
Parallel Truss Maintenance Algorithms
for Dynamic Hypergraphs

Meng Wang, Qiang-Sheng Hua(B), Yefei Wang, Hai Jin, and Zhiyuan Shao

National Engineering Research Center for Big Data Technology and System/Services
Computing Technology and System Lab/Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan 430074, People’s Republic of China
qshua@hust.edu.cn

Abstract. .K-truss is an efficient model to detect cohesive subgraphs in
ordinary graphs. Many works about trussness decomposition and main-
tenance on ordinary graphs have been proposed in recent years. However,
few studies have focused on hypergraph trussness calculation, and the
state-of-art algorithm for hypergraph trussness [7] is for static hyper-
graphs and is unable to distinguish certain cohesive structures. In this
paper, we propose a novel truss definition on hypergraphs that consid-
ers the unique structure of hypergraphs. To recognize the structure,
we present a parallel decomposition algorithm and a parallel mainte-
nance algorithm based on the h-index. The time complexities of the
decomposition and maintenance algorithms are .O(m ∗ c2

max ∗ hmax) and
.O(L ∗ cmax ∗ hmax), respectively. Here .m is the number of hypergraph
edges, .cmax is the maximum size of a hyperedge, .hmax is the maxi-
mum number of hyperedges that a vertex is in, and .L means the largest
.Degree .Level [14] of vertex pairs in the hypergraph. We also implement
our algorithms on real-world hypergraphs and the results show that the
maintenance algorithm can speed up two orders of magnitude compared
to the decomposition algorithm in terms of time consumption.

1 Introduction

A fundamental problem in the analysis of massive networks is to detect cohesive
subgraphs in graphs, which has attracted a lot of attention in recent years. A
variety of cohesive subgraphs have been proposed, such as .k-clique [1], .k-core
[2], .k-truss [3], .k-peak [4], and .(r, s)-nucleus [5].

In many real-world problems, more than two objects can be linked together
with the same connection. The hypergraph is introduced to provide a better
model to describe these polyadic relationships. In an unweighted and undirected
hypergraph, a hyperedge can contain any number of vertices. Figure 1 is a hyper-
graph of papers and their authors, where each vertex represents an author and
each hyperedge represents a paper. A paper hyperedge contains all of its author
vertices.

Q.-S. Hua—This work was supported in part by National Science and Technology
Major Project 2022ZD0115301.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Chen et al. (Eds.): COCOON 2024, LNCS 15162, pp. 538–550, 2025.
https://doi.org/10.1007/978-981-96-1093-8_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1093-8_44&domain=pdf
https://doi.org/10.1007/978-981-96-1093-8_44

Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 539

Among the models mentioned above, .k-truss achieves both high computa-
tional efficiency and cohesiveness. As an important tool to detect cohesive sub-
graphs, it also contributes in community searching, random walking and influ-
ence maximization [6]. It is natural and necessary to consider the .k-truss on
hypergraphs, because the relationships between vertices are more complex. How-
ever, the classic definition of .k-truss can only work on ordinary graphs. One of
the difficulties in extending .k-truss to hypergraphs is that conventional triangles
do not exist directly in hypergraphs. In ordinary simple graphs, an edge links
exactly two vertices, and a cycle of length three is considered as a triangle. But
there are no such direct links between vertices in hypergraphs.

There are few works about truss algorithms on hypergraphs. [7] presents an
.(α, β)-triangle on static hypergraphs. If the number of hyperedges that contain
three adjacent pairs of vertices .(A,B), .(B,C) and .(C,A) is . α and the number of
hyperedges that contain at least one of them is . β, then these three pairs of ver-
tices form an .(α, β)-triangle 1. However, this definition might not be appropriate.
Take Fig. 1 as an example, author . A co-authors 3 papers with .B and .C respec-
tively in 1(a) while co-authors 5 papers with . B and 1 paper with . C in 1(b). They
are both .(1, 5)-triangles according to [7], but the relationship between .B and . C
is different in the two hypergraphs. They may belong to the same institute in
1(a) while just having a one-shot cooperation in 1(b). Besides, their algorithms
that recognize the .(α, β)-triangle are designed for static hypergraphs and need
to find the corresponding structure of their triangles in the conversion graphs,
such as the clique expansion (CE) and star expansion (SE) [8]. Nonetheless, the
conversion leads to considerable storage and communication costs and does not
consider the scenario that different hypergraphs might be mapped to the same
conversion graph. Thus, we aim to find a better way to describe the trussness
on hypergraphs.

