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Abstract: Wireless sensor networks are attracting much attention from the world and
Minimum Latency Aggregation Scheduling(MLAS) has become one of the most significant
fundamental problems in wireless sensor networks. However there are few results about
efficient data aggregation algorithms under the Signal-to-Interference-plus-Noise-Ratio
(SINR) model. In this paper, we propose a centralized algorithm to aggregate data from
all sources in O(log2 n) time slots where n is the total number of nodes. To the best
of our knowledge, this is the current best result for the problem. This algorithm uses
round scheduling, topology construction and non-linear power assignment as the main
techniques. We give a detailed proof of correctness, also an aggregation latency analysis
of the algorithm as well as the parameter constraints to achieve our result.
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1 Introduction

Nowadays, the wireless sensor networks have been
attracting vast attention for their wide usage in
many industrial and consumer applications, such as
environmental monitoring, machine health monitoring
and control, etc. One of the significant fundamental
problems in the wireless sensor networks (and the
wireless networks in general) is the efficient method to
collect data from individual nodes. More precisely, given
a set of sensor nodes which have their own sensing
data, arbitrarily distributed in a metric space, how
efficiently can these nodes transfer their data to the
sink node? This question can be formulated as: what

is the minimum number of time slots (we divide the
time into unit slots) that can be used to schedule all
the aggregation transmissions without collision under
the SINR model. This is so called Minimum− Latency
Aggregation Scheduling (MLAS) problem (Chen, Hu,
and Zhu, 2005; Huang et al., 2007; Wan et al., 2009; Yu,
Li, and Li, 2009).

Why is this problem so important? In any real
wireless sensor network application, each node in the
network has to send its own sensed data to the sink
node frequently. Actually, many query applications are
handling such a MLAS problem, for instance, querying
the max or min temperature in a large area. So, how the
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sink node can gather all the data efficiently in a timely
fashion is an interesting and practical problem.

In studying wireless sensor networks, communication
model is important when it comes to algorithm
design. There are two common models for wireless
communication: the Protocol Model and the Physical
Model (or Signal to Interference plus Noise Ratio, SINR
model) (Gupta and Kumar, 2000). In many wireless
sensor network research papers, multi-hop wireless
networks have been modeled as graphs. All nodes
of this communication graph represent the physical
devices, two nodes being connected if and only if
the respective devices are within mutual transmission
range. In the graph-based model, a node is assumed
to receive a message successfully if and only if no
other node in physical proximity transmits at the same
time. It is foreseeable that in graph theory, interference-
free concurrent transmissions just boil down to solving
variants of coloring or independent set problems.

Compared with the tremendously simplified graph-
theoretic model, the SINR model is a more accurate
description of reality. The advantage and robustness of
the SINR model have been analyzed (Thomas and Roger,
2006; Magnús and Roger, 2010). In this paper, we adopt
the physical model to study the data gathering problem.

1.1 Related work

Even though the MLAS problem is a fundamental
problem of wireless sensor networks, there has been
little work done under the physical model. Many related
works focusing on solving this problem are under the
protocol model (Chen, Hu, and Zhu, 2005; Huang et
al., 2007; Wan et al., 2009; Xu et al., 2009; Yu, Li,
and Li, 2009). (Chen, Hu, and Zhu, 2005) provides an
algorithm for MLAS within O((∆− 1)R) time slots, we
also call it aggregation latency, where ∆ is the maximum
node degree and R is the network radius defined by
hop count. The NP-hardness of this problem is also
proved in this paper. Under the protocol model, the best
results (Huang et al., 2007; Wan et al., 2009; Xu et
al., 2009; Yu, Li, and Li, 2009) show that aggregation
latency can be bounded by O(∆ +R). Some other
factors have also been researched such as energy control
in (Hua and Lau, 2006; Moh, Kim and Moh, 2006)
where Moh et al. present a distributed power scheduling
for data aggregation, routing protocol design in (Jia,
Zhao and Ma, 2008) which improves the life span of
the network. In addition, maximizing the lifetime with
data aggregation in wireless sensor networks have also
been discussed in (Stanford and Tongngam, 2009; Li,
Zhu and Chen, 2011; Zou, Nikolaidis and Harms, 2008)
and efficient aggregation tree constructed in (Cheng
and Yin, 2008; Chiang and Byrd, 2009; Hua and Lau,
2010) can reduce redundant data which improves the
aggregation latency. (Cam, 2007) also gives a view about
coding method in data aggregation and (Kafatzoglou
and Papavassiliou, 2011; Solis and Obraczka, 2006)
explore the trade-off for data collection when in-network

aggregation is introduced. Some distributed algorithms
for local broadcast are also discussed in (Hua et al., 2011;
Yu et al., 2011a; Yu et al., 2011b).

