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Abstract—In this paper, we propose an O(N) time dis-
tributed algorithm for computing betweenness centralities of
all nodes in the network where N is the number of nodes. Our
distributed algorithm is designed under the widely employed
CONGEST model in the distributed computing community
which limits each message only contains O(logN) bits. To our
best knowledge, this is the first linear time deterministic dis-
tributed algorithm for computing the betweenness centralities
in the published literature. We also give a lower bound for
distributively computing the betweenness centrality under the
CONGEST model as Ω(D+N/ logN) whereD is the diameter
of the network. This implies that our distributed algorithm is
nearly optimal.

I. INTRODUCTION
Centrality is an important measure used in complex net-

work analysis to quantify the relative importance of a node
within the network [1], [2]. Various centrality indices have
been proposed in the literature [3], including graph central-
ity, closeness centrality, stress centrality and betweenness
centrality. All these centrality measures are closely related
with the shortest paths in the network. Roughly speaking, the
node’s graph centrality is the inverse of its longest distance
to the other nodes; the node’s closeness centrality is the
inverse of the sum of its distances to all the other nodes; the
node’s stress centrality denotes the number of shortest paths
passing through this node; the node’s betweenness centrality
is the ratio of the number of shortest paths passing through
the node over the total number of shortest paths.
Given an undirected and unweighted graph G = (V,E)

where V (|V | = N ) denotes the set of nodes and E (|E| =
M ) denotes the set of edges, we use d(v, u) to denote the
length of the shortest path between v ∈ V and u ∈ V .
In addition, we use σst to denote the number of shortest
paths between s and t, and σst(v) to denote the number of
shortest paths between s and t passing node v. Then the
formal definitions of the above centrality indices are given
below.
The closeness centrality of v:

CC(v) =
1∑

t∈V d(v, t)
. (1)

The graph centrality of v:

CG(v) =
1

maxt∈V d(v, t)
. (2)

The stress centrality of v:

CS(v) =
∑

s�=t�=v

σst(v). (3)

The betweenness centrality (BC) of v1:

CB(v) =
∑

s�=t�=v

σst(v)

σst
. (4)

Motivated by the fast-growing need for computing these
centrality indices on large-scale graphs, our task is to
compute them with a low time complexity. For a node
v, computing the graph centrality CG(v) or the closeness
centrality CC(v) would be much easier than computing the
stress and betweenness centralities since the former two
can be computed by solving the single source shortest path
(SSSP) problem which takes O(M + N) time2. However,
computing the stress centrality or the betweenness centrality
for a node v is much more complicated. The state-of-the-art
Brandes algorithm [3] can compute BC in O(MN) time3.
Even worse, [5] proved that computing BC needs Ω(MN)
time by using the path comparison based methods.
Turning to the distributed algorithm side, very recent re-

sults [6], [7], [8] show that APSP can be computed in O(N)
time4 meaning the graph or the closeness centralities can be
also computed in linear time. The remaining question is,
can we also design a linear time distributed algorithm for
betweenness centrality? In this paper, we give an affirmative
answer. Moreover, our distributed algorithm is based on the
extensively used CONGEST model which limits each sent
message only contains O(logN) bits.
The remainder of this paper is organized as follows. We

give the related work in Section II. The system model
and problem definition are explained in Section III. We
discuss the details of the Brandes algorithm in Section IV.
The challenges for implementing a distributed version of
the Brandes algorithm under the CONGEST model are
discussed in Section V. In Section VI, we will show how to

1We did not consider the random-walk based betweenness centrality
proposed in [4]. Distributively computing this centrality will be our future
work.

2The time means the number of centralized steps.
3The stress centrality can also be computed in a similar way.
4The time means the number of rounds, c.f. subsection III-A.

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.89

271



employ the floating point arithmetic in computing BC and
how to bound the accumulated errors. Then our linear time
distributed algorithms and their analyses are introduced in
Section VII and Section VIII, respectively. The lower bound
for distributively computing the betweenness centrality is
given in Section IX. We conclude the paper and give some
future works in Section X.

II. RELATED WORK

As already mentioned, the fastest centralized algorithm
for computing BC is the Brandes algorithm [3]. The key
insight of this algorithm is it finds a recursive formulation
of BC making it possible to compute BC by solving O(N)
times single source short paths (SSSP). This algorithm needs
O(N+M) space and runs in O(N+M) time on unweighted
graphs and O(NM + N2 logN) time on weighted graphs.
Comparing with the previous O(N3) time [9] algorithm on
unweigheted graphs, it achieves a big improvement on the
sparse graphs where m = O(N). In [5], the authors prove
computing BC needs Ω(MN) time by any path comparison
based methods. The authors in [10] build a connection
between the APSP, the Diameter and the BC problems,
showing that if either problem can be computed in O(N3−α)
(α is a small constant) time, then the other two can also be
computed in O(N3−β) (β is a small constant) time.
Based on the Brandes algorithm, many algorithms have

been devoted to the approximation algorithms. In [11], [12],
the BC values are approximated by extrapolating from the
random subset instead of computing the contribution of all
the other vertices. It needs Ω(logN(N/δ)/ε2) samples to
guarantee that all estimates are within ε from the real value
with probability at least 1− δ. In [13], an adaptive sampling
algorithm is proposed to approximate the high-BC nodes, it
performs an SSSP computation on all other vertices.
Since the SSSP and APSP can be used to compute cen-

trality indices, we need to briefly review typical distributed
algorithms for them. First, the distributed Breadth-First-
Search(BFS) algorithm [14] on the unweighted graphs can
be used to solve SSSP. This only needs O(D) time where D
is the network diameter. For distributively computing APSP,
a series of recent research [6], [7], [8] show that APSP can
be solved under the CONGEST model in time O(N). In
the PhD Thesis [15], Holzer also briefly discussed how to
design distributed algorithms to approximate closeness and
betweenness centralities. Their algorithms are based on sam-
pling and the result is given without algorithm details. For
weighted graphs, distributed BFS algorithm does not apply.
Instead, Nanongkai [16] proposed an elegant randomized
method to compute (1 + ε)-approximation APSP in time
O(ε−2N log2N). In [17], the authors proposed a determin-
istic (1 + ε)-approximation APSP in time O(ε−2N logN),
which imporved the result in [16] with a factor of Θ(logN).

