
Parallel Algorithm for Core Maintenance in
Dynamic Graphs

Na Wang, Dongxiao Yu∗, Hai Jin, Chen Qian, Xia Xie, Qiang-Sheng Hua
Services Computing Technology and System Lab

Big Data Tecgnology and System Lab

Clusters and Grid Computing Lab

School of Computer Science and Technology.

Huazhong University of Science and Technology, Wuhan, 430074, China

Email: {Ice lemon,dxyu,hjin,M201572720,shelicy,qshua}@hust.edu.cn

Abstract—This paper initiates the studies of parallel algorithm
for core maintenance in dynamic graphs. The core number is a
fundamental index reflecting the cohesiveness of a graph, which
is widely used in large-scale graph analytics. We investigate
the parallelism in the core update process when multiple edges
and vertices are inserted. Specifically, we discover a structure
called superior edge set, the insertion of edges in which can
be processed in parallel. Based on the structure of superior
edge set, an efficient parallel algorithm is then devised. To
the best of our knowledge, the proposed algorithm is the first
parallel one for the fundamental core maintenance problem.
Finally, extensive experiments are conducted on different types
of real-world and synthetic datasets, and the results illustrate
the efficiency, stability and scalability of the proposed algorithm.
The algorithm shows a significant speedup in the processing time
compared with previous results that sequentially handle edge and
vertex insertions.

Keywords—parallel algorithm; core maintenance; dynamic
graph

I. INTRODUCTION

Graph analytics has drawn much attention from research

and industry communities, due to the wide applications of

graph data in different domains. One of the major issues in

graph analytics is identifying cohesive subgraphs. K-core is

recognized as one of the most efficient and helpful index to

depict the cohesiveness of a graph. Given a graph G, the k-

core is the largest subgraph in G, such that the minimum

degree of the subgraph is at least k. The core number of a

vertex v is defined as the largest k such that there exists a k-

core containing v. Besides the analysis of cohesive subgroup,

k-core are widely used in a large number of applications to

analyze the structure and function of a network.

In static graphs, the computation of the core number of each

vertex is known as the k-core decomposition problem which

has been well studied. The algorithm presented in [4] can

compute the core number of each vertex in O(m) time, where

m is the number of edges in the graph. However, in many real-

world applications, graphs are subject to continuous changes

like insertions of vertices and edges. In such dynamic graphs,

many applications require to maintain the core number for ev-

ery vertex in-time, given the network changes over time. But it

∗The Corresponding Author is Dongxiao Yu (dxyu@hust.edu.cn).

would be expensive to recompute the core numbers of vertices

after every change of the graph, though the computation time is

linear, as the size of the graph can be very large. Furthermore,

the graph change may only affect the core numbers of a small

part of vertices. Hence, the core maintenance problem [10]

is recommended, which is to identify the vertices whose core

numbers will be definitely changed after the graph changes.
Previous works focus on maintaining the core numbers of

vertices in the scenario that a single edge is inserted into

the graph. For multiple edge/vertex insertions, the inserted

edges are processed sequentially. The sequential processing

approach, on the one hand, incurs extra overheads when

multiple edges/vertices are inserted, and on the one hand, it

does not fully make use of the computation power provided by

multicore and distributed systems. Therefore, it is necessary to

investigate the parallelism in the edge/vertex processing pro-

cedure. But to the best of our knowledge, there are no parallel

algorithms proposed for the core maintenance problem.
As we can see, the insertions of vertices can be regarded as

multiple edge insertions. Hence, we consider only the scenario

of edge insertions, the core maintenance problem under which

is called the incremental core maintenance problem.
We present an efficient algorithm for incremental core main-

tenance. Specifically, we propose a structure called superior
edge set the insertion of which can change the core number

of every vertex by at most 1. Hence, the core numbers of

vertices when inserting a superior edge set can be maintained

using a parallel procedure: first identifying the vertices whose

core numbers will change due to the insertion of every edge in

parallel, and then updating the core number of these vertices

by 1. A parallel algorithm can then be obtained by iteratively

handling the insertions of split superior edge sets using the

above parallel procedure.
In summary, our contributions are summarized as follows.

• We propose a structure called superior edge set, and show

that if the edges of a superior edge set is inserted into a

graph, the core number of each vertex can increase by at

most 1. We also give sufficient conditions for identifying

the vertices whose core numbers will increase.

