
Secure Outsourced Matrix Multiplication
with Fully Homomorphic Encryption

Lin Zhu, Qiang-sheng Hua(B), Yi Chen, and Hai Jin

National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, School of Computer Science

and Technology, Huazhong University of Science and Technology,
Wuhan 430074, People’s Republic of China

qshua@hust.edu.cn

Abstract. Fully Homomorphic Encryption (FHE) is a powerful cryp-
tographic tool that enables the handling of sensitive encrypted data
in untrusted computing environments. This capability allows for the
outsourcing of computational tasks, effectively addressing security and
privacy concerns. This paper studies the secure matrix multiplication
problem, a fundamental operation used in various outsourced com-
puting applications such as statistical analysis and machine learning.
We propose a novel method to solve the secure matrix multiplication
Am×l × Bl×n with arbitrary dimensions, which requires only O(l) rota-
tions and min(m, l, n) homomorphic multiplications. In comparison to
the state-of-the-art method [14], our approach stands out by achiev-
ing a remarkable reduction in the number of rotations by a factor of
O(logmax(l, n)), as well as a reduction in the number of homomor-
phic multiplications by a factor of O(l/min(m, l, n)). We implemented
[14,21], and our method using the BGV scheme supported by the HElib
library. Experimental results show that our scheme has the best per-
formance for matrix multiplication of any dimension. For example, for
A16×128 ×B128×4 = C16×4, the runtime of our method is 32 s, while both
[14,21] take 569 seconds.

Keywords: Secure outsourced computation · Fully homomorphic
encryption · Matrix multiplication

1 Introduction

In the era of cloud computing, accessing storage and computing resources
through network-based services has become an economical alternative to con-
struct and maintain costly IT systems. However, the protection of data privacy
poses a significant challenge, particularly when dealing with sensitive informa-
tion in domains such as economics and medicine. Fully Homomorphic Encryption
(FHE) offers a natural solution by enabling computations to be performed on
encrypted data, thereby ensuring data privacy guarantees for outsourced com-
puting tasks in cloud-based applications.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 249–269, 2024.
https://doi.org/10.1007/978-3-031-50594-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50594-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-50594-2_13

250 L. Zhu et al.

FHE has emerged as a promising post-quantum cryptography, primarily due
to the security assumptions it relies on, such as the Learning with Errors (LWE)
problem. In contrast, other privacy-preserved computing technologies like tradi-
tional secure multi-party computation depend on additional security assump-
tions and offer relatively weaker data protection. Gentry [8] introduced the
groundbreaking FHE scheme, which theoretically allows for the evaluation of
any function on ciphertexts. Since then, extensive research efforts have been
devoted to enhancing the efficiency of FHE schemes both in theory and prac-
tice (e.g., [1–4,15,23,26]). Second-generation FHE schemes, including BFV [6],
BGV [1], and CKKS [3], have gained widespread support from mainstream FHE
libraries(e.g., SEAL [18], HElib [13]), owing to their support for SIMD (Single
Instruction Multiple Data) batch processing.

Matrix multiplication is a fundamental operation extensively utilized in sci-
entific, engineering, and machine learning applications, and often demands sub-
stantial computational resources. However, outsourcing matrix computations
to untrusted servers raises concerns about data confidentiality. Consequently,
the development of an efficient and highly secure matrix multiplication scheme
becomes imperative for secure outsourced data processing. Based on FHE, this
paper investigates this problem, and an efficient matrix multiplication scheme
that can adapt to any matrix dimension is proposed.

1.1 System Model

To perform matrix multiplication, a client with limited computational resources
first encrypts the two input matrices with a public key and sends the ciphertexts
with evaluation keys to the computationally powerful cloud server. Then, the
cloud server computes the secure matrix multiplication by performing a series
of homomorphic operations on the ciphertexts. Finally, the client receives the
computation result from the cloud server, and decrypts it by the private key.
In this paper, we adopt a semi-honest model [10], where the server executes the
protocol correctly but tries to obtain additional information from the client data.

1.2 Fully Homomorphic Encryption and Hypercube Structure

In this paper, we specifically study the Ring-LWE variant [9] of the BGV scheme
[1], which is worked over a polynomial ring modulo a cyclotomic polynomial
A = Z[X]/φM (X), where φM (X) is the M -th cyclotomic polynomial. Given a
plaintext space M and a ciphertext space C, an FHE scheme is specified by five
algorithms: KeyGen, Enc, Dec, Add and Mult, which represent key generation,
encryption, decryption, homomorphic addition and multiplication, respectively.
We use Add(ct1, ct2) = ct1 ⊕ ct2 and Mult(ct1, ct2) = ct1 � ct2 to denote the
homomorphic addition and multiplication, respectively, where ct1, ct2 ∈ C. In
addition, the symbol � is also used to represent scalar multiplication between
ct and U , denoted as CMult(ct, U), where ct ∈ C and U ∈ M is scalar.

An important property of RLWE-based FHE schemes is the packing tech-
nique [24], which enables SIMD homomorphic operations. Using this method,

Secure Outsourced Matrix Multiplication with FHE 251

every homomorphic operation over ciphertexts implies element-wise operations
over plaintext slots. The packing technique also supports a basic data move-
ment operation called rotation. Utilizing these operations can reduce space and
time complexity while avoiding the need to repack plaintext data. The BGV
scheme incorporates the hypercube structure for organizing plaintext and its
associated rotation operation [11]. This operation rotates hypercolumns in spe-
cific dimension within a multi-dimensional hypercube structure. This paper
uses a two-dimensional hypercube structure to represent the plaintext matrix.
Rotate1D(ct, 0, k) denotes each column of the matrix rotated down by k posi-
tions, and Rotate1D(ct, 1, k) denotes each row of the matrix rotated right by
k positions. Note that k can also be negative, resulting in the plaintext slots’
upward or leftward rotation. Figure 1 describes the operations mentioned above.
Among these operations, Mult and Rotate1D are the most expensive. Therefore,
to design efficient algorithms, our priority is to reduce the number of Mult and
Rotate1D.

Fig. 1. Typical operations on plaintext slot data in the hypercube structure

1.3 Related Works

For secure matrix multiplication Am×l × Bl×n = Cm×n, a straightforward app-
roach is to encrypt each matrix element into a ciphertext. However, this method
requires a significant number of element-wise multiplication operations, totaling
mln. Recognizing that each element of C is the inner product of a row of A and a
column of B, [25] encrypts each row/column of the matrix into a ciphertext in the
SIMD environment. The number of rotations and homomorphic multiplications
required are mn log l and mn, respectively.