To the best of our knowledge, there are few papers
(Li et al., 2009; Li et al., 2010; Nathaniel et al., 2012)
solving the MLAS problem under the SINR model, in
which both centralized and distributed algorithms are
given.

The first solution in (Li et al., 2009) proposes a
distributed algorithm using constant power assignment.
This algorithm can produce a feasible scheduling for
aggregation transmissions with latency at most O(∆ +
R). It is obvious that the efficiency of this algorithm
depends on the networks’ topologies, which may result in
O(n) latency in the worst case. Moreover, this paper only
takes constant power assignment into account. However,
the discussion in (Thomas and Roger, 2006) had already
shown uniform power assignment will not work efficiently
in some worst scenarios of the scheduling problem in
wireless networks.

The best MLAS solution before our result is given
in (Li et al., 2010) which develops both distributed and
centralized algorithm. By first aggregating data from
sensor nodes in each divided smaller area with shorter
transmission links, then repeating the same process for
larger areas and longer links until the entire network is
covered by the largest area, the distributed algorithm
achieves a latency bounded by O(K), where K is the
logarithm of the ratio between the lengths of the longest
and shortest links in the network, which can be O(n)
(n is the total number of nodes) in the worst case.
The centralized algorithm can finish data aggregation in
O(log3 n) time slots based on a result (Thomas, 2007)
from the wireless network capacity problem.

1.2 Our contribution

The main result of this paper is an improved centralized
algorithm solving the MLAS with an aggregation
latency bounded of O(log2 n). Our latency bound
removes a O(logn) factor from (Li et al. 2010), which
is the best result before ours. We adopt several useful
and common techniques, like dividing links into different
length groups and non-oblivious power assignments that
are used in some related papers (Alexander, Thomas
and Berthold, 2009; Dariusz and Mariusz, 2010; Thomas,
Roger and Aaron, 2006; Thomas and Roger, 2006;
Thomas, 2007). In fact, directly applying the subroutine
(Algorithm 4) of our algorithm after constructing the
nearest neighbor tree, we can solve the Connectivity
Problem in (Thomas, 2006) within O(logn) time slots,
which is also the best known result.

In this paper, we also provide a detailed analysis
about the constraints of the parameters involved, which
can be helpful in real implementation.

The rest of the paper is structured as follows: we
start by introducing the considered wireless models and
notations in Section 2. Then we propose our efficient
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improved MLAS algorithm in Section 3. The correctness
of this algorithm is given in Section 4. The aggregation
latency of our algorithm is analyzed in Section 5. Also
we discuss the parameter constrains in Section 6. Finally,
we conclude in Section 7.

2 Notation and Model

For a given a set of nodes V = {v1, v2, . . . , vn}, the
Euclidean distance between any two node vi, vj is
denoted by d(vi, vj). Each link li = (vi, vj) represents a
communication request from sender vi to receiver vj . All
the nodes are distributed in the Euclidean plane, note
that all nodes can be both sender and receiver, but only
in different time slots (i.e. no node can send and receive
simultaneously). The length of link lij is denoted by
dij = d(vi, vj). And the distance from link lgh to link lij
is the distance from lgh’s sender to lij ’s receiver, denoted
by dgj = d(vg, vj).

The signal power Pvi(vj),or simply Pi(j), received at
vj from sender vi depends on the transmission power
Pij of sender vi and the distance dij between nodes vi
and vj . This is the path loss radio propagation model
for the reception of signals, where the signal strength is
assumed to fall off with d−α

ij (α > 2 denotes the path-
loss exponent), i.e. Pi(j) = Pij/d

α
ij . Every sender vg(with

corresponding receiver vh) that sends concurrently with
vi causes an interference Ig(j) = Pg(j) = Pgh/d

α
gj at

receiver vj of link lij . The notation Ig(j) is used in order
to emphasize that this is interference, not a useful signal.

All interferences accumulate. The total interference
I(vj) experienced by receiver j is given as the
sum of all interferences caused by other concurrently
sending nodes, i.e. I(vj) =

∑
lgh ̸=lij

Ig(j). A receiver vj
successfully receivers a message from its sender vi if and
only if it suits the precedence constraint (A node cannot
send its data to the parent node until it has received
all data from the its children nodes) and the following
condition:

Pi(j)∑
lgh∈S\lij Ig(j) +N

≥ β

where N is ambient noise, β denotes the minimum
SINR(Signal-to-interference-plus-noise-ratio) required
for a message to be successfully received, and S is the
set of concurrently transmitting links, i.e., the links that
can be scheduled in the same time slot.

3 Improved MLAS Algorithm

In this section, we present the improved MLAS algorithm
such that all links constructed can be scheduled in
O(log2 n) time slots for any placement of n nodes in the
plane.

Define ActiveNodeSet as the set of nodes that have
not finished sending their data and ActiveLinkSet as
the set of links that can be chosen to schedule. We use

notations ANS and ALS respectively for short. In the
algorithm, k, b, c1, a1 are constant parameters that will
be discussed in Section 6.