• We then present a parallel algorithm for incremental core

maintenance. Comparing with the sequential algorithm,

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.288

2216

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.288

2213

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.288

2366

our algorithm reduces the number of iterations for pro-

cessing s inserted edges from s to the maximum number

of edges inserted to each vertex. In large-scale graphs, the

acceleration is significant, since each vertex can connect

to only a few inserted edges. For example, as shown in

the experiments, even if inserting 2 × 104 edges to the

LiveJournal graph (refer to Table I in Section VI), the

number of iterations is just 3 in our parallel algorithm, in

contrast with 2 × 104 ones in the sequential processing

algorithm.

• We also conduct extensive experiments over both real-

world and synthetic graphs, to evaluate the efficiency,

stability and scalability of our algorithm. The results show

that comparing with the sequential processing algorithm,

ours significantly speeds up core maintenance, especially

in cases of large-scale graphs and large amounts of edge

insertions.

The rest of this paper is organized as follows. In Section II,

we briefly review closely related works. In Section III, the

problem definitions are given. Theoretical results supporting

the algorithm design are presented in Section IV. The parallel

algorithm is proposed in Section V. In Section VI, the exper-

iment results are illustrated and analyzed. The whole paper is

concluded in Section VII.

II. RELATED WORK

In static graphs, the core decomposition problem has been

extensively studied [4], [6], [9], [11]. In contrast, researches on

core maintenance in dynamic graphs are fewer. All previous

works focus on the case of single edge update, and sequen-

tially handle multiple edge updates. Efficient algorithms were

proposed in [10], [12]. In [14], an algorithm was proposed to

improve the I/O efficiency. Furthermore, [1] and [2] solved the

core maintenance problem in the distributed environment.

III. PROBLEM DEFINITIONS

We consider an undirected, unweighted simple graph G =
(V,E), where V is the set of vertices and E is the set of edges.

Let n = |V | and m = |E|. For a vertex u ∈ V , the set of

its neighbors in G is denoted as N(u) and the number of u’s

neighbors in G is called the degree of u, denoted as dG(u).
So dG(u) = |N(u)|. The maximum and minimum degree of

vertices in G is denoted as Δ(G) and δ(G) respectively. We

next give formal definitions for the core number of a vertex

and other related concepts.

Definition 1 (k-Core): Given a graph G = (V,E) and a

non-negative integer k, the k-core is a connected subgraph H
of G, where each vertex has at least k neighbors in H , i.e.,

δ(H) ≥ k.

Definition 2 (Core Number): Given a graph G = (V,E),
the core number of a vertex u ∈ G, denoted by coreG(u), is

the largest k, such that there exists a k-core containing u.

For simplicity, we use core(u) to denote coreG(u) when

the context is clear.

Definition 3 (Max-k-Core): The max-k-core associated with

a vertex u, denoted by Hu, is the k-core with k = core(u).

In this work, we aim at maintaining the core numbers of

vertices when a set of edges are inserted to the original graph.

IV. THEORETICAL BASIS

In this section, we give some theoretical Lemmas that

constitute the theoretical basis of our algorithm.

At first, we introduce some definitions. Given a graph G =
(V,E), an edge e = < u, v > is called a superior edge for

u if core(v) ≥ core(u). Notice that in the definition, we do

not require e ∈ E, i.e., e may be an edge that is about to

insert to graph G. Furthermore, we define the core number of

an edge as the smaller one of its endpoints, i.e., core(e) =
min{core(u), core(v)}.

Definition 4 (k-Superior Edge Set): An edge set Ek =
{e1, e2, ..., ep} is called an k-superior edge set, if for each

edge ei =< ui, vi >, 1 ≤ i ≤ p, it satisfies:

(i) ei is a superior edge with core number k.

(ii) if ei and ej(1 ≤ i, j ≤ p, i �= j) have a common

endpoint u′, coreG(u′) > k.

In other words, in a k-superior edge set Ek, each edge is a

superior edge of a vertex with core number k, and each vertex

connects to at most one superior edge for it.

The union of several k-superior edge sets with distinct k
values is called a superior edge set. It can be known that in a

superior edge set, each vertex can still connect to at most one

superior edge for it.

In the following, we will first show that when inserting

a superior edge set the core number of every vertex can

increase by at most 1 (Lemma 1 and Lemma 2), and then

give a sufficient condition for identifying vertices whose core

numbers change (Lemma 5, Lemma 6). Due to the page limit,

the detailed proofs of these Lemmas are omitted. Please refer

to [13] for the proofs.

