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Abstract. .K-truss is an efficient model to detect cohesive subgraphs in 
ordinary graphs. Many works about trussness decomposition and main-
tenance on ordinary graphs have been proposed in recent years. However, 
few studies have focused on hypergraph trussness calculation, and the 
state-of-art algorithm for hypergraph trussness [ 7] is for static hyper-
graphs and is unable to distinguish certain cohesive structures. In this 
paper, we propose a novel truss definition on hypergraphs that consid-
ers the unique structure of hypergraphs. To recognize the structure, 
we present a parallel decomposition algorithm and a parallel mainte-
nance algorithm based on the h-index. The time complexities of the 
decomposition and maintenance algorithms are .O(m ∗ c2

max ∗ hmax) and 
.O(L ∗ cmax ∗ hmax), respectively. Here .m is the number of hypergraph 
edges, .cmax is the maximum size of a hyperedge, .hmax is the maxi-
mum number of hyperedges that a vertex is in, and .L means the largest 
.Degree .Level [14] of vertex pairs in the hypergraph. We also implement 
our algorithms on real-world hypergraphs and the results show that the 
maintenance algorithm can speed up two orders of magnitude compared 
to the decomposition algorithm in terms of time consumption. 

1 Introduction 

A fundamental problem in the analysis of massive networks is to detect cohesive 
subgraphs in graphs, which has attracted a lot of attention in recent years. A 
variety of cohesive subgraphs have been proposed, such as .k-clique [ 1], .k-core 
[ 2], .k-truss [ 3], .k-peak [ 4], and .(r, s)-nucleus [ 5]. 

In many real-world problems, more than two objects can be linked together 
with the same connection. The hypergraph is introduced to provide a better 
model to describe these polyadic relationships. In an unweighted and undirected 
hypergraph, a hyperedge can contain any number of vertices. Figure 1 is a hyper-
graph of papers and their authors, where each vertex represents an author and 
each hyperedge represents a paper. A paper hyperedge contains all of its author 
vertices. 
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Among the models mentioned above, .k-truss achieves both high computa-
tional efficiency and cohesiveness. As an important tool to detect cohesive sub-
graphs, it also contributes in community searching, random walking and influ-
ence maximization [ 6]. It is natural and necessary to consider the .k-truss on 
hypergraphs, because the relationships between vertices are more complex. How-
ever, the classic definition of .k-truss can only work on ordinary graphs. One of 
the difficulties in extending .k-truss to hypergraphs is that conventional triangles 
do not exist directly in hypergraphs. In ordinary simple graphs, an edge links 
exactly two vertices, and a cycle of length three is considered as a triangle. But 
there are no such direct links between vertices in hypergraphs. 

There are few works about truss algorithms on hypergraphs. [ 7] presents an  
.(α, β)-triangle on static hypergraphs. If the number of hyperedges that contain 
three adjacent pairs of vertices .(A,B), .(B,C) and .(C,A) is . α and the number of 
hyperedges that contain at least one of them is . β, then these three pairs of ver-
tices form an .(α, β)-triangle 1. However, this definition might not be appropriate. 
Take Fig. 1 as an example, author . A co-authors 3 papers with .B and .C respec-
tively in 1(a) while co-authors 5 papers with . B and 1 paper with . C in 1(b). They 
are both .(1, 5)-triangles according to [ 7], but the relationship between .B and . C
is different in the two hypergraphs. They may belong to the same institute in 
1(a) while just having a one-shot cooperation in 1(b). Besides, their algorithms 
that recognize the .(α, β)-triangle are designed for static hypergraphs and need 
to find the corresponding structure of their triangles in the conversion graphs, 
such as the clique expansion (CE) and star expansion (SE) [ 8]. Nonetheless, the 
conversion leads to considerable storage and communication costs and does not 
consider the scenario that different hypergraphs might be mapped to the same 
conversion graph. Thus, we aim to find a better way to describe the trussness 
on hypergraphs. 

Fig. 1. Two different scenarios that cannot be distinguished in [ 7]. 

