
Efficient Complete Event Trend Detection over High-Velocity Streams
Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

†National Engineering Research Center for Big Data Technology and System
Cluster and Grid Computing Lab

Services Computing Technology and System Lab
Huazhong University of Science and Technology, Wuhan, 430074, China

‡School of Information Technologies
The University of Sydney, NSW 2006, Sydney

Emails:{hym,chen,hjin,qshua}@hust.edu.cn,bing.zhou@sydney.edu.au

ABSTRACT
Complete Event Trend (CET) detection over large-scale event streams
is important and challenging in various applications such as financial
services, real-time business analysis, and supply chain management.
A potential large number of partial intermediate results during
complex event matching can raise prohibitively high memory cost for
the processing system. The state-of-the-art scheme leverages compact
graph encoding, which represents the common sub-sequences of
different complex events using a common sub-graph to achieve space
efficiency for storing the intermediate results. However, we show
that such a design raises unacceptable computation cost for the
graph traversal needed whenever a new event comes. To address this
problem, in this paper, we propose a novel attribute-based indexing
(ABI) graph model to represent the relationship between events.
By classifying the predicates and constructing the graph based on
both the comparators in the predicates and the attribute values of the
events, we achieve parallel event stream processing and efficient graph
construction. Our design significantly reduces the total computation
cost of graph construction from O(n2) to O(nloд(m)), where n is
the number of events andm is the number of the attribute vertices.
We further design several efficient traversal-based algorithms to
extract CETs from the graph. We implement our design and conduct
comprehensive experiments to evaluate the performance of this
design. The results show that our design wins a couple of orders of
magnitude back from state-of-the-art schemes.

KEYWORDS
Big data, stream process, complete event trend

ACM Reference Format:
Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing
Zhou†. 2021. Efficient Complete Event Trend Detection over High-Velocity
Streams. In 50th International Conference on Parallel Processing (ICPP ’21),
August 9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3472456.3472526

The Corresponding Author is Hanhua Chen (chen@hust.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472526

1 INTRODUCTION
Complete Event Trend (CET) [13] detection is to process high-velocity
event streams and detect all the complete event sequences matching
the a user-defined event pattern in a given time range. An event trend
is a time-ordered event sequence that matches a user-defined query
in a time window [14]. An event trend is complete only if it is not a
sub-sequence of any other event trends. This technology is widely
used in real applications such as traffic management, stock trading
analysis, and financial fraud detection [13, 15–17].

For example, the complex event of check kiting is a notorious form
of financial fraud [11, 20]. Through a list of consecutive unbalanced
checks, fraudsters can transfer money from a bank with insufficient
funds to another [20]. Q1 shows an example query to detect potential
check kiting fraud events. A check event indicates someone transfers
money from one bank account, by writing a check, to another bank
account. A Kleene operator ‘+’ is applied to express that the system
needs to match one or more check events greedily. A kiting fraud
detection system needs to process a massive number of data and
identify check kiting fraud events as soon as possible to prevent
fraudsters from withdrawing the money away.

Q1 :PATTERN check + c[]

WHERE c .type = ‘not covered ’ AND
c[i].src = c[i − 1].dest

WITHIN 1 week SLIDE 1 day

Financial trend analysis processes massive financial streaming
data and identifies potential opportunities. For example, stock expert
traders subscribe to the stock data streams and write queries to find
event trends (e.g., increasing, head and shoulder trends) in real-
time. Q2 shows a simple example that detects increasing trends of
stock prices from a stock event stream using a Kleene operator [13].
Predicate [id] and s[i].price > ratio ∗ s[i − 1].price restrict events
in a trend to have the same identifier and increasing prices.

Q2 :PATTERN stock + s[]

WHERE [id] AND s[i].price > ratio ∗ s[i − 1].price

WITHIN 60min SLIDE 10 min

The challenges of building an efficient complete event trend
detection system are threefold.

• Large-scale partial results. An event sequence may match
a sub-pattern or cannot be immediately determined to be
complete. The number of such partial results can increase
exponentially in real applications, making the efficient storage
a challenging issue [13].

https://doi.org/10.1145/3472456.3472526
https://doi.org/10.1145/3472456.3472526

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

e1 e2 e4

e1 e2 e5

e1 e3

e1 e3

e5

e6

e4

e6

e5

e1

e2

e3
time

(a) CET Graph

5 0 k 1 0 0 k 1 5 0 k0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

tim
e (

s)

n u m b e r o f e v e n t s
(b) Graph Construction Time

Figure 1: CET Graph Method

• High performance requirement. Applications usually need
real-time system response. Efficiently processing the huge
partial results is vital for providing low latency.
• Difficult to parallelize. A CET is strictly time-ordered. A

fine-grained parallelization that processing related events in
parallel can cause out-of-time-order issue.

To handle potential huge amount of partial results, Olga et al. [13]
propose a compact CET graph, where common paths in the graph can
represent common sub-sequences shared by different event trends
and avoid redundant storage. Fig. 1(a) shows an example where
four CETs are compacted into a CET graph. CETs with common
sub-sequences share paths (e.g., (e1, e3)) in the graph. It is clear the
common path effectively reduces duplicated sub-sequence storage.

However, constructing a CET graph is costly. In the example, when
a new vertex e6 arrives, the system needs to match e6 with vertices
e4, e2, e5, e3, and e1 on the CET graph. Most of them fail (denoted
as light-gray arrows), while only e3 succeeds (denoted as a black
arrow). Such a CET graph construction needs a worst computation
cost of O(n2) for n events. Fig. 1(b) examines the cost of CET graph
construction with large-scale events. It shows the computation cost
is prohibitively high for real world applications.

To solve these problems, in this work we propose a novel Attribute-
based Indexing graph model, called ABI graph, for CET detection.
An ABI graph is essentially a bipartite graph with two types of
vertices, attribute vertices and event vertices. An edge is generated
only between attribute vertices and event vertices based on the
predicates in a query. Therefore, the events can be added to the
ABI graph independently unlike the conventional graph construction
in which events are added to the graph one by one in the order of
their arrivals. This makes it possible for parallel graph construction.
We further propose a parallel graph construction algorithm that
can greatly improve the system performance. Formally, our scheme
reduces the cost for graph construction to (nloд(m)), wherem is the
number of attribute vertices and n is the number of event vertices. We
design a parallel anchor-based algorithm and a join-based distributed
algorithm which efficiently extracts CETs from the ABI graph.
Experiment results show our design greatly outperforms previous
work.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 presents the ABI graph model. Section 4
proposes the parallel dynamic graph construction method. Section 5

A B

C

c1

c2

c3c5

c6 c4

A B

C

c1

c2

c3

c4

c5

c6

(a) Check Kiting Fraud

Attributes

Vertices

c1 c2 c3 c5 c6c4
Event

Vertices

A B C

(b) ABI Graph of Check Kiting Fraud Example
Figure 2: A Case of Check Kite Fraud

presents several extraction algorithms and a pre-filter algorithm.
Section 6 shows the detail of our system design. Section 7 evaluates
the performance of this design. Section 8 concludes this paper.

2 RELATED WORK
Traditional complex event processing techniques [2, 9, 10, 18, 23] use
Kleene operator to express CET and suffer from memory explosion
problem caused by exponentially increasing partial results during
CET detection.

To cope with the partial results, Olga et al. [13] propose a compact
CET graph model, which represents a CET as a directed path from
the vertex standing for the start event to that for the end event. The
sub-sequences shared by different event trends use the same path to
avoid redundant storage. In a CET graph, the event vertices with an
out degree of 0 and the vertices with an in degree of 0 are called start
vertex and end vertex, respectively. When receiving a new event, the
system traverses forward from each end event vertex to find events
that match the new event. If no matching event is found, the system
sets the new event as a start event vertex. Though the CET graph can
significantly reduce the storage cost, the computational complexity
for CET graph construction isO(n2) for a time window with n events,
making such a design impractical in real systems.

