
Communication Avoiding All-Pairs Shortest Paths Algorithm for
Sparse Graphs

Lin Zhu, Qiang-Sheng Hua
B
, and Hai Jin

National Engineering Research Center for Big Data Technology and System, Services Computing Technology and

System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, China

qshua@hust.edu.cn

ABSTRACT

In this paper, we propose a parallel algorithm for computing

all-pairs shortest paths (APSP) for sparse graphs on the distributed

memory system with p processors. To exploit the graph sparsity,

we first preprocess the graph by utilizing several known algorith-

mic techniques in linear algebra such as fill-in reducing ordering

and elimination tree parallelism. Then we map the preprocessed

graph on the distributed memory system for both load balancing

and communication reduction. Finally, we design a new scheduling

strategy to minimize the communication cost. The bandwidth cost

(communication volume) and the latency cost (number of messages)

of our algorithm areO(
n2

log
2 p

p + |S |2 log2 p) andO(log2 p), respec-

tively, where S is a minimal vertex separator that partitions the

graph into two components of roughly equal size. Compared with

the state-of-the-art result for dense graphs where the bandwidth

and latency costs are O( n
2

√
p ) and O(

√
p log2 p), respectively, our al-

gorithm reduces the latency cost by a factor of O(
√
p), and reduces

the bandwidth cost by a factor of O(
√
p

log
2 p
) for sparse graphs with

|S | = O( n√p ). We also present the bandwidth and latency costs

lower bounds for computing APSP on sparse graphs, which are

Ω(n
2

p + |S |
2) and Ω(log2 p), respectively. This implies that the band-

width cost of our algorithm is nearly optimal and the latency cost

is optimal.
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1 INTRODUCTION

The all-pairs shortest paths (APSP) is a fundamental graph

problem. The classic dynamic programming APSP algorithm was

proposed by Floyd [10] and Warshall [25]. Its algorithm structure

consists of a three nested-loop and performs reasonably well for

dense graphs in practice. A Floyd-Warshall-based algorithm, Su-

perFW [22], is proposed to improve the performance on shared

memory parallel machines for sparse graphs. However, as far as we

know, there are few studies focusing on efficient APSP algorithms

for sparse graphs in distributed memory systems. In addition, in

distributed computing for large-scale data, communication cost

gradually dominates. Therefore, we aim to design a parallel sparse

APSP algorithm with a low communication cost.

Given a weighted undirected graph G = (V ,E) with |V | = n
vertices and |E | = m edges, if the graph is dense, then on the dis-

tributed memory system with p processors, a divide-and-conquer

distributed algorithm, 2D-DC-APSP [24], can be used to compute

APSP. Its bandwidth cost (communication volume) and latency

cost (the number of messages) (see Section 3.1) are O(n2/
√
p) and

O(
√
p log2 p) respectively. This algorithm is communication-avoiding,

which means it either asymptotically attains the lower bound of

communication cost or reduces the communication cost compared

to a conventional algorithm [4]. 2D-DC-APSP is suitable for dense

graphs. However, for sparse graphs, it might be inefficient.

Designing a sparse APSP algorithm on the distributed memory

system poses several challenges. The first is data layout. An efficient

data layout can minimize communication, balance the work load,

and can reduce the memory footprint. In our algorithm, we use a

block layout (see Section 5.1) to balance the computation and data

movement, while simultaneously minimizing communication cost.

The second is the scheduling strategy. We know that algorithms

with a higher degree of parallelism usually means less communica-

tion cost. Therefore, in the process of updating the distance matrix,

how to design the scheduling strategy so that more processors can

participate in the update task at the same time is an important issue.

There are two main contributions in this paper.

1 We propose a communication-avoiding APSP algo-

rithm for sparse graphs on a distributed memory

system. There are mainly three steps for our method. First,

in the pre-processing stage, in order to exploit the graph

sparsity, we use several known algorithmic techniques in

linear algebra to reorder the vertices of the input graph

https://doi.org/10.1145/3472456.3472524
https://doi.org/10.1145/3472456.3472524
https://doi.org/10.1145/3472456.3472524


ICPP ’21, August 9–12, 2021, Lemont, IL, USA Lin Zhu, Qiang-Sheng HuaB , and Hai Jin

Table 1: List of Symbols

Symbol type Symbol Description

n Dimension of the matrix A
G = (V ,E) Graph G with vertices V and edges E

Matrix Ai j Element in row i and column j of A
A(i, j) Block in row i and column j of A
Rl Updated regions of A to eliminate Ql
T Elimination tree of matrix A
N The number of supernodes in T
S Vertex separator of graph G
h Height of T (O(logp))

Supernodes Ql Set of the l-th level supernodes in T
A(a) Set consisting of ancestors of a
D(a) Set consisting of descendents of a
C(a) Set consisting of cousins of a

p #MPI processes

M Per-process memory

Process B Per-process bandwidth cost

L Per-process latency cost

and to utilize the elimination tree to guide parallelism.

Then we map the adjacency matrix of the reordered graph

to the distributed memory system in a block layout, and

analyze the advantages of this data layout. Finally, in or-

der to maximize the parallelization of updating the matrix

blocks in the distance matrix, we present a one-to-one

mapping for assigning the computations needed for up-

dating the matrix blocks to the processors. Let S denote

the minimal separator of graphG , then the bandwidth and

latency costs of our algorithm areO(
n2

log
2 p

p + |S |2 log2 p)

and O(log2 p), respectively. Compared with the 2D-DC-

APSP algorithm [24], the latency cost of our algorithm is

reduced by a factor of O(
√
p), and the bandwidth cost is

reduced by a factor of O(min(

√
p

log
2 p
, n2

|S |2
√
p log

3 p
)).

2 We present the bandwidth and latency costs lower

bounds for distributively computingAPSPon sparse

graphs, which are Ω(n
2

p + |S |
2) and Ω(log2 p), respec-

tively (See Section 6 for details).

2 RELATEDWORK

The classic dynamic programming APSP algorithm was pro-

posed by Floyd [10] and Warshall [25]. Its algorithm structure

consists of a three nested-loop and performs reasonably well for

dense graphs in practice. In order to increase the data locality,

the blocked version was subsequently formulated [21]. For sparse

graphs, Johnson’s algorithm [16] is theoretically faster than Floyd-

Warshall algorithm. However, due to the data-dependent structure,

it is difficult to scalably parallelize the algorithm. Sao et al. pro-

posed a sparse APSP algorithm, SuperFW [22], which is based on

the Floyd-Warshall (FW) algorithm and applies the technology of

sparse direct solvers to APSP. SuperFW focuses on reducing com-

putational operations. Compared with the classic Floyd-Warshall

algorithm, the amount of its computational operations is reduced

by a factor of O( n
|S | ), where S is the top-level seperator.

