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Abstract. Rendezvous problem has been attracting much attention as
a fundamental process to construct the Cognitive Radio Network (CRN).
Many elegant algorithms have been proposed to achieve rendezvous on
some common channel in a short time, but they are vulnerable to the
jamming attacks where a jammer may exist listening or blocking the
channels[14]. In this paper, we propose the Multi-Radio Channel Detect-
ing Jamming Attack (MRCDJA) problem where the jammer can access
multiple channels simultaneously. We assume the users adopting the
Enhanced Jump Stay (EJS)[8] algorithm, which guarantees rendezvous
by generating a channel hopping sequence, and our goal is to determine
the hopping sequence as quickly as possible.

1 Introduction

Cognitive Radio Network (CRN) has become a new paradigm to alleviate the
spectrum scarcity problem since the unlicensed spectrum is overcrowded while
the licensed spectrum has low utilization[15]. There are two kinds of users in
CRN, the so-called primary users (PUs) who own the licensed spectrum and the
secondary users (SUs) who can use the particular licensed spectrum that are not
occupied. Unless otherwise specified, ‘users’ mentioned hereafter refers to SUs.
In constructing such a CRN, rendezvous is a fundamental procedure for the
users to establish a link on a common licensed channel for communication[10].
Many algorithms have been proposed to reduce the time needed to rendezvous|2,
4,8,9] by constructing a hopping sequence. Let U be the set of the available chan-
nels and |U| = M, the state-of-the-art results guaranteed rendezvous in O(M?)
time slots[8]. However, these algorithms are vulnerable to Channel Detecting
Jamming Attack (CDJA)[14] where a jammer exists trying to listen or block the
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channels[14]. The intuition of the CDJA is to determine one user’s channel hop-
ping sequence based on the listened channels and to jam the predicted channels
against rendezvous.

Recently, multiple radios architecture has been widely used in wireless
networks[1,7,12,13] and many problems can be solved efficiently. In this paper,
we propose Multi-Radio Channel Detecting Jamming Attack (MRCDJA) where
the jammer can listen or block n (n > 1) channels simultaneously and the goal
is to determine the user’s channel hopping sequence as quick as possible. Since
Enhanced Jump Stay (EJS)[8] is one representative state-of-the-art algorithm,
we design multi-radio jamming algorithm against EJS.

In this paper, we first review the EJS algorithm and the CDJA algorithm as
the cornerstones, then we design an efficient algorithm to determine the channel
hopping sequence when the users can use any channel in the set U. We show
that the sequence can be figured out in O(%) expected time, which is n times
better than the result in [14]. Moreover, when some channels are occupied by
the PUs, we provide another efficient algorithm for the MRCDJA problem, we
show that if the ratio of the available channels is more than 40%, our algorithms
can guarantee fast successful attack with probability more than 80%. We also
evaluate our proposed algorithms and the results show that our algorithms can
determine the hopping sequence quickly.

The rest of the paper is organized as follows. Preliminaries are provided in
the next section. In Section 3, we review the EJS algorithm. In Section 4, we
show our main results by providing efficient algorithms to figure out the channel
hopping sequences. In Section 5, we conduct simulations for our algorithms.
Finally, we conclude the paper in Section 6.

2 Preliminaries

We consider a CRN with two users that are trying to rendezvous with each
other and a jammer who aims to break the rendezvous process by blocking some
licensed channels. We suppose the licensed spectrum is divided into M non-
overlapping channels labeled U = {1,2,..., M} and the labels are known to the
users and the jammer.!

Time is supposed to be divided into slots of equal length of 2¢, where ¢
is the time duration for establishing a connection. In each time slot, the user
can access one channel for rendezvous attempt, while the jammer can choose
n > 1 channels for listening (detecting) or blocking. Here listening or detecting
means that the jammer can check some channels to see if the user is accessing
these channels in the same time. The users can achieve rendezvous only if they
access the same channel in the same time slot and the jammer doesn’t block
the channel. We assume the users start the rendezvous process asynchronously,
i.e. the two users doesn’t need to start in the same time slot. Obviously, we can

! It is reasonable to make this assumption since the channels are easy to be distin-
guished by frequency, however there are some research on the case when the labels
are not known to the users[5, 6].
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consider the rendezvous process as slot-aligned even in the asynchronous setting
since the duration of each time slot is 2¢[6]. In this paper, we assume the jammer
starts detecting the channels before all users starting to access channels.