Efficient aggregation [15, 16] and multiple queries sharing [14, 17]
over event streams attract much recent research efforts. Aggrega-
tion is widely required in applications like stock market analysis,
cluster monitoring, and traffic management [15]. Greta [15] and
COGRA [16] use a graph-based method to aggregate event trends in
an online style and support complex Kleene, negation, and nested
patterns under various event matching semantics. Multiple queries
sharing tends to share computation and storage resources among
multiple queries with common sub-patterns. The multiple queries
sharing approaches [14, 17] focus on approaching optimal sharing
plans by evaluating detection cost based on various models.

3 ATTRIBUTE-BASED INDEXING GRAPH
Let us look at a simple example of check kiting fraud detection shown
in Fig. 2(a), where there are six check transaction events c1−c6 among

Efficient Complete Event Trend Detection over High-Velocity Streams ICPP ’21, August 9–12, 2021, Lemont, IL, USA

three accounts A,B, and C in three different banks. According to
Q1 (Section 1), we can extract three CETs (c1, c2, c6), (c1, c3, c5, c6),
and (c1, c3, c4). If we regard each account and event as a vertex, we
can use edges to show the relationships between event vertices and
account vertices. For example, event c1 indicates a check transaction
from the source account A to the account B and this transaction
can be represented as A → c1 → B. Hence, we can generate an
attribute-based indexing (ABI) graph as shown in Fig. 2(b). Using
ABI graph we can extract all the CETs similar to that using the CET
graph.

For simplicity, we give the following definitions before discussing
ABI graph construction and CET extraction.

Attribute Value Range. An attribute value rangeAS = {val1, val2 ,
..., valp} is a collection of values of an attribute.

Event. Event = (timestamp, ⟨ attr1, ..., attrg ⟩) represents in-
stances of interest happened at a time point. Each event has a time
attribute that denotes its occurrence time and a series of attributes to
describe it.

Event Stream. The event stream I = (e1, e2, ...) is an infinite
sequence of events continuously produced by a source. The events in
I are in time order as they occur.

Query. The system receives queries from users to extract CETs
of interest. A CET Query has the following form,

PATTERN P [WHERE Θ]WITHIN w SLIDE s

where P is an event pattern, the conditional expression Θ is defined
by WHERE clause, and a w-length time window slides every s units
of time. An event pattern P is a sequence of Kleene operator or event
types. A Kleene operator which is defined by an event type followed
by a ‘+’ means matching one or more events of the given event type.
The WHERE clause defines a conditional expression by a series of
predicates. Only the CETs that match the expression can be accepted.

Predicate. A predicate θ is a conditional expression made up by
one of the six comparators {=,,, >, ≥, <, ≤}. A predicate can always
be converted to the form:

f (enext .attr ,h(tr)) → bool

where f represents a comparator function, enext indicates the next
relevant event. Traditional query languages [21] usually use e[i] to
represent enext (as shown in Q1 and Q2), where i is the length of an
event trend tr . The function h usually has two categories. One always
returns a constant value (e.g., the predicate c[i].type =‘not covered’
in Q1). The other adjacent function in the formh(e[i−1].attr) returns
a value only related with the last event of the given event trend (e.g.,
the predicate c[i].src = c[i − 1].dest in Q1).

Complete Event Trend. An event trend trl = (ei1 , ei2 , ..., eil), 1 ≤
i1 < i2 < ... < il is an event sequence that match the given query. For
an event trend trl , if there is not any event ek in the time window that
can be added to an event sequence trl+1 = (ei1 , ..., eil , ek)(k > il) or
(ek , ei1 , ..., eil)(k < i1) to match the given query, the event trend trl
is regarded as complete.

Related Events or Attributes. For an adjacent predicate θ , if
f (ej .attr ,h(ei .attr)) = true and j > i, then ej is relevant to ei (or
ei matches ej). Similarly, if f (attrValue,h(ei .attr)) = true, then
we call the attribute value attrValue is relevant to ei (or ei matches
attrValue).

We define an ABI graph based on the above definitions.

Table 1: Notations

Notation Explanation

as a subrange of attribute value range
et an event with a relative timestamp t
trl an event trend with l events
θ a predicate

fe or te a from-edge or a to-edge
ev or av an event vertex or an attribute vertex

lval the calculated value on an event corresponding to the
lefthand side of θ

rval the calculated value on an event corresponding to the
righthand side of θ

[min,max) the lower (include) and upper (exclude) bound of attribute
values

n the number of events in a time window
m the number of attribute vertices in the graph

Attribute-based Indexing (ABI) Graph. Given an input event
stream I and a query Q. The notation θ is a predicate in Q. An
attribute-based indexing graph G={EV, AV, FE, TE} is a directed
bipartite graph. AV and EV are the two vertex sets representing
attribute values and events, respectively. Specially, an attribute vertex
can represent a single attribute value or a set of attribute values.
According to the directions of the edges, we divide the edges into two
categories. FE is a set of from-edges and each from-edge points from
an attribute vertex to an event vertex, representing that the attribute
value of the event is equal or included in the corresponding attribute
values of the attribute vertex. TE is a set of to-edges and each to-edge
points from an event vertex to an attribute vertex, indicating one or
more relevant attribute values of the corresponding event. Table 1
lists the notations in this work.

4 GRAPH CONSTRUCTION
Based on our ABI design, we propose three optimization technologies.
Firstly, we propose a dynamic ABI graph construction method to
minimize the generation of attribute vertices. Second, based on the
continuity of to-edges of each event vertex, we apply a new edge
representation, which can reduce the complexity from O(mn) to
O(nloд(m)). Finally, we design an effective parallel algorithm to
greatly enhance the performance of the graph construction.

4.1 Dynamic Graph Construction
In the dynamic graph construction, attribute vertices are generated
on demand when receiving events from the input stream. The graph
construction is simple with the ‘=’ predicate. In such case each event
is only involved with two attribute values. At the beginning, there
is no attribute vertex. When an event arrives, we find or create two
corresponding attribute vertices for these two values. We can use a
hash structure to store these attribute vertices while the time cost for
adding an event to the graph is then O(1).

For non-equal predicates, dynamic construction becomes more
complicated. Each event may match a number of attribute values
instead of only one. Hence, we propose composite attribute vertex,
which represents a range of attribute values. We stipulate that a
to-edge pointing to a composite attribute vertex is equivalent to it
pointing to all the attribute values from an event vertex. This means
that values in a range that is represented by a composite attribute

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

Table 2: Attribute Values
event e1 e2 e3 e4 e5 e6
attr 32 7 15 35 40 17

e1

av2:65-100av1:0-65

32

(a) After e1

e1 e2

av2:15-65

32

av3:65-100av1:0-15

7

(b) After e2
Figure 3: Split Example

vertex must be all relevant to the corresponding event. If a composite
attribute vertex is irrelevant to an event, there are no edges connecting
them. When a composite attribute vertex contains both relevant and
irrelevant values of an event (violate condition), then the composite
attribute vertex needs to be split into two composite attribute vertices,
one of which contains all the relevant values of the event, while the
other contains all the irrelevant values.

To simplify the discussion, we will use a predicate with ‘>’
comparator as default. The cases of using other types of predicates
are similar. Let AS: [min,max) be the range of attribute values, and
θ be the predicate. For an event e, its relevant attribute value set
can be expressed as a range [h(e .attr) + δ ,max) , in which δ is the
precision of AS. We use δ here just to ensure the unification of range
format in order to explain our method. In the following discussion,
we assume that attribute values are integers and δ = 1.