The first 2D distributed memory algorithm for APSP was pro-

posed by Jenq and Sahni [14], which is based on the Floyd-Warshall

algorithm. Since it did not employ the block structure, its latency

cost could be O(n). Solomonik et al. [24] proposed a divide-and-

conquer distributed APSP algorithm, whose bandwidth and latency

costs areO( n
2

√
p ) andO(

√
p log2 p) respectively. These upper bounds

either meet or nearly meet the corresponding bandwidth and la-

tency costs lower bounds.

Since APSP and many linear algebra problems such as matrix

multiplication and LU factorization have similar three-nested loop

structure and data access patterns, manymethods can apply for both

problems. Carrewas the first to analyze the equivalence relationship

between APSP and numerical linear algebra [8]. Aho et al. proved

that the cost of APSP and semiring matrix multiplication are almost

equivalent in the random access machine [1]. Various researchers

have given several algorithms based on this proof [21, 24]. Due

to the similar computational structure, the communication lower

bounds of the previously known “classical" matrix multiplication

are also applicable to the APSP problem [4, 13, 15].

Solving linear algebra problems of sparse matrices under the

distributed memory model has been widely studied [3, 7, 23]. Many

researchers use the nested dissection (ND) method [11, 20] and the

elimination tree parallel technology to reduce the communication

cost [12, 23]. However, they all use block cyclic data layout, which

we will introduce in section 5, to distribute data on the processor

grid to alleviate load-imbalance. Compared with the communica-

tion optimal distributed algorithm for dense matrices, although the

bandwidth cost is reduced, they have higher latency costs (a poly-

nomial of n). The ND method is also used in this paper to compute

the separator of a graph.

3 PRELIMINARIES

In this section, we introduce the communication model, prob-

lem definition, the classic Floyd-Warshall (FW) algorithm and the

blocked FW algorithm for dense matrices.

3.1 Communication Model

In this paper, we will use a distributed-memory model that

has been widely employed in previous work [9] [5]. We model

the machine as having p processors, which are connected via a

network, and the local memory size of each processor is M . We

count the communication cost in terms of bandwidth cost B (the

number of words) and latency cost L (the number ofmessages) along

the critical path as defined in [26]. That is, two messages that are

communicated between separate pairs of processors simultaneously

are counted only once.

We assume that (1) the architecture is homogeneous, (2) a pro-

cessor can only send/receive a message to/from one other

processor at a time, and (3) there is a link between each pro-

cessor pair to avoid communication resource contention among

processors.
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3.2 Problem Definition

Given an undirected weighted graphG = (V ,E), where |V | = n
and |E | = m, each vertex in graph G is represented by vi (i ∈
{1, 2...,n}), and the edge between vertex vi and vj is represented
by ei j . The weight of each edge ei j ∈ E is |ei j |. If ei j < E, then
|ei j | = ∞. We assume that |ei j | can be negative but there is no

cycle with a negative sum of weights in graph G. Graph G can be

represented by an n × n adjacency matrix A, where Aii = 0 and

Ai j = |ei j |.
Computing the APSP of a graph can be seen as a continuous

update of the symmetric matrixA. After each update toA,Ai j holds
the shortest distance between vertex vi and vertex vj discovered
so far. When the algorithm finishes running, Ai j holds the shortest
distance between vi and vj .

3.3 Classical FW Algorithm and Blocked FW

Algorithm

Given an undirected weighted graph G with n vertices andm
edges, its adjacency matrix is A, and the classicalFW algorithm

updates all elements Ai j of A according to

Ai j = Ai j ⊕ Aik ⊗ Ak j i, j,k ∈ {1, 2...,n}

Here, x ⊕ y = min{x ,y}, x ⊗ y = x + y, x and y can be any

real or infinite values.

The BlockedFW algorithm divides the adjacency matrix A
into

n
b ×

n
b blocks and the size of each block isb×b. The (i, j)-th block

in matrix A is denoted by A(i, j), i, j ∈ {1, 2..., nb }. The BlockedFW
algorithm updates all matrix blocks A(i, j) in the following three

steps.

For k ∈ {1, 2..., nb } and i, j , k :

diagonal update: A(k,k) ←ClassicalFW (A(k,k))
panel update: A(i,k) ← A(i,k) ⊕ A(i,k) ⊗ A(k,k)

A(k, j) ← A(k, j) ⊕ A(k,k) ⊗ A(k, j)
minplus outer product:A(i, j) ← A(i, j) ⊕A(i,k) ⊗A(k, j)

4 PRE-PROCESSING

In this section, we introduce two known algorithmic tech-

niques, fill-in reducing ordering and elimination tree parallelism, to

preprocess the input graph. These techniques can take advantage

of the sparsity of the graph and are widely used in sparse numeri-

cal linear algebra. Sao et al. combines these technologies with the

BlockedFW algorithm to get the SuperFW algorithm [22].

4.1 Fill-in Reducing Ordering

In the BlockedFW algorithm, if a block is “empty”, which

means that all the entries in this block are infinite values, certain

computation operations involving this block can be avoided. For

example, consider the BlockedFW algorithm, for k = 3 and A(4, 3)
is empty, then the update of A(4, :) can be avoided. This is because

A(4, :) ← A(4, :)⊕A(4, 3)⊗A(3, :) andA(4, 3)⊗A(3, :) is empty. How-

ever, even if the adjacency matrixA is sparse, the sparse structure of

A is irregular and there may not be all infinite values in a block. We

can use the known “nested-dissection”(ND) process [11] to reorder

the adjacency matrix and can obtain the block-arrow structure,

which can effectively reduce fill-in. Some graph partitioning tools

like Metis [17] can be used to compute the ND process.

The initial goal of ND process is to compute a separator S
of the graph G = (V ,E). S partitions V into three disjoint sets,

V = V1 ∪ S ∪V2. This partition satisfies the following conditions:

(1) For any vertex vi ∈ V1 and any vertex vj ∈ V2, ei j < E;
(2) V1 and V2 are balanced, i.e., |V1 | ≈ |V2 |;
(3) S is as small as possible.
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Figure 1: Fig. 1a and 1b respectively show the input graph

and its adjacency matrix. Fig. 1c and 1d respectively show

the reordered graph and its adjacency matrix. Each circle in

Fig. 1b and Fig. 1d represents a finite value.

V1, V2 and S are called supernodes, and each supernode con-

sists of vertices with similar adjacent structures. According to this

partition, the indices of the vertices in V1, V2 and S are reordered.

The vertices in each vertex setV1,V2 and S have consecutive indices,
and the index of each vertex in S is higher than the index of any

vertex in V1 and V2. For example, in Fig. 1a and 1b, we show the

input graph G and its adjacency matrix. The ND process divides

and reorders V into V1 = {1, 2, 3}, V2 = {4, 5, 6} and S = V3 = {7}.
Fig. 1c and 1d show the reordered graph G and its adjacency ma-

trix. A(1, 2) and A(2, 1) in Fig. 1d are empty. It should be noted that

V1 and V2 can perform the ND process recursively to get a more

fine-grained ordering of A.
Karypis and Kumar proposed a parallel algorithm that can

efficiently calculate the separator of a graph [18]. Given an input

graphG = (V ,E), the 2-way partition ofV can be obtained through

three phases: coarsening, initial partitioning, and uncoarsening,

which divideV into two equal partsA and B to minimize the number

of edges betweenA and B. The separator can be obtained by finding

the minimum vertex cover of edges betweenA and B. The algorithm
can be directly applied to our model with a few modifications, and

the bandwidth cost and the latency cost of finding a separator are

O(
n logp
√
p ) and O(logp), respectively.