Fig. 1. Two different scenarios that cannot be distinguished in [7].

In this paper, we focus on the scenario of vertex update and maintain the
trussness in hypergraphs. We propose a new truss definition on hypergraphs
1 In Fig. 1(a), . e1 = {A, B, C, . . .}, e2 = {A, B}, e3 = {A, B, . . .}, e4 = {A, C}, e5 =

{A, C, . . .}. In Fig. 1(b), .e1 = {A, B, C, . . .}, e2, e3, e4 and .e5 are different hyperedges
containing .A and . B. For the two figures, the number of hyperedges containing the
three adjacent pairs of vertices .(A, B), .(B, C) and .(C, A) is 1 (.e1), and the number
of hyperedges containing at least one of the above vertex pairs is 5 (.e1, e2, e3, e4, e5).

540 M. Wang et al.

which can clarify different cohesiveness between different triangles, then we study
the change of trussness of vertex pairs. We then propose a parallel decomposi-
tion algorithm and a parallel maintenance algorithm based on the h-index. We
evaluate our algorithms on real-world hypergraphs and the results show that the
maintenance algorithm is much faster than the static decomposition one.

Due to space constraints, this paper presents only the main results and dis-
cussion. The full version, including proofs and additional experimental results,
can be found in [9].

2 Problem Formulation

Consider an unweighted and undirected hypergraph .H = (V (H), E(H)), where
.V is the vertex set and .E is the hyperedge set. A hyperedge .e ∈ E(H) is a set
of vertices in .V (H). The number of vertices and hyperedges in the hypergraph
are denoted as . n and . m, respectively. For a vertex .u ∈ V (H), a hyperedge
in .E(H) that contains . u is denoted as .eH(u). The set of all hyperedges that
contain . u is denoted as .EH(u), i.e., .EH(u) = {e ∈ E(H) | u ∈ e}. The degree
of . u is denoted as .degH(u) = |EH(u)|. The neighbor set of . u is denoted as
.NH(u) = {v ∈ V (H) | ∃ e ∈ EH(u), v ∈ e}. The set of all hyperedges in . E(H)
that contain both . u and . v is denoted as .EH(u, v) = EH(u)∩EH(v). Vertex . u in
hyperedge . ei is denoted as .ei(u). The subscript of these symbols may be omitted
if the context is clear.

A natural idea to extend trussness on hypergraphs is to consider which vertex
pairs share the common hyperedges. If any vertex among .u, v, w ∈ V (H) is a
neighbor of the other two vertices, they form a triangle in the hypergraph. Two
vertices .u, v that are in the same hyperedge .ei form a vertex pair .ei(u, v). For
a triangle formed by vertex pairs .ei(u, v), .ej(v, w) and .ek(w, u), it is denoted
as .�[ueivejwek]. It should be noticed that a vertex can be contained by dif-
ferent hyperedges, thus there are different triangles even if the three vertices
are the same. This is another difference between triangles on ordinary graphs
and hypergraphs. The set of all triangles that contain .e0(u, v) is denoted as
.TH [e0(u, v)] = {�[ue0veiwej] |w ∈ V (H)}.

For example in Fig. 2, .v1 and .v3 share . e1, .v1 and .v5 share . e3, .v3 and .v5 share
. e4. So according to the criterion above, they form a triangle. The same is true
for . v1, .v2 and . v4, which share . e2. However, unlike triangles in ordinary graphs,
the cohesiveness between them is different. . v1, .v3 and .v5 share three different
hyperedges, while . v1, .v2 and .v4 are all in the same hyperedge . e2. As triangles in
hypergraphs formed by different vertices have different cohesiveness, we consider
the following two kinds of triangles in hyperedges.

Definition 1 (Inner and Outer Triangle). Given a triangle . �[ueivejwek]
in a hypergraph, if .ei, ej , ek are the same hyperedge, the triangle is an inner
triangle. Otherwise, the triangle is an outer triangle.

In Fig. 2, .�[ve2
1 ve2

2 ve2
4] is an inner triangle and .�[ve1

1 ve4
3 ve3

5] is an outer trian-
gle. As two different triangles are defined in hypergraphs, the numbers of these

Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 541

two kinds of triangles need to be considered separately. We consider the following
two kinds of parameters to count the number of triangles.