At the beginning of graph construction, we generate a single com-
posite attribute vertex which represents the whole range [min,max).
When an event arrives, the new event may violate the stipulation with
certain current composite attribute vertices (violate condition). Then,
we must split these violated attribute vertices for the stipulation.

Theorem 1. Let avp be a composite attribute vertex which rep-
resents a range of attribute values avp : [minp ,maxp), e be a new
event. The value of the righthand side of the ‘>’ comparator is rx . If
minp < rx < maxp , then avp is a violated composite attribute vertex.
Meanwhile, we have: 1) all attribute values in [minp , rx + 1) are
irrelevant to e. 2) All attribute values in [rx + 1,maxp) are relevant
to e.

Proof. According to the predicate, the relevant attribute value
range of e is asrx = [rx + 1,max). The subtraction and intersection
of the related attribute value range of avp and asrx are asp1 =
[minp , rx + 1) and asp2 = [rx + 1,maxp). Sinceminp < rx < maxp ,
both set asp1 and asp2 are not empty. The range asrx contains both
relevant values (in asp2) and irrelevant values (in asp1) of event e
(violate condition). Hence, avp is a violated composite attribute
vertex. □

Based on the proposition, we need to split vertex avp into two
composite attribute vertices which respectively represent the relevant
and irrelevant attribute value ranges avp1 : [minp , rx + 1) and
avp2 : [rx + 1,maxp). A composite attribute vertex is always split
into two attribute vertices with two disjoint value range. Therefore,
the attribute value ranges of all composite attribute vertices are

32 35 40

av1:0-15

7

av3:31-65av2:15-31 av4:65-71 av6:81-100av5:71-81
35

e1 e2 e3 e4 e5 e6

15 17

Figure 4: Dynamic Construct

disjoint. When an event arrives, based on the above proportion, the
corresponding value range of a violated composite attribute vertex
must contain the result of the righthand expression of the predicate
on the event. There can only be at most one such composite attribute
vertex when all value ranges are disjoint. To efficiently find this
violated composite vertex, we can use a sorted structure (e.g., tree
map or skip list) to store all composite vertices.

After splitting a violated composite attribute vertex (or no violation
occurs) for a new event e, we must generate edges for its corresponding
event vertex e. We first find a composite attribute vertex avf , whose
corresponding attribute value set contains the attribute value of e (i.e.,
the value on the lefthand side of the ‘>’ comparator), and generate
a from-edge from avf to ev. The relevant attribute value set of e is
[h(e .attr) + 1,max). We then find all the relevant attribute vertices
and generate to-edges from ev to each of these relevant composite
attribute vertices.

Example. Assume there are six events with corresponding at-
tribute values (Table 2) and the predicate is e[i].attr > e[i−1].attr ∗2.
At the beginning, we only have a composite attribute vertex to repre-
sent setAS : [0, 100). When the event e1 arrives, the relevant attribute
value set of e1 is as1 : [65, 100). Obviously, the set AS violates the
stipulation with e1. We then split AS into two subranges av1 : [0, 65)
and av2 : [65, 100). Since e1.value = 32 (in av1), we generate a
from-edge av1 → e1 and a to-edge e1 → av2. Similarly, we split
composite attribute vertex [0, 65) and generate two to-edges for e2,
as shown in Fig. 3.

By splitting, we successfully eliminate all violated composite
attribute vertices. Before we split a violated attribute vertex, however,
there may be several edges connected with the vertex. We must well
manage these edges after we split a composite vertex to ensure the
correctness of the ABI graph.

Let av be a violated composite attribute vertex, f es be the from-
edges that point from av to several event vertices, and tes be the
to-edges that point from several event vertices to av. After splitting
av, we obtain two new composite attribute vertices av1 and av2 for
the new event. 1) After the split, the existing f es edges are divided
into two groups according to the attribute values of the corresponding
events and then are added to av1 and av2, respectively. 2) Since all
the values in av are relevant to the source event vertices of edges in
tes, values in av1 are also relevant to those vertices. After the split,
we then need two new to-edges to point from each of those event
vertices to av1 and av2 respectively.

Example. Figure 4 shows the ABI graph of the case shown in
Table 2 after events e1 to e5 are added to the graph. The attribute
value set 0− 100 has been split into six subranges. In the figure, solid
lines indicate the edges connected between the attribute vertices
and their corresponding event vertices. To illustrate the split process

Efficient Complete Event Trend Detection over High-Velocity Streams ICPP ’21, August 9–12, 2021, Lemont, IL, USA

more clearly, we omit the to-edges that do not point to the attribute
vertex vor i : 31 − 65. Since the attribute value of e6 is 17, according
to the predicate, the relevant attribute values of e6 are greater than
34. Therefore, we split the attribute vertex av3 with the value 35 (the
vertical dashed line) into two vertices av31 and av32 with attribute
values in the ranges [31, 35) and [35, 65), respectively. After splitting,
we copy the original to-edges e2 → av3 and e3 → av3 and point
them to both av31 and av32 and also point the original from-edges to
av32 (as indicated by the dashed edges in the figure).

4.2 Complexity
Theorem 2. Given n events and m attribute vertices, both the

time complexity and the memory complexity of graph construction
are O(n) for equal predicates and O(mn) for non-equal predicates.

Proof. For equal predicates, we always generate only a from-edge
and a to-edge for each event. We use a hash structure to store dynamic
attribute vertices. Therefore, the time and memory complexities of
graph construction are O(n).

For non-equal predicates such as ‘>’, the memory complexity is
O(mn) since we may generate up tom edges for each event. Because
splitting attribute vertices raises cost for copy operations, the cost
for graph construction for non-equal predicates increases. In the
following, we prove the time complexity is also O(mn).

The time cost of graph construction mainly consists of two parts.
One part is the time cost for finding correct attribute vertices when
each event arrives. Since we use a sorted structure to store attribute
vertices, it costsO(loд(m)) time to find a correct attribute vertex. The
other part is the cost for generating edges. Hence, we have

CPU construct = O (nloд(m)) +CPU edдes (1)

We define original edges as the edges that are not copied from
another edge. For example, in Fig. 4, the edges e6 → av32 and
av2 → e3, are not generated from copy operation. In contrast, the
edge e2 → av32 is not an original edge because it is copied from
e2 → av3. All the edges in an ABI graph originate from original
edges. Specially, we stipulate an original edge originate from itself
for unification.

Firstly, we consider only the complexity of generating to-edges.
The complexity is mainly made up of two parts,

CPU te = CPU or i +CPU copy (2)

For each event, we will generate up tom to-edges. Therefore, we
have CPUor i = O(mn). Let OE = {oe1,oe2, ...,oek } be the set of
all original to-edges that are generated during graph construction,
and CEi be the set of edges that originate from oei . Then, the total
number of edges is computed by

|T E | = Σk1 |CEi | (3)

When splitting an attribute vertex, we copy a to-edge connected
with the attribute vertex to two new to-edges. This process involves
a constant number of operations. Given NS copy operations, we have

CPU copy = O (NS) (4)

Let us take a closer look at oei and its child edge set CEi . Based
on the algorithm, all edges in CEi have the same source event vertex
and various destination attribute vertices. Since we only split no
more than one attribute vertex when an event comes, at most one
edge in CEi will be copied to two new edges every time we split

an attribute vertex. Let nsi be the number of copy operations that
are processed on the edges in CEi . Each time an edge from CEi is
copied to two new edges, the size of CEi increases by one. Therefore,

nsi = |CEi | − 1 (5)

For all original edges and their child edge sets, we have

NS = Σk1 |nsi | (6)

Sum up Eqs. (2) - (6), and we have

CPU te = O (|T E |) +O (mn) = O (mn) (7)

To estimate the complexity of generating from-edges, we can
assume that we apply the same copy operations for from-edges. Then,
we also obtain the time complexity O(mn). Actually, from-edges
involve fewer operations than to-edges. Hence, the time complexity
to generate from-edges is less than O(mn) and the time complexity
of graph construction for non-equal predicates is O(mn). □

4.3 Range To-edges Representation
Even though our dynamic graph construction algorithm has tried
to reduce the number of attribute vertices. The time and mem-
ory complexity of these algorithms is still O(mn). However, we
observe: 1) the production of to-edges contributes to most com-
putation and memory costs; 2) the attribute vertices pointed by
to-edges that start from the same event vertex are continuous (e.g.,
e3 → {av31,av32,av4,av5,av6} in Fig. 4). Values in the union of
the ranges represented by these attribute vertices are relevant to the
event (e.g., greater than 2 ∗ e3.value). Based on these observations,
we propose to use a range to-edges representation to reduce the time
and memory costs for graph construction.

