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Abstract—Given a set of sensor nodes V where each node
wants to broadcast a message to all its neighbors that are within
a certain broadcasting range, the local broadcasting problem is to
schedule all these requests in as few timeslots as possible. In this
paper, assuming the more realistic physical interference model
and no knowledge of the topology, we present three distributed
local broadcasting algorithms where the first one is for the
asynchronized model and the other two are for the synchronized
model. Under the asynchronized model, nodes may join the
execution of the protocol at any time and do not have access
to a global clock, for which we give a distributed randomized
algorithm with approximation ratio O(log2 n). This improves the
state-of-the-art result given in [14] by a logarithmic factor. For
the synchronized model where communications among nodes are
synchronous and nodes can perform physical carrier sensing,
we propose two distributed deterministic local broadcasting
algorithms for synchronous and asynchronous node wakeups,
respectively. Both algorithms have approximation ratio O(logn).

I. INTRODUCTION

A. Problem Motivation

When a wireless ad hoc network begins to take shape, an
infrastructure must be established before any functions, such
as routing, can be performed. This can be done via local
broadcasting to neighboring nodes by the participating nodes.
Formally, given a set of sensor nodes V where each node
would like to broadcast a message to all its neighbors that
are within a certain broadcasting range, the local broadcasting
problem is to schedule all these requests in as few timeslots
as possible.

Unlike wired networks where a link is generally safe
and reliable, wireless radio communications are subject to
interference caused by simultaneous wireless transmissions.
The existence of interference is a major obstacle in the
design of efficient local broadcasting protocols. To study
the phenomenon, the two most widely adopted interference
models are the protocol (interference) model and the physical
(interference) model. In the protocol model, the interference
is modeled as a localized function whereby a node can hear
a message if there are no other simultaneously transmitting
senders within the receiver’s exclusion region. The exclusion
region could be a disc centered at the receiver of which
the radius is defined by some distance function. However, in
reality, the interference experienced by a receiver is caused

not only by its nearby nodes that are in its exclusion region,
but also by nodes that are further away. In other words, the
“cumulative” interference caused by all the simultaneously
transmitting nodes, near and far, affects the reception of
any message by the receiver. The Signal-to-Interference-plus-
Noise-Ratio (SINR) model [17] tries to model this reality. The
SINR model assumes that a signal fades with the distance to
the power of some path-loss exponent α, and a signal can be
successfully decoded at the receiver iff the ratio of the received
signal strength and the sum of the interference caused by
nodes sending simultaneously plus noise is above a hardware-
defined threshold β. Since the SINR model defines a global
function, adopting this more realistic model makes the process
to develop efficient distributed algorithms more intricate.

In addition to the SINR model which deals with signal
transmissions and interferences, we need also to decide on
the communication model which is either asynchronized or
synchronized. In the asynchronized model, there is no global
clock, and sensor nodes can wake up asynchronously at
arbitrary times. In this paper, we assume that nodes wake up
spontaneously without being activated by some message. In
the synchronized model, there is a global clock accessible to
all nodes, and both asynchronous and synchronous node wake-
ups will be considered. We believe asynchronous wakeups are
more in line with the reality as it is hard to implement global
clocking in a large sensor network.

B. Our Contribution

This paper presents the following two results for the local
broadcasting problem under the physical interference model:

• For the asychronized model, we give a distributed ran-
domized local broadcasting algorithm with approximation
ratio O(log2n). Compared to the current best algorithm
which was proposed by Goussevskaia, Moscibroda and
Wattenhofer in [14], our algorithm reduces the time
complexity by a logarithmic factor.

• For the synchronized model where communications are
carried out in rounds, we give two distributed determin-
istic local broadcasting algorithms under the assumption
that all nodes can perform physical carrier sensing. We
consider both synchronous and asynchronous wakeups.



Our deterministic algorithms are optimal up to a loga-
rithmic factor.

Our algorithms do not require any information about the
topology, except an estimate of the number of nodes in the
network.

C. Related Work

It has been shown that assuming the more realistic SINR
model in a design could greatly increase the network through-
put [19], [33]. Thus the SINR model has received increasing
attention since the seminal work by Moscibroda and Watten-
hofer in [32]. In [3], Brar et al. gave the first approximation
algorithm for the link scheduling problem under uniform
random node distributions. In [4], Chafekar et al. considered
the so called cross-layer latency minimization problem that
combines link scheduling and routing. In [20], Hua and Lau
gave both exact and approximate link scheduling algorithms
and they also considered how spread-spectrum techniques
could affect the scheduling performance under the SINR
model [21]. In [15], Goussevskaia et al. gave an excellent
survey on approximation algorithms using the SINR model.
More recent works on using the SINR model can be found
in [2], [9], [11], [12], [18], [19], [23], [29], [31].

