
Distributively Computing Random Walk
Betweenness Centrality in Linear Time

Qiang-Sheng Hua, Ming Ai, Hai Jin, Dongxiao Yu, Xuanhua Shi
Services Computing Technology and System Lab/Big Data Technology and System Lab/Cluster and Grid Computing Lab,

School of Computer Science and Technology, Huazhong University of Science and Technology, P.R. China.

Abstract—Betweenness centrality of a node represents its influ-
ence over the spread of information in the network. It is normally
defined as the ratio of the number of shortest paths passing
through the node among all shortest paths. However, the spread
of information may not just pass through the shortest paths which
is captured by a new measure of betweenness centrality based on
random walks [1]. The random walk betweenness centrality of a
node means how often it is traversed by a random walk between
all pairs of other nodes. In this paper, we propose an O(n log n)
time distributed randomized approximation algorithm for calcu-
lating each node’s random walk betweenness centrality with an
approximation ratio (1−ε) where n is the number of nodes and ε
is an arbitrarily small constant between 0 and 1. Our distributed
algorithm is designed under the widely used CONGEST model,
where each edge can only transfer O(log n) bits in each round.
To our best knowledge, this is the first distributed algorithm for
computing the random walk betweenness centrality. Moreover,
we give a non-trivial lower bound for distributively computing the
exact random walk betweenness centrality under the CONGEST
model, which is Ω(n

logn
+D) where D is the network diameter.

This means exactly computing random walk betweenness cannot
be done in sublinear time.

I. INTRODUCTION

In order to quantify the importance of a node in the network,

various centraility indices have been proposed and they are

playing an important role in network analysis [2]. Among these

centrality indices, the study of betweenness centrality has gar-

nered an increasing attention due to its wide applications [3]

and its inherent high computational complexity [4]. A node’s

betweenness centrality value can be roughly regarded as its

influence over the spread of information in the network. There

are mainly two types of definitions of a node’s betweenness

centrality: One is called the shortest path based betweenness

centrality (abbreviated as shortest path betweenness) [5] which

only accounts for the spread of information along the shortest

paths between each pair of nodes; If the information is

spread not just on the shortest paths but via random walks,

this is called the random walk based betweenness centrality

(abbreviated as random walk betweenness) [1]. The random

walk betweenness was first proposed by Newman in 2005 and

since then it has been widely employed in the network analysis

community [6].

Formally, the shortest path betweenness of v (denoted as

CB(v)) is defined as CB(v) =
∑

s �=t�=v σst(v)/σst where σst

indicates the number of shortest paths from s to t and σst(v)
indicates the number of shortest paths from s to t passing

through v.

The state-of-the-art centralized algorithm to compute short-

est path betweenness is the Brandes’ Algorithm [4], which can

calculate all the nodes’ shortest path betweenness centralities

in O(nm) time where n is the number of nodes and m is the

number of edges in the unweighted graph. The time complex-

ity could be O(n3) which is unacceptable for large graphs with

hundreds of millions of nodes. In our previous work, we have

proposed an O(n) time distributed approximation algorithm

to compute the shortest path betweenness with approximation

ratio (1± 1
nc) (c is a constant) under the CONGEST model

where each edge can only transfer O(log n) bits in each round

[5]. We have also proved that the lower bound of distributively

computing shortest path betweenness is Ω(n
logn + D) where

D is the network diameter, indicating the proposed distributed

algorithm for shortest path betweenness is nearly optimal.

As shown in the definition of the shortest path betweenness,

it only considers the shortest paths for flowing the information.

However, when a node starts propagating the information, it

might not know the shortest path between a source and a

destination which makes it difficult to decide which node for

routing. In addition, as indicated in [7], in most networks,

the information indeed is not spread only along the shortest

paths. Taking Fig. 1 as an example, nodes A and B have high

shortest path betweenness centralities, since every shortest

path between the two groups passes through node A and node

B. On the other hand, node C does not lie on any shortest

path between the two groups, so it has a low shortest path

betweenness centrality. However, in most realistic situations,

node C would play an important role in information flows. It

is possible that information does not only flow through the

shortest paths but also through other paths.

In respond to the above observation, Newman proposed

a new measure of betweenness centrality based on random

walks, i.e., the information is flowing along the random walks

[1] instead of restricting on only shortest paths. Roughly

speaking, the random walk betweenness of some node i is

the total number of times the random walk from the source

node s to the destination node t passing through it, averaged

over the random walks for all pairs s and t.
Since computing random walk betweenness needs to know

all possible paths between two arbitrary nodes, it is harder

than computing shortest path betweenness. In [1], Newman

proposed an O((n + m)n2) time algorithm to compute ran-

dom walk betweenness by using matrix operations. The time

complexity could be O(n4), making it unacceptable for large

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.287

2061

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.287

2058

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.287

764

Fig. 1. Nodes A and B have high shortest path betweenness centralities in
this graph but node C does not.

graphs. In our previous paper [5], we have shown it is possible

to distributively computing shortest path betweenness in linear

time. Thus, a natural question is if we can also devise a
linear time distributed algorithm to compute random walk
betweenness. In this paper, we answer this question positively

but using a completely different method from [5].

Notice that the trivial method that asking a designated node

to collect all the other nodes’ neighbors information and then

letting the node calculate the betweenness centrality values

locally cannot get efficient algorithms, as this method needs

O(m) time under the CONGEST model.

In summary, our contributions are as follows:

1) We propose an O(n log n) time distributed approxima-

tion algorithm to compute random walk betweenness

centralities of all nodes with an approximation ratio

(1− ε) where ε is an arbitrarily small constant between

0 and 1. To our best knowledge, this is the first non-

trivial distributed algorithm for computing the widely

used random walk betweenness centrality.

2) We also prove an Ω(n
logn + D) lower bound for ex-

actly computing random walk betweenness under the

CONGEST model, no matter whether the algorithm

computing it is deterministic or randomized. This result

means that exactly computing random walk betweenness

cannot be done in sublinear time.

The remainder of this paper is orgnized as following: The

related works are given in section II. The system model and the

problem definition are given in section III. In section IV, we

introduce the matrix expressions of random walk betweenness

first proposed by Newman. The challenges of designing a dis-

tributed random walk betweenness algorithm are introduced in

section V. In section VI, we propose our distributed algorithms

under the CONGEST model. We analyse the correctness and

the efficiency of our algorithms in section VII. In section

VIII, a non-trivial lower bound of distributively computing

random walk betweenness is proposed. We conclude the paper

in section IX.