Algorithm 1 Improved MLAS Algorithm

1: ANS := V \ {sinknode}, Tree := ∅
2: while |ANS| > 1 do
3: T := Generate Topology(ANS);
4: T ′ := Choose Link Set(T );
5: Schedule(T’);
6: Tree := Tree ∪ T ′;
7: for each lij ∈ T ′ do
8: ANS := ANS \ {vi};
9: end for

10: end while

Algorithm 1 plays the main role in scheduling nodes
in round; it schedules all nodes until only single one
remains. Then finish the communication between this
node and the sink node with one more extra time slot.
In each round, generate topology of Active Node Set,
construct link set T ′ in T and schedule all links in T ′.
Now we present each phase of the algorithm and discuss
the related properties.

Algorithm 2 Generate Topology on Node Set V

1: T := ∅;
2: while |V | > 1 do
3: for each vi ∈ V do
4: Find vj ∈ V \ {vi} minimizing d(vi, vj);
5: if lji /∈ T then
6: T := T ∪ {lij};
7: end if
8: end for
9: for each lij ∈ T do

10: V := V \ {vi};
11: end for
12: end while
13: return T ;

Algorithm 2 uses the nearest neighbor tree method to
generate the topology, which has been applied in many
papers such as (Dariusz and Mariusz, 2010; Thomas and
Roger, 2006; Thomas, 2007). Here are some properties
result from this topology:

Property 3.1: Consider two links lij and lji, there is
at most one link in tree T.

Property 3.2: Consider link lij ∈ T , if there exists
another node k with dik < dij, lki must belongs to the
tree T .

Algorithm 3 chooses appropriate links, i.e. these which
meet the requirement in the algorithm.

Property 3.3: ∀lij ∈ T ′, there exists no node vk s.t
lki ∈ T ′.
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Algorithm 3 Choose Link Set on Tree T

1: ALS := T , T ′ = ∅;
2: while |ALS| > 0 do
3: for each lij ∈ ALS do
4: if there is no such node vk, lki ∈ ALS then
5: T ′ := T ′ ∪ {lij};
6: end if
7: end for
8: for each lij ∈ T ′ do
9: ALS := ALS \ {lij};

10: if there exists node vk, ljk ∈ ALS then
11: ALS := ALS \ {ljk};
12: end if
13: end for
14: end while
15: return T ′;

Figure 1: Example of 7 nodes in the plane. In
every round, the bold black links are chosen to be
scheduled. At the end of each round, the nodes that
have transmitted their message will be deleted from the
ANS. Continue until only one node is left.

proof: From Line 4 if there exists such a node vk s.t
lki ∈ T ′, lij will be deleted from ALS at Line 11. �

Property 3.4: All links in T ′ can be concurrently
scheduled satisfying the precedence constraint.

proof: From Line 10, ∀lij ∈ T ′, vj has no outgoing edge.
Thus the precedence constraint holds. �

Property 3.5: Algorithm 1 runs no more than ⌈log n⌉
rounds.

proof: It is easy to see that at least |ANS|−1
2 nodes will

be deleted in each round from Algorithm 3. So Algorithm
1 will terminate in no more than ⌈log n⌉ rounds. �

Algorithm 4 is an important phase of our algorithm
scheduling all links in T ′. First divide links into subsets
according to their γ and τ values, defined in the pre-
processing at Algorithm 4. This division method by link
length is commonly used in scheduling algorithms such as
(Alexander, Thomas and Berthold, 2009; Thomas, Roger
and Aaron, 2006; Thomas and Roger, 2006; Thomas,
2007). Now we will give some properties about the
scheduling phase:

Algorithm 4 Schedule T ′

1: T ′ := pre-Processing(T ′);
2: for m = 1 to a1 do
3: Let Tm = {lij ∈ T ′|γij = m};
4: while not all links in Tm have been scheduled do
5: Lt := ∅;
6: Order all links in Tm by decreasing order of

length;
7: if canSchedule(lij,Lt) then
8: Lt := Lt ∪ lij ;Tm := Tm \ {lij};
9: end if

10: For all lij ∈ Lt, set the time slot t(lij) := t and
assign the power Pi(lij) := k · bτij · dαij ;

11: t := t+ 1;
12: end while
13: end for

pre-processing(T ′)

1: τcur := 1; γcur := 1; last:=dij which is the longest
link lij in T ′

2: for each lij in decreasing order of the length dij do
3: if last

dij
≥ 2 then

4: if γcur < a1 then
5: γcur := γcur+ 1;
6: else
7: γcur := 1; τcur := τcur+ 1;
8: end if
9: last:=dij ;

10: end ifγij := γcur; τij := τcur;
11: end for

canSchedule((lij , Lt)

1: for each lgh ∈ Lt do
2: if τij = τgh and dig < c1 · dij then
3: return false;
4: end if
5: if τgh < τij and dgj < dgh then
6: return false;
7: end if
8: if τgh < τij ≤ τgh + (1+log b) log n

αa1
and dhi < c1 ·

dgh then
9: return false;

10: end if
11: if τgh + (1+log b) log n

αa1
< τij and dhi < n

1
α · dij ·

b
(τij−τgh)+1

α then
12: return false;
13: end if
14: end for

Property 3.6: Consider two links lij and lgh with
γij = γgh, it holds that dij ≥ 2(τgh−τij)·a1 · dgh if τij <
τgh.