Despite the difficulties, there have been some attempts to
design distributed algorithms under the SINR model. Li et
al. [28] gave the first distributed algorithm for the minimum
latency aggregation scheduling problem. Derbel et al. [8] pro-
posed a distributed node coloring algorithm with asynchronous
node wakeups. Scheideler et al. [35] presented a distributed
approximation algorithm for the dominating set problem. They
all assume the SINR model.

As a building block, local broadcasting has been frequently
used in various broadcasting scenarios where a source has a
message to send to all other nodes in the network [26], [27],
[36]. The local broadcasting problem is also closely related to
the intensively studied wake-up problem [5], [6], [10], [13],
[24], [25] in which nodes that have waken would wake up their
neighbors by sending them a message. For the local broad-
casting operation itself, to our knowledge, the single-round
simulation (SRS) primitive proposed by Alon et al. in [1] can
be regarded as the first distributed technique. However, these
SRS algorithms require all nodes start executing the algorithm
at the same time and assume a synchronous environment.
Derbel and Talbi [7] adapted the randomized protocol in [1]
to the unknown neighborhood model where no information
about node degrees is available. Closely related work to what
we present here include two randomized algorithms for the
local broadcasting problem proposed by Goussevaskaia et al.
in [14]. With the assumption that each node knows the
number of nodes in its proximity region, their simple Aloha-
like algorithm achieves an approximation ratio of O(log n),
and then without this assumption, their randomized distributed
algorithm achieves an approximation ratio of O(log3 n). Both
algorithms considered asynchronous wakeups and used the
SINR model. In contrast, all our algorithms do not assume

each node knows the number of nodes in its proximity region,
which should be more reasonable in real deployment.

D. Structure

The remainder of the paper is organized as follows. We
present the problem model in Section II. We give the dis-
tributed randomized local broadcasting algorithm for the asyn-
chronized model in Section III, and the distributed deter-
ministic local broadcasting algorithms for the synchronized
model and for both synchronous and asynchronos wakeups in
Section IV. We conclude the paper in Section V.

II. MODEL

We assume that nodes are placed arbitrarily on the plane.
Given two nodes u and v, we denote by d(u, v) the Euclidian
distance between u and v. As mentioned in the introduction,
by assuming the SINR model, a message sent by node u to
node v can be correctly received at v iff

P
d(u,v)α

N +
∑
w∈V \{u,v}

P
d(w,v)α

≥ β, (1)

Here P is the transmission power of each node and this
kind of uniform power assignment has been widely adopted
in practice [16]; α is the path-loss exponent whose value
is normally between 2 and 6; β is a hardware determined
threshold value which is greater than 1; N is the ambient
noise;

∑
w∈V \{u,v}

P
d(w,v)α is the interference experienced by

the receiver v, which is caused by all the simultaneously
transmitting nodes in the network.

Given a set of nodes V , the local broadcast range RB of a
node v ∈ V is the distance up to which v intends to broadcast
its message. The region within this range and the number
of nodes in it are denoted as Bv and ∆B

v , respectively. For
each node v, a successful local broadcast is defined to be a
transmission of a message, such that it is successfully received
by all nodes located in the local broadcasting region Bv under
the SINR condition (1). A local broadcast is complete if every
node v in the network has transmitted a message to every other
node in Bv . Given the local broadcast range RB , the local
broadcasting problem is to complete a local broadcast in as
few timeslots as possible.

In the absence of any other simultaneously transmissions
in the network, the transmission range RT of a node v is
the maximum distance at which a node u can receive a clear
transmission from v (SINR ≥ β). The SINR condition (1)
tells us that RT ≤ ( P

β·N )1/α for given power level P . We refer
to the region within this range and the number of nodes in it
as Tv and ∆T

v , respectively.
We consider the local broadcasting problem for the un-

known neighborhood model, i.e., nodes are clueless about the
number of nodes in its close proximity with which they have
to compete for the shared medium. In practice, the number of
nodes in a network may not be known exactly, but it can be
roughly estimated in advance. Here we assume the estimate
of the total number of nodes in the network is an upper bound
of a real number, i.e., n̂ = nc for some constant c ≥ 1. Both



synchronized and asynchronized communication models are
considered in this work.