Definition 2 (Inner and Outer Support of Vertex Pairs). Given a vertex
pair .e0(u, v) in . H, its inner support is defined as the number of inner triangles
that contain .e0(u, v), denoted as .supHin[e0(u, v)]. Its outer support is defined as
the number of outer triangles that contain .e0(u, v), denoted as .supHout[e0(u, v)].

Definition 3 (Inner and Outer Support of Vertices). Given a vertex . u in
. e0, its inner support .supHin[e0(u)] is equal to the maximum inner support of the
vertex pairs in .e0 that contain it, i.e., . supHin[e0(u)] = max{supHin[e0(u, v)]}, v �=
u. Similarly, its outer support .supHout[e0(u)] = max{supHout[e0(u, v)]}, v �= u.

The inner support is for triangles that are entirely located in a hyperedge,
like .�[ve2

1 ve2
2 ve2

3] in Fig. 2. This case does not exist in an ordinary graph. While
the outer support is for triangles like .�[ve1

1 ve4
3 ve3

5] in Fig. 2. In this situation,
the triangle is formed by vertex pairs that come from three different hyperedges.
Having defined how to count the triangles, we define our new truss definition on
hypergraphs.

Definition 4 (.(kin, kout)-Truss). A .(kin, kout)-truss of a hypergraph .H is the
largest subgraph . S where each vertex pair .e0(u, v) satisfies
(1) .supSin[e0(u, v)] ≥ kin, and
(2) .supSout[e0(u)] ≥ kout and .supSout[e0(v)] ≥ kout.

Definition 5 (Trussness of Vertex Pairs). Given a vertex pair .e0(u, v) in
. H, if it is in a .(k, l)-truss but neither in a .(k+1, l)-truss nor in a .(k, l+1)-truss,
then we denote its inner trussness (when .kout = l) as .τout=l

in [e0(u, v)] = k, and
its outer trussness (when .kin = k) as .τ in=k

out [e0(u, v)] = l.

As noted above, the inner support and outer support of a vertex pair are
different in cohesiveness. In our method, we count them separately and introduce
.kin and .kout as parameters to evaluate their contributions 2. Note that we relax
the restriction on the outer trussness in Definition 4, which is different from
ordinary graphs. It contains not only vertex pairs whose outer supports are no
less than .kout, but also those vertex pairs whose outer supports are less than
.kout but the outer supports of their both vertices are no less than .kout. Because
if we only consider the outer support of the vertex pair itself, some cohesive
structures may be missed. For example in Fig. 3, .�[ve1

1 ve3
2 ve2

5] and . �[ve1
3 ve5

4 ve4
6]

both fit the restriction of having at least 0 inner triangle and 1 outer triangle, but
Fig. 3 does not fit because .e1(v1, v3) does not have any outer triangles. Definition
4 guarantees that the largest subgraph can be found. Lemma 1 clarifies this issue
and the proof is in [9].

2 The definition of .k-truss in ordinary graphs requires that .supG(e) ≥ (k − 2) for each
edge, which makes sure that a .k-clique is also a .k-truss. Without loss of generality,
the original .k-truss is a .(0, k − 2)-truss in our definition.

542 M. Wang et al.

Fig. 2. Different triangles in a hyper-
graph

Fig. 3. Missed Cohesive Structure

Lemma 1. The union operation is closed on the truss based on Definition 4.
Thus the largest .(kin, kout)-truss of a hypergraph is unique.

Take Fig. 3 as an example, the inner supports of vertex pairs in .e1 are all 2,
and the inner supports of vertex pairs in other hyperedges are all 0. Thus, hyper-
edge .e1 and vertices in it form a .(2, 0)-truss. The outer supports of .e0(v1, v3),
.e0(v1, v4), .e0(v2, v3), .e0(v2, v4) are 0, but all outer supports of their vertices are
1, and the outer supports of other vertex pairs are 1. Thus, Fig. 3 is a .(0, 1)-truss.

Note that a truss has two attributions .kin and .kout, thus the combination
of inner trussness and outer trussness of a vertex pair is non-unique. If there
are no requirements on inner trussness, each vertex pair discovers the .(0, τ in=0

out)-
truss that it is in. If the restriction on inner trussness raises, the outer trussness
of the vertex pairs may decrease. It is unnecessary to maintain every trussness
combination for vertex pairs, so we set .kin and .kout as fixed values. Besides, it is
time-consuming to calculate the trussness of each vertex pair in sequential when
the magnitude of graphs comes large, so we tackle the problem in parallel.