For the reordered sparse adjacency matrix, different iteration

orders may have a great impact on the computation cost. For exam-

ple, consider that the reordered adjacency matrix A in Fig. 1d are

executed in different iteration orders in the BlockedFW algorithm.

When the iteration order is {3, 1, 2}, A(1, 2) and A(2, 1) become

non-empty in the first iteration k = 3. When the iteration order is

{1, 2, 3}, A(1, 2) and A(2, 1) become non-empty in the last iteration

k = 3. The latter can reduce fill-in and can better maintain sparsity,

so more operations can be avoided.
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Figure 2: Fig. 2a is a 2-level eTree, and the seperator S is V3.
Fig. 2b is a 3-level eTree, obtained by recursively executing

the ND process on V1 and V2 in Fig. 2a.

4.2 Elimination Tree

As mentioned above, the elimination order {1, 2, 3} or {2, 1, 3}

can maintain low fill, and the elimination tree (eTree) shown in

Fig.2a can be used to describe this ordering. A multilevel eTree

shown in Fig.2b can be obtained by recursively perform the ND

process on V1 and V2. In an eTree, if supernode Vi is Vj ’s parent,
the parent of parent or so on, then we call Vi an ancestor of Vj
and Vj a descendant of Vi . If Vi is neither the ancestor of Vj nor
the descendant of Vj , then call Vi the cousin of Vj . Use A(i), D(i)
and C(i) to represent the set of all ancestors, descendants, and

cousins of Vi , respectively. In Fig. 2b, A(3) = {7}, D(3) = {1, 2}

and C(3) = {4, 5, 6}. A proper iteration ordering is that, if Vi is
a descendant of Vj in eTree, then Vi should be eliminated before

Vj , and if Vi is a cousin of Vj , the elimination order of Vi and Vj
can be arbitrary. Consider the elimination of supernode Vk , for all
i, j ∈ C(k), the update of A(i,k),A(k, i) and A(i, j) can be avoided.

5 THE PARALLEL ALGORITHM

In this section, we present a parallel sparse APSP algorithm.

We start with the mapping from the supernodal block sparse matrix

to the processors, then we design a novel scheduling strategy to

reduce communication cost.

5.1 Data Layout

In this subsection, we discuss how to map the supernodal

block sparse matrix obtained in the pre-processing to the processor

grid. As far as we know, there are few studies on APSP algorithms

with low communication complexity for sparse matrices. In the

most of the previous related studies, the matrix is distributed on

the processor grid in a block cyclic layout, such as 2D-DC-APSP

[24] and SuperLU_DIST [23]. The block cyclic distribution divides

the matrix A into
n
b ×

n
b blocks of size b × b, and each block is

distributed on p processors in a block layout. The block layout

divides the matrixA into

√
p ×
√
p blocks of size

n√
p ×

n√
p , and each

processor owns one block.

The 2D-DC-APSP algorithm [24] is a distributed APSP algo-

rithm described in a divide-and-conquer (DC) approach on the dis-

tributed memory system . The bandwidth and latency costs of the

algorithm areO( n
2

√
p ) andO(

√
p log2 p) respectively, and it is a com-

munication avoiding algorithm for dense matrices. SuperLU_DIST

is a distributed algorithm for solving LU factorization of sparse

matrix, which is used in LAPACK [2]. This algorithm applies sev-

eral of the aforementioned algorithmic techniques to the popular

right-looking LU algorithm.

We map the supernodal block sparse matrixA onto the proces-

sors in block layout instead of block cyclic. There are two reasons

why we do not use the block cyclic layout.

First, the latency cost of using block cyclic layout isO(n/
√
p),

which is even higher than the latency cost O(
√
p log2 p) of 2D-

DC-APSP. Suppose we adopt the block cyclic layout, for all k ∈
{1, 2...,N }, A(k,k) is distributed on

√
p diagonal processors, then

there is one processor who will store at least
N√
p blocks A(k,k).

Consider the diagonal update of supernode k , the processor that

stores A(k,k) must send at least one message. Therefore, for the

processor that stores at least
N√
p blocks, the number of messages it

must send is at least N /
√
p.

Second, unlike the 2D-DC-APSP and SuperLU_DIST algo-

rithms with block layout, performing our algorithm does not

suffer from load-imbalance. This is because our algorithm is based

on Floyd-Warshall algorithm. For the k-th iteration, BlockedFW

algorithm with block layout updates all blocks A(i, j), where i, j ∈
{1, 2...,

√
p}. The update of A is specified by

A(i, j) =

{
ClassicalFW(A(k,k)) i, j = k,

A(i, j) ⊕ A(i,k) ⊗ A(k, j) i , k or j , k .

which shows that all blocks A(i, j) are updated in each iteration,

where i, j ∈ {1, 2...,
√
p}. If block layout is adopted, then all pro-

cessors are active in each iteration. However, the SuperLU_DIST

uses the right-looking scheme, the update of A is specified by

A(i, j) =


L(k,k)U (k, j) i = k, j ∈ {k ...,

√
p},

L(i,k)U (k,k) j = k, i ∈ {k + 1...,
√
p},

A(i, j) − L(i,k)U (k, j) i, j ∈ {k + 1...,
√
p}.

It can be found that with block layout, those processors Pi j with
i = {1, 2...,k−1} or j = {1, 2...,k−1}will be idle, which causes load-
imbalance. Considering the 2D-DC-APSP algorithm, using a block

layout will result in at least three-quarters of the processors being

idle at any point in the algorithm. Therefore, SuperLU_DIST and

2D-DC-APSP use block cyclic layout to alleviate load-imbalance,

while our algorithm can utilize block layout.

In order to map the supernodal block sparse matrix A to a

√
p×
√
p grid in a block layout, we specify the number of recursions

of the ND process such that N =
√
p. Denote h to represent the

number of levels of eTree, then

∑h
l=1 2

h−l =
√
p and h = log(

√
p +

1). For i, j ∈ {1, 2...,
√
p}, each processor Pi j owns a block A(i, j).

5.2 The Scheduling Strategy

With the eTree and block layout, in this section we discuss

task scheduling on the processor grid. Since the supernodes in the

same level are cousins, the elimination of supernodes in the same

level is independent. We eliminate supernodes level by level from

bottom to top. For ease of expression, we relabel the supernodes in

this order, as shown in Fig. 3a.
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Figure 3: Fig. 3a shows a 4-level eTree labeled from bottom

to top. Fig. 3b shows the regions of R1
2
,R2

2
,R3

2
and R4

2
.