In the synchronized scenario in which communication
among nodes is done in synchronized rounds, we assume
that all nodes have unique IDs from the interval [1, n] using
the same number of bits, i.e., small IDs have a prefix filled
with 0s such that all IDs have equal length, where n is
the estimate of the number of nodes. A polynomial bounded
estimate of the number of nodes will not affect the time bounds
of the proposed algorithms. Also, synchronous beginning is
not assumed, i.e., each node may start the execution of the
algorithm at an unknown point in time. In this case, the
time complexity of an algorithm is defined as the number
of rounds from the time that the last node starts to execute
the algorithm until all nodes have performed a successful
local broadcast. In every round, a node v can either listen
or transmit. Furthermore, we assume that listening nodes can
perform physical carrier sensing by energy detection.

Physical carrier sensing is part of the IEEE 802.11 standard,
and is provided by a Clear Channel Assessment (CCA) cir-
cuit [35]. Given a certain sensing threshold T , a node v senses
a busy channel if and only if it can sense a power larger than
T . We do not assume that nodes can adjust their carrier sensing
threshold during the execution of the algorithm. Instead, we
adopt the concept of a carrier sensing range as introduced in
many studies of 802.11 networks. The carrier sensing range
RS [11] is mapped from the carrier sensing power threshold
T :

RS = (
P

T
)

1
α , (2)

where P is the transmission power. Consider a node v and a
transmitter u. v can carrier-sense u if and only if the distance
between v and u is not larger than RS , i.e.,

d(u, v) ≤ RS . (3)

In the asynchronized scenario, we assume a particularly
harsh model of computation, which closely reflects the deploy-
ment of many real ad hoc and sensor systems. In particular,
we assume that nodes may start executing the algorithm at any
time and do not have access to a global clock. The only a-prior
knowledge given to the nodes is an estimate of the number of
nodes in the network. Furthermore, all nodes cannot perform
physical carrier sensing. For ease of analysis, we divide the
time into timeslots that are synchronized among all nodes.
However, our algorithm does not rely on synchronization
in any way. By some standard argument introduced in [34]
for slotted vs. unslotted ALOHA, the realistic unslotted case
differs only by a factor of two from the idealized slotted case.
In this scenario, a node v’s running time is defined as the
length of the interval from the timeslot when v starts executing
the algorithm to the timeslot when v quits from the algorithm.
The time complexity of the algorithm is the maximum of all
nodes’ running times.

In this paper, we use the term “with high probability” to
denote that an event that occurs with probability 1 − n−c

for a constant c > 0. We conclude this section with some

useful facts and a lemma. Facts 1 and 2 can be found in many
mathematical textbooks, and Lemma 1 is proved in [14].

Fact 1: Given a set of probabilities p1, . . . , pn with ∀i :
pi ∈ [0, 12 ], the following inequalities hold:

(1/4)
∑n
k=1 pk ≤

n∏
k=1

(1− pk) ≤ (1/e)
∑n
k=1 pk . (4)

Fact 2: For all n, t, with n ≥ 1 and |t| ≤ n, it holds that

et(1− t2

n
) ≤ (1 + t/n)n ≤ et. (5)

Lemma 1 ( [14]): Consider two discs D1 and D2 of radii
R1 and R2, respectively, R1 > R2, we define χR1,R2 to be
the smallest number of discs D2 needed to cover the larger
disc D1. It holds that

χR1,R2 ≤ 2π

3
√

3
· (R1 + 2R2)2

R2
2

. (6)

III. RANDOMIZED ALGORITHM IN ASYNCHRONIZED
MODEL

A. Algorithm
In this section, we present a randomized local broadcasting

algorithm—Algorithm 1. Every node transmits with power
level P = 2NβRαB . Greek letters represent constants. The
algorithm is designed such that in any timeslot, the number
of nodes simultaneously transmitting in a certain area of the
network is small enough to permit each node to perform a
successful local broadcast in O(log2 n) timeslots with high
probability. The following gives more details.

At the beginning of the algorithm’s execution, a node
is in the waiting state W in which it only listens. The
purpose of state W is that newly joining or restarting nodes
will not interfere with nodes that are carrying out the local
broadcasting. In the waiting state, a node listens for messages
and increases its counter step in each timeslot. Once the step
counter of a node v ∈ W reaches the threshold, it joins the
active stateA. An active node v tries to join state B in a certain
timeslot by increasing its probability qv for sending a message
mA. Initially, an active node v starts with a small probability
qv , and then doubles qv every λ log n timeslots, and thus it
exponentially increases its chance to join state B. The design
of state A is to bound the number of nodes simultaneously
transmitting in state B in a certain area of the network. If an
active node v ∈ A receives a message mA from another active
node, it will restart the algorithm, i.e., set its state to W and
counter step to 0. Once an active node v ∈ A sends a message
mA, it joins state B and performs a local broadcast in δ log2 n
timeslots with a specified sending probability.