II. RELATED WORKS

In this section, we will first introduce three centrality indices

closely related with random walk betweenness, including

network-flow betweeness centrality, pagerank and α-current

flow betweenness centrality; then we will introduce recent

works on distributed random walk algorithms.

A. Network-Flow Betweenness Centrality

The network-flow betweenness centrality was proposed by

Freeman et al. in [8]. A node’s network-flow betweenness is

defined as the amount of network flow through it when the

maximum flow is propagated from the source node s to the

destination node t, averaged over all pairs of s and t. Like

random walk betweenness, the network-flow betweenness does

not only take the shortest paths into account, but also the other

paths. However, as seen in the definition, if a node wants to

calculate the network-flow betweenness, it must “know” the

ideal route, i.e., the maximum flow needs to be known. But in

reality, the information is not always propagated by the ideal

route.

Since the maximum flow problem can be calculated in

O(m2) time by using the augmenting path method in [9],

all nodes’ network-flow betweenness centralities can be cal-

culated in time O(nm2). For distributed algorithms, we can

use the very recent result in [10] to solve the approximate

maximum flow problem in time O((D +
√
n) · no(1)), and

then to compute the approximate network-flow betweenness

centralities for all nodes in time O((D +
√
n) · n1+o(1)).

B. Pagerank

A similar definition with random walk betweenness is

pagerank, which was proposed by Larry Page et al. in [11].

The pagerank of all nodes is calculated by the stationary distri-
bution vector of the following random walk: with probability ε,
the random walk starts at a uniformly selected node, and with

probability (1 − ε), the random walk flows from the current

node to a random neighbor.

A typical centralized algorithm to compute pagerank is as

following: Each node holds N random walks starting at it

and these random walks have stop probability ε. Then each

node estimates its own pagerank as a fraction of N random

walks ending at it (cf. Algorithm 2 in [12]). As for distributed

algorithms, Sarma et al. proposed a distributed algorithm to

compute PageRank in O(log n/ε) time w.h.p (with probability

greater than 1 − 1/nc where c ≥ 1) under the CONGEST
model, where ε is the reset probability used in PageRank

computation which is a fixed constant [13].

Comparing to the definition of random walk betweenness

centralities whose random walk lengths are infinite, the lengths

of random walks in pagerank computation are much smaller.

We can easily find the expectation lengths of the random

walks are 1/ε. Thus, the problem to compute the random walk

betweenness is more difficult than to compute pagerank. And

we cannot simply use the distributed algorithms for computing

pagerank to calculate the random walk betweenness centrality.

C. α-Current Flow Betweenness Centrality

The random walk betweenness can be also called the current

flow betweenness due to its analogy to current flow [1]. In [14],

the authors proposed a variant of current flow betweenness

called α-current flow betweenness centrality. In this new

measure, random walk betweenness is given a parameter α
indicating that for all random walks starting at a node, only

the fraction of α of them do random moves to its neighbor(s),

which can bring down the high cost of computing random

walk betweenness.

20622059765

For computing the α-current flow betweenness, the authors

in [14] proposed an O(m log nε−2 log ε/ logα) time central-

ized approximation algorithm within an absolute error of ε
with arbitrarily high fixed probability. For distributed algo-

rithms, since the definition of the α-current flow betweenness

is in the spirit of pagerank, we can use the techniques in [13]

to distributively compute α-current flow betweenness in time

O(log n/(1− α)).

D. Distributed Algorithms for Random Walk

There are some distributed algorithms for computing ran-

dom walk which is to output the destination node ID when

performing a given l length random walk from a starting

node under the CONGEST model. The authors in [15]

gave a distributed algorithm with time Õ(
√
lD) where Õ

means a polylog(n) factor is hidden and D is the network

diameter. The key insight of this algorithm is that instead of

performing the long length random walks, it performs many

short length random walks simultaneously. Then “stitching”

the short random walks together to get the destination node

ID. They further extended their algorithm into performing k
independent random walks in time Õ(

√
klD+k), and proved

the lower bound of performing l-length random walk is Ω(
√
l).

In [16], Nanongkai et al. further proved an unconditional lower

bound of Θ(l) length random walks in networks with diameter

D is Ω(
√
Dl +D) when D ≤ l ≤ (n/(D3 log n))1/4, which

indicates the upper bound in [15] is optimal.

Compared with the random walk betweenness problem, the

distributed algorithms for the random walk problem cannot be

easily utilized due to the following reasons: (1) The random

walk problem only asks to output the destination node ID,

but the random walk betweenness problem asks each node to

count the number of times the random walk passing through it.

(2) The lengths of random walks in random walk betweenness

computation can be infinite so that we cannot divide them into

short lengths random walks.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Given an undirected graph G = (V,E), where V (|V | = n)

denotes the set of nodes and E (|E| = m) means the set

of edges. Each node can be represented by an O(log n)-bit

size unique identifier (ID). The node u ∈ V can only directly

communicate with its neighbor v ∈ V where {u, v} ∈ E. If

u ∈ V needs to communicate with v ∈ V where {u, v} /∈ E,

the message must be propagated along the nodes of a path

from u ∈ V to v ∈ V .

In the system, we assume synchronous communications

and each node performs the distributed algorithm on its own.

The communication happens on the synchronized and discrete

pulses and the time between two successive pulses is denoted

as a round. In each round, each node can only send an

O(log n)-bit size message to its neighbors. In addition, the

system limits that only a constant number of messages can be

transmitted on each edge in each round, i.e., the bandwidth

of each edge is also O(log n). This communication model

is called CONGEST and it has been widely recognized in

the distributed computing community [17]. Compared with

the LOCAL model where each edge can transmit unbounded

size of messages, designing low time complexity distributed

algorithms under the CONGEST model faces a big chal-

lenge.1 Here the time complexity of an algorithm means the

number rounds the algorithm used when all nodes terminate.

Note that the time complexity does not take each node’s local

computation time into account.

B. Problem Definition

Consider about a “message”, which could be any kind of

information generated by a node s in a network, it intends to

go to a target node t, but it does not know where t is. So it

only performs random moves until it finds itself at target node

t. Thus, in each round, the “message” randomly chooses an

adjacent node with uniform probability from its current node.

This is the so called “Random walk”.