Property 3.7: Consider two links lij and lgh with
γij = γgh, their length is either very similar or vastly
different.

This property can be concluded from two sides. When
the two links have the same τ value, 1

2 ≤ dij

dgh
≤ 2 so their
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lengths differ only by a factor of 2. Otherwise, when they
have different τ ’s, by Property 3.6 they have lengths that
differ by at least a factor of 2, possibly by an exponential
amount.

Property 3.8: Consider two links lij and lgh, if dij >
dgh, then τij ≤ τgh.

This property gives the monotonicity of τ which is non-
decreasing when length decreases. It can be generated
from the condition τ is renewed.

Property 3.9: All the links in the same time slot Lt

have the same γ value.

All links in Lt are from a set Tm where each link has
γ = m.

Property 3.10: The power assigned for each link lij
is a non-linear function of dij.

In (Thomas and Roger, 2006), it was proved uniform or
linear power assignments can result in Θ(n) complexity
in the worst case. In light of this, non-linear power
assignment is used to achieve better results in (Dariusz
and Mariusz, 2010; Thomas and Roger, 2006; Thomas,
2007).

4 Correctness

In this section we give the proof that links scheduled
in the same time slot from the algorithm above can
transmit concurrently under both SINR and precedence
constraints.

Theorem 1: Consider any set Lt generated by the
algorithm, and for all links lij ∈ Lt, the precedence
constraint is satisfied and it holds that:

Pij

dα
ij

N +
∑

∀lgh∈Lt,lgh ̸=lij

Pgh

dα
gj

≥ β (1)

Algorithm 1 schedules all nodes in no more than
⌈log n⌉ rounds by Property 3.5. We should show
that, in each round, the generated set Lt can satisfy
both precedence and SINR constraints. The precedence
satisfiability has already been shown by Property 3.4,
we now prove the SINR constraint also holds based on
Lemma 4.1,4.2,4.3 and 4.4 given below .

Lemma 4.1: Consider link lij ∈ Lt scheduled in time
slot t, the interference caused at vj by other links lgh ∈ Lt

with τgh < τij is bounded: I1(vj) ≤ N1 · k · bτij−1.

Proof: Since lgh ∈ Lt and τgh < τij , when lij is
considered, by the canSchedule subroutine we know
dgj ≥ dgh. Fix τgh and bound the interference caused by

the links with the same τ value. Divide the plane into
rings R1, R2 · · ·R∞. For each link lg′h′ in ring Rλ: (2λ−
1)dgh ≤ dg′j < (2λ+ 1)dgh. Since τ is fixed, τg′h′ =
τgh and lg′h′ can be scheduled by the canSchedule

subroutine, so dgg′ ≥ min{c1dgh, c1dg′h′} ≥ dgh

2 . The

disks of radius
dgh

4 centered at each link’s sender don’t
overlap, thus the number of the senders is bounded by:

Nλ ≤
π(2λ+ 1 + c1

4 )
2 − π(2λ− 1− c1

4 )
2

π( c14 )
2

= 16 ·
4λ( c12 + 2)

c21
≤ 32(c1 + 4)

c21
· λ (2)

The interference caused at vj by all senders in ring Rλ

is bounded by:

IRλ
(vj) ≤ Nλ · k · bτgh · (2dgh)α

[(2λ− 1) · dgh]α

=
32(c1 + 4)

c21
· k2α · bτgh · λ

(2λ− 1)α

≤ 32k2α(c1 + 4)bτgh

c21

1

λα−1
(3)

Naming the set of all links with τ = τgh as Sgh

and combining all the rings, we can bound the total
interference by senders in Sgh by:

ISgh
(vj) =

∞∑
λ=1

IRλ
(vj) ≤

32k2α(c1 + 4)bτgh

c21

∞∑
λ=1

1

λα−1

≤ 32k2α(c1 + 4)

c21

α− 1

α− 2
bτgh (4)

Since 1 ≤ τgh ≤ τij , if we sum up all the interference

ISgh
(vj), we get I1(vj) =

∑τij−1
τgh=1 ISgh

(vj) ≤ C1 ·

k
∑τij−1

τgh=1 b
τgh = C1 · k b(bτij−1−1)

b−1 ≤ 2C1 · kbτij−1 where

C1 = 32·2α(c1+4)
c21

α−1
α−2 and N1 = 2C1, the lemma follows.

