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Abstract—The unstructured multi-hop radio network model,
with asynchronous wake-up, no collision detection and little
knowledge on the network topology, is proposed for capturing the
particularly harsh characteristics of initially deployed wireless ad
hoc and sensor networks. In this paper, assuming such a practical
model, we study a fundamental problem of both theoretical and
practical interests—the local broadcasting problem. Given a set
of nodes V where each node wants to broadcast a message to
all its neighbors that are within a certain local broadcasting
range R, the problem is to schedule all these requests in the
fewest timeslots. By adopting the physical interference model
and without any knowledge on neighborhood, we give a new
randomized distributed approximation algorithm for the local
broadcasting problem with approximation ratio O(log n) where n
is the number of nodes. This distributed approximation algorithm
improves the state-of-the-art result in [22] by a logarithmic factor.

I. INTRODUCTION

Newly formed wireless ad hoc and sensor networks lack a

structure that is known a priori. In order to construct such a

structure or perform any tasks on such networks, each node

must coordinate with their neighbors by communicating with

each other, which gives rise to the local broadcasting problem,

i.e., each node needs to broadcast a message to its neighbors

within some pre-defined local broadcasting range. In single-

hop networks, it is easy to see that the local broadcasting

problem is the same as the traditional gossiping problem.

Algorithmic study on the local broadcasting problem was

first motivated by simulating the traditional synchronous mes-

sage passing model in [1]. The message passing model how-

ever abstracts away many crucial elements in radio networks,

such as interference, collision and asynchrony. Such a model

is mainly used to ease the understanding of the essential

aspects of the problems at hand, and many novel distributed

algorithms are presented assuming this model. When further

considering interference and collision, an obvious approach

is to simulate each single round of the original algorithm in

the message passing model. More precisely, by performing a

local broadcast in each simulating phase, it is ensured that

every message passed in the original algorithm during the

simulated round can be successfully transmitted. Although

there have been many distributed algorithms that are based on

the message passing model, there are relatively few efficient

ones that work for many of the fundamental problems in

radio networks, let alone using the more practical physical

interference model.

Despite the graph based interference model was first

adopted for studying the local broadcasting problem, it cannot

fully depict the realistic interferences in radio networks. The

graph based model defines the interference as a localized

function. A transmission can only be interfered by nearby si-

multaneous transmissions. In reality, however, the interference

is cumulative by considering all simultaneous transmissions,

not only the nearby ones. Such a reality is captured by the

physical interference model—the Signal-to-Interference-plus-

Noise-Ratio (SINR) model [8]. Although the global interfer-

ence as defined in the physical SINR model poses a great

challenge for finding efficient distributed solutions, algorithms

designed under this model are easier to implement in practice.

Besides the interference issue, nodes in a newly formed

wireless ad hoc network typically have no prior knowledge

on the number of nodes in a proximity range. Although an

estimate of the maximum number Δ of nodes’ neighbors can

be used to derive efficient randomized distributed local broad-

casting algorithms as demonstrated in [6], it is shown in [2]

that even in the graph based interference model, acquiring

such an estimate may take more time than performing a local

broadcast. So far, no efficient way to compute an estimate of

Δ in the physical SINR model in a distributed setting has

been proposed. Hence, a more practical choice is to derive

efficient local broadcasting algorithms without information on

neighborhood.

A. Our Results

In this work, under the practical physical interference model

and assuming no information on neighborhood, we study the

time complexity of distributively performing a local broadcast

in unstructured wireless networks of which initially deployed

wireless ad hoc and sensor networks are one kind (more

details of this model can be found in Section II). We first

propose a randomized distributed algorithm that completes

the local broadcast in O(Δ log n + log2 n) timeslots with

high probability.1 Compared with the state-of-the-art result

1We say “an event occurs with high probability” to mean that the event
occurs with probability 1− n−c for a constant c > 0.
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in [22] under the same setting, our algorithm reduces the time

complexity for all networks with non-constant Δ. For large

Δ, e.g., Δ ∈ Ω(log n), our algorithm matches the algorithm

in [6] which assumes each node knows the number of nodes

in a proximity range. We also derive a new Ω(Δ + log n)
time lower bound for the local broadcasting problem, which

improves the previous trivial Ω(Δ) result. This lower bound

shows that our presented distributed algorithm achieves an

O(log n) approximation ratio which represents a reduction by

a logarithmic factor compared with the previous best result

in [22] in terms of approximation ratio.

With reference to the algorithm in [22], we briefly explain

how we achieve a faster result in this work. The algorithm

in [22] employs a competition process to reduce the number

of nodes that concurrently perform local broadcasting. In

addition, nodes may need to iteratively execute the competition

process O(Δ) times. In this work, to get a faster result, we

adopt a clustering based strategy. Specifically, a set of leaders

are first elected. These leaders will be responsible for coor-

dinating the local broadcasting processes of their neighbors.

The clustering based strategy guarantees that nodes participate

in the competition process only once (to decide whether to

become a leader or a non-leader). The main difficulty in

implementing this clustering based strategy is that nodes have

no knowledge about the neighborhood. Each non-leader needs

to transmit a message to report to its leader about its existence.

To overcome this difficulty, in absence of an estimate about Δ
and under the asynchronous communication circumstance, we

design a novel probability adjustment strategy for non-leaders

and show that with this strategy, each non-leader can quickly

send a message to its leader.