The random walk betweenness centrality of node i is the

expected net number of times the random walk passes it for a

node pair s, t, averaged over all s, t pairs. By “net” we mean

if a walk passes through a node and then passes back through

it later in the opposite direction, the two cancel out and there

is no contribution to the betweenness. This is necessary since

we need to guarantee that a node cannot increase its random

walk betweenness by simply let a random walk pass it back

and forth.

Besides proposing the random walk betweeness measure,

Newman also presented matrix expressions of this new mea-

sure to facilitate its calculations [1]. Our distributed algorithms

will be built upon these matrix expressions. However, we need

to stress that devising an efficient distributed algorithm on the

matrix expressions will be a non-trivial task where the details

will be given in sections V and VI.

IV. MATRIX EXPRESSIONS OF RANDOM WALK

BETWEENNESS

Given a network whose adjacency matrix is denoted by A,

where:

Aij =

{
1 there is an edge between i and j,

0 otherwise.
(1)

Note that
∑

j Aij = d(i) where d(i) is the degree of i.
Consider an “absorbing random walk” starting from s and will

terminate when it arrives at a target t. Before the absorting

random walk terminates, it does random moves around the

network. If the random walk finds itself on node j at some

point, then the probability it will appear on node i is given

by:

Mij =
Aij

d(j)
, for j �= t. (2)

In matrix notation, we can write M = AD−1, where D is

diagonal matrix with Dii = d(i).

1Most distributed problems can be easily solved in O(D) rounds in the
LOCAL model since a node can collect the whole graph information in
O(D) rounds. This is not true under the CONGEST model.

20632060766

In Eq. 2, the only exception is when j = t, the probability

will be 0, since when random walk arrives at t, it will be

absorbed (this random walk will stop at t). So Mit = 0 for

all i. Thus, we can remove the t-th row from matrix M. And

the t-th column can also be removed without affecting any

transitions between other nodes. Let Mt be the matrix with

all these elements removed, and similarly for At and Dt.

Let Mr
t denote the r-th power of matrix Mt. Now for a

random walk starting from s, the probability it finds itself at

j after r steps is given by [Mr
t]js, the probability it moves

to a random adjacent node i in next step is denoted by

d(j)−1[Mr
t]js. The total probabilities from j to i is computed

by summing over all values of r from 0 to∞, i.e., the length of

random walk is from 0 to ∞. So we get the total probabilities

each node is visited by the random walks starting from s as

vector R:

R = D−1
t · (I−Mt)

−1 · s = (Dt −At)
−1 · s (3)

where each element si in the source vector s is defined by:

si =

{
1 when i = s,

0 otherwise.
(4)

But we find there is a node t which is 0 (since random

walks arriving at t are absorbed) is missing in the vector R.

To represent this, we add the t-th row and column back to

the resulting matrix (Dt − At) with values all equaling 0.

We denote the resulting matrix as T. Let V
(st)
i denote the

difference between the total probabilities of random walks

arriving at i from source s and target t, then V
(st)
i is given in

terms of elements in T by:

V
(st)
i = Tis − Tit. (5)

Now the difference between the total probabilities of a

random walk through j and i for source s and target t is given

by the absolute difference |V (st)
i − V

(st)
j |, and this difference

can also be regarded as the “net” flow in the random walk

betweenness centrality’s definition. So the total “net” flows

passing through i for source s and target t is:

I
(st)
i =

1

2

∑
j

Aij |V (st)
i − V

(st)
j |

=
1

2

∑
j

Aij |Tis − Tit − Tjs + Tjt| for i �= s, t.
(6)

As shown by Eq. 6, this expression does not satisfy the

situation when the computing node is the source or the target.

But these nodes also have full fraction of random walks which

is one unit, and they can be written as:

I(st)s = 1, I
(st)
t = 1. (7)

Then the random walk betweenness centrality of i is defined

as the average of the total probabilities that random walk

passing through i over all possible source/target pairs:

bi =

∑
s<t I

(st)
i

1
2n(n− 1)

. (8)

The notations used in this paper are briefly summarized in

Table I.

TABLE I
NOTATIONS AND THEIR DEFINITIONS

Notation Definition

A The adjacency matrix of network (Eq.2).
d(i) The degree of node i.
M The transition matrix of network (Eq.2).
D The diagonal matrix where Dii = d(i).
Mt The transition matrix M without the t-th row and column.
At The adjacency matrix A without the t-th row and column.
Dt The diagonal matrix D without the t-th row and column.
Mr

t The r-th power of matrix Mt.
s The source vector. (Eq.4)
Tt The resulting matrix of (Dt −At)−1.
T Adding back the t-th row and column to Tt.
R The resulting matrix defined by Eq.3.

V
(st)
i Node i’s probabilities difference value for pair (s,t) (Eq.5).

I
(st)
i Total “net” flow through i for pair (s,t) (Eq.6 and Eq.7).
bi Random walk betweenness centrality of node i (Eq.8).
||A||1 ||A||1 the 1-norm of a matrix A.
ξsv The count number of visits from source s on v.

V. CHALLENGES OF DISTRIBUTIVELY UTILIZING THE

MATRIX EXPRESSIONS

Although the matrix expressions can be used to facilitate

the calculation of random walk betweenness in a centralized

manner [1], designing an efficient distributed algorithm under

the CONGEST model is still a challenging task:

1) It is hard to calculate the inversion of matrix in Eq.3. The

reason is computing the inversion of matrix (I −Mt)
needs to sum up the Mr

t where r is from 0 to ∞,

meaning the length of random walk is from 0 to ∞.

If the length of random walk can be ∞, i.e., the random

walk will never stop so that we cannot precisely count

how many times a node is passed through by the random

walk. Meanwhile, if we use the trivial algorithm men-

tioned before, which asks a designated node to collect all

the other nodes’ neighbors information and then let the

node calculate the betweenness centrality values locally,

the time complexity is as high as O(m) which is too

time consuming.

2) In the matrix expression, we need to calculate the

probability a random walk from a given node to another

node. If we transfer the probability value, there will

be two issues: First, in each “step” (we call a random

walk moves from a node to one of its neighbors as “one

step”), each node needs to transfer all the probabilities

that random walks from the other nodes to it, which

are n − 1 messages, to its neighbors. Comparing to

the time of doing random walk which is just O(1) in

each step, the probabilities transferring operation needs

O(n) time, which is too high. Second, the value of the

probability can be very small, but each edge can only

transfer O(log n) bits each round, leading to the value

cannot be transferred precisely. So we decide to use

the random walk process to simulate the procedure of

20642061767

calculating probabilities. But we need to solve the issue

that how many random walks are needed to simulate the

probability.