Due to the contiguity of destination vertices of to-edges from the
same event vertices, we can use a range to represent these edges. We
use two pointers to represent all to-edges of the same event vertex.
One points to the start attribute vertex; the other to the end attribute
vertex. The attribute vertices between the start vertex and the end
vertex are all the destination of to-edges from the event vertex.

Generating the two pointers is simple. We use a sorted structure to
store these attribute vertices. Under a predicate with comparator ‘>’,
the end attribute vertex is apparently the largest attribute vertex (e.g.,
av6). The start attribute vertex is the smallest attribute vertex whose
corresponding value range is larger than the righthand value of the
predicate on the event (e.g., av31). According to the above analysis,
only a cost of O(loд(m)) is needed to find these two pointers. There-
fore, we can successfully reduce the time and memory complexity
of graph construction to O(nloд(m)) and O(n).

4.4 Parallel Algorithm
The above scheme dynamically generates a minimal number of
necessary attribute vertices. However, since we must search these
attribute vertices while splitting violated composite vertices, read-
write conflicts may occur if we process events in parallel. According to
Proposition 1, when an event arrives, we split the violated composite
attribute vertex by rval of the event (i.e., value of function h above).
If we can calculate these values of all events first, we can generate
all attribute vertices immediately rather than generate these vertices
when searching relevant attribute vertices. Hence, we can eliminate
the read-write conflicts.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

Algorithm 1: Parallel Dynamic Graph Construct
Input: EventStream I, AttributeSet AS, Predicate θ
Output: Graph graph

1 EV ← �; FE← �; TE← �; AV ← �;
2 fromCaches← �; toCaches← �;
// 1st: generate event vertices and tuple caches

3 partitionEvents← randPartition(I);
4 for partition in partitionEvents do
5 fCache← �; toCache← �;
6 for e in partition do
7 eVertex← createEventVertex(e);
8 EV ← EV ∪ eVertex;

// calculate values from both sides

9 lval,rval← extractVals(e,θ);
10 fCache← fCache ∪ (eVertex, lval);
11 toCache← toCache ∪ (eVertex, rval);

12 fromCaches← fromCaches ∪ fCache;
13 toCaches← toCaches ∪ toCache;

// 2nd: generate all attribute vertices

14 rvals← extract rval from toCaches and de-duplicate;
15 rvals← parallelSort(rvals);
16 AV ← combine adjacent rval to generate attribute vertices;
// 3rd: generate from-edges

// map lvals to attribute vertices

17 fedges← mapAttrVertex(fCache, AV);
18 fpartitions← partitionByAv(fedges);
19 for partition in fpartitions do
20 for (av,ev) in partition do
21 FE← FE ∪ (av→ ev);

// 4th: generate to-edges

22 tedges← mapAttrVertex(tCache, AV);
23 tpartitions← randPartition(tedges);
24 for partition in tpartitions do
25 for (ev,av) in partition do
26 trange← (av, last(AV));
27 TE← TE ∪ trange;

28 graph← {EV, AV, FE, TE};
29 return graph.

We optimize the dynamic scheme in parallel. The parallel al-
gorithm has four steps. Firstly, in the stream processing stage, we
randomly partition events from the stream into different processing
units and process them in parallel. In each processing unit, for each
event e we calculate the value of the lefthand side (lval = e .attr)
and the righthand side rval = h(e .attr) of the comparator in the
predicate. We generate an event vertex ev for e. Then, we store two
lists of tuple (lval , ev) and tuple (ev, rval) for each event.

To generate all attribute vertices, in the second step, we need
to obtain a distinct and sorted set of rval . We use a parallel sort
algorithm (e.g., odd-even sort) and a distinct algorithm for efficiency.
Then, we split the range AS into a list of value ranges based on
the value in the distinct rval set and generate composite attribute
vertices for them. Since the set of rval is sorted in advance, the set of
attribute vertices is also sorted by their corresponding value ranges.

In the third step, we transform each tuple in the (lval , ev) tuple
list and the (ev, rval) tuple list to edges. For each tuple, we find the

attribute vertex that contains lval or rval and generate two new tuple
list (avf , ev) and (ev,avt). The two elements in a new tuple are the
source vertex and destination vertex of an edge. The procedure for
generating an edge only involves search operations on the attribute
vertices. Hence, we can process them in parallel.

We store these edge tuples and construct the graph in the final
step. In this step, the main problem is the synchronization problem
caused by the storage structure of the graph. For example, we use
a list to store all the outgoing edges of a vertex (adjacent list) in
our implementation. If we partition the (avf , ev) tuple list by ev,
the write-write conflicts may occur when two from-edges have the
same source attribute vertices since they must be written into the
edge storage of the same vertex. Therefore, we can either partition
the (avf , ev) tuple list by avf or use locks on each avf . With our
range to-edges representation, generating to-edges is simple. We use
a tuple (avt ,avs .last) to represent all the to-edges of an event vertex,
where avs .last means the biggest attribute vertex in the set.

Algorithm 1 presents the detail of our parallel dynamic ABI graph
construction method. Each event in the stream I is processed in a
random processing unit (lines 3-13). After we complete processing
all the events, we extract values rval from tuples in the list and sort
them into a distinct value set (lines 14-15). We generate attribute
vertices from each adjacent tuple of rval in the sorted distinct value
set (lines 16). We find the proper attribute vertex for each tuple of
(lval , ev) tuple list and (ev, rval) tuple list (line 17, line 22). To avoid
synchronization problems, we partition f edдes by its corresponding
attribute vertices and store all from-edges (lines 18-21). We store
to-edges in the range representation (lines 23-27). All these steps are
processed in parallel.

Complexity. Let p be the number of process unit,m and n be the
number of attribute vertices and event vertices, the time complexity
of the parallel graph construction is

CPU = CPU1 +CPU2 +CPU3 +CPU4 (8)

where CPUi be the time complexity of the ith step. In the first step,
the system uses O(n/p) time to generate event vertices and tuples for
n events. In the second step, the distinct operation uses O(n/p) time
and generatem − 1 rval as split boundaries. The complexity of the
parallelsort operation depends on the choice of parallel algorithm,
which may be O(m2/p) with an odd-even sort algorithm. In the last
two steps, the main time costs come from searching in the sorted
attribute vertices. Therefore, the time complexities areO(nloд(m)/p).
Considering that m ≤ n, the time complexity of the parallel graph
construction is

CPU = O (nloд(m)/p) +O (m2/p) (9)

5 CET EXTRACTION
In this section, we first define the CET path, which is a path from
a start event vertex to an end event vertex and represents a CET
in the ABI graph. Then, we present a parallel anchor-based CET
extraction algorithm to travel through all CET paths and extract all
CETs from the ABI graph. We also introduce a join-based traversal
algorithm to support huge scale of events on top of Spark [22], a
popular distributed processing system. A pre-filter algorithm is used
to find out all start event vertex before traversal.