In order to guarantee the correctness of the algorithm
and to obtain the high probability results in Section III-B,
we set the constant parameters as follows: ω = 6.4, δ =

240e·2ω
(1− 1

ρ )
2 · 42

2−ωχRI+RB,0.5RB , λ = 2ω+4·4
5
4
+2χRI+0.5RB,0.5RB

2ω

1− 1
ρ

,

κ = 120e·42
1−ωχRI+0.5RB,0.5RB

1−1/ρ , τ = κ−1. Here ρ is a constant
defined in Section III-B and RI (defined in Equation (7)) is
also a constant as long as the transmission power P is given.



Algorithm 1 Asynchronized Local Broadcasting Algorithm
Upon node v wake-up:

1: step = 0; state = W; qv = 2−ω−1

n ; qB = τ
2ω logn ;P =

2NβRαB
node v in state W

1: while state =W do
2: step := step+ 1
3: if step ≥ δ log2 n then
4: state := A; step := 0;
5: end if
6: if mA received then
7: step := 0;
8: end if

node v in state A
1: while state = A do
2: step := step+ 1
3: if step ≥ λ log n then
4: qv = 2qv; step = 0;
5: end if

6: s :=

{
1, with probability qv
0, with probability 1− qv

7: if s = 1 then
8: send(mA) with power P ; state = B;
9: end if

10: if mA received then
11: state :=W; step := 0;
12: end if
node v in state B

1: while state = B do
2: for δ log2 n time slots do
3: transmit() with probability qB and power P ;
4: end for
5: quit from the algorithm

B. Analysis

In this section, let

RI = RB(28−ω
√

3ρβ · α− 1

α− 2
)1/(α−2), (7)

where ρ is a constant larger than 1. Here ρ is chosen such that
RI > 2RB . Denote Bi, Di and Ii as the discs centered at node
i with radius RB , RB2 and RI , respectively. By Eri we denote
the disc centered at node i with radius r. By Ai we denote
the set of nodes in state A in disc Di. Bi and Wi are defined
similarly. Without confusion, we also use Bi, Di, Ii and Eri to
denote the set of nodes in Bi, Di, Ii and Eri , respectively. Next
we use the concept of probabilistic interference introduced
in [14] in our analysis.

Definition 1: For a node v ∈ V , the probabilistic inter-
ference at v, Ψv , is defined as the expected interference
experienced by v in a certain timeslot t.

Ψv = P
∑

u∈V \{v}

pu
d(u, v)α

, (8)

where P is the transmission power and pu is the sending
probability of node u in timeslot t.

We begin the analysis by firstly presenting two properties.
The first property states that the sum of sending probabilities
by active nodes is bounded by a constant, and the second
property states that the number of simultaneously broadcasting
nodes is bounded.

Property 1: For all discs Di and at any timeslot t through-
out the execution of the algorithm,

∑
v∈Ai qv(t) ≤ 2−ω .

Property 2: For all discs Di and at any timeslot t through-
out the execution of the algorithm, |Bi| ≤ κ log n.

We adopt a similar idea as that used in [30] to show that
with high probability, neither property 1 nor property 2 is the
first one to be violated during the execution of Algorithm 1.
Note that our analysis is based on the SINR model, which is
challenging. Due to the lack of space, the detailed proof of
the following lemma can be found in the full version [37].

Lemma 2: During the execution of Algorithm 1, Properties
1 and 2 hold with probability at least 1−O(n−2).

In the following, we use pv to denote the sending probability
of node v, i.e., pv = qv if v is in state A and pv = qB if v is
in state B.

Lemma 3: Assume Properties 1 and 2 hold. Then for every
node u, the probabilistic interference caused by nodes outside
Iu can be bounded by: Ψv/∈Iu

u ≤ P
2ρβRαB

.

Proof: We first bound the sum of transmission probabili-
ties in each disc Di. Note that nodes inW do not send. Based
on the assumption that Properties 1 and 2 hold, we have

∑
v∈Di

pv =
∑
v∈Ai

qv +
∑
v∈Bi

qB

≤ 2−ω + κ log n · τ

2ω log n

= 21−ω.

(9)

Then the sum of transmission probabilities in each Bi can
be bounded as follows:

∑
v∈Bi

pv ≤
2π

3
√

3
·

(RB + 2 · RB2 )2

(RB2 )2
·
∑
v∈Dw

pv

≤ 64π

3
√

3 · 2ω
.