We will show how to slove these challenges in the following

sections VI and VII.

VI. DISTRIBUTED RANDOM WALK BETWEENNESS

ALGORITHMS

In this section, we will first give the intuitive ideas and

the algorithms overview, and then we will give the detailed

algorithms.

A. Algorithms Overview

In the matrix expressions for computing the random walk

betweenness, we find that by Eq. 5, the total probabilities

(V
(st)
i) that the random walk passes through a node i for

source s and target t can be calculated by the difference

between the total probabilities (Tis) that a random walk

starting at s ending at i and the total probabilities (Tit) that a

random walk starting at t ending at i. So for each source s, we

just need to hold one random walk and let it do random moves

around the graph. And for each node, it just needs to compute

the total probabilities that the random walks pass through it

starting from the other nodes. Thus it obviates the need to

compute O(n2) random walks for each pair (s, t) (cf. Eq.8).

In response to the first challenge, instead of performing

infinite length random walks, in our algorithm, we impose

a bounded length constraint l (decided later) on the random

walks. The main idea of our algorithm is as following. Since it

is identical to choose any node as a target node (a random walk

will terminate when it arrives at the target node), we just need

to choose one node as target t rather than choosing every node

as a target. This process is the same as randomly removing

the t-th row and the t-th colmun in the matrix experssion.

After that, each node i can compute the total probabilities

from i to s (Tis). In response to the second challenge, we

calculate the probability by the fraction between the times

that random walks starting at s passing through node i and

the total number of K (decided later) random walks starting

at s. After each node i computes Tis for all s, it can compute

its own V
(st)
i by Eq.5. Then, each node can compute the total

“net” flows through it by Eq.6. Finally, they can compute their

own random walk betweenness by collecting all their neighbor

j’s V
(st)
j by Eq.8.

B. Detailed Algorithms

Our algorithms are broken into two phases, which are shown

in Algorithm 1 (the counting phase) and Algorithm 2 (the

computing phase) respectively. As shown in Algorithm 1, each

node counts the number of times the random walks starting

at each source passing through it. In Algorithm 2, each node

computes its own random walk betweenness using the counts

it gets in the counting phase.

In Algorithm 1, first, every node v maintains a parameter ξsv
for each source s, where ξsv indicates the number of times the

random walks starting at s passing through v. Then randomly

choose a node t as a target, random walks will be absorbed

when arriving at it (line 2). Each node holds K random walks

for target t, and each random walk has a parameter length
which initially is l (line 3). Each random walk knows which

node is its source. In each round, each random walk goes

to a random neighbor independently with the probability 1/d
where d is the degree of the node. If there is more than one

random walk needed to be sent to the same neighbor, randomly

choose one of them and send it to the neighbor (line 6). If that

random walk arrives at t, then it will terminate, otherwise the

length of it decreases by one. When the length of a random

walk becomes zero, it will terminate too (lines 7-9). When

a node v is visited by a random walk whose source is s, the

count number of visits of source s (i.e. ξsv) increases by 1 (line

10). Since by Eq.6, the “net” flow from a node to its neighbor

is calculated by the difference between them, we do not need

to record the random walk’s direction. When all random walks

terminate, every node will hold the number of visits starting

at each node. Then each node sends all its count numbers to

its neighbors, and uses the count it receives to compute the

random walk betweenness (Algorithm 2).

In Algorithm 2, each node first divides all counts it stores by

its node degree (line 1). Then each node transfers all the counts

to its neighbors (line 2). After that, random walk betweenness

can be computed by each node (lines 3-4).

Now the remaining issue is to decide both the l and the

K values where l is the random walk length and K is the

number of random walks each node should perform. This will

be elaborated in the next section.

VII. ALGORITHM ANALYSIS

In this section, we will analyse the correctness and the

efficiency of our algorithms. Specifically, we will first prove

when l = O(n), the multiplicative error will be a constant

(1 − ε) where ε is an arbitrarily small constant between 0
and 1. Then we will prove that when the number of random

walks starting at each node is K = O(log n), each node can

estimate its random walk betweenness w.h.p. After proving all

the above issues, we will show that our algorithm can compute

the random walk betweenness of all nodes in O(n log n) time

w.h.p.

A. Correctness Analysis

We first prove the number of random walks is decreasing

during the execution of the algorithm, since the random walks

will be absorbed by the target node.

Lemma 1. Given a random walk starting at a random node
s, it will be absorbed when it arrives at node t. Then after D
rounds, the total probabilities at each node except for t are
less than 1.

Proof. Suppose the random walk starts at node s. Since the

random walk moves to a random neighbor in each round, after

D rounds, the probability from s to t is larger than 0, i.e., the

total probabilities at the other nodes are smaller than 1.

20652062768

Algorithm 1 Each node counts the number of random walks

passing through it

Input: Number of nodes n
Output: For each node v and each source s �= t, the number

of visits of random walks ξsv starting at s.

1: Each node v maintains a variable ξsv to count how many

times the random walk starting at s passing through it.

Initially, ξsv = 0 indicates there is no random walk starting

at s has passed through it.

2: Randomly choose a target node t.
3: Each node s maintains K random walks starting at it,

where each random walk maintains source = s and a

parameter length = l (See Theorem 1 and Theorem 3 in

section VII for detailed l and K values).

4: while Some random walk does not terminate do
5: Each node s maintaining at least one random walk

does the following in parallel:

6: For each random walk of node u, choose a random

neighbor v, then send it to node v. If there is more than one

random walk needed to be sent to v, just send a random

walk to v randomly.

7: for Each node u receiving random walk RW do
8: if u is the target node t, or RW.length == 0 then
9: The random walk RW terminates.

10: else
11: s = RW.source
12: ξsv = ξsv + 1
13: end if
14: u maintains RW .

15: RW.length = RW.length− 1
16: end for
17: end while

Algorithm 2 Compute random walk betweenness

Input: For each source s, each node v knows how many times

the random walks strating at s passing through itself (ξsv).

Output: Each node i computes its own random walk be-

tweenness bi.
1: For each node v, dividing all the counts on it by its degree

d(v), i.e., for each source s, ξsv = ξsv/d(v).
2: Each node v sends the updated counts to its neighbors

N(v).

3: Each node i computes I
(st)
i as I

(st)
i =

1
2

∑
j∈N(i) |ξsi − ξti − ξsj + ξtj | for all s, t �= i. If

i == s or i == t, I
(st)
i = 1.