In this paper, we focus on the scenario of vertex update and maintain the 
trussness in hypergraphs. We propose a new truss definition on hypergraphs
1 In Fig. 1(a), . e1 = {A, B, C, . . .}, e2 = {A, B}, e3 = {A, B, . . .}, e4 = {A, C}, e5 =

{A, C, . . .}. In Fig.  1(b), .e1 = {A, B, C, . . .}, e2, e3, e4 and .e5 are different hyperedges 
containing .A and . B. For the two figures, the number of hyperedges containing the 
three adjacent pairs of vertices .(A, B), .(B, C) and .(C, A) is 1 (.e1), and the number 
of hyperedges containing at least one of the above vertex pairs is 5 (.e1, e2, e3, e4, e5). 
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which can clarify different cohesiveness between different triangles, then we study 
the change of trussness of vertex pairs. We then propose a parallel decomposi-
tion algorithm and a parallel maintenance algorithm based on the h-index. We 
evaluate our algorithms on real-world hypergraphs and the results show that the 
maintenance algorithm is much faster than the static decomposition one. 

Due to space constraints, this paper presents only the main results and dis-
cussion. The full version, including proofs and additional experimental results, 
can be found in [ 9]. 

2 Problem Formulation 

Consider an unweighted and undirected hypergraph .H = (V (H), E(H)), where 
.V is the vertex set and .E is the hyperedge set. A hyperedge .e ∈ E(H) is a set 
of vertices in .V (H). The number of vertices and hyperedges in the hypergraph 
are denoted as . n and . m, respectively. For a vertex .u ∈ V (H), a hyperedge 
in .E(H) that contains . u is denoted as .eH(u). The set of all hyperedges that 
contain . u is denoted as .EH(u), i.e., .EH(u) = {e ∈ E(H) | u ∈ e}. The degree 
of . u is denoted as .degH(u) = |EH(u)|. The neighbor set of . u is denoted as 
.NH(u) = {v ∈ V (H) | ∃ e ∈ EH(u), v ∈ e}. The set of all hyperedges in . E(H)
that contain both . u and . v is denoted as .EH(u, v) = EH(u)∩EH(v). Vertex . u in 
hyperedge . ei is denoted as .ei(u). The subscript of these symbols may be omitted 
if the context is clear. 

A natural idea to extend trussness on hypergraphs is to consider which vertex 
pairs share the common hyperedges. If any vertex among .u, v, w ∈ V (H) is a 
neighbor of the other two vertices, they form a triangle in the hypergraph. Two 
vertices .u, v that are in the same hyperedge .ei form a vertex pair .ei(u, v). For  
a triangle formed by vertex pairs .ei(u, v), .ej(v, w) and .ek(w, u), it is denoted 
as .�[ueivejwek ]. It should be noticed that a vertex can be contained by dif-
ferent hyperedges, thus there are different triangles even if the three vertices 
are the same. This is another difference between triangles on ordinary graphs 
and hypergraphs. The set of all triangles that contain .e0(u, v) is denoted as 
.TH [e0(u, v)] = {�[ue0veiwej ] |w ∈ V (H)}. 

For example in Fig. 2, .v1 and .v3 share . e1, .v1 and .v5 share . e3, .v3 and .v5 share 
. e4. So according to the criterion above, they form a triangle. The same is true 
for . v1, .v2 and . v4, which share . e2. However, unlike triangles in ordinary graphs, 
the cohesiveness between them is different. . v1, .v3 and .v5 share three different 
hyperedges, while . v1, .v2 and .v4 are all in the same hyperedge . e2. As triangles in 
hypergraphs formed by different vertices have different cohesiveness, we consider 
the following two kinds of triangles in hyperedges. 

Definition 1 (Inner and Outer Triangle). Given a triangle . �[ueivejwek ]
in a hypergraph, if .ei, ej , ek are the same hyperedge, the triangle is an inner 
triangle. Otherwise, the triangle is an outer triangle. 