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model
In this paper, we will use the classical distributed comput-

ing model that has been widely employed in the distributed
computing community [14]. We model the network as an
undirected graph G = (V,E), where V and E represent the
nodes and edges, respectively. Each node is represented by a
unique identifier (ID) with O(logN) bits. The node v ∈ V
can only communicate directly with its neighbor u ∈ V
where {u, v} ∈ E. If v ∈ V requires to communicate with
u ∈ V where {u, v} /∈ E, the message must be passed along
the nodes of some path from v ∈ V to u ∈ V .
As for the communication message, we employ the fre-

quently used CONGEST model. This model limits that the
message sent from each node to its neighbors is bounded
in O(logN) bits. Compared with the LOCAL model that
the message size could be unbound, taking the CONGEST
model poses a big challenge for designing efficient dis-
tributed algorithms. For example, in LOCAL model, most
of distributed problems can be solved locally because each
node can collect all the graph’s topology in time D. How-
ever, in CONGEST model, each node v ∈ V cannot
obtain all the Γk(v) (v’s k-hop neighbors) in k rounds. So a
problem which can be solved easily in LOCAL model may
not be solved easily in CONGEST model.
In our system, we use synchronous communications

where all nodes wake up simultaneously and start the
distributed algorithm on their own. The communication
occurs on the discrete and globally synchronized pulses. The
time between two successsive pulses is called a round. In
each round, each node is allowed to send a message to its
neighbors. We further assume the communication channel is
reliable.
We mainly use the time complexity to measure the ef-

ficiency of the distributed algorithms. An algorithm’s time
complexity is the number of the communication rounds until
all nodes terminate. The time complexity has no restriction
of local computation, every node can perform local com-
putation in each round and it has no influence on the time
complexity of distributed computing.

B. Problem Definition
After giving the system model, our research problem

is to design a distributed algorithm for computing the
betweenness centralities of all nodes in the undirected and
unweighted graph under the CONGEST model.

IV. THE CENTRALIZED BRANDES ALGORITHM

Since our distributed algorithm can be seen as a dis-
tributed version of the centralized Brandes algorithm, we
need to first give the algorithm details. Some notations used
in this algorithm and our distributed algorithms are listed in
Table I.
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We first define the set of predecessors of u on the shortest
paths from s:

Ps(u) = {w|(w, u) ∈ E, d(s, u) = d(s, w) + d(w, u)} (5)

where d(s, u) is the length of shortest path from node u to
node s in G. Then the number of shortest paths from s to t
can be calculated as:

σst =
∑

w∈Ps(t)

σsw. (6)

Pair dependency of a pair s, t ∈ V on v ∈ V is defined as:

δst(v) =
σst(v)

σst
. (7)

Brandes defines the dependency of s ∈ V on v ∈ V as:

δs·(v) =
∑
t∈V

δst(v). (8)

In [3], a recursive formulation of δs·(v) is found as:

δs·(v) =
∑

w:v∈Ps(w)

σsv
σsw

· (1 + δs·(w)). (9)

We can compute the BC by Eq.(4) and Eq.(8) as:

CB(v) =
∑

s�=v∈V

δs·(v) (10)

By Eq.(6), we can compute the number of shortest paths
from node s ∈ V to v ∈ V using the Breadth-First-Search
(abbreviated as BFS) algorithm on node s ∈ V . To compute
a source node s’s dependency δs·(v) on node v ∈ V , we
can traverse the nodes in a non-increasing order of distances
from s ∈ V , then we calculate the dependency recursively by
Eq.(9). Finally, we can calculate the betweenness centralities
by Eq.(10).
The pseudo codes of the Brandes algorithm are shown

in Algorithm 1. Firstly, the algorithm performs Breadth-
First-Search on each node s (lines 1-19). When a node w
is visited, the algorithm computes its distance d(s, w) to s
(lines 9-12), counts the number of shortest paths σsw (lines
14-15), and then records its predecessors with respect to
source node s (line 16). Secondly, for each node v, the
algorithm computes its dependency δs·(v) by Eq.(9) (lines
22-24). Finally, the CB(v) of v can be computed by Eq.(10)
(lines 26-28).
In summary, we can see that the Brandes algorithm

computes the betweenness centralities of all nodes by two
steps:
Step 1: Counting the number of all pairs shortest paths (lines
1-18).
Step 2: Calculating the dependency of each node using
Eq.(9), then accumulating the dependencies to compute the
betweenness centralities (lines 19-29).

Table I
NOTATIONS AND THEIR DEFINITIONS

Notation Definition

BFS(v) The BFS tree rooted in node v.
d(v, u) The distance between nodes v and u.
σst The number of shortest paths from s to t.
σst(v) The number of shortest paths from s to t passing v.
δst(v) The pair dependency of pair (s, t) on node v.
δs·(v) The dependency of a node s on the node v.
ψs(v) The ratio of the δs·(v) over σsv .
Ps(v) The predecessors of v on the shortest paths from s.
Rs(v) All descendants of v on shortest paths from source s.
T0 The global clock used for synchronous execution.
Γk(v) Node v’s neighbors where u ∈ Γk(v) has d(v, u) ≤ k.