Before the users start the rendezvous process, they sense the licensed spec-
trum to check whether the channels in U are occupied. We say that a channel
is available for the user if it is not occupied by any nearby PUs. After the spec-
trum sensing stage, each user ¢ has a set of available channels C; C U and they
can begin rendezvous attempt by accessing the available channels. The users
are said to be symmetric if the available channel set is U for both of them, i.e.
Cy = Cy = U|8], otherwise, they are asymmetric, i.e. C1 C U,Cy C U[8]. In
this paper, we design efficient algorithms for the jammer to detect the chan-
nel hopping sequence to prevent rendezvous between the users. We assume the
users adopting the Enhanced Jump Stay (EJS)[8] algorithm and formulate the
problem as:

Problem 1 (MRCDJA). Suppose two users run the EJS algorithm for ren-
dezvous, while the jammer who can access n > 1 channels simultaneously tries
to determine the channel hopping sequence of one user. The goal is to design an
efficient algorithm to detect the sequence as quickly as possible.

3 Review of the Enhanced Jump-Stay Algorithm

Since Enhanced Jump Stay (EJS)[8] is one representative rendezvous algorithm,
we review the intuition of the algorithm in this section. The algorithm works as
follows: each user generates its own channel hopping sequence in rounds. Each
round consists of three jump patterns and one stay pattern where each pattern
lasts for P time slots (P is the smallest prime number such that P > M). In the
first round, the user chooses a random channel ¢ € [1, P] as a start channel and
a random number r € C as the step length, where C is the available channel
set of this user. In the jump patterns of the first round where time ¢ suits
0 <t < 3P, the user chooses channel (i + ¢r — 1) mod P + 1, then in the stay
pattern (3P <t < 4P), the user stays on channel r. The j-th (j > 1) round is
generated in the same way, except that the start channel is (i +j — 2)%P + 1
and the step length remains r. For example M =5, P =5,i = 3,r = 1, we show
the first two rounds of the channel sequence:

3,4,5,1,2,8,4,5,1,2,8,4,5,1,2,1,1,1,1,1,(8+1),5,1,2,3,4,5,1,2,8,4,5,1,2,3,1,1,1,1,1,...

Notice that (3 + 1) represents the start channel of the second round as
described above.

There are two special situations we need to consider. The first one is P # M,
channel z (x > M) doesn’t exist and thus we map it to  — M. The second one
is the asymmetric situation, where some channels in U may be occupied by the
PUs, and thus the user just choose a random channel in its available channel set
to replace the unavailable channel.
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Fig. 1. Example for rendezvous of two users

For example, suppose M = 4, P = 5, the available channel set C' = {1, 3,4},
i =3,r = 1. It is obvious that channel 5 doesn’t exist and it should be mapped
to channel 1. Since channel 2 doesn’t belong to C, the user chooses a random
channel from C once it should access channel 2. Therefore, the new sequence is:

3,4,1,1,8,8,4,1,1,4,3,4,1,1,1,1,1,1,1,1,(83+1),1,1,1,3,4,1,1,4,8,4,1,1,4,8,1,1,1,1,1,...
In this paper, we use two important lemmas in [11] as:

Lemma 1. Given a positive integer P, if r € [1,P) is relatively prime to P,
i.e., the common factor between them is 1, then for any x € [0, P) the sequence
S=<z%P+1,(z+r%P+1,....(x + (P —1)r)%P + 1 > is a permutation of
<1,2,...,P>.2[11]

Lemma 2. Given a prime number P, if r1 and ro are two different numbers in
(0, P), then for any x1,x4 € [0, P), there must be an integer k € [0, P) such that
(.’ﬂl + kT’l)%P = (.’EQ + kT’Q)%P []1/

Combining these two Lemmas, the following theorem is proved.

Theorem 1. Under the symmetric setting, any two users performing EJS
achieve rendezvous in at most 4P time slots, under asymmetric setting the time
is at most 4P(P + 1 — G) time slots, where P is the smallest prime number
greater or equal to M and G is the number of channels commonly available to
the two users. [8]

Fig. 1 is an example of rendezvous under symmetric setting. Here U =
{1,2,3,4}, P = 5, user 1 chooses channel 3 as its start channel and 2 as its step
length, user 2 chooses channel 2 as its start channel and 1 as its step length.
User 2 starts 3 time slots later than user 1, they rendezvous at the 4th time slot
(the start time is based on the later user’s clock) on channel 1, here channel 1
is mapped from channel 5 for both users.