�

Lemma 4.2: Consider link lij ∈ Lt scheduled in time
slot t, the interference caused at vj by other links lgh ∈ Lt

with τgh = τij is bounded: I2(vj) ≤ N2 · k · bτij−1.

Proof: There are two types of links scheduled: links
with length no less than dij and links with length
less than dij . For the first case, it’s clear that each
link lgh ∈ Lt has dig ≥ c1dij by canSchedule(lij,Lt).
Regarding the second case, any link lgh ∈ Lt with dgh <

dij is scheduled after lij , and dgi ≥ c1dgh ≥ c1
dij

2 holds
according to Property 3.7.

Combining the two cases above shows ∀lgh ∈ Lt

with τgh = τij , dig ≥ c1dij

2 . We divide the plane into
rings R1, R2 · · ·R∞ and for any link lgh in Rλ(λ ≥
1): λ

2 c1dij ≤ dig < λ+1
2 c1dij . Now consider any two

links lgh, lg′h′ ∈ Rλ. It’s easy to see that dgg′ ≥
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Figure 2: An example of dividing the plane into rings,
where for each link lg′h′ in ring Rλ, (2λ− 1)dgh ≤ dg′j <
(2λ+ 1)dgh for some fixed τgh value. In the proof, we
can bound the number of senders in each ring and thus
bound the interference at the receiver node vj .

min{c1dgh, c1dg′h′} ≥ c1
2 dij . Disks with radius

dij

4
centered at each sender in Rλ don’t overlap. Thus, we
can bound the number of senders by:

Nλ ≤
π(λ+1

2 + 1
4 )

2d2ij − π(λ2 − 1
4 )

2d2ij

π(
dij

4 )2
= 16(λ+ 1) ≤ 32λ

By the triangle inequality we can deduce:

dgj > dgi − dij ≥ (
c1
2
λ− 1)dij ≥

c1 − 2

2
λdij

Thus, the interference caused at vj by senders in ring Rλ

can be bounded by :

IRλ
(vj) ≤ 32λ

k · bτij (2dij)α

( c1−2
2 λ)αdαij

=
32 · 4α

(c1 − 2)α
· kbτij 1

λα−1

Since λ ≥ 1, the sum of all the layers’ interference
can be bounded by: I2(vj) =

∑∞
λ=1 IRλ

(vj) ≤
32bk·4α
(c1−2)α b

τij−1
∑∞

λ=1
1

λα−1 ≤ 32bk·4α
(c1−2)α

α−1
α−2b

τij−1, let N2 =
32b·4α
(c1−2)α

α−1
α−2 and the lemma follows. �

Lemma 4.3: Consider link lij ∈ Lt scheduled in time
slot t, the interference caused at vj by other links lgh ∈
Lt with τij < τgh ≤ τij +

(1+log b) log n
αa1

is bounded by :

I3(vj) ≤ N3 · k · bτij−1.

Proof: We use the same technique employed in Lemma
4.1’s proof. First fix τgh, when lgh is considered for
scheduling by canSchedule(lgh,Lt), it should fulfill the
condition djg ≥ c1dij since τgh > τij . We divide the plane
into an infinite number of rings R1, R2 · · ·R∞. For any
link lg′h′ with τg′h′ = τgh in ring Rλ(λ ≥ 1), we have
that c1λdij ≤ dg′j < c1(λ+ 1)dij . We can conclude that

dgg′ ≥ dgh

2 if links lgh and lg′h′ in Rλ have the same

τ value from the analysis above. Disks of radius
dgh

4

centered at each sender don’t overlap. Thus the number
of such senders(links) can be bounded by:

Nλ ≤
π[(c1 +

5
4 )λ]

2d2ij − π[(c1 − 1
4 )λ]

2d2ij

π(
dgh

4 )2

= 24(2λ+ 1)
d2ij
d2gh

≤ 72λ
d2ij
d2gh

(5)

The interference caused by ring Rλ can be bounded by:

IRλ
(vj) ≤ 72λ

d2ij
d2gh

· k · bτgh · (2dgh)α

(c1λdij)α

=
72k · 2α · bτgh

cα1
(
dgh
dij

)α−2 1

λα−1
(6)

Combining the interference over all rings, for any set Sgh,
the interference at some fixed τgh value can be deduced:

ISgh
(vj) =

∞∑
λ=1

IRλ
(vj)

≤ 72k · 2α · bτgh
cα1

(
dgh
dij

)α−2
∞∑
λ=1

1

λα−1

≤ 72k · 2α · bτgh
cα1

α− 1

α− 2
(
dgh
dij

)α−2 (7)

Taking Property 3.6 into consideration of we know that
dij ≥ 2(τij−τgh)·a1 · dgh, Inequation 7 can be transformed
into: ISgh