4: Each node i computes its own betweenness centrality bi

as bi =
∑

s<t I
st
i

1
2Kn(n−1)

.

Then in the following Theorem 1, we will prove the

approximation ratio is (1− ε) when l = O(n), which gives a

solution to the first challenge in section V.

Theorem 1. Given a random walk starting at a random node
s, it will be absorbed when it arrives at node t. Then after

O(n) rounds, the remaining fraction of the random walks is
at most ε in our algorithm.

Proof. Let M be a transition matrix of random walk, where

[M]ij expresses the random walk will move to node i when

its current position is at node j. We should remove the t-
th row and the t-th column of M, since the random walk is

absorbed by t when it arrives at t. Denote Mt as the matrix

with these elements removed. Now we assume a random walk

starts at s, and denote [Mr
t]js as the probability at node j after

r rounds. Denote ||A||1 as the 1-norm of a matrix A, which

is the maximum absolute column sum of the matrix, i.e.:

||A||1 = max
1≤j≤n

n∑
i=1

|Aij |.

By Lemma 1 we know:

||MD
t ||1 < 1, (9)

since after D rounds, the total probabilities at each node except

for t are less than 1. Denote λ and x as the eigenvalue and

the eigenvector of a matrix, respectively, i.e., Ax = λx. And

we have:

Akx = λkx, (10)

which means the eigenvalue of the matrix Ak is the k-th power

of matrix A’s eigenvalue.

By Eq.9 and Eq.10, the matrix’s maximum eigenvalue is not

greater than its 1-norm. We know the maximum eigenvalue of

Mt is less than one, i.e., all eigenvalues of the matrix Mt are

less than one. Write the matrix Mt as jordan canonical form:

Mt = PJP−1, (11)

where P is a constant matrix and J is a block diagonal matrix

like:

J =

⎡
⎢⎣ J1

. . .

Jk

⎤
⎥⎦ ,

and the block Ji is a square matrix of the form:

Ji =

⎡
⎢⎢⎢⎢⎣

λi 1

λi
. . .

. . . 1
λi

⎤
⎥⎥⎥⎥⎦ ,

where λi is i-th eigenvalue of Mt. So after k rounds, the

probability at each node except for t is:

Mk
t = PJP−1 · · · · ·PJP−1︸ ︷︷ ︸

k

= PJkP−1.

(12)

So without loss of generality (w.l.o.g), we will find the

maximum element in matrix Jk, and let it equal λε. To find

20662063769

the maximum element in Jk, w.l.o.g., suppose J has only one

(n− 1)× (n− 1) block Jmax and k ≥ n− 1. And we have:

Jk =

⎡
⎢⎢⎢⎢⎣

λk
max

(
k
1

)
λk−1
max · · ·

(
k

n−2

)
λk−n+2
max

λk
max

(
k
1

)
λk−1
max

. . .

. . .
(
k
1

)
λk−1
max

λk
max

⎤
⎥⎥⎥⎥⎦ ,

where
(
k
x

)
=

∏x
i=1

k+1−i
i is the binomial coefficients.

Since
(
k
x

)
≤ (ekx)x:(

k

x

)
λk−x ≤ (

ek

x
)x · λk−x

= (
ek

xλ
)xλk.

(13)

To find the maximum value in Jk, we first compute the

maximum value in function f(x) = (ekxλ)
xλk, where 0 ≤

x ≤ n−2. Notice that f(x) is monotonically increasing when

0 ≤ x ≤ n−2, so when x = n−2, the function gets its maxi-

mum (ek
(n−2)λ)

(n−2)λk. To prove the remaining fraction is not

greater than ε, we let the maximum value equal λε, i.e., we find

the value k to let function f(k) = (ek
(n−2)λ)

(n−2)λk = λ · ε.
Using the common log on both sides gives:

ln((
ek

(n− 2)λ
)(n−2)λk)

= (n− 2)(1 + ln k − ln(n− 2)− lnλ) + k lnλ

= ln ε+ lnλ.

(14)

where λ and ε are constants. So we can get k = O(n), i.e.,

after O(n) rounds, the remaining fraction of random walks is

at most ε.

Theorem 2. The relative error of random walk betweenness
computed by our algorithms is (1− ε).

Proof. Since after l rounds, which we have proved to be O(n)
in Theorem 1, the random walks that have not been absorbed

will do random moves until they are absorbed, and we have

proved that the fraction of remaining random walks is at most

ε. So what we do not take into account is the ε part of the total

random walks, i.e., the relative error is equal to (1 − ε)/1 =
(1− ε).

Finally, in the following Theorem 3, we will prove when

each node holds O(log n) random walks, i.e., K = O(log n),
the algorithm will get its result w.h.p. This gives a solution to

the second challenge in section V.

Theorem 3. Given a source node s, if there are O(log n)
random walks starting at it, then each node will get the
expected number of times that a random walk staring at s
passing through it w.h.p.

Proof. Denote the random walks starting at s passing through

i as X , the expected number of times a random walk starting at

s passing through node i is E(X). By the two-sided Chernoff’s

Bound (e.g. in [18], Corollary 4.6), for any X

P [|X − E(X)| ≥ δE(X)] ≤ 2 exp(−δ2

3
E(X)).

Notice that E(X) = cK where c is a constant and K is the

number of random walks starting at each node, and δ is an

arbitrary constant between 0 and 1. So let K = c log n/(δ
2

3) =
O(log n), we get:

P [|X − E(X)| ≥ δE(X)] ≤ 2 exp(−c log n) = 2n−c.

It indicates when K = O(log n), we can simulate the proba-

bility from a node to another node w.h.p.

Theorem 4. Our algortihms satisfy the CONGEST model.

Proof. In Algortihm 1 and Algorithm 2, each message con-

tains O(log n) bits, and each edge in each round only transfer

O(1) messages. So Algortihms 1 and 2 satisfy the CONGEST
model.

B. Efficiency Analysis

In this subsection, we will analyse the time complexities of

our algorithms.

Lemma 2. Algorithm 1 requires O(n log n) time.

Proof. From Theorem 1 and Theorem 3, in Algorithm 1, each

node holds K = O(log n) random walks, and each random

walk has length of l = O(n). So the total time of Algorithm

1 is O(Kn+ l) = O(n log n).

Lemma 3. Algorithm 2 requires O(n) time.

Proof. In Algorithm 2, each node holds one count for each

source, so the total number of counts is O(n). In each round,

each node sends one count to its neighbors, so it takes O(n)
time to transfer all the counts to its neighbors. Thus, Algorithm

2 takes O(n) time.