Algorithm 1 Brandes algorithm [3]
Input: Graph G = (V,E)
Output: CB(v) for each v ∈ V
1: for s ∈ V do
2: initialize S = ∅;Q = ∅;σss = 1; d(s, s) = 0
3: initialize Ps(w) = ∅, w ∈ V
4: initialize σst = 0; d(s, t) = −1, t �= s ∈ V
5: enqueue s→ Q
6: while Q is not empty do
7: dequeue v ← Q
8: push v → S
9: for v’s neighbor w do
10: if d(s, w) < 0 then
11: enqueue w → Q
12: d(s, w)← d(s, v) + 1
13: end if
14: if d(s, w) = d(s, v) + 1 then
15: σsw ← σsw + σsv
16: append v → Ps(w)
17: end if
18: end for
19: end while
20: δs·(v)← 0,v ∈ V
21: while S is not empty do
22: pop w ← S
23: for v ∈ Ps(w) do
24: δs·(v)← δs·(v) +

σsv
σsw

· (1 + δs·(w))

25: end for
26: if v �= s then
27: CB(v)← CB(v) + δs·(v)
28: end if
29: end while
30: end for
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V. CHALLENGES FOR DISTRIBUTIVELY IMPLEMENTING
THE BRANDES ALGORITHM

In this section, we will explain the two challenges for
implementing a distributed version of the Brandes algorithm
under the harsh CONGEST model.
As shown above, the Brandes algorithm has two steps.

Step 1 can be done by building N BFS trees for each
node, we can implement it easily by the algorithm in
[6] on CONGEST model. In Step 2, for calculating the
dependency δs·(v) of s on v, we need to compute the
dependency of s on w where w has the longest distance from
s at first, then w sends the dependency δs·(w) to u where
u ∈ Ps(w). Third, we compute δs·(u) by Eq.(9). These
calculations will be run repeatedly until we have all the
values for computing δs·(v). In Brandes algorithm, in order
to calculate CB(v), we need to calculate the dependencies
of all nodes on v except the dependency of v on v. In this
case, it may happen that a node w needs to send both δs1·(w)
and δs2·(w) to a node v belonging to Ps1(w) and Ps2(w)
at the same time. Even worse, if the node w needs to send
O(N) messages in the same time to a node, this violates
the message size limit of the CONGEST model since each
message contains O(logN) bits. So Step 2 in the Brandes
algorithm is hard to implement in a distributed way under
the stringent CONGEST model. Since the key issue in this
step is to aggregate the dependency values for all nodes,
we call this challenge as the “Aggregation Challenge”. Note
that, although the efficient algorithm in [6] can be used
to fulfill the task of Step 1, it cannot be easily utilized
to overcome the “Aggregation Challenge” (Step 2 of the
Brandes algorithm), i.e., just reversing the BFS construction
in [6] cannot solve Step 2 easily. For example, in Figure
1(d), node v5 is a leaf in BFS(v4). If we use convergecast
in BFS(v4), v5 will send a message to its parent v4 at first.
But for counting δv4·(v5), v5 must wait until v2 has sent a
message to it. So algorithm in [6] cannot be easily used in
Step 2.
On the other hand, since the CONGEST model requires

that each message can only contain O(logN) bits, the values
sent by each node must be O(N). However, the number of
shortest paths from s to t, i.e., σst, could be as large as
O((N/D)D). We call this challenge as the “Large Value
Challenge”.
The main idea of our distributed algorithm is to first

solve the “Large Value challenge” such that each message
will contain only O(logN) bits, and then we will focus on
solving the “Aggregation Challenge”.

VI. SOLUTION FOR THE LARGE VALUE CHALLENGE

As mentioned above, the number of shortest paths from
s to t (σst) could be as large as O((N/D)D) which is ex-
ponential, we will use the floating point arithmetic to tackle
this issue. Although it will incur some calculation errors,
and these errors may also accumulate in computing the

betweenness centralities, we will show these accumulated
errors will be bounded to a small value (depending on the
network size and diameter) in our distributed algorithm.

A. Floating Point Arithmetic
Since all these σst values are positive, we only con-

sider positive values. Given a positive number a, we can
represent it as a = y2x, where x ∈ Z, y ∈ [0, 1].
We use 2L=O(logN) bits to store the values of x and
y. Note that all the numbers represented by 2L bits is
A=

{
u
2L 2

v| − 2L + 1 ≤ v ≤ 2L − 1, 0 ≤ u ≤ 2L − 1
}
.

Now we first consider the relative error introduced by
storing the numbers in floating point format.

Lemma 1. Given a postive number b ∈ B =
(2−2L+1+L, 22

L−1), we can get the b’s ceil estimation value
a such that the relative error between a and b can be
controlled by

|
a

b
− 1| ≤ 2−L+1. (11)

Proof:Write b as b = y2L2x−L, set the estimated value
ŷ ∈ [0, 2L− 1] as �y2L	. Choose x such that |y| > 1

2 . Then
the estimated value a = ŷ2x−L, and we can get

|
a

b
− 1| = |

ŷ − 2Ly

y2L
|. (12)

Notice that y2L ≥ 2L−1, and |ŷ − 2Ly| ≤ 1. So we have

|
a

b
− 1| = |

ŷ − 2Ly

y2L
| ≤

1

2L−1
. (13)

B. Bounding the Accumulated Errors
When we use the floating point number to approximate

the exponential value such as the number of shortest paths,
the accumulated errors incurred will be bounded.
First, in order to reduce error in the computation process,

we define a new notation ψs(v) = δs·(v)/σsv . Then, we can
rewrite the Eq.(9) as

ψs(v) =
∑

w:v∈Ps(w)

(1/σsw + ψs(w)). (14)

By using the above formula, the node will send value
ψs(v) instead of δs·(v) used in the Brandes algorithm.
We define the set of all the descendants of v on shortest

paths from source s as Rs(v).