Problem Definition. We maintain a .(kin, kout)-truss where the two parame-
ters are determined and recognize the vertices and hyperedges that are in the
.(kin, kout)-truss of the updated hypergraphs while avoiding computing the whole
hypergraph from scratch.

Performance Measure. We use the work-depth model in [10]. The work
of a parallel algorithm is the time to perform the entire computation on one
processor and the depth is the execution time of the longest path of sequential
dependencies in the algorithm.

The major notations and their descriptions are summarized in Table 1.

3 Theoretical Analyses

When it comes to a dynamic scenario, the following issues need to be considered:
determining whose trussness will change and determining how much their truss-
ness will change. We solve these issues in this section. The proofs of lemmas in
this section are all presented in [9]. When we discuss the inner trussness or the
outer trussness in the following subsections, we regard the requirement on the
other parameter as a fixed value, such as 0, and omit the trussness superscript.

Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 543

Table 1. Summary of Notations

Notations Description
.V (H), E(H) the set of vertices/hyperedges in . H
.n, m the number of vertices/hyperedges in the hypergraph
.degH (u) the degree of vertex .u in . H
.|e| the number of vertices in hyperedge . e
.EH (u) the set of hyperedges that contain . u
.NH (u) the set of neighbors of vertex .u in . H
.e0(u) the vertex .u in hyperedge . e0

.e0(u, v) the vertex pair made up with vertex .u and . v from . e0

.EH (u, v) The set of all hyperedges in .E(H) that contain both .u and . v

.TH [e0(u, v)] the set of all triangles that contain .e0(u, v) in . H

.supH
in[e0(u, v)] the vertex pair .e0(u, v)’s inner support in . H

.supH
out[e0(u, v)] the vertex pair .e0(u, v)’s outer support in . H

.τ out=l
in [e0(u, v)] the vertex pair .e0(u, v)’s inner trussness when .kout is . l

.τ in=k
out [e0(u, v)] the vertex pair .e0(u, v)’s outer trussness when .kin is . k

.�[uei vej wek] the triangle formed by vertex pairs .ei(u, v), .ej(v, w) and . ek(w, u)

.lv(�[uea veb wec]) the level of . �[uea veb wec]

3.1 Inner Trussness Change

The change of inner or outer support of our .(kin, kout)-truss needs to be con-
sidered separately. The change of inner trussness is relatively simple and can be
determined by Lemmas 2 and 3.

Lemma 2. After a vertex .u0 is inserted into a hyperedge in .H = (V, E), the
inner trussness of each vertex pair in .H is increased by at most 1.

Lemma 3. After a vertex .u0 is deleted from a hyperedge in .H = (V, E), the
inner trussness of each vertex pair in .H is decreased by at most 1.

3.2 Outer Trussness Change

However, when it comes to the outer trussness, the problem becomes more com-
plex. Firstly, each vertex pair must be computed separately. Two pairs that have
the same two vertices may be different because the pairs can come from differ-
ent hyperedges. For example in Fig. 2, the vertex pair .(u1, u2) can come from
either .e1 or . e2. Secondly, the trussness is the property of vertex pairs, but we
cannot insert or delete a vertex pair individually in hypergraphs. The dynamic
hypergraphs are maintained in the view of vertex updates, so during each vertex
insertion/deletion, vertex pairs linked to that vertex are inserted/deleted at the
same time. Thirdly, the support of vertex pairs in the hypergraphs changes more
than one after the insertion/deletion of a particular vertex, because a vertex pair

544 M. Wang et al.

can form more than one outer triangle. For example in Fig. 2, if .v4 is deleted
from hyperedge . e2, the outer triangles of .e1(v1, v2): .�[ve1

1 v
e2
2 v

e2
4], . �[ve1

1 v
e2
2 v

e1
4]

and .�[ve1
1 v

e1
2 v

e2
4] disappear. The theorems in ordinary graphs, such as methods

by Huang et al. [11] and Luo et al. [6,12], do not apply here for they are all
based on the fact that the support of any edge changes by at most 1 with an
edge or a vertex update. We present the following Lemmas 4 and 5 to determine
the change.

Lemma 4. After a vertex .u0 is inserted into a hyperedge .e0 in .H = (V, E), the
outer trussness of each vertex pair in .H is increased by at most .Δsmax, where
.Δsmax is the maximum of the newly formed outer triangles of the neighbor vertex
pairs of the inserted vertex pairs .e0(u0, vi), vi ∈ e0.