Consider an eTree of levelh, we useQl to denote the collection

of the l-th level supernodes, and use Rl to denote the updated region
of A during the elimination of the l-th level supernodes. Then

Rl =
⋃
k ∈Ql

(k ∪ A(k) ∪ D(k),k ∪ A(k) ∪ D(k)),

and for each (i, j) ∈ Rl , A(i, j) is updated by

A(i, j) = A(i, j) ⊕
⊕∑
k

A(i,k) ⊗ A(k, j), (1)

where k ∈ (A(i) ∪ D(i)) ∩ (A(j) ∪ D(j)) ∩ Ql . We define each

A(i,k) ⊗ A(k, j) as a computing unit.

We can divide Rl into four subsets:

(1) R1l =
⋃
k ∈Ql
(k,k)

(2) R2l =
⋃
k ∈Ql
(A(k) ∪ D(k),k) ∪ (k,A(k) ∪ D(k))

(3) R3l =
⋃
k ∈Ql
(A(k) ∪ D(k),D(k)) ∪ (D(k),A(k))

(4) R4l =
⋃
k ∈Ql
(A(k),A(k))

Where R1l corresponds to diagonal update, R2l corresponds to

panel update, R3l and R
4

l correspond to minplus outer product.

For example, for the eTree in Fig. 3a and l = 2, the regions of these

four subsets are shown in Fig. 3b. We update these four subsets

sequentially.

5.2.1 The Update of R1l , R
2

l and R
3

l .
For the update of R1l , it is obvious that each Pkk updatesA(k,k)

locally, and these updates are performed in parallel. There are no

communication between processors.

For R2l , we first consider the update of
⋃
k ∈Ql
(A(k)∪D(k),k).

Each processor Pkk broadcasts A(k,k) to all processors Pik in this

column,where i ∈ A(k)∪D(k) and Pik updatesA(i,k). For eachk ∈
Ql , each broadcast operation is executed on a different processor

column, so these operations can be executed in parallel. The update

of subset

⋃
k ∈Ql
(k,A(k) ∪ D(k)) is similar.

For R3l , the processors in R2l send data to the processors in

R3l , and the processors in R3l receive the data and update the local

matrix block. For each (i, j) ∈ R3l , according to Equation (1) and

there is some k ∈ Ql such that i ∈ D(k) or j ∈ D(k), we can get

|(A(i) ∪ D(i)) ∩ (A(j) ∪ D(j)) ∩Ql | = 1, which means that A(i, j)
can be updated through a computing unit A(i,k) ⊗ A(k, j). We can

describe the update ofA(i, j) in R3l in three steps: (1) For each (i,k) ∈

R2l , Pik broadcastsA(i,k) to all processors Pi j with j ∈ A(k)∪D(k);

(2) For each (k, j) ∈ R2l , Pk j broadcasts A(k, j) to all processors Pi j

with i ∈ A(k) ∪ D(k); (3) For each (i, j) ∈ R3l , Pi j receives A(i,k)

and A(k, j) and updates A(i, j) = A(i, j) ⊕ A(i,k) ⊗ A(k, j).

5.2.2 The Update of R4l .
In the process of eliminating each level of supernodes, the

update of R4l in the distance matrix is the most important and

complex one. We will elaborate it in this subsection.

According to Equation (1) and (i, j) ∈ R4l , we can get |(A(i) ∪

D(i)) ∩ (A(j) ∪ D(j)) ∩ Ql | > 1, which means that the update

of each A(i, j) requires multiple computing units. Suppose a block

A(i, j) is updated by q computing units, its update is A(i, j) ←
A(i, j) ⊕ A(i, 1) ⊗ A(1, j) ⊕ · · · ⊕ A(i,q) ⊗ A(q, j). A trivial strategy

is to perform those computing units sequentially on processor Pi j ,
which is used in SuperLU_DIST [19]. That is, for all k ∈ {1, 2...,q},
Pi j receives messages sequentially from Pik and Pk j and computes

A(i,k) ⊗ A(k, j) to update A(i, j). With this strategy, processor Pi j
needs to receive 2qmessages to updateA(i, j). An optimized strategy

is to allocate q computing units that update A(i, j) to q different

processors, and then those processors reduce results to Pi j . That
is, for each k ∈ {1, 2...,q}, processors Pik and Pk j send local data

to the corresponding processor in parallel, then each processor

performs the computation A(i,k) ⊗ A(k, j) in parallel. Finally, the q
processors reduce to Pi j . In this way, each processor only needs to

transmit O(logq) messages.

However, it should be noted that the elimination of the l-th
level supernodes needs to update all blocksA(i, j) in R4l . If two com-

puting units that update two blocks in R4l are assigned to the same

processor, then these two blocks can only be updated sequentially.

Therefore, in order to update the blocks in R4l with a maximum

degree of parallelization, the optimal strategy is to allocate each

computing unit that updates R4l to a separate processor one-to-one.

Lemma 5.1. If all the computing units required to update all
blocks in R4l can be mapped to the processor grid one-to-one, then all
blocks in R4l can be updated in parallel.

According to Equation (1) and (i, j) ∈ R4l , updating the block

A(i, j) in R4l requires computing all A(i,k) ⊗ A(k, j), where k ∈

Ql ∩ D(i) ∩ D(j). We know that the number of processors is p,
therefore, if the number of computing units is less than p, then a

one-to-one mapping from the computing units to processors exists.

We prove it in Lemma 5.2.

Lemma 5.2. The number of computing units required to update
R4l is O(p).

Proof. We divide the blocks A(i, j) in R4l into (h − l) subsets.

We use R4l (a) to denote the subset consisting of blocks A(i, j) with

min(level(i), level(j)) = a, then R4l =
⋃h
a=l+1 R

4

l (a). We calculate

the number of computing units required to update all blocks A(i, j)
in R4l (a).

First, we calculate the number of computing units needed to

update each blockA(i, j) in the subset R4l (a). We know that updating

A(i, j) needs to compute all A(i,k) ⊗A(k, j), where k ∈ Ql ∩D(i) ∩
D(j). Since min(level(i), level(j)) = a, thus |Ql ∩ D(i) ∩ D(j)| =
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2
a−l

. The number of computing units needed to update each A(i, j)

in the subset R4l (a) is 2
a−l

.

Next, we calculate the number of blocks A(i, j) in R4l (a). If

level(i) < level(j), then i ∈ Qa and j ∈ A(i). Since |Qa | = 2
h−a

and for each i ∈ Qa , |A(i)| = h − a, thus the number of blocks

A(i, j) is (h − a)2h−a . Similarly, if level(i) > level(j), the number

of blocks A(i, j) is also (h − a)2h−a . If level(i) = level(j), then the

number of blocks A(i, j) is 2h−a . Therefore, the total number of

blocks A(i, j) in the subset R4l (a) is (2h − 2a + 1)2
h−a

.