Lemma 2. For each node v,

ψs(v) =

{
0 Rs(v) = ∅∑

q:q∈Rs(v)
1/σsq Rs(v) �= ∅

. (15)

Proof: The proof is by induction on node v. When v
does not have any descendant on s,

ψs(v) = 0.
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When v has only one descendant q on s, by Eq.(14) we
have:

ψs(v) = 1/σsq.

Now, assuming the inductive hypothesis ψs(w) =∑
q:q∈Rs(w) 1/σsq, we compute the ψs(v) by Eq.(14) where

v is the predecessor of w on s:

ψs(v) =
∑

w:v∈Ps(w)

(1/σsw +
∑

q:q∈Rs(w)

1/σsq).

Because node q is the descendant of w on s, and v is the
predecessor of w, we have:

ψs(v) =
∑

q:q∈Rs(v)

1/σsq.

And the estimated value ψ̂s(v) is

ψ̂s(v) =
∑

w:w∈Rs(v)

1/σ̂sw. (16)

The set Rs(v) is used for computing both ψ̂s(v) and
ψs(v). We suppose ψs(v) > 2−2L+1+L. In addition, by
Lemma 1, σ̂sv > σsv since σ̂sv is the ceil estimated value
of σsv . So the value σ̂sv satisfies σsv < σ̂sv < (1 + η)σsv ,
where η is a relative error O(2−L). Furthermore, we get
inequality σsw < σ̂sw < (1+ η)σsw, w ∈ Rs(v). Then each
estimated value 1/σ̂sw satisfies 1

(1+η)σsw
< 1

σ̂sw
< 1

σsw
, and

we get

(
1

1 + η
)

∑
w:w∈Rs(v)

1

σsw
<

∑
w:w∈Rs(v)

1

σ̂sw
<

∑
w:w∈Rs(v)

1

σsw
.

(17)
Consider Eq.(15) and Eq.(16), we get

(
1

1 + η
)ψs(v) < ψ̂s(v) < ψs(v) (18)

where η is a relative error O(2−L).
Before calculating the betweenness centrality of v, the

value of δs·(v) should be computed again because we just
send ψs(v). So node v needs to receive a message containing
σsw and ψs(w). After all messages have been received,
Eq.(14) need to multiply σsv . As σ̂sv is stored locally and it
is an estimated value, it affects the final value by inequality
σsv < σ̂sv < (1 + η)σsv , then we get another inequality.

(
1

1 + η
)σsv

∑
w:w∈Rs(v)

1

σsw
< σ̂sv

∑
w:w∈Rs(v)

1

σ̂sw

< (1 + η)σsv
∑

w:w∈Rs(v)

1

σsw

(19)

where η is a relative error O(2−L).

Theorem 1. By using the floating point arithmetic, the
betweenness centrality CB(v) for each node v only has the
relative error O(η).

Proof: Consider Eq.(18), Eq.(19) and ψs(v) =
δs·(v)/σsv , then the estimated value δ̂s·(v) satisfies

(
1

1 + η
)δs·(v) < δ̂s·(v) < (1 + η)δs·(v). (20)

Because CB(v) =
∑

s�=v∈V δs·(v), so we can get inequal-
ity

(
1

1 + η
)CB(v) < ĈB(v) < (1 + η)CB(v). (21)

Then, the relative error of CB(v) is O(η), where η is
O(2−L).

Corollary 1. Set L = O(logN), then the betweenness
centrality CB(v) for each node v only has relative error
O(N−c) (c is a constant number).

Proof: We have proved that each node v has relative
error O(η), where η is O(2−L). Since L = O(logN), the
relative error is O(N−c).

C. Messages Containing Exponential Values
In this subsection, we will further discuss when one node

needs to send the message containing the exponential values
to the other node in our distributed algorithms (c.f. the
following section), how to make sure it only sends O(logN)
bits and how to recover these exponential values when
calculating the betweenness centrality.
As described above, we can store σsv and ψs(v) in

floating point format with a relative error O(N−1) even if
the values are O((N/D)D). These exponential values can be
replaced by a = y ·2x, and we just send x and y with 2L bits
where L is O(logN). When a node has received x and y, it
needs to do a reverse operation. After all messages have been
received by node v, we do one more operation ψs(v)× σsv
since ψs(v) is actually δs·(v)/σsv . Finally, we sum all δs·(v)
for each v belonging to different sources. In summary, the
potential exponential values sent in each message, such as
the number of shortest paths σst between s and t and the
ψs(t), are all denoted by floating point arithmetic with 2L
(L = O(logN)) bits.