By applying the encoding methods [20,27] to an RLWE-based FHE scheme,
[5] proposed a scheme that encodes a matrix into a constant polynomial in the
plaintext space. This method requires only a single homomorphic multiplication
operation. Subsequently, [19] proposed an improved scheme built upon this work.
However, this approach results in meaningless terms in the resulting ciphertext.
When performing more computations, decryption, and re-encoding procedure
are required to remove these terms, resulting in limited performance in practical
applications.

252 L. Zhu et al.

[16] proposed an efficient square matrix multiplication scheme, which exploits
a row ordering encoding map to transform an l × l matrix as a vector of dimen-
sion l2. This method requires O(l) rotations and homomorphic multiplication
operations. Although [16] extends the square matrix multiplication to rectangu-
lar matrix multiplication Am×l ×Bl×n = Cm×n, it considers only the case where
m | l and l = n. By exploiting the idle slots of the ciphertext, [22] reduces the
number of homomorphic multiplications of [16] to O(1). However, a disadvantage
of this method is that it only works with very few available matrix entries.

The most relevant works [14,17,21], which are based on the Fox Matrix
multiplication method [7], can be regarded as an extension of the diagonal-
order method for solving matrix-vector multiplication [11]. Specifically, given
two l × l square matrices A and B and a hypercube structure, the method first
extracts the i-th diagonal of A, i.e., Ai = {a0,i, a1,i+1, ..., al−1,i+l−1} , where i =
{0, 1, ..., l − 1}. Then, Ai is replicated along the row to get Âi, and each column
of B is rotated upward by i positions to get Bi, i.e., Bi = Rotate1D(B, 0,−i).
The multiplication of A and B is obtained by A · B =

∑l−1
i=0 Âi � Bi. Below we

give an example with l = 3.
⎛

⎝
a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞

⎠ ·
⎛

⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞

⎠ =

⎛

⎝
a00 a00 a00

a11 a11 a11

a22 a22 a22

⎞

⎠ �
⎛

⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞

⎠

⊕
⎛

⎝
a01 a01 a01

a12 a12 a12

a20 a20 a20

⎞

⎠ �
⎛

⎝
b10 b11 b12
b20 b21 b22
b00 b01 b02

⎞

⎠ ⊕
⎛

⎝
a02 a02 a02

a10 a10 a10

a21 a21 a21

⎞

⎠ �
⎛

⎝
b20 b21 b22
b00 b01 b02
b10 b11 b12

⎞

⎠ .

[17,21] use the above method to compute the secure square matrix multipli-
cation, with the difference that the former packs each row of each matrix into a
ciphertext with a linear array structure, while the latter packs the entire matrix
into a ciphertext with a two-dimension hypercube structure. [14] extends the
method to rectangular matrix multiplication. Although the replication proce-
dure for calculating Âi can be implemented by CMult, Rotate1D and Add, this
procedure requires high rotations and space complexities. Motivated by this, we
revisit the secure matrix multiplication problem in this paper.

1.4 Our Contribution

We propose a novel scheme for square matrix multiplication of dimension l
using the hypercube structure based on FHE. Compared to existing meth-
ods [14,21], our scheme asymptotically reduces the number of rotations from
O(l log l) to O(l). Moreover, we extend the square matrix multiplication to rect-
angular matrix multiplication. For matrix multiplication Am×l × Bl×n = Cm×n

of arbitrary dimensions, our scheme requires only O(l) rotations and min(m, l, n)
homomorphic multiplications, while [14] requires O(l logmax(l, n)) rotations and
l homomorphic multiplications. The experimental results also demonstrate the
superiority of our algorithms.

Secure Outsourced Matrix Multiplication with FHE 253

2 Secure Matrix Multiplication Scheme with FHE

For general matrix multiplication Am×l × Bl×n = Cm×n, we discuss the fol-
lowing four cases and give different strategies for each: (1) m = l = n; (2)
l = min{m, l, n}; (3) l = median{m, l, n}; (4) l = max{m, l, n}.

2.1 Square Matrix Multiplication

Suppose the input matrices are Al×l and Bl×l, we let the hypercube structure be
an l×l matrix, then A and B can be put exactly into their hypercube structures.
Based on the most efficient scheme [16], the following equality describes the
square matrix multiplication using the hypercube structure for the case of l = 3.

⎛

⎝
a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞

⎠ ·
⎛

⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞

⎠ =

⎛

⎝
a00 a01 a02

a11 a12 a10

a22 a20 a21

⎞

⎠ �
⎛

⎝
b00 b11 b22
b10 b21 b02
b20 b01 b12

⎞

⎠

⊕
⎛

⎝
a01 a02 a00

a12 a10 a11

a20 a21 a22

⎞

⎠ �
⎛

⎝
b10 b21 b02
b20 b01 b12
b00 b11 b22

⎞

⎠ ⊕
⎛

⎝
a02 a00 a01

a10 a11 a12

a21 a22 a20

⎞

⎠ �
⎛

⎝
b20 b01 b12
b00 b11 b22
b10 b21 b02

⎞

⎠ .

(1)

The homomorphic scheme is described as follows.
Step 1: Denote by ct.A and ct.B the two ciphertexts of input matrices A and

B after being encrypted, respectively. This step obtains ct.A0 by rotating the
k-th row of ct.A by k positions, and obtains ct.B0 by rotating the k-th column
of ct.B by k positions (k = {0, 1, ..., l − 1}).

Taking the calculation of ct.A0 as an example, in round k, we first extract the
k-th row of ct.A using the multiplication mask operation to get ct.dk, and then
rotate ct.dk by k positions per row. Finally, all ct.dk are summed by homomorphic
addition to get ct.A0. The calculation of ct.A0 can be represented as

ct.A0 =
∑

k

ct.dk =
∑

k

Rotate1D(Uk � ct.A, 1,−k),

where k = {0, 1, ..., l − 1}, Uk is an l × l plaintext matrix and is defined by

Uk[I][J] =

{
1 If I = k;
0 otherwise.

.

For the convenience of later discussion, we propose a general algorithm in
Algorithm 1. We denote by RotateAlign(ct.X, 1, l) the rotation of the k-th row of
ct.X by k mod l positions, which can be achieved by Algorithm 1. Similarly, we
use RotateAlign(ct.X, 0, l) to denote the rotation of the k-th column of ct.X by k
mod l positions. The complexity of this step is about 2l additions, 2l constant
multiplications, and 2l rotations.