As a result, the total number of computing units required to

update R4l is
∑h
a=l+1(2h − 2a + 1)2

h−l = O(h22h ). Since h2 = O(2h )

and 2
h = O(

√
p), thus the number of computing units required to

update R4l is O(p). □

Below, we analyze how to get such a one-to-one mapping.

For those blocks A(i, j) in R4l (a), because the distance matrix A

is symmetric, we only consider the update of blocks A(i, j) with
level(i) ≥ level(j) in R4l (a). According to the level of j in the eTree,

we further divide R4l (a) into (h − a + 1) subsets. We use R4l (a, c) to

denote each subset consisting of all A(i, j) with level(i) = a and

level(j) = c where c ∈ {a,a + 1...,h}, then R4l (a) =
⋃h
c=a R

4

l (a, c).

For each subset R4l (a, c), we assign the computing units needed to

update the blocks A(i, j) in R4l (a, c) to a row of processors. And for

any two subsets, their computing units are allocated to different

processor rows.We prove in Lemma 5.3 that this strategy can enable

each computing unit be performed on a separate processor.

Lemma 5.3. R4l is divided into multiple subsets, and each subset
R4l (a, c) consisting of blocks A(i, j) with level(i) = a and level(j) = c ,
where a ∈ {l + 1, l + 2...,h}, c ∈ {a,a + 1...,h}. If the computing
units needed to update the two subsets are assigned to two different
processor rows, then the mapping from the computing units to the
processors can be one-to-one.

Proof. First, because the number of processor rows is

√
p, we

prove that the number of subsets R4l (a, c) is less than
√
p. For each

a ∈ {l + 1, l + 2...,h}, the number of subsets R4l (a, c) of R
4

l (a) is

h − a + 1, so the number of subsets is

∑h
a=l+1(h − a + 1) < (h − l)

2
.

Since h = log(
√
p + 1), thus the number of subsets R4l (a, c) is less

than

√
p.

Second, because the number of processors in each row is

√
p,

we prove that the number of computing units required to update

each subset R4l (a, c) is less than
√
p. Since the number of computing

units to update each block A(i, j) is 2a−l and the number of blocks

A(i, j) in each subset is 2
h−a

, so the number of computing units

required to update each subsetR4l (a, c) is 2
h−l

. Sinceh = log(
√
p+1),

thus the number of computing units required to update each subset

R4l (a, c) is less than
√
p. □

Below, we discuss the one-to-one mapping from subsets to

processor rows. There are many satisfied one-to-one mappings,

and here we give one of them. That is, for each subset R4l (a, c), we

assign the computing units that update blocks A(i, j) in R4l (a, c) to

the processor row f =
∑h−1
b=h+a−c 2

b + (a − l). We prove in Lemma

5.4 that this allocation method can map each subset R4l (a, c) to a

separate processor row.

Lemma 5.4. For each subset R4l (a, c), where a ∈ {l +1, l +2...,h}
and c ∈ {a,a + 1...,h}, if its corresponding processor row is f =∑h−1
b=h+a−c 2

b + (a − l), then this mapping from subsets to processor
rows is one-to-one.

Proof. To prove that the mapping is one-to-one, we only need

to prove that it satisfies two conditions.

First, for each subset R4l (a, c), since the processor grid is

√
p ×

√
p, f must not be greater than

√
p. Because f =

∑h−1
b=h+a−c 2

b+(a−

l) and
√
p =

∑h−1
b=0 2

b
,

√
p− f =

∑h+a−c−1
b=0 2

b −(a−l) > 2
h+a−c−1−

(a−l). Since c ≤ h, then 2h+a−c−1 ≥ 2
a−1

, thus 2
h+a−c−1−(a−l) ≥

2
a−1 − (a − l) ≥ 0. Therefore, f ≤

√
p.

Second, for any two different subsets R4l (a1, c1) and R
4

l (a2, c2),
in order to ensure that the mapping is one-to-one, f1 , f2 must

hold. If a1 = a2 and (a1 − c1) , (a2 − c2), then obviously f1 , f2. If
a1 , a2 and (a1 − c1) = (a2 − c2),then obviously f1 , f2. If a1 , a2
and (a1 − c1) , (a2 − c2), without loss of generality, we assume

(a1 − c1) < (a2 − c2), then

f1 >
h−1∑

b=h+a1−c1

2
b ≥

h−1∑
b=h+a2−c2−1

2
b =

h−1∑
b=h+a2−c2

2
b + 2h+a2−c2−1

>

h−1∑
b=h+a2−c2

2
b + (a2 − l) = f2.

Therefore, for any two different subsets, f1 , f2.
□

For those computing units that update the blocks A(i, j) in
R4l (a, c), we discuss how to assign each computing unit to a sep-

arate processor in row f =
∑h−1
b=h+a−c 2

b + (a − l). According to

the proof of Lemma 5.3, we know that the number of computing

units needed to update each subset is 2
h−l

, where each computing

unit corresponds to a supernode k ∈ Ql . We let these 2
h−l

comput-

ing units be performed on the processor set {Pf ,1, Pf ,2..., Pf ,2h−l },

and each processor performs one computing unit. According to

the labels of supernodes in subsection 5.2, the set of k ∈ Ql is

{
∑h−1
b=h−l+1 2

b + 1,
∑h−1
b=h−l+1 2

b + 2...,
∑h−1
b=h−l+1 2

b + 2h−l }. Then

for each computing unit A(i,k) ⊗ A(k, j) that updates the sub-

set R4l (a, c), it corresponds to a separate processor Pf д , where

f =
∑h−1
b=h+a−c 2

b + (a − l) and д = k −
∑h−1
b=h−l+1 2

b
.

Corollary 5.5. For each A(i, j) with level(i) ≥ level(j) and
(i, j) ∈ R4l , the update of A(i, j) needs to compute all A(i,k) ⊗ A(k, j),
where k ∈ Ql ∩D(i)∩D(j). And each computing unit can be assigned
to a separate processor Pf д , where f =

∑h−1
b=h+a−c 2

b + (a − l) and
д = k −

∑h−1
b=h−l+1 2

b .

With the above mapping, each block A(i, j) with level(i) ≥
level(j) in R4l can be updated in parallel, and each computing unit

A(i,k) ⊗ A(k, j) can be performed on a separate processor Pf д . In

order to compute A(i,k) ⊗ A(k, j), the processors in R2l send A(i,k)

and A(k, j) to Pf д , and then each Pf д computes A(i,k) ⊗ A(k, j).

For each A(i, j) with level(i) ≥ level(j) in R4l , it is updated by
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all computing units A(i,k) ⊗ A(k, j), where k ∈ Ql ∩ D(i). We

regard the processors Pf д performing these computing units as a

group, and reduce the computation results to Pi j . Below we give

the communication process from “R2l to Pf д” and “Pf д to R4l ”.