Remark 1. The Expected Time To Rendezvous (ETTR) of EJS is proved to be
no more than %P + 3 in [8]. However, it is a very loose bound. In our work, we
derive a much more accurate estimation (2P + O(1)). Due to the page limits,
we left the proof and simulation in the full version [3].

2 We use the symbol % as the meaning of mod function in this paper.
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4 Multi-Radio Jamming Attack Algorithm

In this section, we design efficient algorithms for the jammer to attack the
rendezvous process. Clearly, if the jammer can figure out one user’s hopping
sequence, it can block the predicted channels to prevent rendezvous between
the users. First, we review the existing work of CDJA[14] problem, then we
design efficient algorithms for both symmetric and asymmetric situations when
the jammer can access n channels. We show that we can improve the efficiency
to figure out the hopping sequence by adopting multiple radios.

4.1 The Existing Work

In [14], the attack scheme against the Jump Stay (JS) algorithm[11] under sym-
metric setting is proposed and the basic idea is to find the start channel and
the step length of one user. The key intuition is that if the jammer detects that
the user has accessed channel ¢; at time t1, and co at o (t1,t2 are based on the
jammer’s own clock), where (t; — t2)%P # 0, it can calculate the step length r
used by this user. This is due to the reason that ¢; and ¢y can be written as:

=0+t +A)r—1)%P+1
Co = (Z—i— (tQ +At)’l“— 1)%P+1

here At is the time difference between the jammer and the user’s clocks. We
have ((ta — t1)r)%P = (c2 — ¢1)%P and the r is unique. Formally, see Alg. 1.

Algorithm 1. StepLength
: Input: t1,c1,t2,c2
: Output: the step length r;
: forr=1to P do
if ((t2 —t1)r)%P = (c2 — c1)%P then
Return r;
end if
end for

T AWy

However, the algorithm in [14] restricts that the jammer can choose channels
onlyin {P—M+1,P—M+2,...M} since this wouldn’t cause any ambiguity. For
example in Fig. 1, the jammer shouldn’t choose to listen on channel 1, otherwise
it cannot tell whether it is the actual channel 1 or it is mapped from channel 5 in
the user’s original sequence when it detects that the user is accessing channel 1.

In the next subsections we give our attack scheme to the Enhanced Jump Stay
Algorithm (EJS) under both symmetric and asymmetric settings. We assume the
jammer can access n (n > 1) channels simultaneously and our scheme doesn’t
need the channel selection restriction. The two improvements make the attack
more efficient.
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Algorithm 2. Multi-Radio Attack Algorithm Under Symmetric Setting

1: Input: M, P,n;

2: Output: the step length r;

3: Choose n random channels A = {a1, az...an} from [1, M];

4: Keep listening on channels in A until the first signal appears, say it is on channel

by at time tg;

Randomly select another channel d in [1, M] but not in A, A = A\ {b=}Ud;

6: Keep listening on channels in A until the first signal appears, say it is on channel
by at time ty;

7: if b > P — M and by > P — M then

8:  Return StepLength(tg, by, ty,by);

9: else if b, < P — M and by, > P — M then

10:  ry = StepLength(te, be,ty,by), ro = StepLength(tz, by + M, ty, by);

11:  Check ((by +71 —1)%P)%M + 1 and ((by + r2 — 1)%P)%M + 1 at time ¢, + 1

12:  Return the right step length;

13: else if b, > P — M and by < P — M then

14: 7 = StepLength(tz, bz, ty, by), ro = StepLength(ty, be, ty, by + M);

15:  Check ((by +7r1 — 1)%P)%M + 1 and ((by + M +ry — 1)%P)%M + 1 at time

o

ty +1
16:  Return the right step length;
17: else

18: r1 = StepLength(ty, by, ty,by), 72 = StepLength(tz,bs + M, ty,,by), r3s =
StepLength(tg, be, ty, by + M), ra = StepLength(tz, by + M, ty, by + M);

19:  Check the four channels at time t, + 1: ((by + 71 — 1)%P)%M + 1, ((by + r2 —
D%BPY%BM+1, ((by+M~+rs—1)%P)%M+1, or ((by+M~+rs—1)%P)%M+1,
if the jammer doesn’t have enough radios, keep on checking at time ¢, + 2;