(vj) ≤ 72k·2α·
cα1

α−1
α−2b

τij+τgh−τij · 2(τij−τgh)·a1 ≤
72k·2α·

cα1

α−1
α−2b

τij−(τgh−τij) since we can choose some

appropriate value for b and a1 to suit:

(b2)τgh−τij ≤ (2a1)τgh−τij (8)

The sum of all the interferences over different τ values is
then:

I3(vj) ≤
τij+

(1+log b) log n
αa1∑

τgh=τij+1

72k · 2α·
cα1

α− 1

α− 2
bτij−(τgh−τij)

≤ 2 · 72k · 2α·
cα1

α− 1

α− 2
bτij−1 (9)

Let N3 = 2 · 72·2α·
cα1

α−1
α−2 and the interference is bounded

by I3(vj) ≤ N3 · k · bτij−1. �

Lemma 4.4: Consider link lij ∈ Lt scheduled in time
slot t, the interference caused at vj by other links lgh ∈
Lt with τgh ≥ τij +

(1+log b) log n
αa1

is bounded by : I4(vj) ≤
k · bτij−1.

Proof: Since in canSchedule(lgh,Lt) lgh will pass line

11 and generate dgj ≥ n
1
α · dgh · b

(τgh−τij)+1

α , then the
interference caused by such a single link is: Ilgh(vj) =
k·bτgh ·dα

gh

dα
gj

≤ k·bτgh ·dα
gh

n·dα
gh·b

τgh−τij+1 = k·bτij−1

n . There are at most

n such links, the interference caused at vj is at most

I4(vj) ≤ n · k·bτij−1

n = k · bτij−1. �
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Lemma 4.5: For all links lij ∈ Lt scheduled in time
slot t, it holds that:

Pij

dα
ij

N +
∑

∀lgh∈Lt,lgh ̸=lij

Pgh

dα
gj

≥ β (10)

Proof: Combining Lemma 4.1, 4.2, 4.3 and 4.4:

Pij

dα
ij

N +
∑

∀lgh∈Lt,lgh ̸=lij

Pgh

dα
gj

≥
Pij

dα
ij

N + (I1(vj) + I2(vj) + I3(vj) + I4(vj))

≥ k · bτij
N + (N1 +N2 +N3 + 1)k · bτij−1

≥ β (11)

�

Remark 4.1: Because N1, N2, N3 are related to c1
which can be very large and b which is related to N and
β, k can be assigned to be small enough in relation to N
such that SINR is satisfied in 11. For details, please see
Section 6.

From Lemma 4.5 and Property 3.5, all sets generated
in each round can hold both precedence and SINR
constraints, so Theorem 1 holds.

5 Complexity Analysis

In this section, we show that Algorithm 1 can schedule all
links in O(log2 n) time slots even in worst case arbitrary
deployment.

Theorem 2: Algorithm 1 can schedule all links lij ∈
Tree in O(log2 n) time slots.

From Property 3.5, it’s obvious that Algorithm 1 will
terminate in ⌈log n⌉ rounds. If we can prove all links in
T ′ can be schedule in O(logn) time slots for each single
round, then Theorem 2 is proved.

Lemma 5.1: Given a set of disks Γ of radius no less
than R, and a disk U of radius R. There are at most
18 disks di ∈ Γ such that:(1) di intersects U and (2) di
doesn’t intersect the center of dj , j ̸= i.

More concretely, for disk U with center cu, try to use
disks Ri with radius ri ≥ R, center ci to intersect U ,
i.e. dcuci ≤ R+ ri. No two such disks cover any other’s
center, that is dcicj ≥ max {ri, rj}. Then the number of
such circles can be bounded by some constant. (Bateman
and Erdös, 1951) shows that setting the constant to 18
is sufficient.

Lemma 5.2: Consider all links lij ∈ T ′ of length dij ≥
R. For any disk of radius R, there can be at most C

receivers of such links in it, and C is some constant
number (actually it is 18).

Proof: We use Lemma 5.1 to get the result. For any
disk with radius R, suppose the center is c and there are
links Γ which meet the condition specified in Lemma 5.1.
Then:

• For each link lij , the receiver must be in the circle
of radius R, so dcvi ≤ R+ dij ;

• For any two links lij , lgh ∈ Γ, dig ≥ max {dij , dgh}
must be satisfied. By way of contradiction, suppose
the inequality is not true. Then without loss of
generality, suppose dig < dij . From Property 3.2 lgi
must be in T (X). Since lgh ∈ Γ ⊆ T ′ we have a
contradiction, therefor dig ≥ max {dij , dgh} holds.

From the two points above, the problem can be
transferred to one related with Lemma 5.1. That is to
say, the number of such links is bounded by 18, which
means |Γ| ≤ 18. So Lemma 5.2 follows. �

Lemma 5.3: The number of disks with radius R
2

needed to cover a circle C with radius R completely is
bounded by 9.