A. Superior Edge Set Insertion

We first show a result on the core number increase of every

vertex when inserting a k-superior edge set.

Lemma 1: Given a graph G = (V,E), if a k-superior edge

set Ek = {e1, e2, e3, ..., ep} is inserted into G, where k ≥ 0,

for each node v, it holds that:

(i) if core(v) = k, core(v) can increase by at most 1;

(ii) if core(v) �= k, core(v) will not change.

From the above Lemma 1, we have known that for a

graph G = (V,E), after a k-superior edge set Ek =
{e1, e2, e3, ..., ep} is inserted into G, only vertices with core

numbers k may increase, and the increase is at most 1. This

implies that it will be enough to only visit vertices whose core

numbers are k and check if their core numbers will increase

when a k-superior edge set is inserted. In fact, we can get even

better results, which are given in the following Lemma 2.

Lemma 2: Given a graph G=(V,E) and a superior edge set

Eq = Ek1 ∪ Ek2∪, ...,∪Ekq , where Eki for 1 ≤ i ≤ q is a

ki-superior edge set and ki < kj if i < j, it holds that after

inserting Eq into G, the core number of each vertex u can

increase by at most 1.

221722142367

Lemma 2 shows that when inserting a superior edge set into

a graph, the core numbers of vertices can change by at most

1. This implies that the core updates of inserting edges in a

superior edge set can be processed in parallel, as it only needs

to find the union of affected vertices by the edge insertions. In

the subsequent section, we give more accurate conditions for

a vertex to change its core number when inserting a superior

edge set.

B. Core Number Change

Here we consider the scenario defined as follows: given

a graph G = (V,E) and an edge set Es = {e1, e2, ..., es},
w.l.o.g., assume that for each ei = < ui, vi >, coreG(vi) ≥
coreG(ui) = ki, where s > 0, 1 ≤ i ≤ s, and ki ≥ 1. Denote

by G′ = (V,E′) the obtained graph after inserting Es into G.

Definition 5 (Superior Degree): For a vertex u ∈ V , v is

a superior neighbor of u if v is a neighbor of u in G′ and

coreG(v) ≥ coreG(u). The number of u’s superior neighbors

is called the superior degree of u, denoted as SDG′(u).
It can be known that only superior neighbors of a vertex

may affect the change of its core number.

Definition 6 (Constraint Superior Degree): The constraint
superior degree CSDG′(u) of a vertex u is the number of

u’s neighbors w in G′ that satisfies coreG(w) > coreG(u) or

coreG(w) = coreG(u) ∧ SDG′(w) > coreG(u).
When the context is clear, we use SD(u) and CSD(u) to

represent the SD and CSD values of vertex u in the current

new graph.

Definition 7 (K-Path-Tree): For the new graph G′ =
(V,E′), for a vertex u with a core number coreG(u), the K-
Path-Tree of u is a DFS tree rooted at u and each vertex w
in the tree satisfies coreG(w) = coreG(u). For simplicity we

use KPTu
G′ to represent K-Path-Tree of u in G′.

When a superior edge of u is inserted, as shown in Lemma

1, only vertices in KPTu
G′ may change their core numbers.

And a more accurate condition was given in [12] for iden-

tifying the set of vertices that may change core numbers, as

shown below.

Lemma 3 ([12]): Given a graph G = (V,E), if an edge

< u, v > is inserted and core(u) ≤ core(v), then only vertices

w in the KPTu
G′ of u and CSDG′(w) > coreG(u) may have

their core numbers increased, and the increase is at most 1.

However, the above Lemma 3 is just suitable for the one

edge insertion scenario. We next generalize it to the scenario of

inserting multiple edges, as shown in Lemma 5 below. Before

giving the result, we need to generalize the concept of K-

Path-Tree to exPath-Tree.

Definition 8 (exPath-Tree): For the new graph G′ = (V,E′)
and the edge set Es, the union of K-Path-Tree for every ui is

called the exPath-Tree of Es in G′, denoted as exPTG′(Es).
By Lemma 3, we can get that when inserting a k-superior

edge set Ek, only vertices w in the exPTG′(Ek) satisfying

CSDG′(w) > k may have their core numbers increase, and

Lemma 1 ensures that these vertices can change their core

numbers by at most 1. This result is summarized in the

following Lemma.