Efficient Complete Event Trend Detection over High-Velocity Streams ICPP ’21, August 9–12, 2021, Lemont, IL, USA

5.1 CET Path
Figure 2 shows an example of an ABI graph, where two relevant
event vertices are connected by an attribute vertex, a from-edge and
a to-edge, e.g., c1 → B → c3. Consecutive relevant event vertices
and the attribute vertices between them form a path in the graph.
This path represents a CET consisting of the corresponding events.

Theorem 3. Let evi , evj be two event vertices and avp be an
attribute vertex in an ABI graph with the predicate θ . Let ei , ej be
two events that respectively correspond to evi , evj . If there are a
to-edge evi → avp and a from-edge avp → evj in the graph, and
ei , ej satisfy the condition ei .timestamp < ej .timestamp, then ei
and ej are relevant on θ .

Proof. Beginning with the vertex evi , since a to-edge of an event
vertex points to the relevant attribute value of its corresponding event,
the to-edge evi → avp indicates that the corresponding attribute
values of avp are relevant to ei . Similarly, the from-edge avp → evj
represents that the attribute value of evj is equal to or included in
avp . Thus, the attribute value of evj is relevant to evi . Meanwhile,
the constraint ei .timestamp < ej .timestamp is satisfied. Therefore,
ei and ej are relevant. □

According to Theorem 3, two relevant events are connected by
a from-edge and a to-edge in an ABI graph. Therefore, if we start
from a start event vertex and repeatedly traverse by from-edges and
to-edges until we cannot find more relevant events, we can obtain a
CET path. The corresponding events of event vertices in this path
make up a CET.

Definition 1. (CET path) In an ABI graph, a CET path is a path
representing a CET matched by predicate θ . The first event vertex
of the CET path (also called start (event) vertex) corresponds to the
start event of the CET, while the last event vertex of the CET path
(end (event) vertex) corresponds to the end event of the CET. Two
CET paths are equal when and only when they pass the same event
vertices.

5.2 Anchor-based CET Extraction
Through the ABI graph, we successfully represent CETs as CET
paths. To extract a CET from the graph, we only need to traverse
from each start vertices to end vertices. Olga et al. [13] have tried to
use a H-CET algorithm that combines a BFS-based algorithm and a
DFS-based algorithm to achieve a trade-off between memory and
computation consumption. However, this method is not applicable
to a large-scale of events because of its poor graph construction
method and unpractical graph partition method. In this section, we
propose an anchor-based CET extraction method with a lightweight
but balance graph partition method.

Our anchor-based method first selects a certain number of attribute
vertices as anchors. In addition, we add two types of special anchors:
start anchor and end anchor. A start anchor always points to a number
of start vertices. All end vertices point to the end anchor. Then,
the anchor-based method has the following two steps: 1) Starting
from each anchor and ending in anchors, we apply the BFS-based
method to extract sub-sequences. Since there is no conflict between
the processes from anchors, this stage can be processed in parallel. 2)
Starting from each start anchor and ending in the end anchor, we apply

v2v1 v3 v4 v5start end

e1 e2 e3 e4 e5
e6

(a) Original ABI Graph

end

v2 v4start subs2

subse

sub24

sub2e sub4e

subs4 (e1)

(e1),(e1,e3)

(e1,e3,e5)

(e2),(e2,e3)

(e2,e5)

(e4,e5),(e6)

subs2

subs4

subse

sub24

sub2e

sub4e

(b) After BFS stage

Figure 5: Anchor-based Detection

the DFS-based method to traverse among anchors and concatenate
sub-sequences into CETs. Much work [1, 5] has addressed at parallel
DFS. In this work, we implement the parallel DFS-based method in
a work-stealing manner for speeding up.

Example 4. Figure 5 shows an example of anchor-based extraction.
The nodes v1 − v5 are five attribute vertices. We select v2 and v4
as anchors. In the BFS stage, we start BFS-based extraction from
the start anchors v2 and v4, respectively. After the BFS stage, we
obtain a new temporary graph shown in Fig. 5(b). In Fig. 5(b), the
vertex subxy contains all the sub-sequences that start from anchor
x and end in anchor y. Then, we start the DFS stage from the start
anchor and obtain the paths that reach the end anchor. We concatenate
sub-sequences in the path under a join manner. For example, we
extract the path start → subs2 → sub2e → end and obtain CETs
subs2 × sub2e .

Work-stealing in DFS. During a DFS task, a processing unit
preserves two state values, the current path path that has been passed
through and the next vertexv that is to be visited. When the processing
unit visits v, v is pushed into path (forwarding state). After all the
vertices behindv are visited, we must popv out from the currentpath
(backing state) and continue to visit other vertices. Hence, a DFS task
can be split into two disjoint tasks. One inherits the forwarding state
and traverses the vertices behind v. The other inherits the backing
state and traverses other vertices. Our work-stealing DFS algorithm
is based on this observation. an idle processing unit sends a signal to
a busy processing unit. Then, the busy processing unit that is ready
to visit v splits its task on v. The idle processing unit copies states
from the busy one and starts to process the forwarding child task.
The busy processing unit continues to process the backing child task.

Load Balance. Generally, we ensure the load balance of our
algorithm by selecting a sufficient number of anchors, which is
equivalent to the number of BFS tasks during the BFS stage. When
the number of tasks is far greater than the number of processing
units, a simple scheduling algorithm [12] is enough to ensure the
load balance. The load imbalance is slight during the DFS stage
because of work-stealing. However, load imbalance is still possible
on the task that starts from a start anchor. Since all CETs start from

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

start vertices, the BFS and DFS that start from the start vertices can
cause more cost than others. Therefore, to avoid load imbalance, we
need enough start anchors. In our implementation, we set the number
of start anchors much greater than that of processing units.

5.3 Join-based Distributed CET Extraction
The anchor-based algorithm achieves high performance on CET
extraction but fails to handle large-scale of events with memory limit.
We design a distributed join-based CET extraction algorithm.

Popular distributed graph processing systems [7] often use a vertex-
central programming model for graph processing. They are typically
built on general distributed processing systems (e.g., Spark [22]) and
use join operators to transfer messages between vertices iteratively.
For most graph algorithms, such as PageRank, the vertex-central
programming model is quite efficient since they will not produce
many messages during each iteration. However, a CET extraction
system may produce partial results of hundreds of times the number
of events. Such a model needs to transfer these partial results between
vertices iteratively, leading to heavy network pressure.

Broadcast join is a variety of the general join operator. This kind of
join operator is optimized when a big dataset joins with an immutable
small dataset. When a broadcast join is performed, the processing
system firstly broadcasts the small dataset to all processing units. Each
copy of the small dataset is organized as a map (usually a hashmap).
Then, for each item in the big dataset, the processing system finds
all items with the same key in the small dataset by searching the
local map of the small dataset, where only O(1) time is needed.
This process can be completed by a map operator. Although data
transmission is still required, the broadcast join operator has two main
benefits. First, it avoids transferring the big dataset. Second, when the
small dataset is involved in multiple join operations, the processing
system broadcasts the small dataset only once, which makes the cost
of broadcasting negligible. Traditional graph algorithms usually are
trapped by the large scale of the graph [3] and dynamic attributes of
vertices. Hence, broadcast join is not applicable to these algorithms.
However, the main bottleneck of CET extraction in ABI graph is
the partial results of exponential growth rather than the scale of the
immutable ABI graph. Therefore, we propose to use broadcast join
operator and design a distributed CET extraction scheme.

We have two datasets during graph traversal. The first one is
the ABI graph, which is broadcast to each processing unit at the
beginning of CET extraction. The other is the dataset of all CET
paths. The initial value of the path dataset is the set of all start event
vertices. Then, we broadcast join the path dataset with the graph
dataset to traverse through the graph and extend corresponding event
sequences. Once a path reaches an end event vertex, this path is a
CET path. We repeat this until all the CET paths are extracted.