In Fig. 2, .�[ve2
1 ve2

2 ve2
4 ] is an inner triangle and .�[ve1

1 ve4
3 ve3

5 ] is an outer trian-
gle. As two different triangles are defined in hypergraphs, the numbers of these
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two kinds of triangles need to be considered separately. We consider the following 
two kinds of parameters to count the number of triangles. 

Definition 2 (Inner and Outer Support of Vertex Pairs). Given a vertex 
pair .e0(u, v) in . H, its inner support is defined as the number of inner triangles 
that contain .e0(u, v), denoted as .supHin[e0(u, v)]. Its outer support is defined as 
the number of outer triangles that contain .e0(u, v), denoted as .supHout[e0(u, v)]. 

Definition 3 (Inner and Outer Support of Vertices). Given a vertex . u in 
. e0, its inner support .supHin[e0(u)] is equal to the maximum inner support of the 
vertex pairs in .e0 that contain it, i.e., . supHin[e0(u)] = max{supHin[e0(u, v)]}, v �=
u. Similarly, its outer support .supHout[e0(u)] = max{supHout[e0(u, v)]}, v �= u. 

The inner support is for triangles that are entirely located in a hyperedge, 
like .�[ve2

1 ve2
2 ve2

3 ] in Fig. 2. This case does not exist in an ordinary graph. While 
the outer support is for triangles like .�[ve1

1 ve4
3 ve3

5 ] in Fig. 2. In this situation, 
the triangle is formed by vertex pairs that come from three different hyperedges. 
Having defined how to count the triangles, we define our new truss definition on 
hypergraphs. 

Definition 4 (.(kin, kout)-Truss). A .(kin, kout)-truss of a hypergraph .H is the 
largest subgraph . S where each vertex pair .e0(u, v) satisfies 
(1) .supSin[e0(u, v)] ≥ kin, and  
(2) .supSout[e0(u)] ≥ kout and .supSout[e0(v)] ≥ kout. 

Definition 5 (Trussness of Vertex Pairs). Given a vertex pair .e0(u, v) in 
. H, if it is in a  .(k, l)-truss but neither in a .(k+1, l)-truss nor in a .(k, l+1)-truss, 
then we denote its inner trussness (when .kout = l) as  .τout=l

in [e0(u, v)] = k, and  
its outer trussness (when .kin = k) as  .τ in=k

out [e0(u, v)] = l. 

As noted above, the inner support and outer support of a vertex pair are 
different in cohesiveness. In our method, we count them separately and introduce 
.kin and .kout as parameters to evaluate their contributions 2. Note that we relax 
the restriction on the outer trussness in Definition 4, which is different from 
ordinary graphs. It contains not only vertex pairs whose outer supports are no 
less than .kout, but also those vertex pairs whose outer supports are less than 
.kout but the outer supports of their both vertices are no less than .kout. Because 
if we only consider the outer support of the vertex pair itself, some cohesive 
structures may be missed. For example in Fig. 3, .�[ve1

1 ve3
2 ve2

5 ] and . �[ve1
3 ve5

4 ve4
6 ]

both fit the restriction of having at least 0 inner triangle and 1 outer triangle, but 
Fig. 3 does not fit because .e1(v1, v3) does not have any outer triangles. Definition 
4 guarantees that the largest subgraph can be found. Lemma 1 clarifies this issue 
and the proof is in [ 9].

2 The definition of .k-truss in ordinary graphs requires that .supG(e) ≥ (k − 2) for each 
edge, which makes sure that a .k-clique is also a .k-truss. Without loss of generality, 
the original .k-truss is a .(0, k − 2)-truss in our definition. 
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Fig. 2. Different triangles in a hyper-
graph 

Fig. 3. Missed Cohesive Structure 

Lemma 1. The union operation is closed on the truss based on Definition 4. 
Thus the largest .(kin, kout)-truss of a hypergraph is unique. 

Take Fig. 3 as an example, the inner supports of vertex pairs in .e1 are all 2, 
and the inner supports of vertex pairs in other hyperedges are all 0. Thus, hyper-
edge .e1 and vertices in it form a .(2, 0)-truss. The outer supports of .e0(v1, v3), 
.e0(v1, v4), .e0(v2, v3), .e0(v2, v4) are 0, but all outer supports of their vertices are 
1, and the outer supports of other vertex pairs are 1. Thus, Fig. 3 is a .(0, 1)-truss. 