20:  Return the right step length;

21: end if

4.2 Symmetric Situation

We first give the intuition for finding the step length r: the jammer chooses n
channels randomly from [1, M] and keeps listening on these channels, one radio to
one channel. Once getting a signal from some channel b, at time ¢, the jammer
randomly chooses another channel replacing b, and keeps on detecting until the
second signal appears on channel b, at time ¢,,. If both b, and b, are greater than
P — M, which means they won’t cause any ambiguity, the jammer can find r
immediately. If one channel is not greater than P — M, for example b, < P— M,
then the jammer needs to consider two cases: {bs, b, } and {b,+ M, by}, for either
of them the jammer can get a step length. Since the jammer can access more
than one channels each time slot, it can check which of the two cases is right in
the next time slot. It is similar when b, and b, are all not greater than P — M,
in this case the jammer should check out 4 step lengths in the next 1 or 2 time
slots. Formally, please refer to Alg. 2.

In Alg. 2, the input M denotes the number of available channels, P is the
smallest prime that P > M and n is the number of radios the jammer has.
The function StepLength refers to Alg. 1. In line 3-6 the jammer gets the two
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Fig. 2. Example of Alg. 2

signals (t;,bs), (ty,by), in line 7-21 the jammer calculates the step length based
on different situations of b, by.

We show two examples of Alg. 2 in Fig. 2. The blocks represent the first jump
pattern of the user. Here M = 9, P = 11, the user’s start channel is 3 and the
step length is 4. The jammer has 3 radios.

Case a is shown above the blocks. From the beginning, the jammer chooses
channel 4,5,6. When the user chooses channel 4 (the dark yellow block labeled 4)
in the 4-th time slot, the jammer gets the signal and changes to listen on channel
5,6,7. In the 7-th time slot a signal on channel 5 appears. Thus the jammer can
calculate the step length of the user, it knows the next channel chosen by the
user is 9, and so on.

Case b is shown below the blocks. The jammer chooses channel 2,5,8 from
the beginning. In the 3-rd time slot, it gets the signal from channel 2 (the light
green block labeled 2(11) which means it is mapped from 11), then it changes to
channel 3,5,8 until a signal on channel 8 appears in the 5-th time slot. But the
jammer cannot get the step length immediately because it doesn’t know whether
channel 2 is the actual 2 or it is mapped from 11. If it is mapped from 11, the
step length should be 4, and the next channel should be 1, otherwise the step
length should be 3 and the next channel should be 2. So in the 6-th time slot the
jammer listens on channel 1 and 2 and makes sure that 4 is the real step length.

After getting the step length, another important problem we should solve is
the start time of the user, because without knowing the start time the jammer
cannot decide when will the user enter the stay pattern. From Lemma 1, we can
easily derive that each available channel will appear in each jump pattern. If the
jammer starts detecting earlier than the user starts, it can get the step length
or some alternative step lengths in the first jump pattern of user, i.e. in P time
slots after the user starts. So the jammer can confirm the right step length r
before the user entering the stay pattern. After the jammer gets r, it allocates
one radio staying on channel r. When it gets 3 consecutive signals on channel r,
say at time ¢,t+ 1,7+ 2, it knows the user has entered the stay pattern, either ¢,
t+1 or t+2 is the start time of the stay pattern. Thus the jammer can calculate
the alternative start time and start channels of the user, when the stay pattern
ends and the next round starts, the jammer can make sure which is right.
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4.3 Analysis of Alg. 2

In this section, we analyze the expected time and maximum time of Alg. 2. There
are two important lemmas as follows.

Lemma 3. Given m > n > 3, if we sample n numbers from {1,2..m} without

repeating, say the numbers are a; < as < as... < ay, then the expected value of
2(m+1) _ 3(m4+1)
(;nﬂ Eas) = (7T+1

as and az are E(ag) =

Due to the page limits, the proof of the lemma can be found in the full
version [3].

Remark 2. Actually we can prove that F(a;) = % for all ¢ in {1,2,3...n}.