There are two join steps in a traversal operation. Let FE =
{(av, ev)} and TE = {(ev,av)} be the from-edges and to-edges in an
ABI graph. Let TR = {(evl , trl)} be the current uncompleted CET
path dataset, where evl is the last event vertex of the path trl that
consists of l event vertices. First, we join dataset TR with TE on the
key ev and obtain a new dataset Temp = {(av, trl)}, which indicates
we traverse from event vertices to attribute vertices. Second, we join
dataset Temp with dataset FE on the key av and get a new dataset
TRnew = {(evlnew , trl+1)}, where we extend the path trl by the

Algorithm 2: Join-based CET extraction
Input: Graph G (EV,AV,FE,TE), Start Event Vertices starts, End

Event Vertices ends
Output: CETs

1 bGraph(bevs, bavs, bfes, btes)← broadcast(G);
2 epaths← starts − ends; cnt← count(epaths);
3 CETs← extractEvents(starts ∩ ends);
4 while cnt > 0 do
5 apaths← join(epaths, btes)) ; // join from-edges

6 epaths← join(apaths, ftes) ; // join to-edges

7 completePaths← filterUncomplete(epaths,ends);
8 uncompletePaths← filterComplete(epaths,ends);
9 CETs← CETs ∪ extractEvents(completePaths);

10 cnt ← count(uncompletePaths);
11 epaths← uncompletePaths;

12 return CETs.

current event vertex evlnew and obtain a new path trl+1. If the event
vertex evlnew is an end event vertex, then path trl+1 is a CET path.
We filter out all CET paths and repeat the above step until the size of
path dataset TR reaches zero.

The broadcast join optimizes CET extraction for three reasons: 1)
with broadcast join, we need not to transfer partial results between
processing units, and avoid a large amount of communication cost;
2) the scale of the ABI graph is relatively small, especially with
our range to-edges representation; 3) during CET extraction, the
ABI graph is immutable.Hence, we only need to broadcast the graph
dataset only once.

Algorithm 2 presents the broadcast join-based CET extraction
method in detail. The system broadcasts the graph at the beginning
(line 1). The initial paths is calculated from the start (end) event
vertices (line 2). The system repeatedly traverses the entire graph
until obtaining all the CET paths (line 5-12).

Complexiy.Since we avoid shuffle operations by broadcast join
during message transfer, the main communication costs come from
broadcasting the graph, which are equal to O((|AV | + |EV | + |FE | +
|TE |)p), where p is the number of executors in the Spark cluster. The
main costs of our distributed CET extraction algorithm come from
graph traversal. We traverse the ABI graph under a BFS-like strategy.
The process may iterate up to 2 ∗maxk1 (|tri |) rounds and the total
time complexity is Σki=1 |tri |, where tri is a CET and k is the number
of CETs that will be extracted.

5.4 Pre-Filter
Extracting CETs by traversing the ABI graph has another issue. If
the algorithm does not start from a start vertex or end in an end
vertex, the result sequence cannot be completed. We further design
an algorithm to find the start vertices and the end vertices which
saves a significant amount of unnecessary event sequences during
CET extraction.

Based on the definition of CET, a CET sequence cannot be a sub-
sequence of another CET sequence. Let evx be an event vertex and
ex be its corresponding event, we have the following observation: 1)
If ∃evi ∈ EV, its corresponding event ei matches ex , then evx cannot
be a start vertex; 2) If ∃evj ∈ EV, evx matches its corresponding
event ej , then evx cannot be an end vertex.

Efficient Complete Event Trend Detection over High-Velocity Streams ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Algorithm 3: Fast Pre-Filter
Input: Graph G (EV,AV,FE,TE)
Output: Start and End Vertices (starts, ends)

1 starts← set(EV); ends← set(EV); metas← map();
2 for ev in EV do
3 for av in outgoing(ev,TE) do
4 if av not in metas then
5 mo← -1;
6 for ev in outgoing(av,FE) do
7 if ev.timestamp > mo then
8 mo← ev.timestamp;

9 metas← metas ∪ (av→ (mo,mo+1));

10 meta← metas.get(av);
11 if ev.timestamp < meta[0] then
12 ends← ends − ev;

13 if ev.timestamp < meta[1] then
14 meta[1]← ev.timestamp;

15 for (av→ meta) in metas do
16 if meta[1] < meta[0] then
17 for ev in outgoing(av,FE) do
18 if ev.timestamp > metas[1] then
19 starts← starts − ev;

20 return (starts, ends).

We prove the correctness of the observation as follows. Let
tr = {ex1 , ex2 , ..., exl } be an event trend, evi and evj be two event
vertices. If ei matches ex1 , we can obtain a new event trend tr1 =
{ei , ex1 , ..., exl }, where tr is a sub-sequence of tr1. In this case, any
event trend that starts with ex1 cannot be complete. If exl matches ej ,
we can obtain a new event trend tr2 = {ex1 , ..., exl , ej }, where tr is a
sub-sequence of tr2. In this case, the event trends ending with exl
cannot be complete.

Based on this observation, we can easily obtain all start and end
event vertices using join-based traversal. However, at the beginning
of traversal, the scale of event sequences is very small. Hence, a
distributed method may lead to unnecessary distributed overhead.
Therefore, we propose an optimized centralized pre-filter method
which can find out all start and end event vertices efficiently before
the graph is broadcast to all processing units.

The algorithm has two steps. First, starting from each event vertex
evx , following by its outgoing edges, we traverse to its relevant
attribute vertices. Second, following by the outgoing edges of these
attribute vertices, we can traverse to a series of event vertices
evs (connectivity condition). For each event vertex in evs, if the
timestamp of its corresponding event is larger than that of evx (time
condition), this event vertex cannot be a start vertex (observation 1).
If such a relevant event vertex is found, evx cannot be an end vertex
(observation 2).

To avoid missing any event vertex, we must judge each event vertex
with all relevant event vertices. When an attribute vertex is pointed
by more than one event vertices, its outgoing edges are accessed
repeatedly, raising significant unnecessary costs.

To solve the problem, we propose the following optimization.
Actually, to check whether an event vertex is a start/end vertex, we

Windowed Graph Storage

Graph

Constructor

Constant

Filter

Events

Query

Vertex

PreFilter

CET

Extractor

CETs

Figure 6: Graph-Based CET Detection System

only need to check whether it can match a later event vertex or can
be matched by a previous event vertex.

To achieve this goal, in the first step, we record the metadata for
each relevant attribute vertex avy , including two timestamps mo
andmi, wheremo is the maximum timestamp of the corresponding
events of the outgoing event vertices of avy , whilemi is the minimal
timestamp of the corresponding events of the ingoing event vertices
of avy . We calculatemo the first time when avy is visited. Each time
we visit avy , we updatemi and check the time condition. Let ex be
the corresponding event of evx . If ex .timestamp < mo, there is at
least one event vertex that can match the time condition with ex , i.e.,
there is at least one relevant event of ex . Hence, evx is not an end
vertex. In the second step, we comparemi andmo in each attribute
vertex avy . Let avs be the outgoing vertices of avy . If mi < mo,
all the corresponding events of vertices in avs whose timestamp is
larger thanmi can be matched by no less than one event. Hence, their
corresponding event vertices are not start vertices.

Algorithm 3 presents the details of the fast pre-filter algorithm.
We compute mo only once for each relevant attribute vertex, thus
avoiding repeated access of the outgoing event vertices of the relevant
attribute vertices. Each to-edge is accessed only once (lines 3-14).
Each from-edge is accessed no more than twice (lines 6-8, lines
17-19). The total computation cost is O(2|FE | + |TE |), linear to the
number of edges.