Note that a truss has two attributions .kin and .kout, thus the combination 
of inner trussness and outer trussness of a vertex pair is non-unique. If there 
are no requirements on inner trussness, each vertex pair discovers the .(0, τ  in=0 

out )-
truss that it is in. If the restriction on inner trussness raises, the outer trussness 
of the vertex pairs may decrease. It is unnecessary to maintain every trussness 
combination for vertex pairs, so we set .kin and .kout as fixed values. Besides, it is 
time-consuming to calculate the trussness of each vertex pair in sequential when 
the magnitude of graphs comes large, so we tackle the problem in parallel. 

Problem Definition. We maintain a .(kin, kout)-truss where the two parame-
ters are determined and recognize the vertices and hyperedges that are in the 
.(kin, kout)-truss of the updated hypergraphs while avoiding computing the whole 
hypergraph from scratch. 

Performance Measure. We use the work-depth model in [ 10]. The work 
of a parallel algorithm is the time to perform the entire computation on one 
processor and the depth is the execution time of the longest path of sequential 
dependencies in the algorithm. 

The major notations and their descriptions are summarized in Table 1. 

3 Theoretical Analyses 

When it comes to a dynamic scenario, the following issues need to be considered: 
determining whose trussness will change and determining how much their truss-
ness will change. We solve these issues in this section. The proofs of lemmas in 
this section are all presented in [ 9]. When we discuss the inner trussness or the 
outer trussness in the following subsections, we regard the requirement on the 
other parameter as a fixed value, such as 0, and omit the trussness superscript. 
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Table 1. Summary of Notations 

Notations Description 
.V (H), E(H) the set of vertices/hyperedges in . H 
.n, m the number of vertices/hyperedges in the hypergraph 
.degH (u) the degree of vertex  .u in . H 
.|e| the number of vertices in hyperedge . e 
.EH (u) the set of hyperedges that contain . u 
.NH (u) the set of neighbors of vertex .u in . H 
.e0(u) the vertex .u in hyperedge . e0 

.e0(u, v) the vertex pair made up with vertex  .u and . v from . e0 

.EH (u, v) The set of all hyperedges in .E(H) that contain both .u and . v 

.TH [e0(u, v)] the set of all triangles that contain .e0(u, v) in . H 

.supH 
in[e0(u, v)] the vertex pair .e0(u, v)’s inner support in . H 

.supH 
out[e0(u, v)] the vertex pair .e0(u, v)’s outer support in . H 

.τ out=l 
in [e0(u, v)] the vertex pair .e0(u, v)’s inner trussness when .kout is . l 

.τ in=k 
out [e0(u, v)] the vertex pair .e0(u, v)’s outer trussness when .kin is . k 

.�[uei vej wek ] the triangle formed by vertex pairs .ei(u, v), .ej(v, w) and . ek(w, u) 

.lv(�[uea veb wec ]) the level of . �[uea veb wec ] 

3.1 Inner Trussness Change 

The change of inner or outer support of our .(kin, kout)-truss needs to be con-
sidered separately. The change of inner trussness is relatively simple and can be 
determined by Lemmas 2 and 3. 

Lemma 2. After a vertex .u0 is inserted into a hyperedge in .H = (V, E), the 
inner trussness of each vertex pair in .H is increased by at most 1. 

Lemma 3. After a vertex .u0 is deleted from a hyperedge in .H = (V, E), the 
inner trussness of each vertex pair in .H is decreased by at most 1. 