Lemma 4: Given a graph G = (V,E), if a k-superior edge

set Ek is inserted, then in the obtained graph G′, only vertices

w in the exPTG′(Ek) satisfying CSDG′(w) > k may have

their core numbers increased, and the increase is at most 1.

The above Lemma 4 implies that after an edge in a k-

superior edge set Ek is inserted, the vertices whose core

numbers change during the insertion will not change any more

when inserting other edges in Ek. Based on the above result

and Lemma 2, we can get the set of vertices whose core

number change when inserting a superior edge set.

Lemma 5: Given a graph G = (V,E), if a superior edge

set Eq = Ek1
∪ . . . ∪ Ekq

is inserted, and G becomes G′,
then only vertices w in every exPath-Trees of every Eki

for

1 ≤ i ≤ q satisfying CSDG′(w) > ki may have their core

numbers increased, and the core number change is at most 1.

Additionally, by the definition of CSD, we have the fol-

lowing result.

Lemma 6: For a vertex u, if CSDG′(u) ≤ coreG(u), v will

not increase its core number.

Lemma 6 can help us remove the vertices that cannot

increase core numbers.

Lemma 5 and Lemma 6 give accurate conditions to de-

termine the set of vertices that will change the core numbers,

after inserting a superior edge set. In the subsequent Section V,

we will show how to utilize these theoretical results to design

parallel algorithm for incremental core maintenance.

V. INCREMENTAL CORE MAINTENANCE

The parallel incremental core maintenance algorithm is

given in Algorithm 1. We consider the core number update of

vertices after inserting a set of edges E′ to graph G = (V,E).
Let V ′ denote the set of vertices connecting to edges in E′.
The set of core numbers of vertices in V ′ is denoted as C.

The algorithm is executed in iterations. In each iteration,

a parallel algorithm is conducted to find a superior edge set

from the inserted edges. Then for each k-superior edge set Ek,

a parallel algorithm is executed to identify the set of vertices

whose core numbers change, and increase the core numbers

of these vertices by 1.

In Algorithm 2, for each k ∈ C, a child process is assigned

to find the vertices whose core number changes are caused by

the insertion of the computed k-superior edge set. Algorithm 2

first computes SD values for each vertex in exPT of Ek, and

then for each edge ei =< ui, vi >, finds the set of vertices

whose core numbers change due to the insertion of ei. For ei,
a positive Depth-First-Search (DFS) is conducted on vertices

in KPT r
Gs

from the root vertex r, which is one of ui or

vi that has a core number k,1 to explore the set of vertices

whose core numbers potentially change. In the algorithm, the

cd value of each vertex v is used to evaluate the potential

of a vertex to increase its core number. The initial value of

cd(v) is set as CSD(v). For a vertex v, if cd[v] ≤ k, its

core number cannot increase. If a vertex v with cd[v] ≤ k

1If both ui and vi have a core number equal to k, then r can be either ui

or vi.

221822152368

Algorithm 1: SuperiorEdgeInsert(G,E′, V ′, core())
Input
The graph, G = (V,E);
The inserted edge set, E′;
The set of vertices V ′ connected to edges in E′;
The core number core(v) of each vertex in V ;

while E′ is not empty do
1 for each vertex u in V ′ do
2 if u connects to a superior edge in E′ and

core(u) /∈ C then
add core(u) to C;

3 for each core number k in C in parallel do
4 for each vertex u in V ′ with core number k do
5 find a superior edge < u, v > of u from E′;
6 add < u, v > to Ek;

7 insert ∪k∈CEk into G and denote the new graph as

Gs = (V,Es);
8 delete ∪k∈CEk from E′;
9 for each core number k in C in parallel do

Vk ←K-SuperiorInsert(Gs, Ek, core());

10 for each vertex v in ∪k∈CVk do
core(v)← core(v) + 1;

is traversed in the positive DFS procedure, a negative DFS

procedure initiated from v will be started, to remove v and

update the cd values of other vertices with core number k.

After all vertices in KPT r
Gs

are traversed, the vertices that

are visited but not removed increase the core numbers by 1.

Performance Analysis. We next analyze the correctness

and efficiency of the proposed incremental algorithm. At first,

some notations are defined, which will be used in measuring

the time complexity of the algorithm.