R2l to Pf д : For each Pik with k ∈ Ql and i ∈ D(k), its local data

A(i,k) is needed to compute all A(i,k) ⊗A(k, j), where j ∈ i ∪A(i).
Each computing unit is performed on a separate processor Pf д .
Therefore, Pik sendsA(i,k) to all the processors Pf д corresponding

to these computing units through the broadcast operation. Formally,

for each Pik with k ∈ Ql and i ∈ A(k) ∩ Qa , where a ∈ {l +
1, l + 2...,h}, it broadcasts A(i,k) to all processors Pf д where f =∑h−1
b=h+a−c 2

b + (a − l), д = k −
∑h−1
b=h−l+1 2

b
and c ∈ {a,a + 1...,h}.

Similarly, for each Pk j with k ∈ Ql and j ∈ A(k) ∩ Qc , where

c ∈ {l + 1, l + 2...,h}, it broadcasts A(k, j) to all processors Pf д

where f =
∑h−1
b=h+a−c 2

b + (a − l), д = k −
∑h−1
b=h−l+1 2

b
and a ∈

{l + 1, l + 2..., c}.
Pf д to R4l : We know that for each block A(i, j) in R4l , it is

updated by all computing unitsA(i,k)⊗B(k, j), where k ∈ Ql ∩D(i).
And each computing unit is executed on a separate processor Pf д .
Therefore, we regard those processors Pf д as a group, and reduce

their computation results to Pi j .

5.3 The Pseudocode of 2D Sparse APSP

Algorithm

The pseudocode of the 2D sparse APSP appears in Algorithm

1. T is the eTree, h is the height of T , and Ql is the supernodes

in the l-th level. For i, j ∈ {1, 2...,
√
p}, each processor Pi j owns a

block A(i, j). The elimination sequence is from the bottom l = 1

to the top l = h, and the elimination of the l-th level sequentially

updates the four regions R1l , R
2

l , R
3

l and R
4

l .

For all k ∈ Ql , the update of R
1

l is performed on Pkk (line 4).

Each processor Pkk in R1l broadcastsA(k,k) to those processors Pik
and Pk j in R

2

l (lines 5-6), where i, j ∈ A(k) ∪D(k). And the proces-

sors P(i,k) and P(k, j) in R2l update the local matrix blocks A(i,k)

and A(k, j), respectively (lines 7-8). In order to update the blocks in

R3l , the processors in R2l broadcast local data to the processors in

R3l . The communication operations are row BROADCAST (line 9)

and column BROADCAST (line 10). The update of blocks in R3l is
in line 11.

The blocks A(i, j) with level(i) ≤ level(j) in R4l are updated

in parallel (lines 13-24). According to Corollary 5.5, we know that

each computing unit that updates these blocks A(i, j) is allocated
to a separator processor Pf д , and lines 13-18 make each Pf д get

the data needed to perform the computation unit. Each blockA(i, j)
needs to be updated by all computing units A(i,k) ⊗ A(k, j), where
k ∈ Ql ∩ D(i). These computing units are calculated in parallel in

lines 19-22 and are sent to Pi j through a reduce operation in line

23. Since the distance matrix A is symmetric, the blocks A(i, j) with
level(i) ≤ level(j) in R4l can be updated in line 25.

5.4 Algorithm Analysis

5.4.1 Memory Requirements.
Using the block layout, we construct an eTree with h =

log(
√
p + 1), and each processor Pi j owns a block A(i, j). For l ∈

Algorithm 1: 2D Sparse APSP algorithm

1 function 2D-SPARSE-APSP(A,T ):
▷ Eliminate supernodes from bottom to top (lines

2-27)

2 for l = {1, 2...,h} do:
▷ Update Rl (lines 3-26)

3 for all k ∈ Ql and i, j ∈ A(k) ∪ D(k) do

▷ Update R1l (line 4)

4 Akk ← ClassicalFW(A(k,k))

▷ R1l BROADCAST to R2l (lines 5-6)

5 Pkk broadcasts A(k,k) to all Pik
6 Pkk broadcasts A(k,k) to all Pk j

▷ Update R2l (lines 7-8)

7 A(i,k) ← A(i,k) ⊕ A(i,k) ⊗ A(k,k)

8 A(k, j) ← A(k, j) ⊕ A(k,k) ⊗ A(k, j)

▷ R2l BROADCAST to R3l (lines 9-10)

9 Pik broadcasts A(i,k) to all Pi j
10 Pk j broadcasts A(k, j) to all Pi j

▷ Update R3l (line 11)

11 A(i, j) ← A(i, j) ⊕ A(i,k) ⊗ A(k, j)

12 end for

▷ Update R4l (lines 13-26)

▷ Parallel update A(i, j) with level(i) ≤ level(j) in
R4l (lines 13-24)

▷ R2l to Pf д (lines 13-18)

13 parallel for each Pik where

k ∈ Ql , i ∈ A(k) ∩Qa , a ∈ {l + 1, l + 2...,h};
14 Pik broadcasts A(i,k) to all Pf д where

д = k −
∑h−1
b=h−l+1 2

b
, f =

∑h−1
b=h+a−c 2

b + (a − l);
c ∈ {a,a + 1...,h};

15 end parallel for

16 parallel for each Pk j where

k ∈ Ql , j ∈ A(k) ∩Qc , c = {l + 1, l + 2...,h} do:
17 Pk j broadcasts A(k, j) to all Pf д where

д = k −
∑h−1
b=h−l+1 2

b
, f =

∑h−1
b=h+a−c 2

b + (a − l);
a ∈ {l + 1, l + 2..., c};

18 end parallel for

▷ Pf д to R4l (lines 19-24)

19 parallel for each Pi j where

i ∈ A(k), j ∈ i ∪ A(i), k ∈ Ql do:

20 a = level(i), c = level(j);

21 parallel for each Pf д where

f =
∑h−1
b=h+a−c 2

b + (a − l),

д = k −
∑h−1
b=h−l+1 2

b
;

k ∈ Ql ∩ D(i) do:
22 Pf д computes A(i,k) ⊗ A(k, j);

23 Pf д reduces to Pi j .

24 end parallel for

▷ Update A(i, j) with level(i) ≥ level(j) in R4l (line

25)

25 Pi j sends A(i, j) to Pji .

26 end parallel for

27 end for
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{h,h − 1..., 2}, the supernodes of the l-level are separators obtained
by performing the ND process. The size of the h-level separator
is |S(n)| = |S |. Since |S | is a monotonic function of n, the size of
all separators from level 2 to level (h − 1) are smaller than |S |.

Consider that the first level has 2
h−1

supernodes, so the size of

each supernode in the first level is O( n√p ). The blocks in A can be

divided into three categories according to their sizes.

(1) The size of A(k,k) is O(n
2

p ), for all k ∈ Q1.

(2) The size of A(i,k) and A(k, j) is O(n |S |√p ), for all k ∈ Q1,

i, j ∈ Ql (l ∈ {2, 3...,h}).
(3) The size ofA(i, j) isO(|S |2), for all i, j ∈ Ql (l ∈ {2, 3...,h}).