Lemma 4. Given m > n > 1, If we sample n + 1 numbers from {1,2...m}

without repeating, say they are S = {ay, as,as...an1+1}, let p = minf{ay, as...an},

g=min{z : xz € S\ {p},x > p}, then E(q) = %m

Proof. We divide the problem into two cases. First, a,, 11 < p, which means a,, 1
is the smallest in S, so ¢ is the third smallest number in S, from Theroem 3,

E(q) = 3(;’:;1). Second, a,41 > p, in this case, g is the second smallest number

in S, E(q) = 2(;”:21). So we have:

E(q) = E(glant1 < p)Pr{ant1 <p} + E(qlant1 > p)Priant1 > p}
_3(m+1) 1 2(m+1) n
 on+2 n+l n+2 n+1
~ (m+1)(2n+3)
 (n+1D(n+2)

According to the two lemmas, we can derive the theorem as:

Theorem 2. By using Alg. 2 for finding the sequence generated by the user, the
mazimum time is P —n+4, and the expected time is % +0(1). M is
the number of channels, P is the smallest prime that P > M, n is the number

of radios the jammer has.

Proof. From Section 4.2 we know that Alg. 2 ends in at most 2 time slots after
detecting two signals, and all the channels appear in the first jump pattern of the
sequence generated by the user. So the worst case is that the jammer chooses n
channels which appears at the end of the first jump pattern, thus the maximum
time is no more than P —n+4+2+4+2=P —n +4.

Then we prove the expected time, we focus only on the first jump pattern
of the sequence because Alg. 2 ends in the first jump pattern. Since P — M is
much smaller comparing to P and M, we assume M = P, then we know the
jump pattern is a permutation of {1,2,..., P}. Notice that even though each
channel appears on each position of the permutation with equal probability,
the permutation is not a completely random permutation. However, since the
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jammer chooses n completely random channels to detect, we can just consider the
case when the permutation is 1,2,3, ..., P. Suppose the jammer chooses channel
set S = {a1,as,...,a,} to detect, the first signal will appear on channel p where
p = min{S}, then the jammer changes the channel from p to a,i1, now it
listens on S\ {p} [U{an+1}, and the second signal should be on channel ¢ where

qg = {x : x = min{S},z > p}. We can see that the problem is the same with
(M+1)(2n+3) +O(1)

Lemma 4, so the expected time is NCESNCER

4.4 Asymmetric Situation

Due to the spectrum sensing technique, the user may find some channels occu-
pied by the PUs which means the user cannot access these channels, this is the
so-called asymmetric setting. We assume that the jammer knows the available
channel set of the user due to the same spectrum sensing technique. In Remark
3 we briefly discuss the situation where the jammer doesn’t know the set at all.

Similar to the symmetric setting, the purpose of the jammer is to find the
step length and the start time chosen by the user. The main intuition is the same
as Alg. 2: the jammer waits on some channels and then calculates the step length
along with the start time. The difference is that the jammer may detect some
channels that are randomly chosen by the user, this may interfere the jammer
and the jammer may get the wrong step length.

Our solution is that the jammer keeps detecting until there are 3 signals, say
channel by at time t1, by at to, b3 at t3, that satisfy:

StepLength(ty, by, te,by) = StepLength(to, ba, ts, b3) = StepLength(ts, bs,t1,b1)

The jammer considers StepLength(t1,b1,t2,b2) as the step length, and
{b1,b2,b3} as the channels not randomly chosen by the user. It uses
StepLength(t1,by,t2,b2) and by for generating the remain sequence. We call
{b1,ba,b3} “good channels”.

Take Fig. 3 as an example, the arrows point to the channels that the jammer
gets, the dark yellow arrows point to the “good channels”. If they are not chosen
randomly by the user and are in the same round as the picture shows, the jammer
can get the right step length from the 3 signals. Formally, please refer to Alg. 3.
In Alg. 3, the input P, M,n are defined the same way with Alg. 2. Initially, the
jammer holds a set B in line 3, when it hears channel b at time ¢, it adds (¢,b)
into B. In line 6, the jammer judges all the triplets in B, and if it fails to find
the step length, in line 9 it changes the channel from b to another channel and
keeps on listening.
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Algorithm 3. Multi-Radio Attack Algorithm Under Asymmetric Model

1: Input: P, M, n, the available channel set C = {017 co, .. ck} of the user;

2: Output: the step length r;

3: Set B = 0);

4: Sample n channels A = {a1, az...an} without repeating from C;

5: Keep listening on channels in A until the first signal appears, say it is on channel
b at time ¢, B = BJ{(¢,0)};

6: if there exists (tz,be), (ty,by), (tz,b2) in B such that StepLength(ts,by,ty,by) =

StepLength(ts, by, t-,b,) = StepLength(ty, by, t=,b.), here b, = by or by + M (only
when b, < P — M), so are by, and b, then
Return StepLength(te, by, ty, by );
else
Randomly select another channel d € C'\ A, A = A\ {b} U{d}, goto Line 5.
: end if

S L X

[

Notice that “good channels” are not always good. Sometime three channels
not in the same round or containing random channels can also satisfy the above
equation. This means our algorithm cannot guarantee finding the right step
length. We discuss why our algorithm still works well in the next subsection.