For step 1, here is an example when l = 3. Let

ct.A =
a00 a01 a02
a10 a11 a12
a20 a21 a22

, ct.B =
b00 b01 b02
b10 b11 b12
b20 b21 b22

.

254 L. Zhu et al.

Algorithm 1: Rotate k-th row(column) of ct.X by k mod l positions
1 procedure RotateAlign(ct.X, dim, l)

Input: ct.X: a ciphertext with D0 × D1 hypercube structure
Input: ct.X0: ciphertext with D0 × D1 hypercube structure padded by zeros
Output: ct.X0: Rotate the k-th row(column) of ct.X by k mod l positions

2 for k = 0 to l − 1 do

3 U [I][J] ←

⎧
⎪⎨

⎪⎩

1 if dim = 1 and I = k (mod l)

1 if dim = 0 and J = k (mod l)

0 otherwise
4 ct.d = U � ct.X � U : a D0 × D1 plaintext matrix
5 ct.d =Rotate1D(ct.d, dim,−k)
6 ct.X0 = ct.X0 ⊕ ct.d

7 end
8 return ct.X0

then

ct.d0 =
a00 a01 a02
0 0 0
0 0 0

, ct.d1 =
0 0 0

a11 a12 a10
0 0 0

, ct.d2 =
0 0 0
0 0 0

a22 a20 a21

.

By performing homomorphic addition on all ct.dk, we get

ct.A0 =
a00 a01 a02
a11 a12 a10
a22 a20 a21

, similarly, ct.B0 =
b00 b11 b22
b10 b21 b02
b20 b01 b12

.

In fact, RotateAlign requires only O(
√

l) rotations by utilizing the baby-
step/giant-step approach (BSGS) [12]. If we select the good dimensions for the
hypercube structure, Rotate1D(ct, d, k) applies one automorphism denoted by
ρkgd . RotateAlign can be rewritten as

∑l−1
k=0 Ukρ

k
gd
(ct) =

∑h−1
i=0 ρfigd

[∑f−1
j=0 U ′

j+fi·
ρjgd(ct)

]
, where h, f ≈ √

l and U ′
j+fi = ρ−fi

gd
(Uj+fi) = Uj+fi. Then we compute

ρjgd(ct) only once during the inner loop for baby steps.
Step 2: There are l rounds in this step. In round i, where i = {0, 1, ..., l −

1}, two rotations and a homomorphic multiplication operation are performed
to calculate Rotate1D(ct.A0, 1,−i) � Rotate1D(ct.B1, 0,−i). Then the results of
these l rounds are summed by the homomorphic addition operation, i.e.,

ct.A · ct.B =
∑

i

Rotate1D(ct.A0, 1,−i) � Rotate1D(ct.B0, 0,−i). (2)

The complexity of this step is about l homomorphic multiplications, l additions,
and 2l rotations. An example of step 2 is Eq. (1).

Actually, the above two steps with slight adjustments are also used heav-
ily in the case of rectangular matrix multiplication. Therefore, for simplicity,

Secure Outsourced Matrix Multiplication with FHE 255

we call the above two steps the fully homomorphic encryption matrix mul-
tiplication main procedure. Assuming that the input matrices are Am×l and
Bl×n and the hypercube structure is D0 × D1, we present FHE-MatMultMain
(ct.A, ct.B,m, l, n,D0,D1) in Algorithm 2, which implements step 1 and step 2.
Table 1 summarizes the time complexity and depth of each step in Algorithm
2. When m = l = n = D0 = D1, Algorithm 2 is the secure square matrix
multiplication algorithm.

Table 1. Time Complexity and Depth of Algorithm 2

Step Add CMult Rot Mult Depth

1 2l 2l 2l - 1Cmult
2 min(m, l, n) - 2min(m, l, n) min(m, l, n) 1Mult
Total 2l +min(m, l, n) 2l 2l + 2min(m, l, n) min(m, l, n) 1CMult+1Mult

∗ When m = l = n, Algorithm 2 is the secure square matrix multiplication algorithm.

Algorithm 2: FHE matrix multiplication main procedure
1 procedure: FHE-MatMultMain (ct.A, ct.B,m, l, n,D0, D1)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C: ciphertext with D0 ×D1 hypercube structure and padded by zeros
Output: ct.C

2 [Step 1:]
3 ct.A0=RotateAlign(ct.A, 1, l) � computing ct.A0

4 ct.B0=RotateAlign(ct.B, 0, l) � computing ct.B0

5 [Step 2:]
6 for i = 0 to min(m, l, n) do
7 ct.C = ct.C ⊕ ct.A0 � ct.B0 � computing ct.C
8 ct.A0 = Rotate1D(ct.A0, 1,−1)
9 ct.B0 = Rotate1D(ct.B0, 0,−1)

10 end
11 return ct.C

2.2 Rectangular Matrix Multiplication

Suppose the input matrices are Am×l and Bl×n, for different matrix dimensions
we divide into three cases and give efficient schemes for each. Consider that for
any matrix, we can transform it into a matrix whose two dimensions are both
to the power of 2 by zero padding. The matrix size increases by up to 4 times
after zero-padding. For the sake of simplicity, we assume that the dimensions m,
l, and n are all to the power of 2.

Rectangular Matrix Multiplication with l = min{m, l, n}. Let the hyper-
cube structure be m×n in this case. Let Am×l be put into the m×n hypercube
structure by padding the right of A with zeros, and let the Bl×n be put into

256 L. Zhu et al.

the m × n hypercube structure by padding the bottom of B with zeros. The
homomorphic scheme is described as follows.

Step 1: This step replicates ct.A along the rows to get ct.A0 and ct.B along
the columns to get ct.B0. Specifically, let the hypercube structure of a ciphertext
ct.A be D0 × D1 and its dim-th dimension has ddim non-zero elements, where
dim = {0, 1} and ddim ≤ Ddim. We denote by Replicate1D(ct, dim, ddim) the
replicating of ddim non-zero elements to the whole hypercube structure along
the dim-th dimension. We give a scheme description in Algorithm 3, which uses
a “repeated doubling” method. Note that in line 3, log(Ddim/ddim)) is an integer
since Di and di are all to the power of 2. Since there are l non-zero elements in
each row of ct.A, this step takes about log n

l rotations and additions to get ct.A0.
Similarly, this step takes about log m

l rotations and additions to get ct.B0.