(10)

The first inequality is by Lemma 1. Let Rl = {v ∈ V :
lRI ≤ d(u, v) ≤ (l + 1)RI}. Let I be a maximum
independent set in Rl. Clearly, I is also a dominating set
in Rl. Thus

∑
v∈I Bv covers all nodes in Rl. Furthermore,

all discs Di for every i ∈ I are mutually disjoint because
of the independence of I and RT = 2

1
αRB > RB . Note

that all these discs are located inside the extended region
R+
l = {v ∈ V : lRI− RB

2 ≤ d(u, v) ≤ (l+1)RI+ RB
2 }. Thus

|I| ≤ Area(R+
l )/Area(Disc(RB/2)). Then the probabilistic



interference caused by nodes inside Rl is bounded as follows:

ΨRl
u =

∑
v∈Rl

Ψv
u

≤
Area(R+

l )

Area(Disc(RB/2))
·max
i∈I
{

∑
v∈Bi∩Rl

P · pv
(lRI)α

}

≤
Area(R+

l )

Area(Disc(RB/2))
· 64π

3
√

3 · 2ω
· P

(lRI)α

=
π(((l + 1)RI +RB/2)2 − (lRI −RB/2)2)

π(RB/2)2

· 64π

3
√

3 · 2ω
· P

(lRI)α

=
4(2l + 1)(R2

I +RIRB)

R2
B

· 64π

3
√

3 · 2ω
· P

(lRI)α

≤ 1

lα−1
· 384PR2

I√
3 · 2ωRαIR2

B

.

(11)

The second inequality is by Equation (10) and the last
inequality is by RB < RI

2 . Then

Ψv/∈Iu
u =

∞∑
l=1

ΨRl
u ≤

384PR2
I√

3 · 2ωRαIR2
B

·
∞∑
l=1

1

lα−1

≤ 384PR2
I√

3 · 2ωRαIR2
B

· α− 1

α− 2

≤ P

2ρβRαB
.

(12)

Lemma 4: Assume Properties 1 and 2 hold. If node v is
the only sending node in ERI+RBv , with probability 1− 1

ρ , the
message sent by v will be received successfully by all nodes
in Bv .

Proof: By the Markov inequality, with probability at least
1− 1

ρ , the interference at some node u caused by nodes outside
Iu cannot exceed ρΨv/∈Iv

u . Then if v is the only sending node
in ERI+RBv , i.e., v is the only sending node in Iu for every
u ∈ Bv , by Lemma 3, with probability at least 1 − 1

ρ , the
SINR at node u can be bounded as follows:

P
d(u,v)α

ρΨw/∈Iu
u +N

≥
P
RαB

P
2βRαB

+ P
2βRαB

≥ β (13)

The claim holds.
Lemma 5: Assume that Properties 1 and 2 hold. Let tv

be a timeslot in which a node v joins state B. Then v
can successfully perform a local broadcast in the subsequent
δ log2 n timeslots with probability 1−O(n−2).

Proof: Let P1 be the probability that v is the only sending
node in ERI+RBi . Then

P1 = qB ·
∏

u∈ERI+RBv \{v}

(1− pu)

≥ qB ·
∏

u∈ERI+RBv

(1− pu)

≥ qB · (
1

4
)
∑
u∈E

RI+RB
v

pu

(14)

The last inequality is by Fact 1. By Lemma 1 and Equation (9),
we have ∑

u∈ERI+RBi

pu ≤ 21−ωχRI+RB ,0.5RB .
(15)

Thus P1 ≥ τ
2ω logn ·(

1
4 )2

1−ωχRI+RB,0.5RB . By Lemma 4, we
know that v will successfully perform a local broadcast with
probability at least 1 − 1/ρ if v is the only sending node in
ERI+RBv . Let Pno be the probability that v cannot perform a
local broadcast within δ log2 n timeslots from tv . Then

Pno ≤ (1− (1− 1

ρ
) · τ

2ω log n
· (1

4
)2

1−ωχRI+RB,0.5RB )δ log
2 n

≤ e−δ log
2 n·(1− 1

ρ )·
τ

2ω logn ·(
1
4 )

21−ωχRI+RB,0.5RB
∈ O(n−2).

(16)

Lemma 6: Let ∆T
v be the number of nodes in v’s trans-

mission region. Then v can perform a local broadcast after
O(∆T

v log2 n) timeslots with probability at least 1−O(n−2).
The bound holds for all nodes with probability at least
1−O(n−1).