For graph G = (V,E), the inserted edge set E′ and a subset

S of E′, let GS = (V,E ∪ S) and K(GS) be the set of core

numbers of vertices in GS .

For GS , let LS = maxu∈V {CSD(u)− coreGS
(u), 0}. As

shown later, LS is the max times a vertex u can be visited by

negative DFS procedures in the algorithm execution.

For k ∈ K(GS), let VS(k) be the set of vertices with

core number k, and N(VS(k)) be the neighbors of vertices

in VS(k). Let nS = max{|VS(k)| : k ∈ K(GS)}.
Denoted by E[VS(k)] the set of edges in GS that are

connected to vertices in VS(k) ∪ N(VS(k)). Then we define

mS as follows, which represents the max number of edges

travelled when computing SD in the case of inserting edges

to GS .

mS = max
k∈K(GS)

{|E[VS(k)]|}.

Furthermore, we define the maximum inserted degree as

the maximum number of edges inserted to each vertex in V ,

denoted as ΔI . Then we have the following result which states

Algorithm 2: K-SuperiorInsert(Gs, Ek, core())

Input
The graph, Gs = (V,Es);
The k-superior edge set, Ek;

The core number core(v) of each vertex in V ;

Initially, S ← empty stack;

for each vertex v ∈ V ,

visited[v]← false, removed[v]← false, cd[v]← 0;

1 compute SD(v) for each vertex v in exPT of Ek;

2 for each ei=< ui, vi > ∈ Ek do
3 if core(ui) ≥ core(vi) then r ← vi;

else r ← ui;

4 if visited[r] = false and removed[r] = false then
5 if CSD[r] = 0 then compute CSD[r];

if cd[r] >= 0 then cd[r]← CSD[r];
else cd[r]← cd[r] + CSD[r];
S.push(r);
visited[r]← true;

6 while S is not empty do
v ← S.pop();

7 if cd[v] > k then
8 for each < v,w >∈ Es do
9 if core(w) = k and SD(w) > k and

visited[w] = false then
S.push(w);
visited[w]← true;

if CSD[w] = 0 then
compute CSD[w]

cd[w]← cd[w] + CSD[w];

10 else
if removed[v] = false then

InsertRemove(Gm, core(), cd[],
removed[], k, v);

11 for each vertex v in Gs do
if removed[v] = false and visited[v] = true then

Vk ← Vk ∪ {v};
12 return Vk;

the correctness and efficiency of our algorithm. The proof of

Theorem 7 can be found in [13].

Theorem 7: Algorithm 1 can update the core numbers of ver-

tices after inserting an edge set E′ in O(ΔI ∗maxS⊆E′{mS+
LS ∗ nS}) time.

VI. EXPERIMENT STUDIES

In this section, we conduct empirical studies to evaluate the

performances of our proposed algorithm. The experiments use

three synthetic datasets and seven real-world graphs, as shown

in Table I.

There are two main variations in our experiments, the

original graph and the inserted edge set. We first evaluate

221922162369

Algorithm 3: InsertRemove(Gs, core(), cd[], removed[], k, r)

Input
The current new graph, Gs = (V,Es);
The core(v), cd[v], removed[v] of each vertex;

The core number k and root r;

1 S ← empty stack;

2 S.push(r);
3 removed[r]← true;

4 while S is not empty do
v ← S.pop();
for each < v,w >∈ Es do

if core(w) = k then
5 cd[w]← cd[w]− 1;

if cd[w] = k and removed[w] = false then
6 S.push(w);
7 removed[w]← true;

the efficiency of our algorithm on real-world graphs, by

changing the size and core number distribution of inserted

edges. Then we evaluate the scalability of our algorithm using

synthetic graphs, by keeping the inserted edge set stable and

changing the sizes of synthetic graphs. At last, we compare our

algorithm with the sequential edge processing approach based

on the state-of-the-art core maintenance algorithm for single

edge insertion, TRAVERSAL given in [12], to evaluate the

acceleration ratio of our parallel algorithm. The comparison

experiments are conducted on four typical real-world datasets.

All experiments are conducted on a Linux machine with

Intel Xeon CPU E5-2670@2.60GHz and 64 GB main memory,

implemented in C++ and compiled by g++ compiler.