Algorithm 3: Replicate a ciphertext along the row/column
1 procedure: Replicate1D(ct.X, dim, ddim)

Input: ct.X: ciphertext with D0 × D1 hypercube structure and the number of
non-zero elements is d0 × d1

Output: ct.X0: ciphertext got by replicating ct.X along the dimension dim
2 ct.X0 = ct.X
3 for k = 1 to log(Ddim/ddim) do
4 ct.X0 = ct.X0 ⊕ Rotate1D(ct.X0, dim, k · ddim)
5 end
6 return ct.X0

For step 1, here is an example when m = 4, l = 2, and n = 8. Let A be a
4×2 matrix and B be a 2×8 matrix, then the hypercube structure is 4×8, and

ct.A =

⎛

⎜
⎜
⎝

a00 a01 0 0 0 0 0 0
a10 a11 0 0 0 0 0 0
a20 a21 0 0 0 0 0 0
a30 a31 0 0 0 0 0 0

⎞

⎟
⎟
⎠ , ct.B =

⎛

⎜
⎜
⎝

b00 b01 b02 b03 b04 b05 b06 b07
b10 b11 b12 b13 b14 b15 b16 b17
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (3)

Given ct.A and ct.B in Eq. (3), ct.A0 and ct.B0 are

ct.A0 =
⎜

a00 a01 a00 a01 a00 a01 a00 a01
a10 a11 a10 a11 a10 a11 a10 a11
a20 a21 a20 a21 a20 a21 a20 a21
a30 a31 a30 a31 a30 a31 a30 a31

⎟

, ct.B0 =
⎜

b00 b01 b02 b03 b04 b05 b06 b07
b10 b11 b12 b13 b14 b15 b16 b17
b00 b01 b02 b03 b04 b05 b06 b07
b10 b11 b12 b13 b14 b15 b16 b17

⎟

.

(4)

Step 2: This step performs the FHE matrix multiplication main pro-
cedure with ct.A0 and ct.B0 as input, i.e., ct.C ←FHE-MatMultMain
(ct.A0, ct.B0,m, l, n,m, n). The complexity of this step is about l homomorphic
multiplications, 3l additions, 2l constant multiplications, and 2l rotations (see
Table 1). For example, given ct.A0 and ct.B0 in Eq. (4), ct.C is obtained as

Secure Outsourced Matrix Multiplication with FHE 257

Table 2. Time Complexity and Depth of Algorithm 4 (l = min{m, l, n})

Step Add CMult Rot Mult Depth

1 log mn
l2

- log mn
l2

- -
2 3l 2l 4l l 1CMult
Total 3l + log mn

l2
2l 4l + log mn

l2
l 1CMult+1Mult

a00 a01 a00 a01 a00 a01 a00 a01
a11 a10 a11 a10 a11 a10 a11 a10
a20 a21 a20 a21 a20 a21 a20 a21
a31 a30 a31 a30 a31 a30 a31 a30

b00 b11 b02 b13 b04 b15 b06 b17
b10 b01 b12 b03 b14 b05 b16 b07
b00 b11 b02 b13 b04 b15 b06 b17
b10 b01 b12 b03 b14 b05 b16 b07

a01 a00 a01 a00 a01 a00 a01 a00
a10 a11 a10 a11 a10 a11 a10 a11
a21 a20 a21 a20 a21 a20 a21 a20
a30 a31 a30 a31 a30 a31 a30 a31

b10 b01 b12 b03 b14 b05 b16 b07
b00 b11 b02 b13 b04 b15 b06 b17
b10 b01 b12 b03 b14 b05 b16 b07
b00 b11 b02 b13 b04 b15 b06 b17

We describe the homomorphic matrix multiplication scheme with l =
min{m, l, n} in Algorithm 4. Table 2 summarizes the time complexity and depth
of each step in Algorithm 4.

Algorithm 4: Homomorphic matrix multiplication (l = min{m, l, n})
1 procedure: FHE-RecMatMultl=min{m,l,n} (ct.A · ct.B)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C: ciphertext with m × n hypercube structure and padded by zeros
Output: ct.C: ct.A · ct.B

2 [step 1:]
3 ct.A0 = Replicate1D(ct.A, 1, l) � computing ct.A0

4 ct.B0 = Replicate1D(ct.B, 0, l) � computing ct.B0

5 [step 2:]
6 ct.C ←FHE-MatMultMain (ct.A0, ct.B0,m, l, n,m, n)
7 return ct.C

Rectangular Matrix Multiplication with l = median{m, l, n}. In this
case, if m ≥ l ≥ n, we let the hypercube structure be m × l. Otherwise, if
n ≥ l ≥ m, we let the hypercube structure be l × n. For simplicity, we discuss
the case of m ≥ l ≥ n in detail, and the case of n ≥ l ≥ m is similar.

For m ≥ l ≥ n, let Am×l be put into the m × l hypercube structure, and
let Bl×n be put into the m × l hypercube structure by padding the right and
bottom of B with zeros. The homomorphic scheme is described as follows.

Step 1: This step first replicates ct.B along the rows to get ct.d0, and then
replicates ct.d0 along the columns to get ct.d1. The generation of ct.d0 and ct.d1
can be achieved by Algorithm 3. Since there are n non-zero elements in each
row of ct.B, this step takes about log l

n additions and rotations to get ct.d0.

258 L. Zhu et al.

Similarly, this step takes about log m
l additions and rotations to get ct.d1. For

step 1, here is an example when m = 4, l = 4, and n = 2. Let A be an 8 × 4
matrix and B be a 4 × 2 matrix, then the hypercube structure is 8 × 4, and

ct.A =

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33
a40 a41 a42 a43
a50 a51 a52 a53
a60 a61 a62 a63
a70 a71 a72 a73

, ct.B =

b00 b01 0 0
b10 b11 0 0
b20 b21 0 0
b30 b31 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.ct.d0 =

b00 b01 b00 b01
b10 b11 b10 b11
b20 b21 b20 b21
b30 b31 b30 b31
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, ct.d1 =

b00 b01 b00 b01
b10 b11 b10 b11
b20 b21 b20 b21
b30 b31 b30 b31
b00 b01 b00 b01
b10 b11 b10 b11
b20 b21 b20 b21
b30 b31 b30 b31

.