B. Related Work

The local broadcasting problem is closely related to the

intensively studied broadcasting problem [14], the wake-up

problem [5] and the contention resolution problem [4]. In the

centralized setting, the local broadcasting problem, also called

the Minimum-Latency Beaconing Schedule problem [20], has

been very well studied. To the best of our knowledge, Alon

et al. first studied the distributed local broadcasting problem

in [1]. Assuming a synchronous circumstance and the ex-

istence of prior knowledge of Δ, they gave a randomized

distributed algorithm which completes the local broadcast-

ing in O(Δ log n) rounds. Recently, by first computing an

estimate of the local maximum degree for each node using

O(Δ log n + log2 n) time, Derbel and Talbi [2] generalized

the above algorithm to the unknown neighborhood model.

Both algorithms are derived under the graph based interference

model. However, the message based fashion in estimating the

local maximum degree in [2] is impossible to generalize to suit

the physical interference model in which global interferences

make deciding whether a message can be successfully received

in a distributed setting difficult. Assuming the SINR model

as in this work, Goussevaskaia et al. [6] first studied the

local broadcasting problem. With the assumption that each

node knows the number of nodes in its proximity region,

their simple Aloha-like algorithm achieves a time complex-

ity of O(Δ log n), and then without this assumption, their

randomized distributed algorithm uses O(Δ log3 n) time. The

latter result was improved in a recent paper [22] by Yu et

al., in which a distributed algorithm which completes the

local broadcasting in O(Δ log2 n) time with high probability

is given. By assuming that nodes can perform the physical

carrier sensing, Yu et al. [22] also gave the first deterministic

distributed local broadcasting algorithm with running time of

O(Δ log n).
The SINR model has received increasing attention since the

seminal work [17] by Moscibroda and Wattenhofer. It has been

shown that the network throughput can be increased signifi-

cantly if and when the realistic SINR model is assumed [10],

[18]. Goussevskaia et al. gave an excellent survey in [7] on

approximation algorithms using the SINR model. However,

the global interference as defined in the SINR model poses

great challenges for designing distributed algorithms. Despite

these challenges, there have been a few attempts in recent

years. Assuming that all nodes can perform physical carrier

sensing, Scheideler et al. [19] gave an O(log n) distributed

algorithm for computing a constant approximate dominating

set. Li et al. [16] presented a distributed algorithm for the mini-

mum latency aggregation scheduling problem. Kesselheim and

Vöcking [13] considered the contention resolution problem

and showed that their distributed algorithm is asymptotically

optimal up to a log2 n factor. With a refined analysis, the

approximation ratio of the algorithm in [13] was reduced to

O(log n) in a recent paper [9], which was also shown to

be the best possible for any distributed solution. Under the

assumption that each node knows Δ, Derbel et al. [3] proposed

a distributed coloring algorithm with O(Δ log n) running time

and O(Δ) colors. In [21], without requiring any knowledge

on neighborhood, Yu et al. studied the (Δ+1)-coloring in the

physical model for the first time. Their proposed distributed

(Δ+1)-coloring algorithm achieves the same time complexity

as the result in [3] for networks with Δ ∈ Ω(log n).

II. PROBLEM DEFINITIONS AND MODEL

Given a set of nodes V , the local broadcast range R is

the distance up to which each node intends to broadcast its

message. For each node v, the region within range R is

denoted as Bv . A successful local broadcast of v is defined

to be a transmission of a message such that it is successfully

received by all wake-up nodes located in the local broadcasting

region Bv . A local broadcast is complete if every node v
in the network has transmitted a message to every other

node in Bv . Given the local broadcast range R, the local

broadcasting problem is to complete a local broadcast in the

fewest timeslots.

For two nodes u and v, we denote d(u, v) as the Euclidian

distance between u and v. We say two nodes u and v are

neighbors if they are within each other’s local broadcast range,

i.e., d(u, v) ≤ R. The neighborhood of a node v, i.e., the set of

all its neighbors, is denoted as N(v). For a node v, we denote

by Δv the number of nodes in v’s neighborhood. We write
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Δ = maxv∈V Δv . A set S of nodes is called an independent

set if any two nodes of S are not in each other’s neighborhood.

An independent set S is maximal if any node not in S has a

neighbor in S.

We depict the interference using the practical physical

interference model (or the SINR model) [8]. In particular, a

message sent by node u to node v can be correctly received

at v iff Pu
d(u,v)α

N +
∑

w∈V \{u,v}
Pw

d(w,v)α

≥ β, (1)

where Pu (Pw) is the transmission power for node u
(w); α is the path-loss exponent whose value is normally

between 2 and 6; β is a hardware determined threshold

value which is greater than 1; N is the ambient noise, and∑
w∈V \{u,v}

Pw

d(w,v)α is the interference experienced by the

receiver v caused by all simultaneously transmitting nodes in

the network.

As for the network communication model, the unstructured

radio network model first presented in [15] is assumed in

this work. Nodes are placed arbitrarily on the plane. They

may wake up asynchronously without access to a global

clock. A collision occurs at a node when multiple nodes

transmit concurrently and none of these transmissions can

be successfully decoded by the node. In this work, we do

not assume there is collision detection functionality in the

nodes, which means that nodes can not distinguish the cases

of no transmission and a collision. Initially, any node has no

information about the nodes in its close proximity, even the

number of these nodes. The only prior knowledge given to

nodes is a polynomial estimate n of the number of nodes in

the network [11]. Furthermore, we assume that each node has

a unique but arbitrary ID, which is only used for the receiver

to identify the sender.