Lemma 5. After a vertex .u0 is deleted from a hyperedge .e0 in .H = (V, E), the
outer trussness of each vertex pair in .H is decreased by at most .Δsmax, where
.Δsmax is the maximum of the newly disappeared outer triangles of the neighbor
vertex pairs of the deleted vertex pairs .e0(u0, vi), vi ∈ e0, vi �= u0.

3.3 Affected Vertex Pairs

In this subsection, we propose several lemmas to help determine the affected
vertex pairs whose trussness may change and the range of changes. According to
Definition 2 and Lemmas 2 and 3, it is clear that the update of hypergraphs will
only affect the inner trussness of vertex pairs which are in the same hyperedges
with the inserted/deleted vertices. Thus, we get Lemma 6.

Lemma 6. After a vertex . u is inserted into or deleted from a hyperedge .e0 in
.H = (V, E),
(1) the inner trussness of each vertex pair in .e0 is increased or decreased by at
most 1;
(2) the inner trussness of each vertex pair outside .e0 remains unchanged.

The maintenance of outer trussness is based on h-index [13]. The h-index of
a set is defined as the largest integer . h where there are at least . h elements in the
set that are no less than . h. For example, the h-index of a set .{1, 1, 2, 2, 3} is 2,
since there are 3 elements that are no less than 2 and only 1 element that is no
less than 3. If elements in the set are the supports of neighboring vertex pairs
of a given vertex pair, the h-index converges to its trussness after iterations. An
important issue in convergence is to set the initial h-indices as low as possible
for vertex pairs whose outer trussness may change. Definition 6 explains the .k-
triangle and Lemma 7 shows the range of outer trussness change for different
vertex pairs.

Definition 6 (K-Triangle and Triangle Level). For a triangle . �[uea veb

wec], it is a .k-triangle if the minimum outer trussness of the vertex pairs
.ea(u, v), eb(v, w), .ec(u, w) is . k. And .k is the triangle level, denoted as
.lv(�[uea veb wec]) = k.

Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 545

Lemma 7. Suppose a vertex .u0 is inserted into a hyperedge .e0 in . H. . Δsmax

is the maximum outer support change of the neighboring vertex pairs of the
inserted vertex pairs and .0 ≤ Δs ≤ Δsmax. .lvmin[e(u, v)] is the lowest level of
the outer triangle that contains .e(u, v). .minsupH

out[e(u), e(v))] is the minimum
of .supH

out[e(u)] and .supH
out[e(v)]. For the new outer trussness .τ ′

out[e(u, v)] of a
vertex pair .e(u, v) in . H, we have:

. τ ′
out[e(u, v)] =

⎧
⎪⎨

⎪⎩

τout[e(u, v)], minsupH
out[e(u), e(v))] ≤ τout[e(u, v)] − Δsmax

τout[e(u, v)] + Δs, others
τout[e(u, v)], lvmin[e(u, v)] > τout[e(u, v)] + Δsmax

4 Parallel Algorithms

In this section, we will give the details of our parallel trussness algorithms for
hypergraphs, i.e., the decomposition algorithm for static hypergraphs and the
maintenance algorithm for dynamic hypergraphs. We also analyze the perfor-
mance of the algorithm.

The following notations are used in the time complexity analysis of our algo-
rithms: . n means the number of vertices in the hypergraph . H. .m means the
number of hyperedges in the hypergraph. .cmax = maxe∈E(H).|e| means the max-
imum number of vertices in a hyperedge in . H. .hmax = maxu∈V (H)|EH(u)| means
the maximum number of hyperedges that a vertex is in. .smax means the maxi-
mum outer support of the vertex pairs that make new triangles with the updated
vertex pairs. .tmax = maxu,v∈V (H)|TH [e(u, v)]| means the maximum number of
triangles that a vertex pair can form in . H. .|ΔH | means the size of the updated
vertex pair set. .L means the largest .Degree .Level [14] of vertex pairs in the
hypergraph. The proofs of the subsequent Theorems 1 and 2 are covered in [9].

4.1 Parallel Decomposition Algorithm

Algorithm 1 provides a natural idea to compute the inner and outer trussness
for each vertex pair according to Definition 4. Vertex pairs that do not fit the
conditions are peeled out during each step. Note that we maintain the precise
outer trussness for each vertex pair in the condition that the inner trussness is
.kin. This is preprocessing for the maintenance. An example of the decomposition
algorithm in Fig. 2 is presented in [9].