VII. THE DISTRIBUTED ALGORITHM

To implement the Brandes algorithm on the CONGEST
model, our distributed algorithm also has two corresponding
phases: the counting phase and the aggregation phase. In
the counting phase, we mainly borrow the algorithm from
[6] to implement Step 1 in the Brandes algorithm. In the
aggregation phase, we implement Step 2 in the Brandes
algorithm such that each node can efficiently aggregate all
the necessary values in Eq. (9) and Eq. (14) to compute the
betweenness centralities for all nodes.
We describe counting phase as Algorithm 2. As men-

tioned, the main idea of the algorithm are largely borrowed
from existing work. Concretely, Algorithm 2 is modified
from the efficient distributed algorithm for computing APSP
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in [6]. We modify these algorithms by further computing
parameters like the number of shortest paths between each
pair s and t (σst) and the predecessors for each node v on
the shortest paths from s (Ps(v)).
We build a BFS tree in the graph rooted in a randomly

selected vertex at first. In Algorithm 2 we perform Depth-
First-Search(DFS) in BFS tree, when one node is visited in
BFS tree, it performs BFS to calculate the shortest paths
from it. So after Algorithm 2, we can get the all pairs
shortest paths information. In Brandes algorithm, when a
node v needs to aggregate data in BFS(v), every node u
sends its message in order by the distance d(v, u), the longer
the d(v, u) is, the earlier the node u sends the message to
nodes in Pv(u). So we coordinate each node’s sending time
in the aggregation phase to avoid the message collisions.
The aggregation phase is described in Algorithm 3. We
will prove the algorithm’s correctness in the next section.

Algorithm 2 Counting
Input: BFS(u0)
Output: Each node v gets Lv, D
1: Run a DFS process in BFS(u0) at T0
2: if a node s is visited at first time then
3: DFS waits one time slot
4: Start a BFS(s)
5: Get the BFS(s) starting time Ts
6: end if
7: for each node v in BFS(s) do
8: Lv ← ∅
9: v records Ts, s
10: for v receives messages from neighbor u do
11: if d(s, v) < 0 then
12: d(s, v)← d(s, u) + 1
13: end if
14: if d(s, v) = d(s, u) + 1 then
15: σsv ← σsv + σsu

16: P s(v)← Ps(v)
⋃
u

17: end if
18: v sends d(s, v), σsv to its neighbors
19: end for
20: Lv ← Lv

⋃
(s, Ts, d(s, v), σsv, Ps(v))

21: end for
22: Broadcast the diameter D to all nodes

By performing Algorithm 2, we obtain the diameter
of graph, the lengths and numbers of all pairs shortest
paths. Algorithm 2 performs Depth-First-Search (DFS) in
BFS(u0) from root u0 (line 1). When a node s is visited
in BFS(u0) for the first time at Ts, DFS should wait a
time slot, and node s records Ts and builds a BFS(s) (lines
2-6). Each node v in BFS(s) records its source s, distance
d(v, s), the number of shortest paths σvs, time Ts and its
predecessors Ps(v) on shortest path from s (lines 7-16).
Recording the maximum d(v, s) ∀v, s ∈ V as diameter D,

and letting each node know D (line 22).

Algorithm 3 Computing Betweenness Centrality
Input: D,Lu = (s, Ts, d(s, u), σsu, Ps(u))
Output: CB(u)
1: Resetting the global clock as T0
2: for each node u do
3: Compute Ts(u)← Ts +D − d(s, u)
4: Initialize ψs(u)← 0
5: Initialize CB(u)← 0
6: end for
7: while T0 ≤ maximum (Ts) +D do
8: if u receives (1/σsv + ψs(v)) then
9: ψs(u)← ψs(u) + (1/σsv + ψs(v))
10: end if
11: if T0 = Ts(u) then
12: u sends 1/σsu + ψs(u) to node w ∈ Ps(u)
13: end if
14: T0 ← T0 + 1
15: end while
16: for u ∈ V �= s do
17: δs·(u) = ψs(u) · σsu
18: CB(u)← CB(u) + δs·(u)
19: end for

In Algorithm 3, we compute the BC of each node. We
reset the global time as T0 equalling to the time DFS in
Algorithm 2 starts to avoid the time conflict with the DFS
process (line 1). Each node u computes its sending time to its
predecessors in Ps(u) as Ts(u) = Ts+D−d(s, u) to avoid
message collisions (two messages sent on the same edge),
and initialize the ψs(u) = 0, CB(u) = 0 (lines 2-6). When
T0 equals Ts(u), node u will send the value of 1/σsu+ψs(u)
to its predecessor w ∈ Ps(u) (lines 11-12). When a node u
receives 1/σsu+ψs(u) from its neighbor v, it calculates the
ψs(v) by Eq. (14) (lines 8-9). Each node u (excluding node
s) computes its dependency δs·(u) = ψs(u) · σsu, and its
BC CB(u)=CB(u)+ δs·(u) (lines 16-18), these calculations
are done locally on each node.
Since coordinating each node’s message sending time in

Algorithm 3 plays an important role for avoiding message
collisions, we will give the calculation details based on the
graph in Figure 1. For example, in Figure 1(a), we first reset
the global time because we run Algorithm 3 after all BFS
trees have been built. To calculate the BC, the dependency
of v1 on ∀v �= v1 is needed. In order to calculate the
dependency of v1 on ∀v �= v1, v4 needs to send its message
to v3, v5 at first because v4 is farthest from v1. So we
calculate the message sending time of v4 as Tv1(v4) = Tv1+
D− d(v1, v4) = 0+ 3− 3 = 0 (line 3) where Tv1 , d(v1, v4)
are received from Algorithm 2 (line 5). We can calculate
the other nodes’ sending time in BFS(v1) listed in Figure
1(a). Similarly, we can calculate the sending time of v4 in
BFS(v2) as Tv2(v4) = Tv2+D−d(v2, v4) = 2+3−2 = 3
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in Figure 1(b). The sending time of v4 in BFS(v3) is
Tv3(v4) = Tv3+D−d(v2, v4) = 4+3−1 = 6 in Figure 1(c).
In Figure 1(d), v4 is the root of BFS(v4), so it does not need
to send in BFS(v4). In Figure 1(e), v4’s sending time in
BFS(v5) is Tv5(v4) = Tv5+D−d(v5, v4) = 8+3−1 = 10.
When all nodes receive the messages, they will calculate

the dependencies and the BC on their own. Still taking the
graph in Figure 1 as an example, the dependency of v1 on v2
is δv1·(v2) = σv1v2 ·(1/σv1v3+ψv1(v3)+1/σv1v5+ψv1(v5))
by Eq. (14). Here ψv1(v5) = 1/σv1v4 + ψv1(v4) = 1

