 3 Computing The Aggregation Functions Phase
Input: Seq(i), Di

Output: V T a

1: Run the first two phases, each participant pi gets an unique
sequence number Seq(i) for any i (i ∈ [n]);

2: for each participant pi do
3: for j = 1 : n do
4: if Seq(i) == j then
5: Participant pi computes ϕ′ = ν + j, V T ji =

(Hi(ϕ
′) +Di) mod M and sends to the aggregator.

6: else
7: Participant pi computes ϕ′ = ν + j, V T ji =

(Hi(ϕ
′) + 0) mod M and sends to the aggregator.

8: end if
9: end for

10: end for
11: for j = 1 : n do
12: Aggregator computes V T aj =

∑n
i=1 V T

j
i mod M

13: end for
14: Aggregator outputs V T a = (V T a1 , ..., V T

a
n )

In the above section, each participant has secretly obtained
a unique sequence number Seq(i) ∈ [n]. In this section, we
design a privacy-preserving scheme which can collect data of
all participants based on Seq(i). This process is illustrated in
Algorithm 3.

Specifically, each participant pi generates a vector VG1
i . The

construction of VG1
i is shown as follows:

VG1
i = (V T 1

i , ..., V T
j
i , ..., V T

n
i ), (7)

where{
V T ji = (Hi(ν + j) + 0) mod M (j ∈ [n], j 6= Seq(i)),

V T ji = (Hi(ν + j) +Di) mod M (j = Seq(i)),

ν denotes the total number of subintervals which were pro-
duced in the first two phases of our protocol.

Next, participant pi (i ∈ [n]) sends VG1
i to the aggregator.

So the aggregator receives VG1
1, VG1

2,...,VG1
n and computes

V T a = (V T a1 , ..., V T
a
n ), where

V T aj =
n∑
i=1

V T ji mod M, j ∈ [n]. (8)

V T a is a vector which consists of all participants’ data. The
aggregator can compute arbitrary aggregation functions using
the vector V T a.
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V. CORRECTNESS, SECURITY AND COMPLEXITY
ANALYSIS

In this section, we analyze correctness, security and com-
plexity of our protocol.

A. Correctness

First, we show the correctness of our protocol as follows.

Lemma 3. In our Algorithm 2, the aggregator accurately
obtains the number of the sample values sj (j ∈ [n]) which
belongs to corresponding subinterval.

Lemma 4. In our Algorithm 3, the aggregator accurately
obtains all participants’ data.

The proof of Lemmas 3 and 4 are similar to Lemma 2,
which we omit here.

B. Security

Next, we discuss the security of our protocol, according to
Definitions 1 and 2. We show that our protocol is secure and
does not leak any information for non-collusion participants,
except what can be deduced from the output of our protocol.

Theorem 1. Algorithms 1 and 2 are secure in the semi-honest
model, even if the aggregator colludes with k (k ≤ n − 2)
participants.

Proof: Suppose that there are k (k ≤ n − 2) par-
ticipants which colludes with the aggregator A. Let I =
{p1, ..., pk} denote the set of conspirators with colluding
with A and {pk+1, ..., pn} denote the other participants. Let
C = {1, ..., k} and P = {k+ 1, ..., n}. The participants in set
A can send all information to A so that A deduces information
of participants pi (i ∈ P ), which implies that viewπA(· ) ⊇
{viewπi (· ) : i ∈ C}. Thus, we only consider the view of A.
Without loss of generality, we consider the first coordinate
of vectors V 1

agg, Vi and V 1
j , denoted by V 1

agg(1), Vi(1) and
V 1
j (1), respectively.
According to Definition 1, we need to construct a simulator

S0 as follows:
A receives the set Θ = {si, θi,Φi, bq,l = grq,l

mod p, dl,q = gtl,q mod p, V 1
j (1),Vi(1), V 1

agg(1) : i ∈
C, j = [n], l, q ∈ P} and uses them as its input.

According to Vi(1) (i ∈ C) and V 1
agg(1), A computes

SV = V 1
agg(1) −

∑
i∈C Vi(1), that is, the number of sample

values in non-collusion participants located in the subinterval
Q1. Then it randomly constructs {V

′

j(1): j ∈ P} such that∑
j∈P V

′

j(1) = SV .
For any l ∈ P , A knows all the bq,l = grq,l mod p, dl,q =

gtl,q mod p (l, q ∈ P ). Then it uniformly picks êq,l, êl,q from
G (q 6= l, q, l ∈ P ) at random. Based on the DDH assumption,
we have cq,l

c≡ êq,l and cl,q
c≡ êl,q. Next, S0 calculates V̂ 1

j (1)
(j ∈ P ) as follows:

{V̂ 1
j (1) = (Gj(1) + V

′

j(1)) mod M : j ∈ P}, (9)

where

Gj(1) =
( ∑
ci,j∈θj∩i∈C

fci,j (1)−
∑

cj,i∈Φj∩i∈C
fcj,i(1)

+
∑

q∈P−{j}

f̂q,j −
∑

q∈P−{j}

f̂j,q
)

mod M
(10)

and {f̂q,j , f̂j,q : j, q ∈ P} are sampled from {0, 1}d uniformly
at random so that∑

j∈P
Gj(1) =

∑
j∈P

Hj(1) mod M. (11)

We have

S0(I ∪ {A},Θ) = {V 1
1 (1), ...V 1

k (1), ̂V 1
k+1(1), ..., V̂ 1

n (1)}.