We apply the uniform power assignment, i.e., all nodes

have the same transmission power level, which has been

widely adopted in practice [7] due to its simplicity. The

transmission range RT of a node v is defined as the maximum

distance at which a node u can receive a clear transmission

from v (SINR ≥ β) when there are no other simultaneous

transmissions in the network. From the SINR condition (1),

RT ≤ Rmax = ( P
β·N )1/α for the given power level P . We fur-

ther assume that RT < Rmax and define RT = (P/cNβ)1/α,

where c > 1 is a constant determined by the environment.

To simplify the analysis, we divide the time into timeslots

that are synchronous among all the nodes. However, our

algorithm does not rely on synchrony in any way. In each

timeslot, a node can either send or keep silent. It can receive

a message only if it wakes up and is not sending. In this work,

due to the fact that nodes may wake up asynchronously, we

define a node v’s running time as the length of the interval

from the timeslot when v starts executing the algorithm to the

timeslot when v quits the algorithm, and the time complexity

of the algorithm is the maximum of all nodes’ running times.

When synchronous waking-up is assumed, the above defined

time complexity is just the longest time for any node to execute

the algorithm.

III. LOCAL BROADCASTING ALGORITHM

In this section, we present the local broadcasting algorithm

as given as Algorithm 1. In the algorithm, Greek letters

represent constants. The basic idea of the algorithm is as

follows. A Maximal Independent Set (MIS) in terms of the

local broadcast range R is first computed, the nodes of which

are called leaders. The leaders are responsible for arranging

the local broadcasts of their neighbors. Each node not in the

MIS chooses a leader in its neighborhood as its own leader.

By receiving messages from other nodes, each leader acquires

the knowledge of the nodes that it dominates. Then for each

non-leader it dominates, a leader assigns a non-overlapping

interval of timeslots such that the particular non-leader can

accomplish the local broadcast quickly. In order to deal with

newly wake-up nodes, each leader periodically transmits a

message to inform newly waking-up nodes to start competing

for the right to do local broadcast. To compute the MIS, we

use the randomized distributed algorithm in [21] by which,

with high probability, each node can decide whether to join

the MIS in O(log2 n) timeslots.

In Algorithm 1, we assign the transmission power as P =
cNβRα. By the definition in Section II, the transmission range

of nodes is R. There are three states in the algorithm: nodes

in state D are leaders; nodes in state C are non-leaders that are

competing for the right of local broadcasting; nodes in state E
are non-leaders that are performing local broadcasting. There

are also several controlling messages used in the algorithm.

The StartCompete message is used by a leader to inform

non-leaders to compete for the right of local broadcasting,

i.e., to make these non-leaders report their IDs such that the

leader knows their existence. Non-leaders that received the

StartCompete message will join state C. The RequestRight
message is transmitted by a non-leader to report its ID to its

leader. The Grant message is used by a leader to inform

a particular non-leader to start performing local broadcasting.

Non-leaders whose ID is contained in the Grant message will

join state E . Apart from this function, the Grant message is

also used as a controlling message to adjust the transmission

probability of nodes as shown in Algorithm 1. Next we

describe the algorithm in more details.

After waking up, each node v first waits for 2μ log n
timeslots (Line 1). During this period, if v received a

StartCompeteu message, it chooses u as its leader and joins

state C (Lines 2–3). Otherwise, v starts executing the MIS

algorithm as given in [21] (Line 4). After that, if v joins

the MIS, it will execute different operations from the MIS

algorithm in [21] in the last state M (which means the node

joins the MIS). In the previous MIS algorithm in [21] that

works as a subroutine of the coloring algorithm, after v joins

state M, with constant probability 2−ω , v first transmits a

waking-up message for μ log n timeslots and then transmits

a DoNotTransmit message for also μ log n timeslots. Here

instead, with the same constant probability, a node v in state

M will first perform a local broadcasting and then transmits

a StartCompetev message, both for μ log n timeslots, thus
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forcing all neighbors to join state C. Using a similar analysis

as in [21], it is easy to show that these messages can be

successfully received by v’s neighbors with high probability.

Then v joins state D. While node v stays in state D, it adds

each node u to a set Qv that sends a RequestRightu(v)
message to v (Line 10). If Qv is not empty, it deletes the first

node u from Qv and transmits a Grantu(v) with constant

probability for μ log n timeslots (Lines 7–9), by which it

gives u the right of performing a local broadcasting. In

order to deal with asynchronously wake-ups, v takes at least

μ log n timeslots in every 2μ log n timeslots to transmit a

StartCompetev message which informs newly waking-up

nodes to join state C (Line 6).