At the beginning of the algorithm, the inner support and outer support of
each vertex pair are calculated. Then we peel the vertex pairs that do not satisfy
the requirements from the hypergraph repeatedly. Specifically, the purpose of
lines 5–18 is to obtain .(kin, k)-truss. In lines 7 to 11, vertex pairs whose inner
supports are less than .kin are deleted. Note that if a vertex pair is deleted when
.k = 0, it will not get an inner trussness or an outer trussness. Because the
vertex pair does not meet the condition of .(kin, 0)-truss and is not worthy of

546 M. Wang et al.

further discussion. In lines 12 to 17, the vertex pair will be deleted if the outer
supports of this vertex pair and its two vertices are all less than . k. Because we
can only delete a vertex from a hyperedge rather than delete an individual vertex
pair in hypergraphs, the vertex with a lower outer support is chosen according
to Definition 4. When outer supports of all vertex pairs in the hypergraph are
higher than . k, the calculation of .(kin, k)-truss is finished and we move to the
.(kin, k +1)-truss. The peeling continues until all vertex pairs get their trussness.
As the output of the algorithm, vertex pairs whose inner trussness = .kin and
outer trussness .≥ kout are obtained.

Algorithm 1: Trussness Decomposition
Input : Hypergraph .H(V, E), truss parameters .kin and . kout

Output : vertex pairs that are in .(kin, kout)-truss
1 for each .ei(u, v) in .H in parallel do
2 Compute inner support and outer support of each .ei(u, v);
3 .k ← 0;
4 while .H �= ∅ do
5 while .∃ .supH

out[ei(u, v)] < k or .supH
in[ei(u, v)] < kin do

6 for each .ei that contains .supH
in[ei(u, v)] < kin in parallel do

7 Remove all vertices from . ei;
8 for each .ei(u, v) ∈ ei do
9 if .k > 0 then

10 .τin[ei(u, v)] ← kin, .τout[ei(u, v)] ← k − 1;

11 for each .supH
out[ei(u, v)] ≤ k in parallel do

12 if .supH
out[ei(u)] < k and .supH

out[ei(v)] < k then
13 W.l.o.g, assume that .supH

out[ei(u)] ≤ supH
out[ei(v)];

14 Remove the vertex .u from . ei;
15 for .ui ∈ ei do
16 .τin[ei(u, v)] ← kin, .τout[ei(u, ui] ← k − 1;

17 for each neighbouring vertex pair .e(u, w) of each .ei(u, v) in parallel do
18 Compute inner support and outer support of .e(u, w);

19 .k = k + 1;
20 return vertex pairs whose inner trussness = .kin and outer trussness .≥ kout ;

Theorem 1. Alg.1 calculates the .(kin, kout)-truss correctly. Its depth is . O(m ∗
c2 max ∗ hmax) and its work is .O(m ∗ n ∗ c3 max ∗ h2

max).

4.2 Parallel Maintenance Algorithm

In this subsection, we propose a parallel maintenance algorithm to update the
vertex pair trussness in hypergraphs when a set of vertices are inserted into or

Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 547

deleted from the hypergraph. Differing from the decomposition algorithm, the
maintenance algorithm updates the trussness of vertex pairs in parallel according
to the original values and can deal with batch processing. Because the mainte-
nance algorithm does not need to recalculate the trussness for all vertex pairs in
the hypergraphs, it can make a further improvement in time complexity. Due to
the limited space, we take the insertion algorithm as an example. The deletion
algorithm is presented in [9].

According to Lemma 7, we get the range of new outer trussness of vertex
pairs after the update. For those vertex pairs whose outer trussness may increase
after the update, we set their initial h-indices to the upper change bounds .Δsmax.
In lines 2 to 4, Alg. 2 computes inner and outer supports of .e0(u0, vi) for each
vertex pair in the new edge set. In line 5, the maximum outer support .smax of
the vertex pairs that make new triangles with .E(u0) is gained. It is an important
parameter to distinguish different affected vertex pairs. Then in lines 6 to 13, the
algorithm sets the initial h-index for each vertex pair. The insertion increases
the inner trussness of vertex pairs in .E0, and their outer trussness also needs
recomputing. These vertex pairs are removed in the processing of the inner truss-
ness check during the decomposition, and do not get a specific outer trussness.
Thus, their initial h-indices are set to their outer trussness supports. For other
vertex pairs, we set their initial h-indices to the upper bounds of their new values
according to Lemma 7. Finally, the algorithm calls the h-index-based algorithm
.U pdateT russness to update their trussness. The .U pdateT russness algorithm
is presented in [9].