3.2 Outer Trussness Change 

However, when it comes to the outer trussness, the problem becomes more com-
plex. Firstly, each vertex pair must be computed separately. Two pairs that have 
the same two vertices may be different because the pairs can come from differ-
ent hyperedges. For example in Fig. 2, the vertex pair .(u1, u2) can come from 
either .e1 or . e2. Secondly, the trussness is the property of vertex pairs, but we 
cannot insert or delete a vertex pair individually in hypergraphs. The dynamic 
hypergraphs are maintained in the view of vertex updates, so during each vertex 
insertion/deletion, vertex pairs linked to that vertex are inserted/deleted at the 
same time. Thirdly, the support of vertex pairs in the hypergraphs changes more 
than one after the insertion/deletion of a particular vertex, because a vertex pair 
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can form more than one outer triangle. For example in Fig. 2, if  .v4 is deleted 
from hyperedge . e2, the outer triangles of .e1(v1, v2): .�[ve1 

1 v
e2 
2 v

e2 
4 ], . �[ve1 

1 v
e2 
2 v

e1 
4 ] 

and .�[ve1 
1 v

e1 
2 v

e2 
4 ] disappear. The theorems in ordinary graphs, such as methods 

by Huang et al. [ 11] and Luo et al. [ 6,12], do not apply here for they are all 
based on the fact that the support of any edge changes by at most 1 with an 
edge or a vertex update. We present the following Lemmas 4 and 5 to determine 
the change. 

Lemma 4. After a vertex .u0 is inserted into a hyperedge .e0 in .H = (V, E), the 
outer trussness of each vertex pair in .H is increased by at most .Δsmax, where  
.Δsmax is the maximum of the newly formed outer triangles of the neighbor vertex 
pairs of the inserted vertex pairs .e0(u0, vi), vi ∈ e0. 

Lemma 5. After a vertex .u0 is deleted from a hyperedge .e0 in .H = (V, E), the 
outer trussness of each vertex pair in .H is decreased by at most .Δsmax, where  
.Δsmax is the maximum of the newly disappeared outer triangles of the neighbor 
vertex pairs of the deleted vertex pairs .e0(u0, vi), vi ∈ e0, vi �= u0. 

3.3 Affected Vertex Pairs 

In this subsection, we propose several lemmas to help determine the affected 
vertex pairs whose trussness may change and the range of changes. According to 
Definition 2 and Lemmas 2 and 3, it is clear that the update of hypergraphs will 
only affect the inner trussness of vertex pairs which are in the same hyperedges 
with the inserted/deleted vertices. Thus, we get Lemma 6. 

Lemma 6. After a vertex . u is inserted into or deleted from a hyperedge .e0 in 
.H = (V, E), 
(1) the inner trussness of each vertex pair in .e0 is increased or decreased by at 
most 1; 
(2) the inner trussness of each vertex pair outside .e0 remains unchanged. 

The maintenance of outer trussness is based on h-index [ 13]. The h-index of 
a set is defined as the largest integer . h where there are at least . h elements in the 
set that are no less than . h. For example, the h-index of a set .{1, 1, 2, 2, 3} is 2, 
since there are 3 elements that are no less than 2 and only 1 element that is no 
less than 3. If elements in the set are the supports of neighboring vertex pairs 
of a given vertex pair, the h-index converges to its trussness after iterations. An 
important issue in convergence is to set the initial h-indices as low as possible 
for vertex pairs whose outer trussness may change. Definition 6 explains the .k-
triangle and Lemma 7 shows the range of outer trussness change for different 
vertex pairs. 

Definition 6 (K-Triangle and Triangle Level). For a triangle . �[uea veb 

wec ], it is a  .k-triangle if the minimum outer trussness of the vertex pairs 
.ea(u, v), eb(v, w), .ec(u, w) is . k. And  .k is the triangle level, denoted as 
.lv(�[uea veb wec ]) = k. 