For a non-leader u that stays in state C, by continuously

transmitting a RequestRightu message with probability pu to

report its ID to its leader v (Line 13), u competes for acquiring

the right of local broadcasting. Because of the absence of

knowledge of Δ, pu is initially set as a small value determined

by the parameter n (the size of the network). If u does not

receive any Grant message from its leader v for 3μ log n
timeslots, which means that the nodes’ transmission probabil-

ities are not large enough to get a successful transmission, pu
is doubled (Line 12). However, in order to analyze Algorithm 1

and Algorithm MIS, we need to ensure that the sum of

transmission probabilities in a local region can be bounded

by a constant. The increase of transmission probability may

make the sum in a local region exceed the bound. To avoid

this, pu will be halved if u receives a Grant message from its

leader v that is not for u (Line 15). After receiving a Grantu
message from its leader v, u joins state E (Line 14), during

which it performs a local broadcast with constant transmission

probability for μ log n timeslots (Lines 16–17).

In order to make sure that Algorithm 1 is correct with high

probability, we set μ = 9·2ω+443·2
1−ω·χRI+R,0.5R

1−1/ρ and ω = 6.4,

where ρ and RI are constants as defined in Equation (3), and

χRI+R,0.5R is a also a constant as defined in Lemma 1 when

RI is determined. Furthermore, the value of ω in Algorithm 1

is determined by the MIS algorithm as given in [21].

A. Analysis

In this section, we show that with high probability, each

node can perform a local broadcast after executing Algorithm 1

for O(Δ log n + log2 n) timeslots. Before the analysis, we

give some notations and definitions, the first of which is the

definition of probabilistic interference which is the expected

interference at the receiver.

Definition 1: For a node v ∈ V , the probabilistic inter-
ference at v, Ψv , is defined as the expected interference
experienced by v in a certain timeslot t.

Ψv =
∑

u∈V \{v}

Pupu
d(u, v)α

, (2)

where Pu is the transmission power and pu is the sending
probability of node u in timeslot t.

Algorithm 1 Local Broadcasting

Initially, pv = 2−ω

18n ; tv = 0;Qv = ∅;ω = 6.4; leader = none

Upon node v wakes up
1: wait for 2μ log n timeslots

2: if v received StartCompeteu then
3: state = C; leader = u;

4: Else execute the MIS algorithm

5: end if
Node v in state D

6: for μ log n timeslots do transmit StartCompetev with

probability 2−ω end for
7: if Qv is not empty then
8: for μ log n timeslots do delete the first node u from

Qv and transmit Grantu(v) with probability 2−ω end for
9: end if

Message Received

10: if Received RequestRightu(v) then add u into Qv

end if
Node v in state C
11: tv = tv + 1
12: if tv > 3μ log n then pv = 2pv; tv = 0 end if
13: transmit RequestRightv(leader) with probability pv;

Message Received

14: if received Grantv(leader) then state = E end if
15: if received Grantw(leader) for some other node w from

v’s leader that has not been received before then pv =
pv/2; tv = 0 end if

Node v in state E
16: for μ log n timeslots do transmit() with probability 1

9 ·
2−ω end for

17: quit;

A new parameter RI is defined as follows,

RI = R(27−ω3
√
3πρβ · 1

1− 1/c
· α− 1

α− 2
)1/(α−2), (3)

where ρ is a constant larger than 1, such that RI > 2R. In

the following, we will show that the probabilistic interference

caused by nodes with distance larger than RI from the receiver

can be bounded by a constant. Furthermore, Denote Ti, Di

and Ii as the disks centered at node i with radii R, R
2 and RI ,

respectively. By Er
i we denote the disk centered at node i with

radius r. Without confusion, we also use Ti, Di, Ii and Er
i

to denote the set of nodes in Ti, Di, Ii and Er
i , respectively.

The following lemma is proved in [6] which will be used in

the analysis.

Lemma 1 ( [6]): Consider two disks D1 and D2 of radii

R1 and R2, R1 > R2, we define χR1,R2 to be the smallest

number of disks D2 needed to cover the larger disk D1. It

holds that χR1,R2 ≤ 2π
3
√
3
· (R1+2R2)

2

R2
2

.

We give two properties that can help bound the sum of trans-

mission probabilities in any local region. These two properties

are crucial for analyzing successful message transmissions.

Property 1 has been shown to be correct with probability
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1 − O(n−2) in [21]. We will show that Property 2 is also

true with high probability by Lemma 6.

Property 1: For any disk Di and in any timeslot t through-
out the execution of the algorithm, the sum of transmission
probabilities of nodes in Di that are executing the MIS
algorithm is at most 3 · 2−ω .

Property 2: For any disk Di and in any timeslot t through-
out the execution of the algorithm,
(i) the sum of transmission probabilities of nodes in state

C is at most
∑

u∈C ≤ 2−ω;
(ii) there is at most 9 nodes staying in state E .
(iii) there is at most one node staying in state D;
The following lemma is a direct corollary of Property 1 and

Property 2 by noting the transmission probability assigned to

nodes in states E and D.

Lemma 2: Assume that Property 1 and Property 2 hold. For

any disk Di and in any timeslot t throughout the execution of

the algorithm, the sum of transmission probabilities of nodes

in Di can be bounded as
∑

v∈Di
pv ≤ 3 · 21−ω .

In [21], it is shown that as long as the sum of transmission

probabilities of nodes in any local region can be bounded by

a constant, each node can correctly decide whether to join the

MIS or not with high probability. Then based on Property 1

and Property 2, we state the correctness and the efficiency of

the MIS algorithm in the following lemma. Since the proof

for Lemma 3 is similar to that in [21], we omit it here for

brevity.

Lemma 3: Assume that Property 1 and Property 2 hold.