Proof: Consider the square with length l = 2R that
contains disk C. Divide it into 9 smaller squares of length
l′ = 2R

3 . Since the diagonal length of the smaller squares

are 2
√
2R
3 < R, a single disk with radius R

2 is enough to
cover it. So 9 disks are enough to cover the square that
contains disk C. �

In order to bound the number of time slots required
to schedule all links in the Scheduling Step, we use the
notion of blocking links as described bellow:

Definition 5.1: A link lgh is a blocking link for lij if:
γgh = γij , dgh ≥ dij , and canSchedule(lij,Lt) returns
false if lgh ∈ Lt. Let Bij denote the set of blocking links
of lij .

Now the main task is counting the number of blocking
links of each link and give a bound. If we can prove
the number is bounded by C1 log n where C1 is some
constant, then we can just schedule the link in C1 log n+
1 ≤ C2 log n time slots, where C2 is also some constant.
So we can get the desired O(logn) result. Let:

- B=
ij be the set of blocking links lgh ∈ Bij where

τij = τgh;

- B>
ij be the set of blocking links lgh ∈ Bij where

τij > τgh;

Since the algorithm schedule all links in decreasing order
of the length in the main loop, we need not consider
the case when τij < τgh. Now we give two bounds
respectively.



8 Zhaoquan Gu, Guanyu Wang, Qiang-Sheng Hua, Yuexuan Wang

Lemma 5.4: For all links lij ∈ T ′, the number of
blocking links in B=

ij is at most O(log n).

Proof: Since each link lgh ∈ B=
ij has τij = τgh, we know

dij ≤ dgh ≤ 2dij , and from line 2 of the canSchedule
subroutine: dig ≤ c1dij , which means all the senders of
blocking links must be in the disk of radius c1dij at
sender vi. For any two links lgh, lg′h′ ∈ B=

ij , we know that
dgg′ ≥ max{dgh, dg′h′} ≥ dij by the analysis of Lemma

5.2. If we draw a disk of radius
dij

2 centered at all senders
in the disk of radius c1dij , no two disks will overlap, and
the number of the blocking links’ senders can be bounded
by:

N ≤
π(c1 +

1
2 )

2d2ij

π(
dij

2 )2
= 4(c1 +

1

2
)2 (12)

Thus there can be at most a constant number
senders satisfying the constraint, so |B=

ij | ≤ 4(c1 +
1
2 )

2 ∈
O(logn). �

Lemma 5.5: For all links lij ∈ T ′, the number of
blocking links in B>

ij is at most O(log n).

Proof: We need to consider three cases in the
canSchedule subroutine line 5, line 8 and line 11:

1. When τgh < τij and dgj < dgh : There can be at
most one satisfying link. Since dgj < dgh and
lgh ∈ T ′, ljg must belong to T ′ by Property 3.2.
Suppose there is another link lg′h′ satisfying the
condition, then we get that ljg′ must be in the tree
by the same analysis and arrive at a contradiction.

2. τgh < τij ≤ τgh + (1+log b) log n
αa1

and dhi < c1dgh:
Consider a fixed τgh and compute the number of
links with the same τgh value. The condition
dhi < c1dgh means the receivers of such links must
be located in the disk of radius c1dgh at vi. Now

use disks with radius
c1dgh

2 to cover this region.
From Lemma 5.3 we can use 9 such disks to cover
it. Obviously each disk with radius

c1dgh

2 can be

covered by c21 disks with radius
dgh

2 . Thus, 9c21
disks with radius

dgh

2 can cover the region with
radius c1dgh. For any other link lg′h′ with

τgh = τg′h′ it can be shown that dg′h′ ≥ dgh

2 .
According to Lemma 5.2 there can be at most C
receivers in each little disk and there are at most
9C · c21 receivers satisfying the condition.

Since there are (1+log b) log n
αa1

different τgh values,

at most (1+log b) log n
αa1

· 9C · c21∈ O(logn) receivers of
such blocking links exist.

3. τgh + (1+log b) log n
αa1

< τij , dhi < n
1
α dijb

(τij−τgh)+1

α :
Since there are O(n) different τ values, we can not
just apply the method used above. From Property
3.6:

dgh ≥ 2(τij−τgh)·a1 · dij ≥ 2a1· (1+log b) log n
αa1 · dij

= 2
log n
α · 2

log n log b
α · dij = n

1
α · b

log n
α · dij (13)

Consider the first layer: for each link lgh that

satisfies the condition and dhi < n
1
α · b

log n
α · dij ,

the number of receivers of such blocking links can
be bounded from Lemma 5.2 to at most C
receivers in that layer. Then consider links lgh with
receivers such that:

n
1
α · bα

φ−1 log n · dij ≤ dhi ≤ n
1
α · bα

φ log n · dij (14)