Theorem 2. Alg.2 updates the .(kin, kout)-truss correctly. Its depth is . O(L ∗
cmax ∗ hmax) and its work is .O(|ΔH | ∗ c2 max ∗ h2

max + n ∗ cmax ∗ hmax ∗ tmax).

5 Evaluation

We perform experiments on real-world hypergraphs to evaluate the stability,
scalability, parallelism, and generality of our algorithms. Owing to space limi-
tations, we only present the stability evaluation, and other experimental results
are presented in [9].

Table 2 includes datasets from the real world that can be accessed through
the KONECT project 3. BC and PD are static hypergraphs and VI is a temporal
hypergraph. In the table, .accu.v refers to the sum of the number of vertices
contained by all hyperedges in the hypergraph and the .sum .v.p. refers to the
total number of vertex pairs in the hypergraph. We evaluate our algorithms
under different sizes of updated sets on these hypergraphs. For each algorithm,
we randomly choose .10i hyperedges of the original hypergraph and then choose
a random vertex in these hyperedges to update, where .i = 0, 1, 2, 3. The average
cost time of each hyperedge is the total time divided by the size of the updated
set. Table 3 shows the results of the insertion of the static algorithm and the
maintenance algorithm.
3 http://www.konect.cc/.

http://www.konect.cc/
http://www.konect.cc/
http://www.konect.cc/
http://www.konect.cc/

548 M. Wang et al.

Algorithm 2: Trussness Insertion
Input : Hypergraph .H(V, E), truss parameters .kin and .kout, new vertex set

.UΔ, update hyperedge set .EΔ, new vertex pair set . ΔH

Output : Update inner and outer trussness for each vertex pair
1 Insert .UΔ into .H;
2 for vertex pair .e(u, v) in .ΔH in parallel do
3 calculate .supH

in[e(u, v)] and .supH
out[e(u, v)];

4 .h0[e(u, v)] = supH
out[e(u, v)];

5 Calculate the maximum outer support change .Δsmax of the neighbor vertex
pairs of the inserted vertex pairs .ΔH ;

6 if .e(u, v) ∈ EΔ and .supH
in[e(u, v)] >= kin then

7 .h0[e(u, v)] = supH
out[e(u, v)];

8 for vertex pair .e(u, v) in .(kin, 0)-truss in parallel do
9 if .minsupH

out[e(u), e(v))] ≤ τout[e(u, v)] − Deltasmax or
.lvmin[e(u, v)] > τout[e(u, v)] + Δsmax then

10 .h0[e(u, v)] = τout[e(u, v)];
11 else
12 .h0[e(u, v)] = τout[e(u, v)] + Δsmax;

13 UpdateTrussness(.H(V, E), .H0[e(u, v)]);
14 Return each vertex pair in .(kin, kout)-truss;

Table 2. Attributes of Datasets

Dataset .|V | .|E| accu. v sum v.p.
BookCrossing(BC) 105K 341K 1.15M 27.7M
Producers(PD) 48.8K 139K 207K 0.14M
vi.sualize.us(VI) 17.1K 495K 2.30M 3.86M

As for the static algorithm, the average update time decreases exponentially
as the size of the update set increases. This is because the static algorithm
treats the hypergraphs after each update as a new one and recomputes the whole
hypergraph. The total time does not change apparently when the magnitude of
the update becomes larger. This is because the updated set with a limited size
does not influence the structure of the whole hypergraph. As for the maintenance
algorithm, the average update time decreases as the magnitude of the update set
increases in general. Because the number of the h-indices that can converge at
the same round will increase. However, the average time may sometimes increase
as the update set becomes larger because the increasing update set size will
also influence the initial value of the h-index, and the vertex pairs may need
more rounds to converge. Compared with the static algorithm, the maintenance
algorithm gets a two orders of magnitude speedup.

Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 549

Table 3. The average insertion time in milliseconds spent on each edge

Size of Updated Set .100
.101

.102
. 103

static alg. on BC 100.53 11.065 1.4436 0.14172
static alg. on VI 8363.2 884.99 90.946 8.7208
static alg. on PD 4580.4 473.33 46.883 4.6862
maintenance alg. on BC 0.90712 0.09427 0.024582 0.014045
maintenance alg. on VI 94.993 8.8412 7.9276 7.6037
maintenance alg. on PD 35.993 3.9247 2.1783 0.47645

6 Conclusion

In this paper, we propose a novel definition for trussness which can describe the
unique structures of hypergraphs, and study the patterns of trussness change.
Compared with [7], our work supports dynamic hypergraphs and thoroughly
considers the complex situations of dynamic hypergraphs. To identify such struc-
tures in hypergraphs, we develop and implement a peeling-based parallel decom-
position algorithm and a parallel maintenance algorithm based on h-index. The
experimental results on real-world hypergraphs show that the maintenance algo-
rithm can achieve two orders of magnitude speedup in time consumption com-
pared to the decomposition algorithm. We will focus on optimizing these algo-
rithms to reduce their time complexities in the future.

References

1. Duan, D., Li, Y., Li, R., Lu, Z.: Incremental k-clique clustering in dynamic social
networks. Artif. Intell. Rev. 38, 129–147 (2012). https://doi.org/10.1007/s10462-
011-9250-x

2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. arXiv preprint cs/0310049 (2003)

3. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Nat. Secur.
Agency Tech. Rep. 16(3.1), 1–29 (2008)

4. Govindan, P., Wang, C., Xu, C., Duan, H., Soundarajan, S.: The k-peak decom-
position: mapping the global structure of graphs. In: WWW 2017, pp. 1441–1450
(2017)

5. Sariyuce, A.E., Seshadhri, C., Pinar, A., Catalyurek, U.V.: Finding the hierarchy
of dense subgraphs using nucleus decompositions. In: WWW 2015, pp. 927–937
(2015)

6. Luo, Q., Yu, D., Cheng, X., Cai, Z., Yu, J., Lv, W.: Batch processing for truss
maintenance in large dynamic graphs. IEEE Trans. Comput. Soc. Syst. 7(6), 1435–
1446 (2020)

7. Wang, X., Chen, Y., Zhang, Z., Qiao, P., Wang, G.: Efficient truss computation
for large hypergraphs. In: WISE 2022, pp. 290–305 (2022)

8. Gu, Y., et al.: Distributed hypergraph processing using intersection graphs. IEEE
Trans. Knowl. Data Eng. 34(7), 3182–3195 (2020)

https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x
https://doi.org/10.1007/s10462-011-9250-x

550 M. Wang et al.

9. Wang, M., Hua, Q.-S., Wang, Y., Jin, H., Shao, Z.: Parallel truss maintenance
algorithms for dynamic hypergraphs. https://qiangshenghua.github.io/papers/
cocoon24full.pdf

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT press (2022)

11. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD 2014, pp. 1311–1322 (2014)

12. Luo, Q., Yu, D., Cheng, X., Sheng, H., Lyu, W.: Exploring truss maintenance in
fully dynamic graphs: a mixed structure-based approach. IEEE Trans. Comput.
72(3), 707–718 (2022)

13. Lü, L., Zhou, T., Zhang, Q.M., Stanley, H.E.: The H-index of a network node and
its relation to degree and coreness. Nat. Commun. 7(10168), 1–7 (2016)

14. Sariyuce, A.E., Seshadhri, C., Pinar, A.: Local algorithms for hierarchical dense
subgraph discovery. Proc. VLDB Endowment 12(1), 43–56 (2018)

https://qiangshenghua.github.io/papers/cocoon24full.pdf
https://qiangshenghua.github.io/papers/cocoon24full.pdf
https://qiangshenghua.github.io/papers/cocoon24full.pdf
https://qiangshenghua.github.io/papers/cocoon24full.pdf
https://qiangshenghua.github.io/papers/cocoon24full.pdf
https://qiangshenghua.github.io/papers/cocoon24full.pdf
https://qiangshenghua.github.io/papers/cocoon24full.pdf

	Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs
	1 Introduction
	2 Problem Formulation
	3 Theoretical Analyses
	3.1 Inner Trussness Change
	3.2 Outer Trussness Change
	3.3 Affected Vertex Pairs

	4 Parallel Algorithms
	4.1 Parallel Decomposition Algorithm
	4.2 Parallel Maintenance Algorithm

	5 Evaluation
	6 Conclusion
	References