With probability 1 − O(n−2), every node v ∈ V decides

whether it should join the computed independent set or state

C after executing the MIS algorithm for at most O(log2 n)
timeslots. And in any timeslot, the independent set computed

by the MIS algorithm is correct with probability 1−O(n−2).
In the subsequent analysis, we assume that in any timeslot,

the independent set computed by the MIS algorithm is correct,

and the error probability will be aggregated in the proof

of the main theorem. Based on Lemma 2, we next give

a sufficient condition for a successful transmission in the

following lemma.

Lemma 4: Assume that Property 1 and Property 2 hold. If

node v is the only sending node in ERI+R
v , with probability

1− 1
ρ , the message sent by v will be received successfully by

all nodes in Tv .

Proof: We first bound the probabilistic interference at a

node u ∈ Tv caused by nodes outside Iu.

Claim 1: For every node u, the probabilistic interference

caused by nodes outside Iu can be bounded as: Ψw/∈Iu
u ≤

(1−1/c)P
ρβRα .

Proof: By Lemma 1 and Lemma 2, the sum of trans-

mission probabilities in each Ti can be bounded as follows:

∑

x∈Ti

px ≤ 2π

3
√
3
· (R+ 2 · R

2
)2

(R
2
)2

·
∑

x∈Dw

px ≤ 64π√
3 · 2ω . (4)

Let Rl = {w ∈ V : lRI ≤ d(u,w) ≤ (l + 1)RI}
and I be a maximum independent set in Rl. Clearly, I is

also a dominating set in Rl. Thus
∑

i∈I Ti covers all the

nodes in Rl. Furthermore, all disks Di for every i ∈ I are

mutually disjoint because of the independence of I. Note

that all these disks are located inside the extended region

R+
l = {w ∈ V : lRI − R

2 ≤ d(u,w) ≤ (l+1)RI +
R
2 }. Thus

|I| ≤ Area(R+
l )/Area(disk(R/2)). Then the probabilistic

interference caused by nodes inside Rl is bounded as follows:

ΨRl
u =

∑

w∈Rl

Ψw
u ≤ Area(R+

l )

Area(disk(R/2))
·max

i∈I
{

∑

w∈Ti∩Rl

P · pw
(lRI)α

}

≤ Area(R+
l )

Area(disk(R/2))
· 64π√

3 · 2ω ·
P

(lRI)α

=
π(((l + 1)RI +R/2)2 − (lRI −R/2)2)

π(R/2)2

· 64π√
3 · 2ω ·

P

(lRI)α

=
4(2l + 1)(R2

I +RIR)

R2
· 64π√

3 · 2ω ·
P

(lRI)α

≤ 1

lα−1
· 9π · 2

7−ωPR2
I√

3Rα
I R

2
.

The second inequality is by Inequality (4) and the last

inequality is by R < RI

2 . Then

Ψw/∈Iu
u =

∞∑

l=1

ΨRl
u ≤ 9π · 27−ωPR2

I√
3Rα

I R
2

·
∞∑

l=1

1

lα−1

≤ 9π · 27−ωPR2
I√

3Rα
I R

2
· α− 1

α− 2

≤ (1− 1/c)P

ρβRα
.

(5)

By the Markov inequality, with probability at least 1− 1
ρ , the

interference at a node u caused by nodes outside Iu can not

exceed ρΨw/∈Iu
u . Then if v is the only sending node in ERI+R

v ,

i.e., v is the only sending node in Iu for every u ∈ Tv , by

Lemma 1, with probability at least 1 − 1
ρ , the SINR at node

u can be bounded as follows:

P/d(v, u)α

N + ρΨw/∈Iu
u

≥ P/Rα

P
cβRα + (1−1/c)P

βRα

≥ β. (6)

Thus u can successfully receive the message sent from v
according to the SINR constraint (1).

Based on the sufficient condition given in Lemma 4, we list

the successful transmissions of messages used in Algorithm 1.

Lemma 5: Assume that Property 1 and Property 2 hold.

Then with probability at least 1− 1
n4 , the following results are

correct:

(i) A node v in state D can successfully send a message

Grant to all its neighbors in μ log n timeslots.

(ii) A node v in state D can successfully send a message

StartCompete to all its neighbors in μ log n timeslots.

(iii) A node v in state E can successfully perform a local

broadcasting in μ log n timeslots.

Proof: We only prove (i) here. (ii) and (iii) can be

proved similarly.

As shown in Lemma 4, if v is the only sending node in

ERI+R
v , with probability 1− 1

ρ , the message Grant sent by v
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can be received successfully by all nodes in Tv . Let P1 denote

the event that v is the only sending node in ERI+R
v , then

P1 = 2−ω
∏

u∈ERI+R
v \{v}

(1− pu)

≥ 2−ω
∏

u∈ERI+R
v

(1− pu)

≥ 2−ω · (1
4
)

∑

u∈E
RI+R
v

pu

≥ 2−ω · (1
4
)3·2

1−ω·χRI+R,0.5R

.

(7)

The last inequality is by Lemma 1 and Lemma 2. Then the

probability Pno that v fails to transmit the message Grant to

all the nodes in Tv in μ log n timeslots is at most

Pno ≤ (1− (1− 1/ρ)2−ω · (1
4
)3·2

1−ω ·χRI+R,0.5R

)μ logn

≤ e−(1−1/ρ)2−ωμ logn·( 1
4
)3·2

1−ω·χRI+R,0.5R

≤ n−4.