Theorem 5. Each node can compute its own approximated
random walk betweenness with an approximation ratio (1−ε)
in O(n log n) time.

Proof. It is obvious from Lemma 2, Lemma 3 and Theorem

2.

VIII. LOWER BOUND

In this section, we will give the lower bound of computing

random walk betweenness centralities of all nodes under

the CONGEST model, where each edge can only transfer

O(log n) bits in each round. The key insight of the proof is to

find the lower bound of deciding the random walk betweenness

of a node is z (explained later) or larger than z.

Theorem 6. For any network with n nodes, any distributed
randomized algorithm A computing exact random walk be-
tweenness of any node requires at least Ω(n

logn + D) time
under the CONGEST model.

To prove Theorem 6, we need to give some existing results

in “Communication Complexity” (abbreviated as cc) and its

20672064770

use in the lower bound proof for distributed graph problems.

First, we give the definition of “Communication Complexity”,

which in general is to ask how many bits are needed to solve

a distributed function computing problem.

Definition 1. (Two-Party Communication Complexity [19])
Given two players Alice and Bob where Alice has an arbitrary
input a and Bob has an arbitrary input b. They intend to
compute a function h with an error probability β. Denote
the set of two party algorithms using public randomness for
computing the function as Aβ . Given an algorithm A ∈ Aβ , we
denote the number of bits that Alice and Bob need to exchange
on inputs a and b using algorithm A as Rcc−public

β (A(a, b)).
And we define:

Rcc−public
β (h) = min

A∈Aβ

Rcc−public
β (A(a, b))

as the minimum number of bits required to be exchanged by
any algorithm for computing h.

We follow a similar approach as in [20], [5] to prove the

lower bound for distributed graph problems via the two-party

communication complexity.

Definition 2. (Cut [20]) Given a graph G = (V,E), a cut
(Ga, Gb, Ck) is a partition of G into two disjoint subgraphs
Ga = (Va, Ea) and Gb = (Vb, Eb) and a cut Ck ⊆ E such
that V = Va

⋃̇
Vb and E = Ea

⋃̇
Eb

⋃̇
Ck, where

⋃̇
means the

disjoint union of two sets. The cut Ck contains ck := |Ck|
edges whose two endpoints are in Va and Vb respectively.

After introducing the “cut” definition, we now give the

connection between the two-party communicaton complexity

and the time complexity of distributed graph problems in the

following:

Theorem 7. ([20]) Let B ≥ 1 and f be any function on
graphs and f ′ be the function derived from f . We have

Rcc−public
β (f ′)
2ck ·B

≤ Rdc−public
β (f),

where Rcc−public
β (f ′) represents the two-party communication

complexity for computing function f ′, Rdc−public
β (f) repre-

sents the distributed time complexity for computing function
f , ck is the number of edges in the cut Ck, and B is the
number of bits each edge can transfer in each round, which
is O(log n) in the CONGEST model.

Definition 3 (Sparse Disjointness Problem). There are two
subsets x and y of set [1, · · · , n], each of which has size k.
Then function DISJk

n(x, y) equals 1 iff x ∩ y = ∅.
To prove Theorem 6, we construct a graph illustrated

in Fig.2. Given an even number M whose value will be

decided later, we first create 2M nodes L1,L2,· · · ,LM and

R1,R2,· · · ,RM . We add an edge between each pair Li and

Ri where i ∈ 1, 2, · · · ,M . Then we choose N subsets

X1,X2,· · · ,XN from L = {L1, L2, · · · , LM}, and N subsets

Y1,Y2,· · · ,YN from R = {R1, R2, · · · , RM} where |Xi| =
|Yi| = M/2.

Fig. 2. The graph construction for the lower bound of computing random
walk betweenness. In this figure, we set M = 4 and N = 2. Whether the
random walk betweenness of P is z or larger than z depends on the whether
the set X is disjoint to the set Y , i.e., each Si is equal to all Tj . For example,
in this figure, S1 is equal to T1 and T2, and S2 is equal to T1 and T2, so
X ∩ Y = ∅ and the random walk betweenness of P is the minimum.

Fig. 3. A special case for N = 1, i.e., there is only one node S1 in X and
only one node T1 in Y . And S1 is only connected to L1 and T1 is only
connected to R1, indicating S1 = T1.

Denote X as the union of the subsets Xi and Y as the

union of the subsets Yi. For each subset Xi (Yi), we denote

it by a node Si (Ti) in the graph. When each subset Xi

contains an element in L, we create an edge between Si and

the corresponding node Lj . When each subset Yi does NOT
contain the element in R, we create an edge between Ti and the

corresponding node Rj . Since the cardinality of each subset

Xi (Yi) is M/2, M/2 edges will be added between each Si

(Ti) and L (R).

Denote Si = Tj iff Si is connected to those Lp ∈ L whose

corresponding nodes Rp ∈ R are connected with Tj . Taking

Fig.2 as an example, we say S1 = T2 since S1 is connected

to L1 and L2 whose corresponding nodes R1 and R2 are

connected with T2. In the middle of the graph, we create two

nodes A and B, which are connected to each other. The node

A (B) also connects with all nodes L (R). Finally, for each

node Si (Ti), we create an edge from it to a node P .

Lemma 4. With a graph constructed above, we can verify that
the random walk betweenness bP of node P as:

bP =

{
z X ∩ Y = ∅
> z otherwise.

Proof. Denote random walk betweenness of P is z when X∩
Y = ∅. We first prove that the random walk betweenness of

P gets the minimum value when Si = Ti (i.e. X ∩ Y = ∅) in

the special case where N = 1, i.e., there is only one node S1

(T1) in the set X (Y), and there is only one edge between X
and L (Y and R).

20682065771

Fig. 4. The graph with the target node T1 removed. In order to compute the
random walk betweenness of P , the target node T1 can be removed since the
random walks will be absorbed when they arrive at T1.

Lemma 5. bP gets the minimum value when Si = Ti in the
special case where N = 1 and there is only one edge between
X and L, so does Y and R.

Proof. As shown in Fig.3, there is only one node S1 (T1) in

set X (Y). W.l.o.g., we connect the node S1 with L1. So T1 is

connected to R1 if S1 = T1, or to other node Ri where i �= 1
in R. Then we will show that the random walk betweenness

of P gets the minimum value when T1 is connected to R1.