(5)

Step 2: This step performs the FHE matrix multiplication main proce-
dure with ct.A and ct.d1 as input, i.e., ct.C0 ←FHE-MatMultMain (ct.A, ct.d1,
m, l, n,m, l). The complexity of this step is about n homomorphic multiplica-
tions, 2l + n additions, 2l constant multiplications, and 2l + 2n rotations (see
Table 1). For example, given ct.A and ct.d1 in Equation (5), ct.C0 is obtained as

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32
a40 a41 a42 a43
a51 a52 a53 a50
a62 a63 a64 a60
a73 a70 a71 a72

b00 b11 b20 b31
b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21
b00 b11 b20 b31
b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21

a01 a02 a03 a00
a12 a13 a10 a11
a23 a20 a21 a22
a30 a31 a32 a33
a41 a42 a43 a40
a52 a53 a50 a51
a63 a64 a60 a62
a70 a71 a72 a73

b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21
b00 b11 b20 b31
b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21
b00 b11 b20 b31

=

a00b00 + a01b10 a01b11 + a02b21 a02b20 + a03b30 a03b31 + a00b01
a11b10 + a12b20 a12b21 + a13b31 a13b30 + a10b00 a10b01 + a11b11
a22b20 + a23b30 a23b31 + a20b01 a20b00 + a21b10 a21b11 + a22b21
a33b30 + a30b00 a30b01 + a31b11 a31b10 + a32b20 a32b21 + a33b31
a40b00 + a41b10 a41b11 + a42b21 a42b20 + a43b30 a43b31 + a40b01
a51b10 + a52b20 a52b21 + a53b31 a53b30 + a50b00 a50b01 + a51b11
a62b20 + a63b30 a63b31 + a60b01 a60b00 + a61b10 a61b11 + a62b21
a73b30 + a70b00 a70b01 + a71b11 a71b10 + a72b20 a72b21 + a73b31 (6)

Step 3: The m × l ciphertext ct.C0 can be divided into l
n column blocks,

where each block has size m × n. By rotation and homomorphic addition opera-
tions, this step adds all other column blocks to a column block by exploiting the
“repeated doubling” method, and gets a ciphertext ct.C that encrypts the m×n
matrix C = AB in each column block. This step talks about log l

n rotations and
log l

n additions to get ct.C. For example, given ct.C0 in Eq. (6), ct.C is obtained
as

3
k=0 a0kbk0

3
k=0 a0kbk1

3
k=0 a0kbk0

3
k=0 a0kbk1

3
k=0 a1kbk0

3
k=0 a1kbk1

3
k=0 a1kbk0

3
k=0 a1kbk1

3
k=0 a2kbk0

3
k=0 a2kbk1

3
k=0 a2kbk0

3
k=0 a2kbk1

3
k=0 a3kbk0

3
k=0 a3kbk1

3
k=0 a3kbk0

3
k=0 a3kbk1

3
k=0 a4kbk0

3
k=0 a4kbk1

3
k=0 a4kbk0

3
k=0 a4kbk1

3
k=0 a5kbk0

3
k=0 a5kbk1

3
k=0 a5kbk0

3
k=0 a5kbk1

3
k=0 a6kbk0

3
k=0 a6kbk1

3
k=0 a6kbk0

3
k=0 a6kbk1

3
k=0 a7kbk0

3
k=0 a7kbk1

3
k=0 a7kbk0

3
k=0 a7kbk1

C

Secure Outsourced Matrix Multiplication with FHE 259

Algorithm 5: Summing a ciphertext along the row(column)
1 procedure: Sum1D(ct, dim, ddim)

Input: ct: ciphertext with D0 × D1 hypercube structure
Input: c̄t: ciphertext with D0 × D1 hypercube structure and padded by zeros
Output: c̄t: the ciphertext obtained by summing every d0(d1) rows(columns)

of ct along the columns(rows)
2 for k = log(Ddim/ddim) to 1 do
3 c̄t = c̄t ⊕ Rotate1D(c̄t, dim, k · ddim)
4 end
5 return c̄t

which encrypts the 8 × 2 matrix C = AB in its first two columns.
For the convenience of later discussion, we give a general algorithm in Algo-

rithm 5. Let the hypercube structure of a ciphertext ct be D0 × D1, which can
be viewed as D1

d1
matrice blocks of size D0 × D1

d1
(D1 ≥ d1 and d1 | D1). We

denote by Sum1D(ct, 1, d1) the summation of these D1
d1

matrices along the rows.
Similarly, we denote by Sum1D(ct, 0, d0) the summation of D0

d0
matrices with size

D0
d0

× D1 along the columns. The summation can be achieved by Algorithm 5

Table 3. Time Complexity and Depth of Algorithm 6 (m ≥ l ≥ n)

Step Add CMult Rot Mult Depth

1 log m
n

- log m
n

- -
2 2l + n 2l 2l + 2n n 1CMult+1Mult
3 log l

n
- log l

n
- 1CMult

Total 3l + log ml
n2 2l 4l + log ml

n2 n 1CMult+1Mult

From the above description, we give the homomorphic matrix multiplica-
tion algorithm with m ≥ l ≥ n in Algorithm 6. Table 3 summarizes the time
complexity and depth of each step in Algorithm 6.

Rectangular Matrix Multiplication with l = max{m, l, n}. In this case,
let the hypercube structure be l × l, a natural scheme is to transform it into a
square matrix multiplication by zero padding, and then call Algorithm 2. From
Table 1, the homomorphic multiplication of this scheme is l = max{m, l, n}.

We give an improved scheme, which requires only min{m, l, n} homomorphic
multiplications. We discuss in detail the case of l ≥ m ≥ n below, and the case
of l ≥ n ≥ m is similar.

Step 1: This step replicates ct.A along the columns to get ct.A0, and repli-
cates ct.B along the rows to get ct.B0. Since there are m non-zero elements in
each column of ct.A, this step takes about log l

m rotations and additions to get
ct.A0. Similarly, this step takes about log l

n rotations and additions to get ct.B0.

260 L. Zhu et al.

Algorithm 6: Homomorphic matrix multiplication (m ≥ l ≥ n)
1 procedure: FHE-RecMatMultm≥l≥n (ct.A · ct.B)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C0, ct.C: two ciphertexts with m × l hypercube structure and padded
by zeros

Output: ct.C: ct.A · ct.B
2 [step 1:]
3 ct.d0 = Replicate1D(ct.B, 1, n) � computing ct.d0
4 ct.d1 = Replicate1D(ct.d0, 0, l) � computing ct.d1
5 [step 2:]
6 ct.C0 ←FHE-MatMultMain (ct.A, ct.d1,m, l, n,m, l)
7 [step 3:]
8 ct.C = Sum1D(ct.C0, 1, n) � computing ct.C
9 return ct.C

For step 1, here is an example when m = 2, l = 4, and n = 1. Let A be a 2 × 4
matrix and B be a 4 × 1 matrix, then the hypercube structure is 4 × 4, and

ct.A =

a00 a01 a02 a03
a10 a11 a12 a13
0 0 0 0
0 0 0 0

, ct.B =

b00 0 0 0
b10 0 0 0
b20 0 0 0
b30 0 0 0

, ct.A0 =

a00 a01 a02 a03
a10 a11 a12 a13
a00 a01 a02 a03
a10 a11 a12 a13

, ct.B0 =

b00 b00 b00 b00
b10 b10 b10 b10
b20 b20 b20 b20
b30 b30 b30 b30

.