Meanwhile, we know

viewπ0 (· ) = {V 1
1 (1), ..., V 1

k (1), V 1
k+1(1), ..., V 1

n (1)}.

According to Definition 1, we need to prove

S0(I ∪ {A},Θ)
c≡ viewπ0 (· ).

Since si (i ∈ P ) is sampled independently and uniformly
at random from [1, nα+2] , the vector Vi can be considered
as a vector which is sampled independently and uniformly at
random from {1i : i ∈ [n]}, where

1i = (0, ..., 0︸ ︷︷ ︸
i−1

, 1, 0, ..., 0︸ ︷︷ ︸
n−i

).

Thus, we obtain Vj(1)
c≡ V

′

j(1) for any j ∈ P . Furthermore,
since {fci,j}i,j∈[n] are pseudo-random functions from F, we
have

fci,j
c≡ Ui,j , (12)

where Ui,j (i, j ∈ [n]) are random variables and obey uniform
distribution over {0, 1}d. Note that

Hj(ϕ) =
∑

ci,j∈θj∩i∈C

fci,j (ϕ) +
∑

ci,j∈θj∩i∈P

fci,j (ϕ)

−
∑

cj,i∈Φj∩i∈C
fcj,i(ϕ)−

∑
cj,i∈Φj∩i∈P

fcj,i(ϕ)
(13)

and
V 1
j (1) = Hj(1) + Vj(1). (14)

Applying Equations (9), (10), (11), (12), (13) and (14), we
have {V 1

j (1) : j ∈ P} c≡ {V̂ 1
j (1) : j ∈ P}, where ϕ = 1.

Thus it holds that

S0(I ∪ {A},Θ)
c≡ viewπ0 (· ).

Theorem 2. Our protocol is (n− k)-source anonymity in the
semi-honest model, even if the aggregator colludes with k (k ≤
n− 2) participants.

Proof: (Sketch) We use the same notations as those in
the proof of Theorem 1. Suppose that there are k (k ≤ n −
2) participants colluding with the aggregator A. A wants to
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confirm which participants pi (i ∈ P ) generates Di. The view
of A is a set of random variables as follows:

viewπA = {V T ji : i, j ∈ [n]}. (15)

where V T ji represents the message which is the value of the
j-th coordinate of VG1

i in our protocol.
For any pair of participants pi and pj (i < j, i, j ∈ P ), we

assume Seq(i) < Seq(j). Participants pi and pj exchange the
data {Di, Seq(i)} and {Dj , Seq(j)}. Then, the view of A is
as follows:

v̂iewπA = {V̂ T ji : i, j ∈ [n]}. (16)

According to Definition 2, we need to prove viewπA
c≡

v̂iewπA. We construct a simulator S as follows. For participants
pl (l ∈ P ), the simulator S first randomly generates a random
unique sequence numbers set {rl : l ∈ P} from the set [n]
except the unique sequence number of pl′ (l′ ∈ A). Noting
that the n sample values are sampled from I uniformly at
random, Seq(1), ..., Seq(n) are a random permutation in [n].
So there are (n − k)! kinds of permutations for the partic-
ipants in P . The simulator S randomly constructs fq,r, fr,q
(r 6= q, r, q ∈ P ) by sampling from {0, 1}d, and computes
V T bq = (G′q(ν + b) + D{a:Seq(a)=rq}) mod M for b = rq
(a, q ∈ P, b ∈ [n]) and V T bq = (G′q(ν + b) + 0) mod M
for b 6= rq (a, q ∈ P, b ∈ [n]), respectively. Let viewπA
denote the view of A in the process. Similar to the proof
of Theorem 1, we have viewπA

c≡ viewπA. Similarly, we can
obtain viewπA

c≡ v̂iewπA.
Thus, we obtain viewπ0

c≡ v̂iewπ0 and our protocol achieves
(n− k)-source anonymity.

Similarly, semi-honest participants cannot learn any infor-
mation except the output of our protocol.

C. Complexity

Finally, we discuss communication cost and computation
time of our protocol in this section.

Theorem 3. With probability at least 1 − 1
n2 , the number of

subintervals where the aggregator sends to any participant pi
is at most O(n( logn

log logn )2) for a sufficiently large n (ρ ≥ 1/2).