Proof: For a given v, let TW , TA and TB be the total
time v spends in the corresponding state during the execution
of Algorithm 1. From Algorithm 1, we know that TB =
δ log2 n. Under the assumption that Properties 1 and 2 hold,
by Lemma 5, with probability at least 1 − O(n−2), v will
successfully perform a local broadcast in δ log2 n timeslots
after joining state B. What remains is to bound TW and TA.

If v does not receive a message mA from a neighbor node
for δ log2 n timeslots after entering state W , it will join state
A. Unless it receives a message mA, its sending probability
will increase to 2−ω−2 after (log n− 1)λ log n timeslots. If v
still does not receive mA in the following λ log n timeslots, the
probability that v does not send during these λ log n timeslots
is at most (1− 2−ω−2)λ logn ∈ O(n−3).

Thus it holds that after at most δ log2 n + λ log2 n times-
lots, a node w in v’s transmission region will enter state
B with probability at least 1 − O(n−3). Since there are
at most ∆T

v − 1 nodes in v’s neighborhood, after at most
(∆T

v −1)(δ log2 n+λ log2 n) timeslots, there will be no node
preventing v entering B with probability at least 1−O(n−2),
and in the subsequent δ log2 n + λ log2 n timeslots, v will
enter state B with probability 1 − O(n−3) as shown before.
Thus with probability at least 1 − O(n−2), TW + TA ≤
∆T
v (δ log2 n+λ log2 n) ∈ O(∆T

v log2 n). For all nodes, this is
true with probability at least 1 − O(n−1). Finally, Properties
1 and 2 hold with probability at least 1 − O(n−2), which
concludes the proof.

Based on a trivial running time lower bound for local
broadcasting algorithms, we can evaluate the performance of
Algorithm 1 as follows. Note that the trivial lower bound had
appeared in [14].

Theorem 1: Compared to the optimal solution for local
broadcasting, Algorithm 1 can achieve an approximation ratio
of O(log2 n) in time complexity.



Proof: Denote ∆B as the maximum number of nodes in
the broadcasting region of any node, i.e., ∆B = max{∆B

v :
v ∈ V }. When all nodes successfully perform local broad-
casting, nodes in the broadcasting region of any node will
correctly receive its message. In other words, each node will
successfully receive messages from all nodes in its broadcast-
ing region after the local broadcasting algorithm terminates.
Hence, ∆B is a trivial lower bound for the running time of any
local broadcasting algorithm, since the receiver can decode the
signal of only one sender at a time.

Let ∆T = max{∆T
v : v ∈ V }. On one hand, by Lemma 6,

the time complexity of Algorithm 1 is O(∆T log2 n). On the
other hand, by Lemma 1, ∆T ≤ χRT ,RB · ∆B ∈ O(∆B).
Then the approximation ratio can be obtained.

Remark 1: In Algorithm 1, we assign the transmission
power as P = 2NβRαB , which is smaller by a 2α factor when
compared to that in the state-of-the-art result in [14]. Hence,
our algorithm is not only faster by a logarithmic factor than
the previous result in [14], but also more efficient in energy
consumption.

IV. DETERMINISTIC ALGORITHMS IN SYNCHRONIZED
MODEL

In this section, we assume that communications among
nodes are done in synchronized rounds, and all nodes have
unique IDs from the interval [1, n] using the same number
of bits, where n is an estimate of the number of nodes in
the network. Furthermore, all nodes can perform physical
carrier sensing. We consider both the cases that nodes wake
up and start executing the algorithm synchronously and asy-
chronously.

A. Unit Disc Graph Model And Collision Detection Model

The unit disc graph model (UDG) is a classic theoretical
model for wireless networks, in which nodes having omnidi-
rectional radio antennas are deployed in a planar, unobstructed
environment. There exists an edge (communication link) be-
tween two nodes u and v if and only if their Euclidean distance
is at most 1 with some proper scaling. A node can receive a
message only if exactly one of its neighbors sends.

In the collision detection model, nodes are able to sense the
existence of transmissions while listening. In particular, for the
UDG model, a node v capable of collision detection means
that when v listens in round i, if it has at least one transmitter
in its neighborhood N(v), it can detect a transmission.

We also give the definition of the maximal independent set
which will be used in the algorithm. In a graph G = (V,E), a
set S is a maximal independent set if any two nodes u, v ∈ S
have hop distance of at least 2 and every node v ∈ V \ S is
adjacent to a node u ∈ S.