(8)

Thus with probability 1− n−4, v can successfully transmit

a Grant message to all its neighbors in μ log n timeslots.

In the following lemma, we show that Property 2 is true

with high probability.

Lemma 6: With probability at least 1 − O(n−2), none of

Property 2 (i)(ii)(iii) is the first one to be violated.

Proof: We first claim that each disk Di can intersect with

at most 9 disks that do not cover each other’s centers. This

can be easily proved by noting that the angle composed by

lines between i and any pair of centers is at least 38◦. Next

we show that none of (i), (ii) and (iii) is the first property

to be violated.

(i) Assume that (i) is the first property to be violated in

timeslot t∗ in disk Di. Before t∗, we can still assume that all

properties are correct. By Property 2 (iii), all nodes in state

D are independent in terms of R. Because Di can intersect

with at most 9 disks where each pair of centers have distance

larger than R, all nodes in Di that are in state C belong to

at most 9 leaders by timeslot t∗ − 1. Denote the set of these

leaders as L, and for each node v ∈ L, denote Cv(t) as the set

of nodes in state C that choose v as their leader in timeslot

t. We claim that in timeslot t∗, all nodes in Di that are in

state C also belong to leaders in L. Otherwise, there is a

new leader coming up in E
3R/2
i in timeslot t∗, denoted as

w. w must have distance less than R from another leader in

L, denoted as u. Furthermore, w must have waken up before

t∗ − Ω(log2 n), since it needs Ω(log2 n) timeslots to execute

the MIS algorithm as shown in [21]. By the algorithm, u will

transmit StartCompete message for μ log n timeslots after

joining the MIS, and when u is in state D, it takes at least

μ log n timeslots to transmit StartCompete in every 2μ log n
timeslots. Also, by the algorithm, after joining the MIS and

before entering state D, u takes 2μ log n timeslots to perform

the local broadcasting and transmits the StartCompete mes-

sage. So u must have joined the MIS since t∗ − 2μ log n− 1.

By Lemma 5 (ii), with probability 1−O(n−4), w must have

received the StartCompete message from u by t∗ − 1 and

will not join state D in timeslot t∗. This contradiction shows

that with probability at least 1−O(n−4), all nodes in Di that

are in state C are those in L. Next we show a slightly stronger

result: with probability 1 − O(n−3), for each leader v in L,

the sum of transmission probabilities by nodes in Cv is at most
1
9 · 2−ω in any timeslot during the execution of the algorithm.

Then there exists no such violating timeslot t∗ for Di with

probability 1−O(n−3).
Otherwise, assume that in timeslot t, for the first time,∑
u∈Cv(t) pu > 1

9 · 2−ω . Denote I = [t − 3μ log n, t).
By Algorithm 1, every node in C doubles its transmission

probability at most once during the interval. Furthermore,

some newly waking-up nodes may join state C during the

interval. However, the sum of transmission probabilities of

newly joined nodes is at most 2−ω

18n · n = 1
18 · 2−ω . Hence, it

holds that in timeslot t − 3μ log n, the sum of transmission

probabilities by nodes in Cv is at least 1
36 ·2−ω . Consequently,

before any violation timeslot, there is an interval I such that
1
36 · 2−ω ≤ ∑

u∈Cv pu ≤ 1
9 · 2−ω . Because Property 2 (i) is

the first violated one, we can still assume that other properties

are correct before t. So during the interval I , for any disk

Dj , j �= i,
∑

v∈Dj
pv ≤ 3 · 21−ω . Next we show that

with probability at least 1 − n−4, v will successfully send

a new Grant message to all its neighbors during the interval

(t− 3μ log n, t). Clearly, if all nodes in Cv(t− 3μ log n) joins

state E by t − 1, then
∑

u∈Cv1(t)
pu is at most the sum of

transmission probabilities of newly joined nodes. As discussed

above, it is at most 1
18 · 2−ω . So in the following, it can be

assumed that not all nodes in Cv(t − 3μ log n) have joined

state E by time t− 1.

We claim that at least one node in Cv can send a message

RequestRight to v during the interval I1 = [t− 3μ log n, t−
2μ log n − 1]. Using a similar argument as in Lemma 4, if

a node w ∈ N(v) is the only transmitting node in ERI
v ,

then v can receive the message from w successfully with

probability at least 1 − 1/ρ. Denote D as a minimum cover

of disks with radius R
2 for ERI

v . Then in any timeslot during

I1, the probability Ponly that there is only one node w ∈ Cv1
transmitting is

Ponly =
∑

w∈Cv
pw

∏

w
′∈ERI

v \{w}

(1− pw′ )

≥
∑

w∈Cv
pw

∏

Dj∈D

∏

w
′∈Dj

(1− pw′ )

≥
∑

w∈Cv
pw

∏

Dj∈D
(
1

4
)

∑

w
′∈Dj

p
w
′

≥ 1

36
· 2−ω · (1

4
)χ

RI,R/2·3·21−ω

(9)

The last inequality is by Lemma 1 and Lemma 2. So

during I1, the probability PT that there is not any node in

Cv successfully transmitting a RequestRight message to v is

at most

PT ≤ (1−(1− 1

ρ
)· 1
36
·2−ω(

1

4
)χ

RI,R/2·3·21−ω

)μ logn ≤ n−4. (10)