Parallel Truss Maintenance Algorithms for Dynamic Hypergraphs 545 

Lemma 7. Suppose a vertex .u0 is inserted into a hyperedge .e0 in . H. . Δsmax 

is the maximum outer support change of the neighboring vertex pairs of the 
inserted vertex pairs and .0 ≤ Δs ≤ Δsmax. .lvmin[e(u, v)] is the lowest level of 
the outer triangle that contains .e(u, v). .minsupH 

out[e(u), e(v))] is the minimum 
of .supH 

out[e(u)] and .supH 
out[e(v)]. For the new outer trussness .τ ′

out[e(u, v)] of a 
vertex pair .e(u, v) in . H, we have: 

. τ ′
out[e(u, v)] = 

⎧ 
⎪⎨ 

⎪⎩ 

τout[e(u, v)], minsupH 
out[e(u), e(v))] ≤ τout[e(u, v)] − Δsmax 

τout[e(u, v)] + Δs, others 
τout[e(u, v)], lvmin[e(u, v)] > τout[e(u, v)] + Δsmax 

4 Parallel Algorithms 

In this section, we will give the details of our parallel trussness algorithms for 
hypergraphs, i.e., the decomposition algorithm for static hypergraphs and the 
maintenance algorithm for dynamic hypergraphs. We also analyze the perfor-
mance of the algorithm. 

The following notations are used in the time complexity analysis of our algo-
rithms: . n means the number of vertices in the hypergraph . H. .m means the 
number of hyperedges in the hypergraph. .cmax = maxe∈E(H).|e| means the max-
imum number of vertices in a hyperedge in . H. .hmax = maxu∈V (H)|EH(u)| means 
the maximum number of hyperedges that a vertex is in. .smax means the maxi-
mum outer support of the vertex pairs that make new triangles with the updated 
vertex pairs. .tmax = maxu,v∈V (H)|TH [e(u, v)]| means the maximum number of 
triangles that a vertex pair can form in . H. .|ΔH | means the size of the updated 
vertex pair set. .L means the largest .Degree .Level [ 14] of vertex pairs in the 
hypergraph. The proofs of the subsequent Theorems 1 and 2 are covered in [ 9]. 

4.1 Parallel Decomposition Algorithm 

Algorithm 1 provides a natural idea to compute the inner and outer trussness 
for each vertex pair according to Definition 4. Vertex pairs that do not fit the 
conditions are peeled out during each step. Note that we maintain the precise 
outer trussness for each vertex pair in the condition that the inner trussness is 
.kin. This is preprocessing for the maintenance. An example of the decomposition 
algorithm in Fig. 2 is presented in [ 9]. 

At the beginning of the algorithm, the inner support and outer support of 
each vertex pair are calculated. Then we peel the vertex pairs that do not satisfy 
the requirements from the hypergraph repeatedly. Specifically, the purpose of 
lines 5–18 is to obtain .(kin, k)-truss. In lines 7 to 11, vertex pairs whose inner 
supports are less than .kin are deleted. Note that if a vertex pair is deleted when 
.k = 0, it will not get an inner trussness or an outer trussness. Because the 
vertex pair does not meet the condition of .(kin, 0)-truss and is not worthy of 
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further discussion. In lines 12 to 17, the vertex pair will be deleted if the outer 
supports of this vertex pair and its two vertices are all less than . k. Because we 
can only delete a vertex from a hyperedge rather than delete an individual vertex 
pair in hypergraphs, the vertex with a lower outer support is chosen according 
to Definition 4. When outer supports of all vertex pairs in the hypergraph are 
higher than . k, the calculation of .(kin, k)-truss is finished and we move to the 
.(kin, k  +1)-truss. The peeling continues until all vertex pairs get their trussness. 
As the output of the algorithm, vertex pairs whose inner trussness = .kin and 
outer trussness .≥ kout are obtained. 

Algorithm 1: Trussness Decomposition 
Input : Hypergraph .H(V, E), truss parameters .kin and . kout 

Output : vertex pairs that are in .(kin, kout)-truss 
1 for each .ei(u, v) in .H in parallel do 
2 Compute inner support and outer support of each .ei(u, v); 
3 .k ← 0; 
4 while .H �= ∅ do 
5 while .∃ .supH 

out[ei(u, v)] < k  or .supH 
in[ei(u, v)] < kin do 

6 for each .ei that contains .supH 
in[ei(u, v)] < kin in parallel do 

7 Remove all vertices from . ei; 
8 for each .ei(u, v) ∈ ei do 
9 if .k >  0 then 

10 .τin[ei(u, v)] ← kin, .τout[ei(u, v)] ← k − 1; 

