
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Scaph: Scalable GPU-Accelerated
Graph Processing with Value-Driven

Differential Scheduling
Long Zheng, Xianliang Li, Yaohui Zheng, Yu Huang, Xiaofei Liao, and Hai Jin,

Huazhong University of Science and Technology; Jingling Xue, UNSW Sydney;
Zhiyuan Shao and Qiang-Sheng Hua, Huazhong University of Science and Technology

https://www.usenix.org/conference/atc20/presentation/zheng

Scaph: Scalable GPU-Accelerated Graph Processing
with Value-Driven Differential Scheduling

Long Zheng1 Xianliang Li1 Yaohui Zheng1 Yu Huang1 Xiaofei Liao1 Hai Jin1

Jingling Xue2 Zhiyuan Shao1 Qiang-Sheng Hua1

1National Engineering Research Center for Big Data Technology and System/Service Computing Technology
and System Lab/Cluster and Grid Computing Lab, Huazhong University of Science and Technology

2UNSW Sydney
{longzh, xianliang, yaohui, yuh, xfliao, hjin, zyshao, qshua}@hust.edu.cn; j.xue@unsw.edu.au

Abstract
We introduce Scaph, a GPU-accelerated graph system that

achieves scale-up graph processing on large-scale graphs that
are initially partitioned into subgraphs at the host to enable it-
erative graph computations on the subgraphs on the GPU. For
active subgraphs to be processed on GPU at an iteration, the
prior work always streams each in its entirety to GPU, even
though only the neighboring information for its active ver-
tices will ever be used. In contrast, Scaph boosts performance
significantly by reducing the amount of such redundant data
transferred, thereby improving the effective utilization of the
host-GPU bandwidth drastically. The key novelty of Scaph is
to classify adaptively at each iteration whether a subgraph is a
high-value subgraph (if it is likely to be traversed extensively
in the current and future iterations) or a low-value subgraph
(otherwise). Scaph then schedules a sub-graph for graph pro-
cessing on GPU using two graph processing engines, one for
high-value subgraphs, which will be streamed to GPU entirely
and iterated over repeatedly, one for low-value subgraphs, for
which only the neighboring information needed for its active
vertices is transferred. Evaluation on real-world and synthe-
sized large-scale graphs shows that Scaph outperforms the
state-of-the-art, Totem (4.12×), Graphie (8.93×), and Garaph
(3.71×), on average.

1 Introduction

Graph processing is used in a variety of real-world applica-
tions, including path navigation [23], social network analy-
sis [9], and financial fraud detection [27]. Graph processing,
typically memory-bound, often benefits substantially from
memory optimizations [50]. Compared to CPU-based graph
systems [15, 16, 30, 36, 40, 46, 51, 68], GPU-accelerated graph
systems can have high internal bandwidth and massive par-
allelism, therefore offering superior speedup [19, 25, 39, 66],
even for graph algorithms that involve substantial light-weight
integer and comparison-based operations [28].

Unfortunately, many real-world graphs still cannot fit into
GPU memory to enjoy high-performance in-memory graph

GTX980 K40 P100
Arch. Maxwell Kepler Pascal
#SMXs 16 15 56
#Cores 2048 2880 3584
Memory 4GB 12GB 16GB
BW 224 GB/s 288 GB/s 720 GB/s C C S S S P M S T 0 . 0

0 . 5

1 . 0

No
rm

ali
ze

d S
pe

ed
up G T X 9 8 0 K 4 0 P 1 0 0

Figure 1: Performance of Graphie [17] for three representative
graph algorithms on fb-2009 (a graph with 139.1M vertices
and 12.3B edges, taking 137.8GB (unweighted) and 275.6GB
(weighted)) on three different generations of GPUs plugged
(separately) in a 28-core host machine with 512GB memory

processing. For example, NVIDIA’s high-end Tesla V100
has 32GB global memory [42], while real-world graphs such
as Facebook’s can easily reach the terabyte-scale [9]. This
gap has spurred the development of many distributed graph
systems, which partition a graph into sub-graphs and then
assign these sub-graphs to different machines for distributed
computing [13, 15, 16, 33, 36, 67]. However, these distributed
graph systems suffer from prohibitive communication over-
heads [8,15,58] and also require an extensive range of domain
knowledge to maintain [11, 16, 24, 38, 56, 59].

There is nowadays a viable alternative of turning a single
machine plugged in with a GPU to support scale-up large-
scale graph processing. Such a GPU-accelerated heteroge-
neous platform is easy to use and maintain [30, 62, 68]. In
addition, we can take advantage of the large host memory
(at the terabyte scale) to store large-scale graphs while still
enjoying high-performance graph processing on GPU.

In this paper, we focus on building graph systems on
GPU-accelerated heterogeneous platforms to achieve scale-
up graph processing for large graphs that cannot fit into GPU
memory. This would enable high-performance graph analytics
on large-scale graphs everywhere by simply plugging a GPU
into an off-the-shelf commodity PC. In this case, a large graph
must be partitioned into subgraphs at the host. Any subgraphs
to be processed on GPU must be streamed asynchronously to
GPU when some previously transferred subgraphs are being
concurrently processed on GPU (in an overlapping manner).
We consider vertex-centric graph processing [36], where a

USENIX Association 2020 USENIX Annual Technical Conference 573

graph algorithm is performed in a sequence of iterations until
convergence [15,36]. In each iteration, a graph algorithm pro-
cesses only the active vertices (vertices with ongoing updates)
in each subgraph, updates their neighbors (along their out-
going edges) and activates the neighbors whose values have
been updated. In this paper, we restrict ourselves to handle
large-scale graphs that can entirely fit into the host memory.
Meanwhile, all the vertex data, including vertex states (active
or not), are assumed to be resident in the GPU memory. In
contrast, the edge data of a graph are stored at the host and
partitioned into subgraphs. During graph processing, active
subgraphs (containing all out-going edges of an active vertex)
must be transferred to GPU for iterative processing.