Thus with probability 1−n−4, v receives a RequestRight
message during the interval I1. Denote t1 as the first times-
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lot when v starts broadcasting a new Grant message af-

ter t − 3μ logn. Because v broadcasts a Grant message

for μ log n timeslots in every 2μ log n timeslots and v re-

ceives a new RequestRight message by t − 2μ log n, such

a timeslot exists in the interval (t − 3μ log n, t − μ log n]
with probability 1 − n−4. Then by Lemma 5 (ii), during

the interval (t − 3μ log n, t − 1], with probability 1 − n−4,

all nodes in Cv receive a new Grantw message and halve

their transmission probabilities except w which enters state

E . Denote t2 as the first timeslot in which all nodes in

Cv have successfully received the new Grant message. So

t2 ∈ (t − 3μ log n, t − 1]. Then by Algorithm 1, all nodes

in Cv will not increase the transmission probability until

t2+3μ logn− (t2− t1) = t1+3μ log n > t. Note that before

halving the transmission probability, the sum of transmission

probabilities of all nodes in Cv is at most 1
9 · 2−ω . So

during the interval [t2, t1+3μ log n), the sum of transmission

probabilities of these nodes is at most 1
18 ·2−ω with probability

1−n−4. Also note that the sum of transmission probabilities of

newly joined nodes is at most 1
18 ·2−ω . Then during the interval

[t2, t1+3μ log n),
∑

u∈Cv pu ≤ 1
18 ·2−ω+ 1

18 ·2−ω = 1
9 ·2−ω .

Thus with probability 1−n−4, Di will not violate Property 2

(i) in timeslot t.
Finally, we bound the number of potential violating times-

lots for v during the execution of the algorithm. From the

above analysis, before each potential violation timeslot, there

will be a node in Cv joining state E . Thus there are at most

n potential violating timeslots for v. So during the execution

of the algorithm, with probability 1 − O(n−3), there exists

no such violating timeslot for v. Then by the fact that non-

leaders in Di belong to at most 9 leaders, with probability at

least 1 − O(n−3), Property 2 (i) is not the first violated one

in Di. And Property 2 (i) is not the first violated one for any

disk with probability 1−O(n−2).
(ii) Assume that (ii) is the first property to be violated, and

Di violates it for the first time in timeslot t. So there are at

least 10 nodes staying in state E . Using a similar analysis as

in (i), we can show that there are at most 9 leaders within

distance 3R/2 from i in timeslot t. So there exist two nodes

with the same leader. Denote these two nodes as u and v, and

assume that u first joined state E . We further assume that w
is the leader of u and v.

Before t, we can still assume all properties hold, since

Property 2 (ii) is the first one to be violated in timeslot t. By

Algorithm 1, v joins state E after receiving a Grantv message

from w. Clearly, w has started transmitting Grantv by the

timeslot t. So w must have started transmitting the message

Grantu from the timeslot t−2μ log n. Then by Lemma 5 (i),
u has received Grantu by the timeslot t − μ log n − 1 with

probability 1 − O(n−4). By Algorithm 1, u stays in state E
for μ log n timeslots. Thus u will have quit the algorithm by

timeslot t− 1. This contradiction shows that when u stays in

state E , Di will not first violate Property 2 (ii) with probability

1−O(n−4). So Di is not the disk that first violates Property 2

(ii) with probability 1− O(n−3). Then Property 2 (i) is not

the first violated one for all disks with probability 1−O(n−2).

(iii) Assume that (iii) is the first property to be violated

in timeslot t in Di. Assume that in timeslot t a node v joins

state D, and there is another node u also staying in state D.

As shown in [21], v needs to execute the MIS algorithm for

Ω(log2 n) timeslots before joining state D. Thus v must have

waken up before t−Ω(log2 n). using a similar analysis as in

(i) and by the fact that all properties are correct before t, we

can obtain that v has joined state C before t with probability

1 − O(n−4). This contradiction shows that for node v, with

probability at least 1−O(n−4), it will not join state D if there

has been a neighbor in state D. Thus for Di, Property 2 (iii)
is not the first violated property with probability 1−O(n−3).
And Property 2 (iii) is not the first violated one for all disks

with probability 1−O(n−2).
Theorem 1: Each node v will correctly perform a local

broadcast after waking up for O(Δ log n + log2 n) timeslots

with probability 1−O(n−1).
Proof: We first prove that with probability 1 − O(n−2),

a node v will correctly perform a local broadcast after waking

up for O(Δ log n + log2 n) timeslots. By Algorithm 1, after

waking up, v first waits for 2μ log n timeslots, during which

if v received a StartCompete message, v will join state

C. Otherwise, v will start executing the MIS algorithm. By

Lemma 3, after O(log2 n) timeslots, v will join state D or C
with probability 1 − O(n−2). Thus after waking up, v takes

at most O(log2 n) timeslots before entering state D or C with

probability 1 − O(n−2). If v joins state D, using a similar

argument as for proving Lemma 5, we can prove that v has

done a successful local broadcast after joining the MIS for

μ log n timeslots with probability 1−O(n−4). If v joins state

C, by Algorithm 1 and Lemma 5 (iii), v will finally join state

E and successfully perform a local broadcast during its stay

in state E with probability 1 − O(n−4). From the algorithm,

v stays in state E for μ log n timeslots, so we only need to

bound the number of timeslots that v stays in state C.