6 IMPLEMENTATION
We implement our parallel designs with Java and the distributed
algorithms on Spark [22] v3.0.0. We make the source code publicly
available1. Figure 6 shows that our system consists of three modules:
1) the graph construction module including a constant filter and a
graph Constructor. It receives a query and an event stream as inputs
and generates vertices and edges; 2) the windowed graph storage
module which receives the vertices and edges generated by the graph
constructor and stores graphs for each window; and 3) the CET
extraction module including a vertex prefilter and a CET extractor.

We design two different ABI graph construction methods (Sec-
tion 4). The dynamic graph construction method is a sequential
algorithm, while the parallel algorithm is suitable for both multi-core
machines [8] and popular distributed processing systems. There-
fore, we implement both versions of parallel methods on top of the
multi-thread model and Spark. We use a treemap which leverages a
red-black tree to store all attribute vertices and support the dynamic
nature of attribute vertices in the dynamic algorithm.

For the parallel algorithm, we use an array (or RDD) to store
these attribute vertices. Generating all attribute vertices requires
combine adjacent split values (rvals), which is easy in a shared

1https://github.com/CGCL-codes/DynamicTG

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

0 4 0 k 8 0 k 1 2 0 k 1 6 0 k 2 0 0 k1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7

tim
e (m

s)

n u m b e r o f e v e n t s

 p 8
 c e t
 s e q

Figure 7: Construction Time
(ABI vs CET Graph) (Q2)

0 1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k

1 0 2

1 0 3

1 0 4

1 0 5

tim
e (m

s)
n u m b e r o f e v e n t s

 s e q
 s e q - r t

Figure 8: Construction Time
with Range To-edges (Q2)

0 1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k 6 0 0 k0

1 5 k

3 0 k

4 5 k

tim
e (m

s)

e v e n t s

 p 2
 p 4
 p 8
 p 1 6

Figure 9: Construction Time
with Various Parallelism (Q2)

0 1 M 2 M 3 M 4 M 5 M0

2 k

4 k

6 k

8 k

tim
e (m

s)

n u m b e r o f e v e n t s

 p 2
 p 4
 p 8
 p 1 6

Figure 10: Construction Time
with Various Parallelism (Q1)

0 1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

tim
e (m

s)

n u m b e r o f e v e n t s

 c e t
 p 8

Figure 11: CETs Extraction
Time (Q1)

0 4 0 k 8 0 k 1 2 0 k1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7

tim
e (m

s)

n u m b e r o f e v e n t s

 c e t
 p 8

Figure 12: CETs Extraction
Time (Q2)

0 3 0 0 k 6 0 0 k 9 0 0 k1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

tim
e (m

s)
n u m b e r o f e v e n t s

 p 2
 p 4
 p 8
 p 1 6

Figure 13: Extraction Time
with Various Parallelism (Q1)

0 4 0 k 8 0 k 1 2 0 k0

4

8

1 2

tim
e (1

05 ms
)

n u m b e r o f e v e n t s

 p 2
 p 4
 p 8
 p 1 6

Figure 14: Extraction Time
with Various Parallelism (Q2)

memory environment. However, Spark does not provides an operator
to support this operation directly. Therefor, we complete this process
by three steps: 1) We generate index for each item in the rvals RDD
by zipWithIndex operator. 2) We decrease each index by one using a
map operation. 3) We combine adjacent rvals by a join operation on
the original rvals RDD and calculated RDD.

The CET Extractor receives an ABI graph as input and extracts
all the CET paths as output. Before performing the CET extraction
algorithm, the processing system first uses the pre-filter algorithm
to find all the start and end event vertices. We implement the work-
stealing DFS algorithm on a thread pool with fixed number of threads.
We deploy the join-based algorithm on a Spark cluster. The system
broadcasts the ABI graph and organizes event and attribute vertices
as hashmaps. Since there are more than one out-going edges for each
vertex, the edges are organized as multi-hashmaps, whose values are
arrays of edges.

7 PERFORMANCE EVALUATION
We deploy our system on a cluster with six machines, each equipped
with a 16-core 2.4GHz Xeon CPU, 64GB RAM, and 1TB HDD. We
compare our design with the CET Graph method [13].

We use two datasets to evaluate our design, including a check
kite dataset and a stock dataset. Since it is difficult to find a public
dataset to detect check kite fraud, we design and implement an event
generator to create the check dataset. Each event in the check kite
dataset contains a timestamp attribute as well as the source and
the destination bank account attributes. The values of bank account
attributes are randomly selected from a pre-defined bank account
set. We omit the type attribute because it is mainly used in filter
operations which are well supported in traditional stream processing
systems [4, 19]. We perform Q1 (depicted in Section 1) on the
dataset. We have also crawled one-hour data from Shanghai Stock

Exchange [6]. In the stock dataset, each event contains a timestamp
attribute and a price attribute. We perform Q2 on this dataset.

We mainly evaluate our graph construction scheme in two aspects:
1) we compare both the sequential and parallel method with the CET
graph method by varying the number of events on the stock dataset.
We show the effect of the range to-edge representation by leveraging
it on the sequential dynamic method; 2) we evaluate the parallel
algorithm on both the check kite and stock datasets.

For CET extraction, we compare our anchor-based algorithm with
the CET graph method under various scales of events and examine the
performance of our parallel algorithm. We evaluate the performance
and scalability of the join-based algorithm. In addition, we evaluate
the performance of the fast pre-filter algorithm and the impact of the
number of anchors on memory and CPU time.

We examine the average CPU time [13] of our design. For graph
construction, the average CPU time is measured from the end of a
window to the end of graph construction. For CET extraction, the
average CPU time is measured from the end of graph construction to
the time when we finish extracting all the CETs. We also evaluate the
relative memory cost of our design by counting the event references
during CET extraction.

Before presenting the results, we first briefly explain the symbols.
The term ‘cet’ represents the CET graph method, ‘seq’ denotes our
dynamic graph construction method, ‘seq-rt’ denotes the dynamic
method with range to-edges representation, and ‘px’ denotes our
parallel methods, where ‘x’ is the parallelism.

Figure 7 shows the time for graph construction. In the experiment,
we evaluate our parallel method, our dynamic method, and the
CET graph method. The time of the CET graph method increases
rapidly and reaches several hours when the number of events is
hundreds of thousands. In contrast, our algorithm can efficiently
process more than 100k events in a few seconds, revealing three

Efficient Complete Event Trend Detection over High-Velocity Streams ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0 8 0 k 1 6 0 k 2 4 0 k0

4

8

tim
e (1

05 ms
)

n u m b e r o f e v e n t s

 a n c h o r
 s p a r k

Figure 15: Parallel and
Distributed Extraction (Q2)

0 8 0 k 1 6 0 k 2 4 0 k0

5

1 0

1 5

tim
e (1

05 ms
)

n u m b e r o f e v e n t s

 1 0 c o r e s
 2 0 c o r e s
 4 0 c o r e s
 8 0 c o r e s

Figure 16: Distributed
Extraction (Q2)

6 0 1 2 0 1 8 0 2 4 0 3 6 0 4 8 0 5 4 0 7 2 0 9 6 01 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

tim
e (m

s)

n u m b e r o f e v e n t s (1 0 3)

 o t h e r
 p r e f

Figure 17: Proportion of
Pre-Filter (Q2)

2 4 8 1 6 3 2 6 4 1 2 8 2 5 60

5 k

1 0 k

1 5 k

2 0 k

0

1 5

3 0

4 5

6 0

 b f s
 d f s
 t o t a l
 m e mtim

e (m
s)

s t e p

me
m (

106 un
it)

Figure 18: Effect of Number of
Anchors (p8)

orders of magnitude improvements. The result also shows that our
parallel algorithm achieves 40× speedup than the sequential design
when the number of events reaches 200k. In addition to parallelism,
this is also because of the invariance of attribute vertices which can
make good use of cache and avoid extra overhead to support dynamic
nature.