(7)

Step 2: This step performs the FHE matrix multiplication main pro-
cedure with ct.A0 and ct.B0 as input, i.e., ct.C0 ←FHE-MatMultMain
(ct.A0, ct.B0,m, l, n, l, l). The complexity of this step is about n homomorphic
multiplications, 2l+n additions, 2l constant multiplications, and 2l+2n rotations
(see Table 1). For example, given ct.A0 and ct.B0 in Eq. (7), ct.C0 is obtained as

a00 a01 a02 a03
a11 a12 a13 a10
a02 a03 a00 a01
a13 a10 a11 a12

b00 b10 b20 b30
b10 b20 b30 b00
b20 b30 b00 b10
b30 b00 b10 b20

a00b00 a01b10 a02b20 a03b30
a11b10 a12b20 a13b30 a10b00
a02b20 a03b30 a00b00 a01b10
a13b30 a10b00 a11b10 a12b20

.

(8)

Table 4. Time Complexity and Depth of Algorithm 7 (l ≥ m ≥ n)

Step Add CMult Rot Mult Depth

1 log l2

mn
- log l2

mn
- -

2 2l + n 2l 2l + 2n n 1CMult+1Mult
3 log l

n
- log l

n
- 1CMult

Total 3l + log l3

mn2 2l 4l + log l3

mn2 n 1CMult+1Mult

Step 3: The l×l ciphertext ct.C0 is divided into l
n matrices by column where

each matrix has size l ×n. This step gets ct.C by summing these l
n blocks along

the rows, which can be achieved by Algorithm 5. The complexity of this step is

Secure Outsourced Matrix Multiplication with FHE 261

about log l
n additions and log l

n rotations. For example, given ct.C0 in Eq. (8),
by Algorithm 5,

ct.C =

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

C

,

which encrypts the 2 × 1 matrix C = AB in its first two rows and first column.
We describe the scheme in Algorithm 7. Table 4 summarizes the time com-

plexity and depth of each step in Algorithm 7.

Algorithm 7: Homomorphic matrix multiplication (l ≥ m ≥ n)
1 procedure: FHE-RecMatMultl≥m≥n (ct.A · ct.B)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C0: ciphertext with l × l hypercube structure and padded by zeros
Output: ct.C: ct.A · ct.B

2 [step 1:]
3 ct.A0 = Replicate1D(ct.A, 0,m) � computing ct.A0

4 ct.B0 = Replicate1D(ct.B, 1, n) � computing ct.B0

5 [step 2:]
6 ct.C0 ←FHE-MatMultMain (ct.A0, ct.B0,m, l, n, l, l)
7 [step 3:]
8 ct.C = Sum1D(ct.C0, 1, n) � computing ct.C
9 return ct.C

3 Complexity Analysis

In this section, we give a comparison of the complexity between our algorithm
and the state-of-the-art algorithms [14,16,21]. Note that [16,21] deal mainly
with secure square matrix multiplication. For rectangular matrix multiplication,
a trivial method is to transform rectangular matrices into square matrices by
zero padding and then solve the problem using the existing method. Suppose
the input matrices are Am×l and Bl×n, we denote by k1 = max{m, l, n}, k2 =
median{m, l, n}, k3 = min{m, l, n}, and t = max{l, n}. Table 5 summarizes the
complexities of existing methods and our scheme. It can be found that in all cases,
the number of Mult of our method is the lowest, as k3 = min{m, l, n}. Compared
to [14,21], the Rot of our method is asymptotically reduced by k1 log k1

l and log t
times, respectively.

4 Experimental Evaluation

4.1 Experimental Setup

Our experiments were conducted on a machine equipped with an Intel(R)
Xeon(R) Platinum 8475B@2.5 GHz(16 Cores), accompanied by 128 GB of

262 L. Zhu et al.

Table 5. Complexity comparison between our method and existing methods

Method Add CMult Rot Mult Depth

[16] 6k1 4k1 3k1 + 5
√
k1 k1 2CMult+1Mult

[21] k1 log k1 + k1 k1 k1 log k1 + k1 k1 1CMult+1Mult
[14] l log t+ l l l log t+ l l 1CMult+1Mult

Ours (square) 3l 2l 4l k3 1CMult+1Mult

Ours (rectangular) 3l + log
k3
1

k2k
2
3

2l 4l + log
k3
1

k2k
2
3

k3 1CMult+1Mult

memory. The machine is operated on Ubuntu 22.04.2. Our implementation of
secure matrix computation was built upon the foundation provided by the BGV
scheme in HElib, and the code was compiled using g++ version 11.3.0. We utilized
the openMP library to implement a multi-threaded version, and the number of
threads in the implementation is up to 32.

For any given matrix dimensions, we compare the running time of our method
with [14,21]. Both methods are implemented using HElib and perform better
than [16]. Since [21] is a secure square matrix multiplication method, we adopt
the zero padding strategy utilized in [14] for rectangular matrices. For the choice
of parameters p, M and (m0,m1), we follow the method of [21], where p is the
plaintext modulus, M defines the M -th cyclotomic polynomial, (m0,m1) is the
actual dimensions of the hypercube structure. Based on the conditions specified
in [21]: (1) M = k · m0 · m1 + 1; (2) k,m0 and m1 are pairwise coprime; (3)
ord(p) = k. We can find two generators g1 and g2 with orders m0 and m1

in Z
∗
M such that Z

∗
M/〈p〉 = 〈g0, g1〉. Thus we achieve a hypercube with two

good dimensions m0 and m1. More details can be found in [21]. The Appendix
A.1 contains a discussion of implementation challenges and their corresponding
solutions arising from choosing good dimensions.

The selection of other parameters in HElib maintains the default, except for
setting bits = 600 for the minimal bit length of the ciphertext modulus and H =
120 for the Hamming weight of the secret key. The value of H differs from the
experiments of other work(i.e., 64) in order to meet the minimum requirements
of the latest HElib version. For all the experiments, these settings ensure a
minimum security level of 80 bits. (We remark that the assessment of the security
level in HElib is more stringent and distinct from the homomorphic encryption
standard. It encompasses not only considerations related to polynomial degrees
and ciphertext modulus.)