Therefore, the size of each blockA(i, j) in the supernodal block

sparse matrix A is O(n
2

p +
n |S |
√
p + |S |

2). Since
n |S |
√
p = O(n

2

p + |S |
2),

the memory requirement of each processor in our model is M =

O(n
2

p + |S |
2).

5.4.2 Latency Cost.
Considering that our algorithm eliminates the supernodes of

each level sequentially from l = 1 to h. Let Ll denote the num-

ber of messages transmitted for the elimination of the l-th level

supernodes, then the total latency cost is

L =
h∑
l=1

Ll (2)

Lemma 5.6. Ll = O(logp)

Proof. The sum of the latency cost of updating R1l , R
2

l , R
3

l and

R4l is Ll . We analyze the updates of these four subsets separately.

(1) R1l (line 4): There is no communication operation, so the

latency cost is 0.

(2) R2l (lines 5-8): The communication operations are BROAD-

CAST (lines 5-6), and the latency cost is O(log |A(k) ∪

D(k)|). Since |A(k)| = h − l and |D(k)| = 2
l − 2, thus the

latency cost is O(log(2l + h − l − 2)), i.e., O(logp).
(3) R3l (lines 9-11): The communication operations are BROAD-

CAST (lines 9-10), and the latency cost is O(log |A(k) ∪
D(k)|), which is O(logp).

(4) R4l (lines 13-26): We first discuss the lines 13-24 of the

algorithm. The communication process can be divided

into two parts, one is BROADCAST from R2l to Pf д (lines

14, 17), and the other is REDUCE from Pf д to R4l (line

23). In line 14, each processor Pik broadcasts A(i,k) to all

Pf д to compute A(i,k) ⊗ A(k, j), where j ∈ Qc ∩ A(i) ∪ i
and c ∈ {a,a + 1...,h}. Since |Qc ∩ A(i) ∪ i | = h − a + 1,
so the latency cost of this operation is O(log(h − a + 1)),
which is O(logp). Similarly, in line 17, each processor Pk j
broadcasts A(k, j) to all Pf д to compute A(i,k) ⊗ A(k, j),
where i ∈ Qa ∩A(k) ∩ D(j) ∪ i and a ∈ {l + 1, l + 2..., c}.
Since |Qa∩A(k)∩D(j)∪i | = c−l , thus the latency cost of
this operation isO(log(c − l)), which isO(logp). In line 23,

all computation results A(i,k) ⊗ A(k, j) are reduced to the

processor Pi j , where k ∈ Ql ∩ D(i). Since |Ql ∩ D(i)| ≤

2
a−l

, thus the latency cost isO(log 2a−l ), which isO(logp).
In line 25, each Pi j sends A(i, j) to Pji in parallel, so the

latency cost is O(1). So the latency cost of updating R4l is

O(logp).

Therefore, Ll = O(logp).
□

Theorem 5.7. The latency cost of our algorithm is O(log2 p).

Proof. According to Equation (2) and Lemma 5.6, the latency

cost of our algorithm is L = O(log2 p). □

5.4.3 Bandwidth Cost.
Bandwidth cost can be obtained by summing the number of

words in each message. In our algorithm, each message is a block

of matrix A.
LetB1 denote the bandwidth cost for the elimination of the first

level supernodes, and Bl is used to denote the bandwidth cost for

the elimination of the l-th level supernodes, where l ∈ {2, 3...,h},
then the total bandwidth cost B is

B = B1 +
h∑
l=2

Bl . (3)

Lemma 5.8. B1 = O(
n2

logp
p +

n |S | log2 p
√
p )

Proof. (1) R1
1
: there is no communication cost.

(2) R2
1
: the number of messages is O(logp) and the per mes-

sage size of BROADCAST isO(n
2

p ) (lines 5-6), so the band-

width cost is O(
n2

logp
p ).

(3) R3
1
: the number of messages is O(logp) and per message

size of BROADCAST is O(n |S |√p ) (lines 9-10), so the band-

width cost is O(
n |S | logp
√
p ).

(4) R4
1
: the number of messages is O(logp) and per message

size isO(n |S |√p + |S |
2) (lines 14, 17, 23, 25 ), so the bandwidth

cost is O(
n |S | logp
√
p + |S |2 logp).

Therefore, B1 = O(
n2

logp
p + |S |2 logp). □

Lemma 5.9. Bl = O(
n |S | logp
√
p + |S |2 logp), where l = {2, 3...,h}.

Proof. The calculation of Bl is similar to the calculation of B1.
The bandwidth cost of updatingR1l ,R

2

l ,R
3

l andR
4

l are 0,O(|S |
2
logp),

O(
n |S | logp
√
p + |S |2 logp) and O(

n |S | logp
√
p + |S |2 logp), respectively.

Therefore, Bl = O(
n |S | logp
√
p + |S |2 logp). □

Theorem 5.10. B = O(
n2

log
2 p

p + |S |2 log2 p).

Proof. According to Equation (3), Lemma 5.8 and Lemma 5.9,

obviously B = O(
n2

log
2 p

p + |S |2 log2 p). □
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5.4.4 The cost of solving the separators.
Given a graphG = (V ,E) with n vertices and p processors, the

bandwidth and latency costs to compute a separator are O(
n logp
√
p )

and O(logp), respectively. This is the cost of computing the top-

level separator. Consider the eTreewith heightO(log P), after com-

puting the top level separator, the processors are divided into two

parts, and each part has p/2 processors and stores a subgraph with

n/2 vertices. These two parts of the processors can compute the

separators of the two subgraphs in parallel, and the bandwidth

and latency costs are O(
n
2
log

p
2√

p/2
) and O(log

p
2
), respectively. The

separators of each level can be obtained similarly. Therefore, the

bandwidth and latency cost to compute the separators from level h

to 1 are O(
n log

2 p
√
p ) and O(log2 p), respectively, which is subsumed

by the cost of computing the APSP.

5.5 Discussion

Our algorithm lowers the latency cost of 2D-DC-APSP by a

factor of O(
√
p

logp ), and lowers the bandwidth cost of 2D-DC-APSP

by a factor of O(min(

√
p

log
2 p
, n2

|S |2
√
p log

3 p
)). It can be found that the

latency cost is independent of |S |, and a small separator means an

asymptotic reduction in the bandwidth cost (for example, |S | =
O(
√
n)). Although our algorithm can be used to compute the APSP

of any graph, our algorithm is more efficient for sparse graphs with

a small separator.

6 COMMUNICATION LOWER BOUND

In this section, we prove the communication lower bound of

distributively computing APSP for sparse graphs. Before proving

the lower bound, we first introduce the 3NL computation model

and its communication lower bound [4].