11 for each .supH 
out[ei(u, v)] ≤ k in parallel do 

12 if .supH 
out[ei(u)] < k  and .supH 

out[ei(v)] < k  then 
13 W.l.o.g, assume that .supH 

out[ei(u)] ≤ supH 
out[ei(v)]; 

14 Remove the vertex .u from . ei; 
15 for .ui ∈ ei do 
16 .τin[ei(u, v)] ← kin, .τout[ei(u, ui] ← k − 1; 

17 for each neighbouring vertex pair .e(u, w) of each .ei(u, v) in parallel do 
18 Compute inner support and outer support of .e(u, w); 

19 .k = k + 1; 
20 return vertex pairs whose inner trussness = .kin and outer trussness .≥ kout ; 

Theorem 1. Alg.1 calculates the .(kin, kout)-truss correctly. Its depth is . O(m ∗ 
c2 max ∗ hmax) and its work is .O(m ∗ n ∗ c3 max ∗ h2 

max). 

4.2 Parallel Maintenance Algorithm 

In this subsection, we propose a parallel maintenance algorithm to update the 
vertex pair trussness in hypergraphs when a set of vertices are inserted into or 
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deleted from the hypergraph. Differing from the decomposition algorithm, the 
maintenance algorithm updates the trussness of vertex pairs in parallel according 
to the original values and can deal with batch processing. Because the mainte-
nance algorithm does not need to recalculate the trussness for all vertex pairs in 
the hypergraphs, it can make a further improvement in time complexity. Due to 
the limited space, we take the insertion algorithm as an example. The deletion 
algorithm is presented in [ 9]. 

According to Lemma 7, we get the range of new outer trussness of vertex 
pairs after the update. For those vertex pairs whose outer trussness may increase 
after the update, we set their initial h-indices to the upper change bounds .Δsmax. 
In lines 2 to 4, Alg. 2 computes inner and outer supports of .e0(u0, vi) for each 
vertex pair in the new edge set. In line 5, the maximum outer support .smax of 
the vertex pairs that make new triangles with .E(u0) is gained. It is an important 
parameter to distinguish different affected vertex pairs. Then in lines 6 to 13, the 
algorithm sets the initial h-index for each vertex pair. The insertion increases 
the inner trussness of vertex pairs in .E0, and their outer trussness also needs 
recomputing. These vertex pairs are removed in the processing of the inner truss-
ness check during the decomposition, and do not get a specific outer trussness. 
Thus, their initial h-indices are set to their outer trussness supports. For other 
vertex pairs, we set their initial h-indices to the upper bounds of their new values 
according to Lemma 7. Finally, the algorithm calls the h-index-based algorithm 
.U pdateT russness to update their trussness. The .U pdateT russness algorithm 
is presented in [ 9]. 

Theorem 2. Alg.2 updates the .(kin, kout)-truss correctly. Its depth is . O(L ∗ 
cmax ∗ hmax) and its work is .O(|ΔH | ∗  c2 max ∗ h2 

max + n ∗ cmax ∗ hmax ∗ tmax). 

5 Evaluation 

We perform experiments on real-world hypergraphs to evaluate the stability, 
scalability, parallelism, and generality of our algorithms. Owing to space limi-
tations, we only present the stability evaluation, and other experimental results 
are presented in [ 9]. 

Table 2 includes datasets from the real world that can be accessed through 
the KONECT project 3. BC and PD are static hypergraphs and VI is a temporal 
hypergraph. In the table, .accu.v refers to the sum of the number of vertices 
contained by all hyperedges in the hypergraph and the .sum .v.p. refers to the 
total number of vertex pairs in the hypergraph. We evaluate our algorithms 
under different sizes of updated sets on these hypergraphs. For each algorithm, 
we randomly choose .10i hyperedges of the original hypergraph and then choose 
a random vertex in these hyperedges to update, where .i = 0, 1, 2, 3. The average 
cost time of each hyperedge is the total time divided by the size of the updated 
set. Table 3 shows the results of the insertion of the static algorithm and the 
maintenance algorithm. 
3 http://www.konect.cc/. 