Due to the lack of space, we put the proof in the full
version [25].

In our protocol, the aggregator sends the O(n( logn
log logn )2)

subintervals to each participant and vice verse. Thus, we have
the following corollary.

Corollary 1. With probability at least 1− 1
n2 , the communi-

cation cost of our protocol is at most O(n2( logn
log logn )2 logM)

for a sufficiently large n (ρ ≥ 1/2).

According to Theorem 3, we have the following theorem
about the computation time.

Theorem 4. With probability at least 1 − 1
n2 , each par-

ticipant needs O(n2( logn
log logn )2) d-bit hashing operations,

O(n2( logn
log logn )2) logM -bit modular operations and O(n)

log p-bit modular exponentiation operations, and the aggre-
gator needs O(n2( logn

log logn )2) logM -bit modular operations
and O(n( logn

log logn )2) partitioning operations.

Noting that if we know that there are k participants collud-
ing with the aggregator in parctice, each participant pi only
samples the 2(k+1) secret numbers: the first set {ri,j : j = (q
mod n) + 1, q = i, ..., i+ k} and the second set {tj,i : j = (q
mod n) + 1, q = i, ..., i + k} in the initialization phase. The
others are similar to the three phases of our protocol. Then
we obtain a more efficient protocol and have the following
corollary.

Corollary 2. With probability at least 1 − 1
n2 , each par-

ticipant needs O(kn( logn
log logn )2) d-bit hashing operations,

O(kn( logn
log logn )2) logM -bit modular operations and O(k)

log p-bit modular exponentiation operations, and the aggre-
gator needs O(n2( logn

log logn )2) logM -bit modular operations
and O(n( logn

log logn )2) partitioning operations.

VI. PERFORMANCE EVALUTION

In this section, we perform experiments to analyze the
performance of our algorithms.

We perform the algorithms on a desktop running the 64-
bits Debian GNU/Linux 9 operating system with Intel Core,
i5-3230M G530 CPU and 12GB memory. The experiment
is based on the mutilprocesses and network programming.
We assume that the aggregator (participant) does not collude
with any participant. We perform a process to simulate ag-
gregator and a process to simulate n participants. To con-
struct hash functions, we utilize Crypto++ library and use
HMAC<SHA256> as the pseudo-random function family.
The length of security parameter are 64-bits in the experiment.
The sample values si and Di of participants are sampled from
[1, n5] uniformly at random. The number of participants is
taken from 20 to 100. Noting that n is relatively small in
this case (ρ ≤ 1/2), we set L′0 = ddlog ne2/3e and the rest
remains unchanged in Algorithms 1 and 2. Similar to the above
theorem, the number of subintervals is O(n2(log n)4/3) with
high probability. The communication cost and computation
time are averaged by 500 runs. We show the results in Figures
2a and 2b. In Figures 2a and 2b, the experiment results
show that the trend of the graph is a quadratic curve, and
there is a gap of the constant factor between experimental
results and theoretical analysis. The experiment also shows
that the communication cost and the computation time of
our algorithm are O((log n)4/3) times of those in [1], which
matches our theoretical analysis. Furthermore, we compare
the performance of our protocol with a baseline scheme. The
baseline scheme can obtain all participants’ data by using the
secure data aggregation protocol [6], but it needs to traverse
the space of participants’ data. The baseline scheme will be
run until the aggregator obtains all participants’ data. In this
experiment, the input data Di of participants are sampled from
[1, n2] uniformly at random and other parameters are the same
as the first experiment. It is not hard to see that expected
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Fig. 2: Experiments of our algorithm and the algorithm in [1].
The red solid line is the performance of our algorithm, the
blue dashed line is the performance of the algorithm in [1].
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Fig. 3: Experiments of our algorithm and the baseline scheme
by using the secure data aggregation protocol [6]. The red solid
line is the performance of our algorithm, the blue dashed line
is the performance of the baseline scheme.

communication cost and computation time of the baseline
scheme are O(n3 logM) and O(n3), respectively. In Figures
3a and 3b, the experiment shows that the communication cost
and the computation time of the baseline scheme are almost
O(n) times of our algorithm, which matches our theoretical
analysis.

VII. CONCLUSION

In this paper, we propose a privacy preserving protocol
that can compute arbitrary aggregation functions without any
trusted authority. Our protocol is designed under the semi-
honest model, and it can tolerate k (k ≤ n − 2) adversarial
participants and achieve (n − k)-source anonymity. The key
of our protocol is we have devised an efficient randomized
algorithm, which can securely assign unique sequence num-
bers to the participants without trusted authority. Compared
with a recent work [1] using a trusted authority, our protocol
increases merely by at most a factor of O(( logn

log logn )2) in
terms of computation time and communication cost. How to
deploy it in practice [26] and how to design privacy preserving
protocols that can compute arbitrary aggregation functions in
the malicious model will be interesting in future work.
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