4.2 Results and Analysis

We compare the performance of our method with existing methods in Fig. 2. It
can be found that for all cases, the execution time (MatMult) of our algorithm
is the lowest. In the case of square matrix multiplication, [14,21] have equal
MatMult time, and our method has the best performance because it requires
O(log l) times fewer rotations (see Table 5). For the same reason, we have a

Secure Outsourced Matrix Multiplication with FHE 263

Fig. 2. The running time (s) of [14,21], our method and speedup ([14] vs. our method).

higher speedup as the matrix dimension increases. In the case of rectangular
matrix multiplication, the MatMult time of [14,21] and our method are positively
correlated with max(m, l, n), l and min(m, l, n), respectively. This is because
different methods require different numbers of Mult (see Table 5). Since our
method requires l/min(m, l, n) times fewer homomorphic multiplications, when
l/min(m, l, n) is maximum ((m, l, n) = (16, 128, 4)), we can achieve the highest
speedup, up to 18X.

Fig. 3. Operating-level runtime breakdown (%).

Figure 3 shows the runtime breakdown at the operational level. The analysis
reveals that a significant portion of the runtime in [14,21] is dedicated to rotation
operations. Due to 2 times more CMult operations than the other methods, the
percentage of CMult runtime is greater in our method. We also provide noise
testing and analysis, interested readers can refer to Appendix A.3.

In addition to the single-threaded implementation shown in Fig. 2, we also
utilize multi-threaded (MT) to implement our method in parallel. We mainly
parallelize the most time-consuming rotations in RotateAlign, and the degree of
parallelism is at most l. Therefore, when the number of threads is greater than
l, the increase in the number of threads does not further reduce the running
time of MatMult. When the number of threads is less than l, the running time

264 L. Zhu et al.

of MatMult decreases almost linearly with the number of threads, which means
that our method has high scalability (Fig. 4).

Fig. 4. Multi-threaded runtime of our method.

5 Conclusion

In this work, we propose an efficient secure matrix multiplication of arbitrary
dimensions based on BGV fully homomorphic encryption scheme. This method
leverages the plaintext slots of the hypercube structure and special homomorphic
operations on them. We conducted extensive microbenchmark tests, employ-
ing parameters closely aligned with real-world applications. The results demon-
strated significant performance enhancements when compared to the state-of-
the-art methods.

It is worth noting that applications built upon the hypercube structure not
only encompass one-dimensional linear structures but also hold potential for
further optimization at the algorithmic complexity level. When our proposed
algorithm serves as a building block in a larger secure computation, temporarily
adjusting parameters is infeasible. It demonstrates scalability on par with one-
dimensional linear structures, coupled with additional options. For instance, in
situations where there are many non-data dependent matrix multiplications, and
the parameters allow encoding multiple matrices at once, the algorithm can be
easily adapted to enable single-ciphertext multi-matrix computations. In situa-
tions where only one single small matrix multiplication is involved, the extended
version can be used to achieve slight performance improvements. Furthermore,
due to the characteristics of hypercube encoding, such an adaptation simplifies
the implementation of general homomorphic linear transformation with fewer
homomorphic operations, leading to asymptotic reductions in computationally
expensive homomorphic operations such as homomorphic multiplication and
rotation throughout the entire application. Consequently, we posit that this work
can serve as a valuable source of inspiration for subsequent work utilizing hyper-
cube structure packing techniques.

Secure Outsourced Matrix Multiplication with FHE 265

In our future work, we aim to expand the algorithm’s capabilities to handle
considerably large matrices, thereby facilitating its utility in big data privacy
applications that involve massive datasets as inputs.

Acknowledgements. This work was supported in part by National Key Research and
Development Program of China (Grant No. 2022YFB4501500 and 2022YFB4501502).

A Appendix

A.1 Practical Implementation Issues and Solutions

Choosing the good dimensions in the hypercube can minimize the overhead of
a Rotation1D. Therefore, for performance reasons, the implementation always
prioritizes the hypercube with good dimensions. However, to meet this require-
ment, the actual hypercube size chosen is usually larger than the expected min-
imum size. For example, when using Algorithm 2 to calculate a 3 × 3 square
matrix multiplication, the expected hypercube size is 3 × 3, while the actual
size that fulfills the requirement is 3 × 4 (refer to the first matrix in Fig. 5a).
Calling RotateAlign directly becomes incorrect due to the presence of redundant
columns. By observing the terminal error state(i.e., the second matrix in Fig. 5a),
it becomes apparent that the correction can be performed in a single step, utiliz-
ing 2 CMult, 1 Rotate1D, and 1 Add(see the changes brought by the first arrow in
Fig. 5b). Subsequent operations of Rotate1D can also be corrected by employing
an additional CMult and Add, as illustrated in Fig. 5b. These corrections only
introduce a few constant operations.

One alternative is to expand the dimensions of the hypercube, although this
may not always be feasible. Specifically, we can set the expected value of m1 to
3m∗

1 −2(m∗
1 denotes the minimum number of columns required in the aforemen-

tioned algorithm), thereby ensuring the correctness of all subsequent steps with-
out requiring the correction steps shown in Fig. 5b. Figure 6 depicts the state

Fig. 5. An overview of the error in raw RotateAlign and the modified algorithms
addressing the issue in subsequent steps.

266 L. Zhu et al.

of the extended version after performing a raw RotateAlign. All the columns
required for subsequent steps have been prepared. This extension may seem to
degrade performance due to an increase in M . However, the constraints of k,
m0, and m1 as mentioned in Sect. 4.1, allow for generating similar values of M
when the expected size is selected as (m∗

0, 3m
∗
1−2) or (m∗

0,m
∗
1). More details and

suggestions for leveraging the extended version can be found in Appendix A.2.

Fig. 6. Modified algorithm in the extended version.

A.2 Speedup of Extended and Non-extended Versions

In practical implementations, a minimum value for M is typically set to meet
security requirements. This leads to selecting p of ord(p) is large when the matrix
dimension is small. When ord(p) ≥ 3, switching to an extended version provides
the opportunity to fully utilize the potential of generating a larger hypercube
structure with a large M , thereby achieving a certain degree of performance
improvement. The performance comparison results and parameter sets P1 and
P2 for the two scenarios are shown in Table 6. The extended version achieved
3.1× speedup compared to [21] when the dimension is 64. The slight improvement
over the non-extended version indicates that the correction steps have a limited
impact. Considering the potential performance improvement, it is applicable
in real-world applications to generate parameters using two different expected
hypercube sizes: (m∗

0,m
∗
1) and (m∗

0, 3m
∗
1 − 2). If the value of M generated by

the extended version parameter setting is similar to that of the non-extended
version, the extended version can offer performance benefits.