We call this layer Bφ
ij for φ ≥ 0. Suppose there is

such a link in this layer, it must be the case that

dhi < n
1
α · dij · b

(τij−τgh)+1

α , so:

n
1
α · b

τij−τgh+1

α · dij > n
1
α · ba

φ−1 logn · dij

⇒ αφ <
τij − τgh + 1

log n
(15)

So we can get φ < C2 log n for some constant C2

and τij − τgh > aφ · log n− 1. Thus:

dgh ≥ 2(τij−τgh)·a1 · dij ≥ 2α
φ·log n−1·a1 · dij (16)

If we choose an appropriate value for a1 to meet
following inequality

(αφ · a1 − αφ log b− 1

α
) · log n > a1 (17)

inequation 16 can be written as:

dgh ≥ 2α
φ·log n−1·a1 · dij > n

1
α · bαφ log n · dij . Using

Lemma 5.2, for the disk of radius R = bα
φ logn · dij

at vi, there can be only a constant number of
receivers with length larger than R in the disk, so
there can be at most constant number of blocking
links in layer Bφ

ij . Since φ < C2 log n and each
layer can have at most a constant number of
blocking links, the number of blocking links is
bounded by O(logn).

From the three points above, we can conclude that : B>
ij

has at most O(log n) links. �

Lemma 5.6: In each round, ∀lij ∈ T ′, lij can be
scheduled in time slot 0 ≤ t(lij) ≤ C log(n) for some
constant C.

Proof: From Lemma 5.4 and Lemma 5.5 we deduce that
the number of lij ’s blocking links is bounded by O(logn),
so each link can be scheduled in O(logn) time slots. Since
γ ranges from 1 to a1 in Algorithm 4, Line 2 when a1
is a constant to be chosen, all links can be scheduled in
O(log n) time slots, so Lemma 5.6 follows. �

Remark 5.1: After constructing the topology using
nearest neighbor tree method, we can generate aO(logn)
schedule for the Connectivity Problem by directly
adopting the subroutine Algorithm 4.
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From the above analysis, in each round all links can
be scheduled in one of the O(log n) time slots and there
are at most ⌈log n⌉ rounds, so Theorem 2 gives the right
bound.

6 Parameter Constraints

There are 4 parameters a1, b, k and c1 in our algorithm.
The constraints of the parameters should be satisfied:

• In the proof of Lemma 4.3, Inequation 8 should be
satisfied, so: b2 ≤ 2a1 ⇒ a1 ≥ 2 log b;

• In the proof of Correctness, Inequation 11 should
be satisfied, thus:

k · bτij ≥ β · [N + (N1 +N2 +N3 + 1)k · bτij−1]

Letting c1 be a very large value lets
N1 +N2 +N3 < 1, and so
k · bτij ≥ β · (N + 2kbτij−1). This can be rewritten
as: k(b− 2β) · bτij−1 ≥ βN . Since τij ≥ 1,
k(b− 2β) ≥ βN should be satisfied.

• In the proof of Lemma 5.5, Inequation 17 should
be fulfilled:(αφ · a1 − αφ log b− 1

α ) · log n > a1;

Here is an example, b = 2β + βN , k = 1, a1 =
⌊2 log b+ 1

α⌋+ 1, and c1 be a very large value. This
shows that such parameters can be assigned easily to
support the algorithm.

Remark 6.1: c1 is a not just very large value, it is
actually related to b and α. Here we give a bound to
satisfy Inequation 11: c1 > 2 + α−1

α−2 · (272 + 32b2α)2α.

7 Conclusion and Future Work

This paper proposes an algorithm which solves the
MLAS problem under the SINR model. By rationally
combining several techniques for wireless network
scheduling, like round scheduling, topology construction
and non-linear power assignment, our algorithm always
produces a feasible aggregation scheduling policy with
latency bounded by O(log2 n) time slots. To the best of
our knowledge, this is the best solution of this problem
to date. Compared with previous works (Chen, Hu,
and Zhu, 2005; Huang et al., 2007; Wan et al., 2009;
Xu et al., 2009; Yu, Li, and Li, 2009) under protocol
models, our algorithm gives more instructions for real
world applications in wireless sensor networks, because
we adopt the physical model which is a much better
description of reality, even though our algorithm still
suffers from being a centralized one. Our algorithm
also gives a better result than all the previous works
(Li et al., 2009; Li et al., 2010) on the same problem
under the SINR model. Moreover, the subroutine of
our algorithm can generate a O(logn) schedule for
Connectivity Problem.

In the future, we will focus on improving the efficiency
of this centralized algorithm and designing an efficient
distributed one. The theoretical result analyzed in this
paper shows that the exact implementation of such an
algorithm would be cumbersome, as the non-linear power
assignment are non-trivial. More simple algorithms
which are easy to use in real applications may be a good
research point as well, even if they would provably suffer
from loss of efficiency.
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