B. Synchronous Wake-up

Our algorithm follows the standard broadcast strategy of
cycling through selection objects. A selection object is a
schedule of every node which guarantees that each node per-
forming broadcasting will be isolated. To do this, we compute

a maximal independent set of the network by modeling it as
a “unit” disc graph using a carefully chosen scaling factor R.

When adopting the uniform power assignment, the network
can be clearly modeled as a unit disc graph G = (V,E,RT ),
where there exists an edge (u, v) ∈ E between two nodes
u and v if and only if d(u, v) ≤ RT . However, this is
still different from the theoretical UDG model, since the
cumulative interference may make a node v fail to receive
a message even when only one neighbor of v sends. Due to
this difference, it is difficult to simply adopt some distributed
MIS algorithms designed for the UDG model, in which a node
makes its decision based on its previous states and received
messages in the current round. Instead, we adopt a collision
detection based algorithm like the one in [36].

In the collision detection UDG model, the deterministic MIS
algorithm in [36] can compute a MIS in O(log n) synchronized
rounds under the condition that all nodes have unique IDs
from the interval [1, n], where n is an estimate of the number
of nodes. Another advantage of the algorithm is that the
whole algorithm is just based on the utilization of collision
detection, and does not depend on the successful delivery
of messages in any way. Hence, when assuming that nodes
can perform physical carrier sensing, we can implement the
collision detection based MIS algorithm to compute a MIS
in the following defined sensitivity graph, which is clearly a
UDG under the scaling factor RS determined by P .

Definition 2 (Sensitivity Graph): For transmission power
level P , the sensitivity graph GS = (V,ES) is defined on
the node set V . An edge uv exists in GS for two nodes u, v
if and only if d(u, v) ≤ RS , where RS is the carrier sensing
range determined by P according to (2).

Next we introduce the deterministic local broadcasting
algorithm demonstrated in Algorithm 2. The algorithm is per-
formed in synchronized rounds between all nodes. It is divided
into stages (corresponding to each loop). Each stage consists of
tmis+1 rounds, where tmis is the time Algorithm MIS in [36]
takes for computing a MIS. In each stage, Algorithm MIS is
adopted to compute a MIS for the sensitivity graph defined by
a carefully chosen transmission power level P1. After finishing
the implementation of Algorithm MIS, every node either joins
state M which means that it is one member of the computed
MIS, or otherwise joins state N . All nodes in state M will
perform a local broadcast with transmission power P2 in the
subsequent one round and terminate performing the algorithm
after that. Then a new stage starts and all nodes with state N
will execute the algorithm again. At first, all nodes are in state
N .

Let P2 = 2NβRαB and P1 = TRαS , where RS ≥
[96β(2α−1+ α−1

α−2 )]
1
αRB and T is the hardware-defined carrier

sensing threshold. Here we choose RS such that RS ≥ 2RA.
Lemma 7 ( [36]): The total time to compute a MIS in each

stage is O(log n).
Using a similar idea as that for proving Lemma 3, we can

show the correctness of the following lemma by bounding the
interference layer by layer. The detailed proof can be found
in the full version [37].



Algorithm 2 Synchronous Waking-up Local Broadcasting
With Carrier Sensing
For each node v ∈ V

1: loop
2: if statev := N
3: Perform MIS algorithm [36] with power P1.
4: if statev :=M
5: transmit() with power P2;
6: else wait for a round and statev := N .
7: end if
8: end if
9: end loop

Lemma 8: Each node v in state M can successfully per-
form a local broadcast under the SINR constraint.

Theorem 2: Denote by BSv the disc centered at v with
radius RS and by ∆S

v the number of nodes in BSv . After
O(∆S

v log n) rounds, each node v will successfully perform
a local broadcast. Furthermore, Algorithm 2 can achieve an
approximation ratio O(log n) in time complexity.

Proof: By Lemma 8, at the end of each stage, all nodes in
state M will carry out a local broadcast successfully in one
round. By Lemma 7, we know that the MIS algorithm can
correctly compute a MIS in O(log n) rounds, which means
that in each stage, for each node v, at least one node in BSv will
carry out a local broadcast successfully. Thus, after at most ∆S

v

stages, v will join state M and perform a local broadcast in
Bv . The total time is at most ∆S

v ·O(log n+1) = O(∆S
v log n).

The approximation ratio of Algorithm 2 can be obtained in a
similar manner to that in Theorem 1.

C. Asynchronous Wake-up

As discussed in [36], asynchronism introduces some dif-
ficulties. A typical one is that when a node wakes up and
transmits without knowing the state of its neighbors which
may disturb and corrupt an ongoing computation of a MIS.
For the asynchronous wakeup scenario, the authors extended
the MIS algorithm for the synchronously waking-up version
by performing a six-round scheduling repeatedly. Here we
generalize their Asynchronous MIS Algorithm to achieve local
broadcasting for every node in the asynchronously waking-up
scenario.