Datasets. We use seven real-world graphs and random

graphs generated by three models. The seven real-world

graphs can be downloaded from SNAP [8], including social

network graphs (LiveJournal, Youtube, soc-Slashdot), collab-

oration network graphs (DBLP, ca-astroph), communication

network graphs (WikiTalk) and Web graphs (web-BerkStan).

The synthetic graphs are generated by the SNAP system

using the following three models: the Erdös-Rényi (ER) graph

model [7], which generates a random graph; the Barabasi-

Albert (BA) preferential attachment model [3], in which each

node creates k preferentially attached edges; and the R-MAT

(RM) graph model [5], which can generate large-scale realistic

graphs similar to social networks. For all generated graphs,

the average degree is fixed to 8, such that when the number

of vertices in the generated graphs is the same, the number of

edges is the same as well.

We use the average processing time per edge as the effi-

ciency measurement of the algorithm, such that the efficiency

of the algorithm can be compared in different cases.

A. Performance Evaluation

We evaluate the impacts of three factors on the algorithm

performance: the size of inserted edges, the core number

TABLE I
REAL-WORLD GRAPH DATASETS

Datasets n=|V | m=|E| max degree max core

AP(ca-Astroph) 18.7K 198.1K 504 56

S1(soc-Slashdot) 82.1K 500.5K 2548 54

DB(DBLP) 0.31M 1.01M 343 113

YT(YouTube) 1.13M 1.59M 28754 35

WT(wiki-Talk) 2.4M 9.3M 100029 131

BS(web-BerkStan) 0.68M 13.3M 84230 201

LJ(LiveJournal) 4.0M 34.7M 20334 360

(a) Real-world Graphs (b) Generated Graphs

Fig. 1. Core Distribution

distribution of edges inserted, and the original graph size. The

first factor affects the iterations needed to process the inserted

edges, and the last two factors affect the processing time in

each iteration. The first two evaluations are conducted on real-

world graphs, and the third one is on synthetic graphs.

We first evaluate the impact of the number of inserted edges

on the performances of our algorithm. The results for the

incremental maintenance algorithm are illustrated in Fig. 2(a).

In the experiments, we randomly insert Pi% edges with respect

to the original graph, where Pi = 3 ∗ i for i = 1, 2, 3, 4, 5. It

can be seen that the processing time per edge is less than

1.2ms in all cases, and except for WT and LJ, the processing

time is much smaller than 1.2ms. The figure also shows that

the processing time decreases as the number of inserted edges

increases, which demonstrates that our algorithm is suitable

for handling large amount of edge insertions. In this case,

more edges can be selected into the superior edge set in each

iteration, and hence our algorithm achieves better parallelism.

We then evaluate the impact of the core number distribution

of inserted edges on the algorithm performance. The results are

illustrated in Fig. 2(b). In particular, by the core distributions

showed in Fig. 1(a), we choose five typical core numbers

{K1,K2,K3,K4,K5} in an increasing order for each of the

seven graphs. For each core number, 20% edges of that core

number are selected randomly as the inserted edge set. From

Fig. 2(b), it can be seen that larger core number induces a

larger average processing time. This is because when inserting

edges to vertices with larger core numbers, the degree of these

vertices generated by these inserted edges is larger. In our

algorithm, only one superior edge can be handled for each

vertex in each iteration. Hence, it takes more iterations to

process the inserted edges. But on the other hand, it can be

222022172370

(a) Change Edge Number (b) Change Core Number

Fig. 2. Impact of Inserted Edge Number and Core Number

(a) Change Original Graph Size (b) Comparison

Fig. 3. Impact of Original Graph Size and Comparison with the TRAVERSAL
Algorithm

also seen that the processing time per edge does not vary

significantly.

We finally evaluate the scalability of our algorithm in

synthetic graphs, by letting the number of vertices scale from

215 to 221 and keeping the average degree fixed as 8. The

results are shown in Fig. 3(a). For each graph, we randomly

select 10000 edges as the inserted edge set. Fig. 3(a) shows

that though the graph size increases exponentially, the average

processing time increases linearly. It demonstrates that our

algorithm can work well in graphs with extremely large size.

B. Performance comparison

In this section, we evaluate the acceleration ratio of our

parallel algorithm, comparing with the algorithm sequentially

handling edge insertions. We compare with the state-of-the-

art sequential algorithm, TRAVERSAL given in [12]. The

comparison is conducted on four typical real-world graphs,

DB, WT, YT and LJ as given in Table I. For each graph,

we randomly select 5K-20K edges as the update set. The

evaluation results are illustrated in Fig. 3(b). In the figure,

the x-axis and y-axis represent the number of inserted edges

and the acceleration ratio, respectively.