2 ,
and ψv1(v3) = 1/σv1v4 + ψv1(v4) = 1

2 . So δv1·(v2) =
1 ·(1+ 1

2+1+
1
2 ) = 3. Similarly, we can compute the depen-

dencies of the other nodes on v2 and will achieve the same
CB(v2) value as the centralized Brandes algorithm which is
CB(v2) = (δv1·(v2)+δv3·(v2)+δv4·(v2)+δv5·(v2))/2 =

7
2 .
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Figure 1. Calculating each node’s sending time in each BFS tree. (a)
Each node’s sending time in BFS(v1). (b) Each node’s sending time in
BFS(v2). (c) each node’s sending time in BFS(v3). (d) Each node’s
sending time in BFS(v4). (e) Each node’s sending time in BFS(v5).

VIII. ALGORITHM ANALYSIS

In this section, we will give both the correctness and
efficiency analyses for our algorithms. In the correctness
analysis, we will prove all of our algorithms satisfy the
CONGEST model; whereas in the efficiency analysis, we
will prove that our proposed distributed algorithms can
compute the betweenness centralities of all nodes in O(N)
rounds where N is the number of nodes in the network.

A. Correctness Analysis

Lemma 3. Algorithm 2 satisfies the CONGEST model.

Proof: The main difference of Algorithm 2 from the
distributed APSP algorithm in [6] lies in lines 14-18. The
algorithm in [6] has proved that it satisfies the CONGEST
model. In addition, all the values sent in lines 14-18 can
be packed into O(logN) bits. So Algorithm 2 satisfies the
CONGEST model.
Before we prove Algorithm 3 also satisfies the

CONGEST model, we first give the important Lemma 4.

Lemma 4. In Algorithm 3, a node u in line 12 will never
send more than one messages to its predecessor w ∈ Ps(u)
and w ∈ Pt(u) simultaneously.

Proof: Suppose a node s needs to aggregate all its
BFS(s)’s data at Ts. Then the node u will send its own data
to its predecessor in Ps(u) at time Ts(u) = Ts+D−d(s, u).
Now, assuming a node t needs to aggregate all its BFS(t)’s
data at Tt > Ts. In our algorithm it means that Tt ≥
Ts + d(s, t) + 1, since it needs at least d(s, t) time from
s to t. So we can prove that Tt(u) = Tt +D − d(u, t) ≥
Ts + d(s, t) + 1 +D − d(u, t) ≥ Ts + 1 + D − d(u, s) >
Ts + D − d(u, s) = Ts(u) where the second to the last
inequality is based on the triangle inequality.
In order to give an intuitive feeling of this proof, we also

take the graph in Figure 1 as an example. If the dependencies
of v1 on ∀v �= v1 and the dependencies of v2 on ∀v �= v2 are
required to be computed at the same time, the v4 will send
1/σv1v4+ψv1(v4) and 1/σv2v4+ψv2(v4) to its predecessors
in Pv1(v4) = {v3, v5} and Pv2(v4) = {v3, v5} respectively
at first (line 12), because v4 is farthest from v1 and v2. In
Algorithm 3, we set Tv1(v4) = Tv1 +D − d(v1, v4), and
Tv2(v4) = Tv2 +D − d(v2, v4) (line 3). Since Tv2 − Tv1 =
d(v1, v2)+1 (lines 3-5 in Algorithm 2), Tv1(v4) < Tv2(v4).
In conclusion, node v4 cannot send messages to v3 and v5
simultaneously.

Lemma 5. Algorithm 3 satisfies the CONGEST model.

Proof: From Lemma 4, a node cannot send more than
one messages to the same node at the same time. In addition,
the value of 1/σsu + ψs(u) (lines 11-12) can be described
by O(logN) bits. So Algorithm 3 satisfies the CONGEST
model.

Theorem 2. Our algorithms satisfy the CONGEST model.

Proof: This is obvious from the above Lemma 3, and
Lemma 5.

B. Efficiency Analysis
Lemma 6. Algorithm 2 requires O(N) time.

Proof: In Algorithm 2, line 1 requires O(N) time.
Lines 2-21 require O(D) time. Line 22 requires O(D) time.
So Algorithm 2 requires O(N +D+D) = O(N) time.

Lemma 7. Algorithm 3 requires O(N) time.

Proof: In Algorithm 3, lines 1-6 require O(1) time by
computing locally. Lines 7-13 require O(N) time. Because
each node u’s sending time Tsu = Ts + D − d(s, u) (line
3), we need to find the last sending time of all nodes. From
Lemma 6, we have Ts = O(N) in Algorithm 2. Since
d(s, u) ≥ 0, we know the last sending time of all nodes is
O(N) (line 8). Lines 16-18 require O(1) time by computing
locally. So Algorithm 3 requires O(N) time.
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Theorem 3. Our algorithms compute betweenness centrality
in O(N) time.

Proof: This is obvious from the above Lemma 6,
Lemma 7.