The basic idea of the Asynchronous MIS Algorithm is
that nodes involved in a computation (or in a MIS) transmit
periodically to force newly waking-up nodes to wait. Upon
waking up, a node listens until no neighbors have transmitted
for 7 consecutive rounds. If a node has detected transmission
for two consecutive rounds it knows that there is a neighbor
in the MIS. Then it changes its state to N and will not
compete to join the MIS. If it has not detected any transmission
for 7 consecutive rounds, the node will execute Algorithm
MIS [36] by iterating a six-round scheduling. In the six-round
scheduling, a node which is executing or is about to execute
Algorithm MIS transmits in the first round. This ensures that
each of its neighbors either starts executing Algorithm MIS

concurrently or waits until it has completed the algorithm.
Then the node will execute one step in Algorithm MIS. In
the second and fourth rounds no transmissions occurs. If a
node is in the MIS, it transmits in the fifth and sixth rounds.
The schedule is repeated endlessly such that nodes in the MIS
continuously inform waken-up neighbors about their presence.
The following Lemma is proved in [36].

Lemma 9: The complexity of the Asynchronous MIS Al-
gorithm is O(log n).

Algorithm 3 Asynchronous Waking-up Local Broadcasting
With Carrier Sensing
For each node v ∈ V , upon wake-up

1: statev :=W;
node v in state W

1: Listen until no transmission sensed for 8 consecutive
rounds then statev := A

node v in state A
Loop

1: if statev := A then Transmit with power P1 else sleep
end if

2: sleep
3: if statev := A then Execute one step in Algorithm MIS

in [36] with transmission power P1 else sleep end if
4: sleep
5: if statev :=M then Transmit twice with power P1

6: else carry out carrier sensing for two rounds
7: if v detected transmission for 2 consecutive rounds then
statev =W end if

8: end if
9: if statev := M then Transmit with power P2 and quit

else listen end if
end loop

In Algorithm 3, the values of P1 and P2 are the same as
those assigned in Section IV-B. Upon waking up, a node v
enters the waiting state W and listens until no neighbors have
transmitted for 8 consecutive rounds. Then it joins state A
to compete for entering an independent set of the sensitivity
graph defined by P1, i.e., joining stateM. After entering state
A, node v will repeat a seven-round scheduling. Different from
the six-round scheduling in the Asynchronous MIS Algorithm,
in the five and six rounds, all nodes that sensed a neighboring
node in state M will join state W and restart the algorithm.
Furthermore, if v joins state M, it will stop executing the
algorithm after performing a local broadcast with power P2

in the seventh round such that its neighbors can restart
the algorithm to compete for joining an independent set to
complete a local broadcast. The Asynchronous MIS Algorithm
in [36] guarantees that in any round, the nodes in state M
constitutes an independent set, since nodes restarting executing
the algorithm can be seen as newly waken-up nodes. Lemma 9
tells us that for each node v, after at most O(log n) rounds
from the time it starts or restarts executing the algorithm,
there will emerge a node in its carrier sensing region joining



state M. Furthermore, by Lemma 8, all nodes in state M
can perform local broadcasting successfully. Finally, using a
similar analysis as that in Theorem 2, the following result can
be obtained.

Theorem 3: Upon waking up, each node v will successfully
perform a local broadcast after O(∆S

v log n) rounds. Further-
more, Algorithm 3 achieves an approximation ratio O(log n)
in time complexity.

V. CONCLUSIONS

In this paper, by using a more realistic physical interference
model and by considering both the synchronized and asyn-
chronized communication models, we have presented three
distributed local broadcasting algorithms. For the asynchro-
nized model, our proposed distributed randomized algorithm
outperforms the state-of-the-art result [14] by a logarithmic
factor. For the synchronized model, considering both syn-
chronous and asynchronous node wakeups, our two proposed
algorithms are the first distributed deterministic algorithms for
the local broadcasting problem under the SINR model. Note
that we have assumed that each sensor node employs the same
transmission power (i.e., uniform power assignment). The
question then is whether we can design efficient distributed
algorithms for the local broadcasting problem with the pres-
ence of power control, i.e., different nodes may use different
powers to transmit. This should be a meaningful challenge
to take up as power control can significantly reduce the time
complexity [9], [32]. Another possible direction is to design
distributed deterministic algorithms for the local broadcasting
problem under the asynchronized communication model.
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