We will use the definition to compute the random walk

betweenness of P . First, we remove the node T1 and the

edges connected to it from the graph as shown in Fig.4. To

compute the random walk betweenness of P , we need to sum

the probabilities the random walks reach it and its neighbors

from all the other nodes, then get the result by using Eq.8.

Since after T1 is removed, the random walks from all the

other nodes to P must pass through S1. And the degree of S1

is 2, so the probability the random walks reach Si is as twice

as they reach P . By Eq.6, we can compute the random walk

betweenness by the probabilities that the random walks reach

S1.

Comparing the situation T1 connecting to R1 with the

situation T1 connecting to other node Ri rather than R1, the

differences are the degrees of node R1 and Ri. In the first

situation, the degrees of R1 and Ri are 3 and 2 respectively.

And in the second situation, the degrees of R1 and Ri are

2 and 3 respectively. In these two situations, notice that the

probabilities the random walks reaching S1 are different if

they pass through node R1 or Ri on its journey. And if the

random walks do not pass through R1 or Ri, the probabilities

they reach S1 are the same. Thus we only need to consider

the random walks starting from R1 and Ri, ending at S1.

Consider the graph without T1 and all edges connecting to

it. Assume a random walk starting at R1, then the probabilities

it appears at node L1 and node B are both 1/2 (we do not

take the influence of T1 into account). If a random walk starts

at Ri where i �= 1, the probabilities it appears at node Li and

node B are both 1/2. Since the probabilities at B are both

1/2 in the next step, we only need to compare the probability

from L1 to S1 with the probability from Li to S1. Since all

the paths ending at S1 must pass through node L1, except for

those whose source is P or S1, the probability from L1 to

S1 must be larger than the probability from Li to S1. So the

Fig. 5. A special case that there is one node S1 in X connecting to node
L1, and we want to add a new node S2 into set X connecting to an arbitrary
node in L.

probability a random walk from R1 to S1 is larger than it from

Ri (i �= 1) to S1.

Now consider the situation in Fig.4. If node T1 is connected

to node R1, then the probability from R1 to T1 is 1/3, i.e., the

probability that a random walk starting at R1 is absorbed by

T1 is 1/3. Thus the probability that a random walk from R1 to

S1 decreases by 1/3. Similarly, if T1 is connected to Ri, then

the probability from Ri to S1 decreases by 1/3. Comparing

these two situations, the probability a random walk reaches

S1 decreases more when T1 is connected to R1, since the

probability from R1 to S1 is larger than Ri to S1. Therefore,

node P ’s random walk betweenness is the minimum when T1

is connected with R1, i.e., when S1 = T1.

If there is some edge from X to L and we add a new node

Si into X , then we prove that the random walk betweenness

of P will have the minimum value when Si is connected to

Lp which had edge(s) with X before the addition.

Lemma 6. If we add a node Si to set X where X is not
an empty set, the random walk betweenness of P will be the
minimum when Si is connected to a node Lp ∈ L which had
edge(s) with X before the addition.

Proof. As shown in Fig.5, w.l.o.g., we assume there has been

a node S1 ∈ X connecting to L1 ∈ L, and we add a node S2

into X . To make the random walk betweenness of P be the

minimum, we will prove S2 will be added to connect with L1.

Assume there is a random walk starting at each node. Since

the graph is symmetric, the sum probabilities the random walks

ending at each node in L is identical, except for the random

walks starting at S1, S2 and P . Since we have shown we need

to compute the probabilities to S1, S2 in Lemma 5, we will

compare the probabilities to them under the two situations: S2

is connected to L1, and S2 is connected to other node Li ∈ L
where i �= 1.

Suppose the sum of probabilities that the random walks

ending at each node in L, except for whose source is S1, S2

or P , are all equal to p. The probability to S1 equals p/3 before

S2 is added. If S2 is connected to L1, p will not change since

the random walks whose source is not S1, S2 and P do not

pass through S1 or S2 before they reach Li. The probability

to S1 becomes p/4 since the degree of L1 becomes 4, and the

probability to S2 is also p/4. Then the sum of probabilities to

S1 and S2 is p/2. If S2 is connected to Li where i �= 1, the

20692066772

probability to S1 is unchanged (p/3), and the probability to

S2 is also p/3. Then the sum of probabilities to S1 and S2 is

2p/3, which is larger than the situation when S2 is connected

to L1. So the random walk betweenness of P will be the

minimum when Si is connected to a node Lp ∈ L which had

edge(s) with X before its addition.

Combining Lemma 5 and Lemma 6, we can deduce that the

random walk betweenness of P gets the minimum value when

all Si = Tj , i.e., X ∩ Y = ∅. Assume that we have only one

node S1 in set X where S1 is connected M/2 nodes in L. If

we want to get the the minimum random walk betweenness

of P after adding one node to Y , we need to add a node in

Y which is connected to the corresponding nodes in R by

Lemma 5. And if we want to get the the minimum random

walk betweenness of P after adding one node into X , we need

to add a node which is connected to those connected nodes in

L by Lemma 6. So the random walk betweenness of P gets

the minimum value when X ∩ Y = ∅.

In order to determine the value of M and N , we notice that

when M = O(logN),
(

M
M/2

)
≥ N2. So the number of nodes

in the network n = 2N + 2M + 3 = O(N).

Theorem 8. Suppose Alice and Bob both have a set consisting
of N numbers in range {1, 2, . . . , N2}, if they want to evaluate
whether their sets are disjoint, they need to exchange at least
Ω(N logN) bits.

Proof. From Definition 3, a disjoint function DISJN
N2(x, y)

can be derived where x and y are both subsets of {1, 2, ..., N2}
with size N . Then we can obtain Rcc−public

β (DISJN
N2) =

Ω(N logN) from [21]. As a result, Alice and Bob need to

exchange Ω(N logN) bits to evaluate whether x and y are

disjoint.

Corollary 1. If Alice has a set X = {X1, X2, · · · , XN} and
Bob has a set Y = {Y1, Y2, · · · , YN} where both Xi (|Xi| =
M/2) and Yi (|Yi| = M/2) is a subset of {1, 2, ..., N2}. In
our graph construction, M = O(logN). If there are any Xi

and Yj satisfying Xi ∩ Yj �= ∅, then X ∩ Y �= ∅. Now if Alice
and Bob want to evaluate whether X ∩ Y = ∅, they need to
exchange Ω(N logN) bits.