By Algorithm 1, after joining state C, if v does not receive

any Grant message from its leader u for 3μ log n timeslots, it

doubles its transmission probability. If v received a new Grant
message not for v, v halves its transmission probability. Thus

after at most 2(Δ−1)×3μ logn+log n×3μ log n timeslots,

either v has received a Grantv(u) message from its leader, or

has a transmission probability of 1
18 ·2−ω , since v can receive

at most (Δ−1) Grant messages not for v from u. In the last

case, using a similar analysis as in the proof of Lemma 5, we

can show that v successfully transmits a RequestRightv(u)
to node u with probability 1 − O(n−4) in the subsequent

2μ log n timeslots. By Algorithm 1 and Lemma 5, after at most

Δ · 2μ log n timeslots from then, v will receive a Grantv(u)
message from u with probability at least 1 − O(n−4). Thus

v stays in state C for at most O(Δ log n + log2 n) timeslots

with probability at least 1−O(n−4).
Put all the above together, we now know that with probabil-

ity 1−O(n−2), v will successfully perform a local broadcast

after waking up for O(Δ log n + log2 n) timeslots. Note that

the result is obtained based on the correctness of the MIS

algorithm and under the assumption that Property 1 and
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Property 2 hold. The correctness of the MIS algorithm is given

in Lemma 3, and it has been shown that Property 1 is true

with probability 1−O(n−2). In Lemma 6, we also prove that

Property 2 holds with probability 1 − O(n−2). So a node v
can successfully perform a local broadcast after waking up for

O(Δ log n + log2 n) timeslots with probability 1 − O(n−2).
This is true for every node with probability 1−O(n−1), which

completes the proof.

IV. LOWER BOUND

Because each node can successfully receive at most one

message in one timeslot, Ω(Δ) is a natural lower bound for the

local broadcasting problem. So for deriving the Ω(Δ+ log n)
lower bound, we only need to show that there exists a network

with Δ ≤ log n such that any randomized algorithm needs

Ω(log n) timeslots to complete a local broadcast. We prove

that this is true even in a synchronous circumstance.

Theorem 2: There exists a network with Δ = 1 such that

any randomized algorithm needs Ω(log n) timeslots to perform

a local broadcast with probability 1− 1
n .

Proof: Consider a network where each node has only one

neighbor in its transmission range (this neighbor is also within

the local broadcast range). Before receiving a message from

the neighbor, in a sequence of logn
4 timeslots, the transmission

probability of each node v can be calculated for each timeslot

in advance. Because n > 2
log n

4 , there must exist two nodes

u and v, such that in each timeslot, they both transmit with

probability at least 1
2 or less than 1

2 . We can construct the graph

such that u and v are neighbors. Next we show that in the first
logn
4 timeslots, both u and v can not receive any message with

high probability. Specifically, in a timeslot, the probability that

u can successfully transmit a message to v or the other way

around is at most pu(1−pv)+pv(1−pu) ≤ 3
4 for either case.

Then the probability that u or v can successfully transmit a

message after logn
4 timeslots is at most 1−( 14 )

log n
4 = 1−n−

1
2 .

V. CONCLUSION

In this paper, we study the local broadcasting problem

in unstructured wireless networks. Assuming the physical

interference model, we propose a new randomized distributed

algorithm with running time of O(Δ log n + log2 n), which

improves the state-of-the-art result in [22] for all networks

with non-constant Δ. The proposed algorithm does not need

any information of Δ. This feature makes our algorithm widely

applicable, even in newly deployed networks. We have also

derived a new lower bound for randomized distributed local

broadcasting algorithms, which translates to an approximation

ratio of O(log n) for our algorithm. This is a logarithmic

factor reduction as compared with the previous best result

in [22] in terms of approximation ratio. There are several

interesting and meaningful directions for future work. The

first direction is to derive a deterministic distributed algorithm

for local broadcasting without physical carrier sensing. The

second one is to study whether synchronous communica-

tion is useful for designing more efficient local broadcasting

algorithms. Furthermore, as discussed in the related work,

the local broadcast problem is closely related to many other

problems. So it is also important to see whether the method for

designing our algorithm can be used to obtain faster solutions

for other problems, e.g., the wake-up problem [5], the multi-

message broadcast problem [14] and the contention resolution

problem [4].

VI. ACKNOWLEDGEMENTS

This work was supported in part by the National Ba-

sic Research Program of China Grant 2011CBA00300,

2011CBA00302, the National Natural Science Foundation of

China Grant 61103186, 61073174, 61033001, 61061130540,

the Hi-Tech research and Development Program of China

Grant 2006AA10Z216, and Hong Kong RGC-GRF grants

714009E and 714311.
REFERENCES

[1] N. Alon, A. Bar-Noy, N. Linial, D. Peleg. On the complexity of radio
communication (Extended Abstract). In STOC, 1989.

[2] B. Derbel, E.-G. Talbi. Radio network distributed algorithms in the
unknown neighborhood model. In ICDCN, 2010.

[3] B. Derbel, E.-G. Talbi. Distributed node coloring in the SINR model. In
ICDCS, 2010.

[4] A. Fernández Anta, M. A. Mosteiro, J. R. Muñoz. Unbounded Contention
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