6.1 3NL Computation model

Many classical linear algebra problems can be expressed in

a three nested-loop (3NL) way. For example, the following pseu-

docode is for multiplying two n × n matrices.

for i = 1← n
for j = 1← n

for k = 1← n
Ci j = Ci j +AikBk j

The computation of matrix multiplication can be expressed as

Ci j =
∑
k AikBk j , and a computation like this is called a 3NL com-

putation. This computation model is formally defined as follows:

Definition 6.1 (3NL computation [4]). Let M denote the set

of slow memory locations on a single machine or a location in

some processor’s memory on a parallel machine. Let Sa , Sb , Sc ⊆
{1, 2...,n} × {1, 2...,n} denote the indices of matrices A, B, and
C respectively, and a, b, and c denote the mapping from indices

to memory Sa → M, Sb → M and Sc → M respectively. Let

Mem(a(i,k)) denote the value of memory location a(i,k) ∈ M,

i.e., Aik . Similarly, Mem(b(k, j)) is Bk j and Mem(c(i, j)) is Ci j . A
computation is considered to be a 3NL if it includes computing, for

all (i, j) ∈ Sc , Si j ⊆ {1, 2, ...n} and k ∈ Si j ,

Mem(c(i, j)) = fi j ({дi jk (Mem(a(i,k)),Mem(b(k, j))})

where

1) a, b, c are one-to-one mappings

2) functions fi j and дi jk depend nontrivially on their argu-

ments.

Lemma 6.2 (Ballard et al. [6]). On a p-processor parallel ma-
chine, the bandwidth and latency lower bounds of a 3NL computation
are Ω( F

pM1/2 ) and Ω( F
pM3/2 ) respectively, where F is the number of

computation operations andM is the per-process memory size.

Lemma 6.2 can be applied to almost all linear algebra problems

for dense or sparse matrices, such as solving triangular systems,

Cholesky and LU factorization. We apply it to the APSP problem.

6.2 Lower Bound

We assume that data is distributed on the distributed memory

system in block layout. For a given sparse graph G = (V ,E) with
n vertices, we first prove that computing APSP of a sparse graph is

a 3NL computation, and then give the bandwidth and latency lower

bounds under the communication model.

Lemma 6.3. Computing the APSP of a sparse graph is a 3NL
computation.

Proof. We know that the update of the distance matrix Ai j
in the APSP problem is specified as

Ai j = min

k
(Aik +Ak j ). (4)

We let the function fi j be defined as Equation (4) and дi jk is defined

as a scalar addition operation. Obviously fi j and дi jk depend non-

trivially on their arguments. Since the input and output in Equation

(4) are both A, we make the correspondences that Ai j is stored in

a certain processor location a(i, j) = b(i, j) = c(i, j), and a, b, c are
one-to-one mappings to the processor memory. Furthermore, using

the elimination tree technique to compute the APSP of the sparse

graph, we can get the set Si j ofk . Assuming that the elimination tree

has N supernodes, we know that each supernode is a collection of

nodes with similar adjacency structures. Let S(u) denote the vertex
set of theu-th supernode, and S(u∪v) denote the vertex set of theu-

th supernode and the v-th supernode, then

⋃N
u=1 S(u) = {1, 2...,n}.

Consider the update of Ai j , assuming i ∈ S(u) and j ∈ S(v), ifw is

a cousin node of u orv in eTree, then the elimination of supernode

w will not update block A(u,v). This is because A(u,w) or A(w,v)
is empty and the computation A(u,w) ⊗ A(w,v) can be avoided.

Therefore, for all k ∈ S(w), Aik +Ak j can be avoided. We can get

the set

Si j = {S(u ∪ A(u) ∪ D(u))} ∩ {S(v ∪ A(v) ∪ D(v))}, (5)

which means that for each Ai j , Si j ⊆ {1, 2...,n}.
□

Lemma 6.4. The total number of operations to compute the APSP
is Ω(n2 |S |).

Proof. According to Definition 6.1, F =
∑
(i, j)∈Sc |Si j |. Based

on the labeling of supernodes in subsection 5.2, the top-level supern-

ode is the N -th supernode in eTree. We only consider those compu-

tations to update Ai j with i, j ∈
⋃N−1
u=1 S(u) during the elimination

of the N -th supernode, which is part of the total computations.
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Table 2: Asymptotic memory, bandwidth, latency for 2D-DC-APSP and 2D-SPARSE-APSP and communication lower bound

Parameter 2D-DC-APSP [24] 2D-SPARSE-APSP (here)

Lower bound

dense graphs [6] sparse graphs (here)

Per-process memory (M) O(n
2

p ) O(n
2

p + |S |
2) Ω(n

2

p ) Ω(n
2

p )

Bandwidth cost (B) O( n
2

√
p ) O(

n2
log

2 p
p + |S |2 log2 p) Ω( n

2

√
p ) Ω(n

2

p + |S |
2)

Latency cost (L) O(
√
p log2 p) O(log2 p) Ω(

√
p) Ω(log2 p)

Since |S(N )| = |S | ≪ n, the number ofAi j with i, j ∈
⋃N−1
u=1 S(u)

is (n − |S |)2 ≈ n2. For the update of each Ai j , we compute |Si j | dur-
ing the elimination of N . Since the top-level supernode N is the

ancestor of all the other supernodes in the eTree, according to

Equation (4), S(N ) ⊆ Si j and |S(N )| ≤ |Si j |.
Therefore, the number of operations to compute these Ai j is

at least n2 |S |, and the total number of operations is Ω(n2 |S |).
□

Theorem 6.5. On a distributed memory machine with p proces-
sors and per-process memory size isM = O(n

2

p + |S |
2), the bandwidth

and latency lower bounds for solving the APSP of sparse graphs are
Ω(n

2

p + |S |
2) and Ω(log2 p), respectively.

Proof. If
n√
p ≥ |S |, thenM = O(

n2

p ). According to Lemma 6.2

and F = Ω(n2 |S |), the lower bound of bandwidth cost is Ω(n |S |√p ),

which is Ω(|S |2) since n√
p ≥ |S |. The lower bound of latency cost

is Ω(1). If n√
p ≤ |S |, then M = O(|S |2). According to Lemma 6.2

and F = Ω(n2 |S |), the lower bound of bandwidth cost is Ω(n
2

p ).

The lower bound of latency cost is Ω(1). Therefore, the bandwidth

lower bound is Ω(n
2

p + |S |
2) and latency lower bound is Ω(1). The

latency lower bound we get according to Lemma 6.2 is trivial.

However, with the block layout, we suppose the height of

the eTree is h. Then for k ∈ Q1, the size of the block A(k,k) is
O( n

2
h ×

n
2
h ), which should be smaller than M , thus h = Ω(logp).

Let N denote the top-level supernode, then all nodes in the eTree

are descendants of N . Consider the elimination of the l-th level

supernodes, the update of A(N ,N ) needs to compute all A(N ,k) ⊗

A(k,N ), where k ∈ Ql and |Ql | = 2
h−l

. Due to the block layout,

2
h−l

blocks A(N ,k) are stored on 2
h−l

different processors. In our

model, each processor can only transmit one message with another

processor at a time, therefore, updating the A(N ,N ) requires at

least log 2
h−l

messages to be transmitted. Therefore, the latency

lower bound is

∑h
l=1 h − l , which is Ω(log2 p).

□
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