http://www.konect.cc/
http://www.konect.cc/
http://www.konect.cc/
http://www.konect.cc/
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Algorithm 2: Trussness Insertion 
Input : Hypergraph .H(V, E), truss parameters .kin and .kout, new vertex set 

.UΔ, update hyperedge set .EΔ, new vertex pair set . ΔH 

Output : Update inner and outer trussness for each vertex pair 
1 Insert .UΔ into .H; 
2 for vertex pair .e(u, v) in .ΔH in parallel do 
3 calculate .supH 

in[e(u, v)] and .supH 
out[e(u, v)]; 

4 .h0[e(u, v)] = supH 
out[e(u, v)]; 

5 Calculate the maximum outer support change .Δsmax of the neighbor vertex 
pairs of the inserted vertex pairs .ΔH ; 

6 if .e(u, v) ∈ EΔ and .supH 
in[e(u, v)] >= kin then 

7 .h0[e(u, v)] = supH 
out[e(u, v)]; 

8 for vertex pair .e(u, v) in .(kin, 0)-truss in parallel do 
9 if .minsupH 

out[e(u), e(v))] ≤ τout[e(u, v)] − Deltasmax or 
.lvmin[e(u, v)] > τout[e(u, v)] + Δsmax then 

10 .h0[e(u, v)] = τout[e(u, v)]; 
11 else 
12 .h0[e(u, v)] = τout[e(u, v)] + Δsmax; 

13 UpdateTrussness(.H(V, E), .H0[e(u, v)]); 
14 Return each vertex pair in .(kin, kout)-truss; 

Table 2. Attributes of Datasets 

Dataset .|V | .|E| accu. v sum v.p. 
BookCrossing(BC) 105K 341K 1.15M 27.7M 
Producers(PD) 48.8K 139K 207K 0.14M 
vi.sualize.us(VI) 17.1K 495K 2.30M 3.86M 

As for the static algorithm, the average update time decreases exponentially 
as the size of the update set increases. This is because the static algorithm 
treats the hypergraphs after each update as a new one and recomputes the whole 
hypergraph. The total time does not change apparently when the magnitude of 
the update becomes larger. This is because the updated set with a limited size 
does not influence the structure of the whole hypergraph. As for the maintenance 
algorithm, the average update time decreases as the magnitude of the update set 
increases in general. Because the number of the h-indices that can converge at 
the same round will increase. However, the average time may sometimes increase 
as the update set becomes larger because the increasing update set size will 
also influence the initial value of the h-index, and the vertex pairs may need 
more rounds to converge. Compared with the static algorithm, the maintenance 
algorithm gets a two orders of magnitude speedup. 
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Table 3. The average insertion time in milliseconds spent on each edge 

Size of Updated Set .100 
.101 

.102 
. 103 

static alg. on BC 100.53 11.065 1.4436 0.14172 
static alg. on VI 8363.2 884.99 90.946 8.7208 
static alg. on PD 4580.4 473.33 46.883 4.6862 
maintenance alg. on BC 0.90712 0.09427 0.024582 0.014045 
maintenance alg. on VI 94.993 8.8412 7.9276 7.6037 
maintenance alg. on PD 35.993 3.9247 2.1783 0.47645 

6 Conclusion 

In this paper, we propose a novel definition for trussness which can describe the 
unique structures of hypergraphs, and study the patterns of trussness change. 
Compared with [ 7], our work supports dynamic hypergraphs and thoroughly 
considers the complex situations of dynamic hypergraphs. To identify such struc-
tures in hypergraphs, we develop and implement a peeling-based parallel decom-
position algorithm and a parallel maintenance algorithm based on h-index. The 
experimental results on real-world hypergraphs show that the maintenance algo-
rithm can achieve two orders of magnitude speedup in time consumption com-
pared to the decomposition algorithm. We will focus on optimizing these algo-
rithms to reduce their time complexities in the future. 
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