Figure 8 shows the graph construction time of the dynamic algo-
rithm with range to-edges representation is two orders of magnitude
shorter than that of the basic dynamic algorithm. Meanwhile, the
basic algorithm cannot support over 300k events due to the memory
limit, while the optimized algorithm can support 500k or more with
much better performance.

Figures 9 and 10 show the performance of our parallel method
under different parallelisms on non-equal and equal comparator. Our
algorithm with 16 threads significantly reduces the time cost of that
with two threads by 41% (Q1 with 5M events) and 48% (Q2 with
nearly 600k events), respectively.

We compare the performance of our anchor-based extraction
algorithm with eight threads and the CET graph method by varying
the number of events. Figures 11 and 12 show the CET graph
method cannot support large-scale events and it cannot finish graph
construction even in several hours. It is clear that our scheme greatly
outperforms the CET graph method.

Figures 13 and 14 show our algorithm with 16 threads reduces
the time cost of the algorithm with two threads by 76% (Q1 with
1,000k events) and 40% (Q2 with 140k events), respectively.

Figure 15 compares the performance of our parallel anchor-based
extraction with eight threads and distributed join-based extraction
with 40 CPU cores. The distributed algorithm fails to beat the parallel
one when the number of events is less than 90k because of distributed
overheads. However, the distributed algorithm can handle over 250k
events with acceptable CPU time, while the parallel algorithm cannot
support over 120k events. Figure 16 shows the good scalability of
the join-based algorithm, which can effectively reduce the time cost
by 63% (280k events) when the number of CPU cores used in the
cluster increases from 10 to 80.

Figure 17 plots the time of the pre-filter stage (perf) during CET
extraction. When the number of events increases to 960k, the time
of pre-filter accounts for only 0.04% of the total time.

Figure 18 shows the influences of the number of anchor vertices.
In the experiment we vary the number of anchors and examine time
and memory cost for both the BFS and the DFS stages. The result
shows that the time cost for the BFS stage increases while that for

DFS stage decreases as the number of anchors increases. The result
also shows the memory cost has similar trend with the time cost
for the BFS stage. The total time cost has a slow increasing trend,
demonstrating the efficiency of our parallel DFS algorithm.

8 CONCLUSIONS
In this paper, we propose ABI, a novel attribute-based indexing graph
model for efficient CET detection. We design a parallel dynamic
algorithm to construct ABI graphs from the input event stream. We
also propose a parallel anchor-based algorithm and a distributed
join-based algorithm to efficiently extract CETs from ABI graphs.
We further propose an efficient pre-filter algorithm to filter out
unnecessary partial results. Experiment results show that our design
greatly outperforms existing designs.

ACKNOWLEDGMENTS
This research is supported by the National Key Research and Devel-
opment Program of China under grant No.2018YFB1004602, NSFC
under grants Nos. 61972446, 61422202.

REFERENCES
[1] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2015. A work-efficient

algorithm for parallel unordered depth-first search. In Proceedings of SC, 2015.
[2] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008.

Efficient pattern matching over event streams. In Proceedings of SIGMOD, 2008.
[3] Hanhua Chen, Hai Jin, and Shaoliang Wu. 2016. Minimizing Inter-Server Com-

munications by Exploiting Self-Similarity in Online Social Networks. IEEE TPDS
27, 4 (2016), 1116–1130.

[4] Hanhua Chen, Fan Zhang, and Hai Jin. 2017. Popularity-aware Differentiated
Distributed Stream Processing on Skewed Streams. In Proceedings of ICNP, 2017.

[5] Guojing Cong, Sreedhar B. Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay A.
Saraswat, and Tong Wen. 2008. Solving Large, Irregular Graph Problems Using
Adaptive Work-Stealing. In Proceedings of ICPP, 2008.

[6] Shanghai Stock Exchange. 2021. http://english.sse.com.cn/.
[7] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.

Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Proceedings of OSDI, 2014.

[8] Ruixuan Li, Zhiyong Xu, Wanshang Kang, Kin Choong Yow, and Cheng-Zhong
Xu. 2014. Efficient Multi-keyword Ranked Query over Encrypted Data in Cloud
Computing. FGCS 30, 1 (2014), 179–190.

[9] Yuan Mei and Samuel Madden. 2009. ZStream: a cost-based query processor for
adaptively detecting composite events. In Proceedings of SIGMOD, 2009.

[10] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. 2012. High-performance complex
event processing over XML streams. In Proceedings of SIGMOD, 2012.

[11] U.S. Attorney’s Office. 2016. Finacial fraud. https://www.justice.gov/usao-
ndoh/pr/three-cleveland-women-indicted-165000-check-kiting-scheme-0.

[12] Bo Peng, Zhipeng Lü, and Tai Chiu Edwin Cheng. 2015. A tabu search/path
relinking algorithm to solve the job shop scheduling problem. Computers &
Operations Research 53 (2015), 154–164.

http://english.sse.com.cn/
https://www.justice.gov/usao-ndoh/pr/three-cleveland-women-indicted-165000-check-kiting-scheme-0
https://www.justice.gov/usao-ndoh/pr/three-cleveland-women-indicted-165000-check-kiting-scheme-0

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Huiyao Mei†, Hanhua Chen†, Hai Jin†, Qiang-Sheng Hua†, Bing Bing Zhou†

[13] Olga Poppe, Chuan Lei, Salah Ahmed, and Elke A. Rundensteiner. 2017. Complete
Event Trend Detection in High-Rate Event Streams. In Proceedings of SIGMOD,
2017.

[14] Olga Poppe, Chuan Lei, Lei Ma, Allison Rozet, and Elke A. Rundensteiner. 2021.
To Share, or not to Share Online Event Trend Aggregation Over Bursty Event
Streams. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021.

[15] Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier. 2017. GRETA:
Graph-based Real-time Event Trend Aggregation. PVLDB 11, 1 (2017), 80–92.

[16] Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier. 2019. Event
Trend Aggregation Under Rich Event Matching Semantics. In Proceedings of
SIGMOD, 2019.

[17] Olga Poppe, Allison Rozet, Chuan Lei, Elke A. Rundensteiner, and David Maier.
2018. Sharon: Shared Online Event Sequence Aggregation. In Proceedings of
ICDE, 2018.

[18] Medhabi Ray, Elke A. Rundensteiner, Mo Liu, Chetan Gupta, Song Wang, and
Ismail Ari. 2013. High-performance complex event processing using continuous

sliding views. In Proceedings of EDBT, 2013.
[19] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ramasamy, Jignesh M.

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy V. Ryaboy. 2014. Storm@twitter. In
Proceedings of SIGMOD, 2014.

[20] Wikipedia. 2021. Check kiting. https://en.wikipedia.org/wiki/Check_kiting, 2021.
[21] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex

event processing over streams. In Proceedings of SIGMOD, 2006.
[22] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Proceedings of NSDI, 2012.

[23] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and
optimization of expensive queries in complex event processing. In Proceedings of
SIGMOD, 2014.

https://en.wikipedia.org/wiki/Check_kiting

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Attribute-based Indexing Graph
	4 Graph Construction
	4.1 Dynamic Graph Construction
	4.2 Complexity
	4.3 Range To-edges Representation
	4.4 Parallel Algorithm

	5 CET Extraction
	5.1 CET Path
	5.2 Anchor-based CET Extraction
	5.3 Join-based Distributed CET Extraction
	5.4 Pre-Filter

	6 IMPLEMENTATION
	7 PERFORMANCE EVALUATION
	8 CONCLUSIONS
	Acknowledgments
	References