IX. LOWER BOUND

In this section, we will first give a lower bound con-
struction for distributively computing diameter. Based on
this construction, we then give a lower bound construction
for distributively computing betweenness centrality. Recall
that we employ the CONGEST model where there are at
most O(logN) bits traversing each edge in a communication
round. Moreover, by taking a further look at the diameter
lower bound construction in [18], we have analyzed their
lower bound is Ω( N

x logN + x) where x is the diameter of
the graph. This lower bound decreases with the increase of
x when x ≤

√
N

logN . In our diameter lower bound con-
struction, we will show that deciding whether the network’s
diameter is x or x+2 does not become easier as x increases.

A. Lower Bound of Diameter
In this section, we prove the lower bound of deciding

whether the diameter of the network is x or x + 2. We
assume x ≥ 8. Our construction is illustrated in Figure 2.
Let m be an even integer to be determined later. We first
create 2m nodes L1..m

5 and L′1..m, and add paths of length
x − 6 between corresponding node pairs. Then we choose
n subsets X1..n ( denote X as the set of subsets) of M =
{1, 2, . . . ,m} where the cardinality of each subset Xj is
m/2. For each subset Xj , we create a node Sj and add an
edge (Li, Sj) for all i ∈ Xj . For each node Sj , we add two
more nodes S′j and S′′j such that they are linked to Sj to
form a chain of length 2.
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Figure 2. Construction for lower bound of computing diameter. The thick
lines represent paths of length x − 6. We set m = 4 and n = 2 such
that

( m
m/2

)
≥ n2. The diameter of the graph is x + 2 or x depending

on whether there are Xi and Yj that correctly match with each other. For
example, in this figure, X1 = Y1, X2 = Y2, so S1 and T1 cannot reach
each other without going backwards. The path marked by dash line is one
of the shortest paths from S′

1
to T ′

1
with d(S′

1
, T ′

1
) = x+ 2.

On the right side of Figure 2, we choose another family
of subsets Y1..n such that each subset has cardinality m/2.
Then we create nodes Tj , T ′j and T ′′j in the same way. The

5L1..m represents nodes L1, L2, · · · , Lm, so do the subsequent L′

1..m,
F1..n, T1..n, and S1..n notations.

difference is that an edge (L′i, Tj) is created for all i /∈ Yj
(this construction is different from the construction of left
side, where an edge (Li, Sj) exists for all i ∈ Xj). In the
middle of Figure 2, two points A,B are added and connected
to L1..m and L′1..m respectively. A path of length x − 6 is
also created between nodes A and B. Then we get Lemma
8.

Lemma 8. The distance between S′i and T ′j satisfies

d(S′i, T
′
j) =

{
x Xi �= Yj

x+ 2 Xi = Yj
(22)

and the diameter of the graph can be verified as

D =

{
x X ∩ Y = ∅

x+ 2 otherwise
. (23)

Proof: Let the eccentricity of a node be its maximum
distance to other nodes ecc(v) = maxu d(u, v).
First consider node A. Its distance to B is d(A,B) =

x−6. On the left side, we have d(A,Li) = 1, d(A, Si) = 2,
d(A, S′′i ) = 3, d(A, S′i) = 4. Similar arguments apply to B.
We conclude that ecc(A) = ecc(B) = x− 6 + 4 = x− 2.
For v ∈ L ∪ L′ ∪ S ∪ T , their eccentricity is bounded

by ecc(v) ≤ min{ecc(A) + d(A, v), ecc(B) + d(B, v)} ≤
x− 2 + 2 = x.
Now consider S′i and T ′j . As Si and Tj represent Xi and

Yj , so when Xi �= Yj , the shortest path from S′i to T ′j is
S′i → S′′i → Si → Lp → L′p → Tj → T ′′j → T ′j where
p ∈ Xi ∩ (M − Yj) and the length is x. If Xi = Yj , we
cannot travel from Si to Tj using only left-to-right edges. So
the distance is at least x+ 2. This is witnessed by the path
S′i → S′′i → Si → Lp → A→ B → L′q → Tj → T ′′j → T ′j
where p ∈ Xi, q ∈M − Yj .
As for the distances between nodes in S′∪S′′, the distance

cannot exceed 8. And ecc(S′′i ) = ecc(S′i) − 1. The same
argument applies to the right side.
Notice thatX and Y are sets ofXi and Yj , so we conclude

that

D = max
i,j

d(S′i, T
′
j) =

{
x X ∩ Y = ∅

x+ 2 X ∩ Y �= ∅
.

In order to satisfy the sparse set disjointness model[19],
we set m = O(log n) so that

(
m

m/2

)
≥ n2. It follows that

N = O(n) and D ∈ {x, x + 2}. Our bound is based on
communication complexity theory [20].

Definition 1 (Communication Complexity). Let X,Y, Z be
arbitrary finite sets and let f : X × Y → Z . There are
two players, Alice and Bob, who wish to evaluate f(x, y),
for some inputs x ∈ X and y ∈ Y . Hence, they need
to communicate with each other according to some fixed
protocal P . The communication complexity of f is the
minimum cost of P , over all protocols P that computer
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f . We use D(f) to denote the deterministic communication
complexity.

Definition 2 (Sparse Set Disjointness). Two sets x and y,
each of which is a subset of [1, ..., n] of size k (0 ≤ k ≤
n/2). Function DISJk

n(x, y) is defined to be 1 iff x∩y = ∅.

Theorem 4. If two parties each having n numbers in range
{1, 2, . . . , n2} want to deterministically decide whether their
sets are disjoint, at least Ω(n logn) bits need to be ex-
changed. This lower bound also holds for randomized al-
gorithms.