When the jammer gets the step length r, another important problem is the
start time and we tackle it similarly as the symmetric situation, where the jam-
mer allocates one radio on channel 7 to find the time of entering the stay pattern,
and then it can know the start time of the user.

Remark 3. When the jammer doesn’t know the available channel set of the user,
it can still use Alg. 3 to make the attack, by just choosing n random channels
to listen. However, this makes the algorithm slower, and we leave more study of
this situation to the future work.

4.5 Analysis of Alg. 3

In this section we discuss why Alg. 3 works well even though sometime “good
channels” may not be “good”. Suppose the number of all channels is M and
the number of available channels for the user is AM, P is the smallest prime
no less than M, the jammer has n radios and starts detecting earlier than the
user starts. In the jump patterns of the first round which last for 3P time slots,
there are about 3P\ channels which are not chosen randomly. For each of these
channels, the probability of being detected by the jammer is about n/(P)), so
on average, the jammer can detect about 3PA x n/(PA) = 3n channels which
are not random channels in the jump patterns of the first round. Thus we can
expect that Alg. 3 ends in the first round with great probability, which means
there is great chance that the jammer can find really good “good channels” in
the first round. Our simulation results in the full version [3] shows that, the
probability of successful attack in the first round is more than 80% when the
ratio of available channels is more than 40%.

A good way to make the calculation of the step length more accurate is to
run Alg. 3 multiple times. In each time, the jammer can get a step length r and
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Fig. 4. Simulation Results

it is easy to see that the real step length appears more times than the other false
r. Notice that under the asymmetric setting, the rendezvous time is no longer
within 4P time slots, so the jammer can try to run Alg. 3 several times to get an
accurate r. Moreover, our simulation result in Section 5 shows that the average
time for Alg. 3 is always within P time slots.

5 Performance Evaluation

In this section we conduct extensive simulations to evaluate our algorithms. We
use R language to implement the simulation, in each experiment we get the
result as the average of more than 20000 separate runs. Due to page limits, we
only show part of the simulations results, you can refer to the full version [3] for
all the simulation results.

Fig. 4(a). shows the expected time of Alg. 2. The x-bar represents different
numbers of available channels, while the y-bar represents the expected time. We
do experiment in case the jammer can access 3, 5 or 7 channels. We also use the
CDJAJ14] to attack the EJS users. From the figure, we can see that our result
is better than CDJA. In each case our estimation which is based on Theorem. 2
is also shown in the figure, they are almost the same as the experiment result.
The gap is no more than 2.

Fig. 4(b) shows the expected time of Alg. 3. Here we assume there are totally
100 channels and the jammer starts detecting earlier than both users, the x-bar
represents the ratio of available channels of the user. The y-bar represents the
expected time. We can see that there is no much difference when the ratio
changes, but the number of radios the jammer has is very important. However,
even if the jammer can detect only 2 channels each time slot, the expected time
is around 100, this means in expectation Alg. 3 can end in the 1st pattern of the
1st round. It coincides with our analysis in Section 4.5.
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6 Conclusion

In this paper, we propose the Multi-Radio Channel Detecting Jamming Attack
(MRCDJA) problem where the jammer can listen or block n > 2 channels simul-
taneously to prevent rendezvous between the users. We assume the users adopt-
ing the Enhanced Jump Stay (EJS)[8] algorithm for rendezvous attempt and we
design efficient algorithms to determine the users’ channel hopping sequence. For
the symmetric users that can use all channels in the channel set, our algorithm
is n times faster than the current methods. For asymmetric users, our algorithm
can also work well. Finally we conduct extensive simulations for evaluation. In
the future, we are to explore efficient attack algorithms when the users are also
equipped with multiple radios for rendezvous attempt.
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