Proof. Since both subsets Xi and Yi satisfy |Xi| = M/2 and

|Yi| = M/2, we can encode them as a M/2 length binary

sequence where each bit in the sequence indicates whether

the corresponding node is in the subsect or not. For example,

in Fig. 2, the subset X1 which corresponds to the node set

{L1, L2} can be encoded as 1100, and the subset Y1 which

corresponds to the node set {R3, R4} can be encoded as 0011.

Since both sets X and Y have N subsets Xi, the total number

of bits of both X and Y are O(N logN). Then using Theorem

8, which indicates that Rcc−public
β (DISJN

N2) = Ω(N logN),
we know Alice and Bob need to exchange at least Ω(N logN)
bits.

Finally, we will prove that the lower bound of computing

random walk betweenness is Ω(n
logn +D).

Proof of Theorem 6. Given a graph construction like Fig.2,

we denote the random walk betweenness of P as z when

X ∩Y = ∅. If there is a distributed algorithm to compute ran-

dom walk betweenness of P , Alice and Bob can simulate the

algorithm under the construction by using the set disjointness

problem. From Theorem 7 we know that

Rcc−public
β (f ′)
2ck ·B

≤ Rdc−public
β (f),

where Rcc−public
β (f ′) represents the two-party communica-

tion complexity for computing function f ′, and Rdc−public
β (f)

means the distributed time complexity for computing func-

tion f . Notice that in our graph construction like Fig.2,

ck = M , and Rcc−public
β (f ′) = Ω(n/ log n) by Corollary 1

(n = O(N)). Since B = O(log n) (the CONGEST model),

and the time that a message flows from one node to another

node is at most O(D), the time complexity to distributively

compute the random walk betweenness of node P is:

Rdc−public
β (f) ≥ Ω(

n log n

2 logn · log n +D) = Ω(
n

log n
+D).

IX. CONCLUSION

In this paper, by carefully examining the matrix expressions

to compute the random walk betweenness centralities, we find

the two challenges to distributively utilize the matrix expres-

sions under the widely recognized CONGEST model where

each edge can only transfer O(log n) bits in each round where

n is the number of nodes in the network. Then we propose the

first distributed algorithm that overcomes these two challenges.

Our distributed approximation algorithm takes O(n log n) time

and the approximation ratio is (1− ε) where ε is an arbitrarily

small constant from 0 and 1. To our best knowledge, this

is the first non-trivial distributed approximation algorithm

for computing the random walk betweenness of all nodes.

Note that exactly computing random walk betweenness in a

distributed manner might entail a node to collect all the other

nodes’ neighbors information whose time complexity will be

O(m) where m is the number of edges. Besides the linear

time distributed algorithm, we also prove the first non-trivial

Ω(n
logn+D) lower bound for distributively computing random

walk betweenness centralities of all nodes where D is the

diameter of the graph.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural

Science Foundation of China under Grant No. 61572216,

61433019, U1435217, the National Key Research and De-

velopment Plan (No. 2016YFB0200502), and the Fundamen-

tal Research Funds for the Central Universities, HUST:No.

0118210126, 0180210118.

20702067773

REFERENCES

[1] M. E. J. Newman. A measure of betweenness centrality based on random
walks. Social Networks, 27(1):39–54, 2005.

[2] Stanley Wasserman and Katherine Faust. Social network analysis:
Methods and applications, volume 8. Cambridge university press, 1994.

[3] Dimitrios Prountzos and Keshav Pingali. Betweenness centrality: algo-
rithms and implementations. In ACM SIGPLAN Notices, volume 48.
ACM, 2013.

[4] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal
of Mathematical Sociology, 25(2):163–177, 2001.

[5] Qiang-Sheng Hua, Haoqiang Fan, Ming Ai, Lixiang Qian, Yangyang
Li, Xuanhua Shi, and Hai Jin. Nearly optimal distributed algorithm
for computing betweenness centrality. In 36th IEEE International
Conference on Distributed Computing Systems, ICDCS, pages 271–280,
2016.

[6] Nicolas Kourtellis, Tharaka Alahakoon, Ramanuja Simha, Adriana
Iamnitchi, and Rahul Tripathi. Identifying high betweenness centrality
nodes in large social networks. Social Netw. Analys. Mining, 3(4):899–
914, 2013.

[7] Karen Stephenson and Marvin Zelen. Rethinking centrality: Methods
and examples. Social Networks, 11(1):1–37, 1989.

[8] Linton C Freeman, Stephen P Borgatti, and Douglas R White. Centrality
in valued graphs: A measure of betweenness based on network flow.
Social networks, 13(2):141–154, 1991.

[9] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows - theory, algorithms and applications. Prentice Hall, 1993.

[10] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph
Lenzen, and Boaz Patt-Shamir. Near-optimal distributed maximum flow:
Extended abstract. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC, pages 81–90, 2015.

[11] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: bringing order to the web. 1999.

[12] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia
Osipova. Monte carlo methods in pagerank computation: When one
iteration is sufficient. SIAM Journal on Numerical Analysis, 45(2):890–
904, 2007.

[13] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli
Upfal. Fast distributed pagerank computation. Theor. Comput. Sci.,
561:113–121, 2015.

[14] Konstantin Avrachenkov, Nelly Litvak, Vasily Medyanikov, and Marina
Sokol. Alpha current flow betweenness centrality. In International
Workshop on Algorithms and Models for the Web-Graph, pages 106–
117. Springer, 2013.

[15] Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad
Tetali. Efficient distributed random walks with applications. In Proceed-
ings of the 29th Annual ACM Symposium on Principles of Distributed
Computing, PODC, pages 201–210, 2010.

[16] Danupon Nanongkai, Atish Das Sarma, and Gopal Pandurangan. A
tight unconditional lower bound on distributed randomwalk computation.
In Proceedings of the 30th Annual ACM Symposium on Principles of
Distributed Computing, PODC, pages 257–266, 2011.

[17] David Peleg. Distributed computing a locality sensitive approach. SIAM
Monographs on discrete mathematics and applications, 5, 2000.

[18] Michael Mitzenmacher and Eli Upfal. Probability and computing -
randomized algorithms and probabilistic analysis. Cambridge University
Press, 2005.

[19] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cam-
bridge University Press, New York, NY, USA, 1997.

[20] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks
cannot compute their diameter in sublinear time. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 1150–1162, 2012.

[21] Mert Saglam and Gábor Tardos. On the communication complexity
of sparse set disjointness and exists-equal problems. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS, pages
678–687, 2013.

20712068774