Fig. 3(b) shows that in almost all cases, our algorithm

achieves an acceleration ratio as large as 103 times in the

four graphs. The acceleration ratio increases as the number of

edges inserted increases, which illustrates that our algorithm

has better parallelism in scenarios of large amounts of graph

changes. Furthermore, it is also shown that our algorithm

achieves larger acceleration ratios as the graph size increases.

All evaluation results show that our algorithm exhibits good

parallelism in core maintenance of dynamic graphs, comparing

with the sequential algorithm. The experiments illustrate that

our algorithm is suitable for handling large amounts of edge

insertions in large-scale graphs, which is desirable in realistic

implementations.

VII. CONCLUSION

In this paper, we present the first known parallel algo-

rithm for core maintenance when multiple edges are inserted.

Our algorithm has significant accelerations comparing with

sequential processing algorithm that handles inserted edges

sequentially, and reduces the number of iterations for handling

s inserted edges from s to the maximum number of edges

inserted to a vertex. Experiments on real-world and synthetic

graphs illustrate that our algorithm implements well in reality,

especially in scenarios of large-scale graphs and large amounts

of edge insertions.

VIII. ACKNOWLEDGEMENTS

This work is supported by the National Natural Science

Foundation of China Grants 61602195, 61572216, 61433019

and U1435217, Grant from the International Science and Tech-

nology Cooperation Program of China (No. 2015DFE12860),

National Key Research and Development Program of China

under grant No.2016QY02D0202, Fundamental Research

Funds for the Central Universities, HUST: 0118210142 and

0180210115.

REFERENCES

[1] H. Aksu, M. Canim, Y.-C. Chang, I, Korpeoglu, and O. Ulusoy. Dis-
tributed K-core View Materialization and Maintenance for Large Dy-
namic Graphs. IEEE Transactions on Knowledge & Data Engineering,
26(10):2439-2452, 2014.

[2] S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis. Distributed
K-core Decomposition and Maintenance in Large Dynamic Graphs. In
DEBS, 2016.

[3] A.L. Barabasi, R. Albert. Emergence of Scaling in Random Networks. In
Science, 286(5439):509-512, 1999.

[4] V. Batagelj and M. Zaversnik. An O(m) Algorithm for Cores Decompo-
sition of Networks. In CoRR, vol. cs.DS/0310049, 2003.

[5] D. Chakrabarti, Y. Zhan, C. Faloutsos. R-MAT: A Recursive Model for
Graph Mining. In ICDM, 2004.

[6] J. Cheng, Y. Ke, S. Chu, M. T. özsu, Efficient Core Decomposition in
Massive Networks. In ICDE, 2011.

[7] P. Erdös, A. Renyi. On the Evolution of Random Graphs. Publication of
the Mathematical Institute of the Hungarian Academy Ofences, 38(1):17-
61, 1960.

[8] L. Jure, K. Andrej. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data, 2014.

[9] W. Khaouid, M. Barsky, V. Srinivasan, et al. K-core Decomposition of
Large Networks on a Single PC. In Proceedings of the VLDB Endowment,
9(1):13-23, 2016.

[10] R.H. Li, J.X. Yu, R. Mao. Efficient core maintenance in large Dy-
namic Graphs. IEEE Transactions on Knowledge & Data Engineering,
26(10):2453-2465, 2014.

[11] A. Montresor, F.D. Pellegrini, D. Miorandi. Distributed K-core De-
composition. IEEE Transactions on Parallel & Distributed Systems,
24(2):288-300, 2011.

[12] A.E. Sariyuce, B. Gedik, G. Jacques-Silva, et al. Incremental K-core De-
composition: Algorithms and Evaluation. The VLDB Journal, 25(3):425-
447, 2016.

[13] N. Wang, D. Yu, H. Jin, C. Qian, and X. Xie, Q-S. Hua. Parallel
Algorithms for Core Maintenance in Dynamic Graphs. Technical Report.
https://arxiv.org/pdf/1612.09368.pdf.

[14] D. Wen, L. Qin, Y. Zhang, X. Lin, and J.X. Yu. I/O Efficient Core Graph
Decomposition at Web Scale. In ICDE, 2016.

222122182371