A.3 Noise Testing and Analysis

The experiments originally aimed to test larger matrix dimensions, such as a
hypercube size exceeding 256 × 256. However, when maintaining the aforemen-
tioned parameter settings, [21] encountered decryption failures due to excessive
noise. Consequently, we examined how the noise varied with the increase in
matrix dimensions for different methods. In HElib, the logarithm of the ratio of
the modulus to the noise bound is referred to as capacity. Here, we use noise to
represent the difference between the initial capacity and the remaining capacity.
The breakdown of the initial capacity is illustrated in Fig. 7, with the shaded
part representing the noise generated by evaluation and the light part represent-
ing the remaining capacity. While [11] asserts that Rot introduces less noise than
Mult and CMult, the depth of Rot also significantly contributes to noise growth,

Secure Outsourced Matrix Multiplication with FHE 267

Table 6. Performance(seconds) of homomorphic square matrix multiplication and
speedup S([21] and non-extended version vs. extended version). The parameter sets
P1 and P2 correspond to (m0,m1, ord(p)) and M for the non-extended and extended
versions, respectively.

dimension 4 8 16 32 64

(m0,m1, ord(p)) (4, 5, 1001) (8, 9, 281) (16, 17, 95) (32, 35, 27) (64, 71, 5)
}

P1
M 20021 20233 25841 30241 22721

(m0,m1, ord(p)) (4, 11, 455) (8, 23, 117) (16, 47, 35) (32, 95, 9) (64, 315, 1)
}

P2
M 20021 21529 26321 27361 20161

Method T(s) S T(s) S T(s) S T(s) S T(s) S
[21] 4.469 1.32 11.704 1.54 35.895 1.86 109.140 2.19 219.199 3.11

}

Non-Ext
Ours 4.253 1.25 8.784 1.16 23.170 1.20 49.882 1.04 115.616 1.64

Extend 3.394 - 7.593 - 19.279 - 49.882 - 70.381 -

particularly in the case of the prominently dominant Rot illustrated in Fig. 3.
Compared to [21], our method increases Add but heavily decreases Rot, resulting
in slower growth of noise with increasing matrix dimension.

Fig. 7. Noise generation volume. The bottom (shaded) part represents generated noise,
while the top (light) part represents the remaining capacity.

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Innovations in Theoretical Computer Science 2012,
pp. 309–325. ACM (2012)

2. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_29

3. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_15

https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

268 L. Zhu et al.

4. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9_28

5. Duong, D.H., Mishra, P.K., Yasuda, M.: Efficient secure matrix multiplication
over LWE-based homomorphic encryption. Tatra Mount. Math. Publ. 67(1), 69–
83 (2016)

6. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptolog ePrint Archive, p. 144 (2012). http://eprint.iacr.org/2012/144

7. Fox, G.C., Otto, S.W., Hey, A.J.G.: Matrix algorithms on a hypercube I: matrix
multiplication. Parallel Comput. 4(1), 17–31 (1987). https://doi.org/10.1016/
0167-8191(87)90060-3

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC 2009, pp. 169–178. ACM (2009)

9. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

10. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press (2004)

11. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_31

12. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 93–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_4

13. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryp-
tion library. IACR Cryptology ePrint Archive, p. 1481 (2020). https://eprint.iacr.
org/2020/1481

14. Huang, H., Zong, H.: Secure matrix multiplication based on fully homomorphic
encryption. J. Supercomput. 79(5), 5064–5085 (2023)

15. Huang, Z., Lu, W., Hong, C., Ding, J.: Cheetah: lean and fast secure two-party
deep neural network inference. In: USENIX Security 2022, pp. 809–826. USENIX
Association (2022)

16. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: CCS 2018, pp. 1209–1222. ACM (2018)

17. Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for sta-
tistical analysis of categorical, ordinal and numerical data. In: NDSS 2017. The
Internet Society (2017)

18. Microsoft: Microsoft seal library (2021). https://github.com/microsoft/SEAL
19. Mishra, P.K., Duong, D.H., Yasuda, M.: Enhancement for Secure Multiple Matrix

Multiplications over Ring-LWE Homomorphic Encryption. In: Liu, J.K., Samarati,
P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 320–330. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72359-4_18

20. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Cachin, C., Ristenpart, T. (eds.) CCSW 2011, pp. 113–124. ACM
(2011)

21. Rathee, D., Mishra, P.K., Yasuda, M.: Faster PCA and linear regression through
hypercubes in HElib. In: Proceedings of the 2018 Workshop on Privacy in the
Electronic Society, WPES@CCS 2018, pp. 42–53. ACM (2018)

22. Rizomiliotis, P., Triakosia, A.: On matrix multiplication with homomorphic encryp-
tion. In: Regazzoni, F., van Dijk, M. (eds.) CCSW 2022, pp. 53–61. ACM (2022)

https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-22792-9_28
http://eprint.iacr.org/2012/144
https://doi.org/10.1016/0167-8191(87)90060-3
https://doi.org/10.1016/0167-8191(87)90060-3
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-96884-1_4
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://github.com/microsoft/SEAL
https://doi.org/10.1007/978-3-319-72359-4_18

Secure Outsourced Matrix Multiplication with FHE 269

23. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7_25

24. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

25. Wu, D., Haven, J.: Using homomorphic encryption for large scale statistical anal-
ysis. FHE-SI-Report, Univ. Stanford, Tech. Rep. TR-dwu4 (2012)

26. Yang, Y., Zhang, H., Fan, S., Lu, H., Zhang, M., Li, X.: Poseidon: practical homo-
morphic encryption accelerator. In: HPCA 2023, pp. 870–881. IEEE (2023)

27. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: New packing
method in somewhat homomorphic encryption and its applications. Secur. Com-
mun. Networks 8(13), 2194–2213 (2015)

https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25

	Secure Outsourced Matrix Multiplication with Fully Homomorphic Encryption
	1 Introduction
	1.1 System Model
	1.2 Fully Homomorphic Encryption and Hypercube Structure
	1.3 Related Works
	1.4 Our Contribution

	2 Secure Matrix Multiplication Scheme with FHE
	2.1 Square Matrix Multiplication
	2.2 Rectangular Matrix Multiplication

	3 Complexity Analysis
	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results and Analysis

	5 Conclusion
	A Appendix
	A.1 Practical Implementation Issues and Solutions
	A.2 Speedup of Extended and Non-extended Versions
	A.3 Noise Testing and Analysis

	References