Proof: From Definition 2, we can derive a sparse set
disjointness problem DISJn

n2(x, y), where x, y are sub-
sets of [1, 2, ..., n2] of size n respectively. Then we get
D(DISJn

n2) = log
(
n2

n

)
[20], and [19] shows that the lower

bound on the randomized complexity of this problem is
Ω(n logn). So, Ω(n logn) bits need to be exchanged to
decide whether x and y are disjoint.

Corollary 2. Two sets X and Y , each of them has n subset
Xi or Yi which is a subset of 1, 2, ..., n2 of size m/2, where
m = logn in our model. The X ∩ Y �= ∅ if there is a
Xi equal to Yj , i, j ∈ [1, n]. Then deciding whether X and
Y are disjoint needs Ω(n logn) bits even for randomized
algorithms.

Proof: We divide the n2 numbers into n groups and
each group is a subset of size m/2. Subset Xi and Yi can be
encoded as a number by lexicographical order of elements.
For example, in Figure 2, The subset X1 can be encoded as
01010 that each bit represents an element of subset. So we
get two sets X and Y , each of them has n numbers. Then
we can use Theorem 4 to get a low bound of Ω(n logn).

Theorem 5. Deciding whether the diameter of the network
is x or x + 2, for x ≥ 8 and x = O(N/ logN) takes at
least Ω(D+N/ logN) time. This bound does not decrease
as x increases.

Proof: If there is a distributed protocol to compute
network diameter, the two parties can simulate the protocol
on the network to solve the sparse set disjointness problem.
In Figure 2, there must be at least Ω(N logN) bits flowing
from the left side to the right side. This takes Ω(N/ logN)
time because only m+1 = O(logN) messages can be sent
between the two sides and each message can carry logN
bits. So at least Ω(D +N/ logN) time is needed. In order
for the construction to work, the minimum diameter x need
to satisfy all the conditions. Consider there is a constant
distance between nodes in S′∪S′′ , so we have to guarantee
that x ≥ 8. And there are x logn nodes between two sides,
O(n) nodes of two sides. The sum of them equal to N . As
we need to guarantee that N = O(n), hence x logn ≤ n
and we get x = O(N/ logN).

B. Lower Bound of Betweenness Centrality
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Figure 3. Construction for betweenness centrality. This is similar to the
construction in Figure 2. Si goes through Fi on its way to Tj if and only if
it cannot go directly through L1..m and L′

1..m. A,B, P,Q are placed so
that CB(Fi) is either 1 or 1.5. In this figure, we only consider the pairs of
nodes that have the shortest paths passing node F1. There are two shortest
paths from S1 to T1, one is marked by dash line and another is marked
by dotted line. Similarly, we can find two shortest paths from S1 to P and
two shortest paths from S1 to Q. So CB(F1) is 1.5.

The construction for betweenness centrality is more com-
plicated. As depicted in Figure 3, L1..m,L′1..m,S1..n,T1..n are
constructed in the same way as previous construction except
that the distance between Li and L′i is one. Nodes F1..n are
added and connected to S1..n. correspondingly. We also add
four more nodes P ,Q,A,B such that they are connected to
F1..n, T1..n, L1..m and S1..n respectively. Then we have
Lemma 9.

Lemma 9. The betweenness centrality of Fi can be verified
as

CB(Fi) =

{
1 Xi /∈ X ∩ Y

1.5 otherwise
. (24)

Proof: The analysis is a bit more complicated. It is easy
to see that nodes in L∪L′ ∪ T ∪ {A,B} do not need to go
through F to reach to each other. As for other nodes, the
only chance that a shortest path contains Fi is that one of
the endpoint is Si.

CB(Fi) = δSiP (Fi) + δSiQ(Fi) +
∑
j

δSiTj
(Fi).

Observe that

d(Si, Tj) =

{
3 Xi �= Yj

4 Xi = Yj
.

On the path from Si to Tj when Xi = Yj , the node can
go through Si → Fi → P → Q → Tj or Si → B → P →
Q→ Tj . This implies

δSiTj
(Fi) =

{
0 Xi �= Yj

0.5 Xi = Yj
.
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So we conclude that

CB(Fi) =

{
1 Xi /∈ X ∩ Y

1.5 otherwise
.

Theorem 6. Computing betweenness centrality to 0.499
relative error needs at least Ω(D + N/ logN) time even
for randomized algorithms.

Proof: We use essentially the same communication
complexity argument. Two parties wish to solve DISJn

2

n .
They construct the left and right side of the graph accord-
ing to their sets and simulate the distributed betweenness
centrality algorithm. Notice that computing to relative error
0.499 suffices to distinguish 1 from 1.5. So Ω(N logN) bits
need to flow across the cut. Each time only O(logN logN)
bits can be sent over the cut, so the time complexity is at
least Ω(D +N/ logN).

X. CONCLUSION

In this paper, we have proposed a linear time (O(N))
distributed algorithm for computing the betweenness cen-
tralities for all nodes in the graph under the widely used
CONGEST model. This algorithm can be seen as a dis-
tributed version of the prominent Brandes algorithm, al-
though we need to overcome the two nontrivial challenges
to make it work under the CONGEST model. To our best
knowledge, this is the first linear time distributed algorithm
that distributively compute the betweenness centralities of all
nodes. In addition, we also give the first non-trivial lower
bound for distributively computing betweenness centralities
as Ω(D + N/ logN) where D is the diameter. Note that
our distributed algorithm only works on the unweighted
graph. For weighted graphs, there are no efficient distributed
algorithms for computing betweenness centralities. But the
idea in [16] which adds virtual nodes in the weighted edges
might also work for approximately computing betweenness
centralities. Finally, designing an O(D + N/ logN) time
distributed algorithm that matches the lower bound will be
also an interesting future work.
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