Achieving scale-up graph processing for large-scale graphs
on GPU-accelerated heterogeneous platforms is challenging.
The power-law graphs [15] can result in substantial load im-
balance among threads and warps [39]. Irregular data accesses
made in graph algorithms often lead to non-coalesced mem-
ory accesses for GPU graph processing. Fortunately, effective
techniques for addressing these performance-limiting issues
exist [14, 17, 34]. Currently, the performance bottleneck in
a GPU-accelerated graph system has shifted to the limited
host-GPU bandwidth, which was relatively sufficient in the
past (e.g., ∼11.4GB/s for PCI-Express 3.0). However, exist-
ing graph processing engines [17, 26, 34, 47] focus still on
overcoming the GPU memory capacity limitation to enable
large-scale graph processing, without paying adequate atten-
tion to the effective utilization of the host-GPU bandwidth.

Simple heuristics are used to reduce the number of data
transfers. Totem [14] partitions a graph into two subgraphs,
one for the host and one for GPU, by keeping the amount of
data transfers to a minimum at the expense of severe load
imbalance. Garaph [34] concurrently processes all active sub-
graphs on both the host and GPU. Graphie [17] processes
all subgraphs on GPU but re-processes only the recently pro-
cessed subgraphs in the next iteration (before they are re-
moved from GPU memory). However, these graph systems
always transfer an active subgraph in its entirety to GPU
(even though only the neighboring information for its active
vertices will usually be used), resulting in poor utilization of
the host-GPU bandwidth. To see this, Figure 1 compares the
performance results of Graphie [17] for running three graph
algorithms on a large graph on a PC with three generations of
GPUs (one at a time). We see little performance gains when
increasingly more powerful GPUs are used. For example,
P100 has over 3× as many #SMX’s and 4× as much memory
as GTX980, but it offers small performance improvements.

Recently, hardware vendors have launched several ad-
vanced interconnect technologies to mitigate the impact of
the “bandwidth wall”. For example, compared to PCI-E 3.0,
NVLINK 2.0 (50GB/s per link) and PCI-E 4.0 (32GB/s) are
several times faster, but still cannot keep up with the growth
in GPU computing capabilities. Specifically, these advanced
technologies cannot yet provide∼500GB/s required by graph

analytics under existing computing platforms [1].
In this work, we argue that we can improve the perfor-

mance of large-scale graph processing on a GPU-accelerated
architecture significantly by improving the effective utiliza-
tion of the host-GPU bandwidth. Our key observation is that
the majority of the data in an active subgraph (once streamed
to GPU) are never used in current and future iterations (§2.2).
We introduce Scaph that achieves significantly improved per-
formance than state of the art by adopting value-driven dif-
ferential scheduling for active subgraphs. The key novelty is
to classify an active subgraph adaptively into a high-value
subgraph (if it will be extensively traversed in current and
future iterations) and a low-value subgraph (otherwise). Thus,
a high-value subgraph contains a significant amount of useful
data (UD) to be used by active vertices in the current itera-
tion and of potentially useful data (PUD) to be used by its
future active vertices in future iterations. On the other hand, a
low-value subgraph contains a lot of never-used data (NUD)
in current and future iterations.

Unlike earlier graph systems [17,26,34,47], which transfer
an active subgraph to GPU in its entirety (but with only its
UD used usually), Scaph uses the host to stream an active
sub-graph to GPU by using two graph processing engines for
handling high-value and low-value subgraphs, respectively.
For the high-value subgraph, it will be transferred to GPU
entirely. Inspired by the data movement reduction in out-of-
core settings [2, 53, 69], we propose to compute each high-
value subgraph multiple times to exploit its PUD ahead of
schedule for accelerating convergence. Unlike these earlier
efforts focusing on exploiting only the PUD in a subgraph, we
present a GPU-context-friendly delayed scheduling to enable
exploiting the PUD across subgraphs on GPU such that the
value of the high-value subgraphs can be maximized. For the
low-value subgraph, only the neighboring information for its
active vertices is transferred and scheduled once.

In summary, this paper makes the following contributions:

• Subgraph Value Characterization. We quantify the value
of a subgraph adaptively (dynamically) in terms of its UD
and PUD used in current and future iterations.

• Value-Driven Differential Scheduling. We propose a sched-
uler that adaptively distinguishes high- and low-value sub-
graphs in each iteration and dispatches a subgraph to an
appropriate graph processing engine for acceleration.

• Value-Driven Graph Processing Engines. We introduce two
graph processing engines to squeeze the most value out of
high- and low-value subgraphs to maximize the effective
utilization of the host-GPU bandwidth in each case.

• Evaluation. We evaluate Scaph on both real-world and syn-
thesized large graphs. Scaph outperforms state-of-the-art
heterogeneous graph systems, Totem (4.12×) [14], Graphie
(8.93×) [17], and Garaph (3.71×) [34], on average.

The rest of this paper is organized as follows. §2 describes
the background and motivation. §3 gives an overview of

574 2020 USENIX Annual Technical Conference USENIX Association

Host Mem.

High Medium
Low

SMX

SMXSMX

SMXSMX

SMX

SMX SMX SMX

M
C

M
C

PCI-E

core core

core core

core core

core core

Global Mem.

......

Large

Small

Host
Processor 0 Processor 1 ...

...

...

GPU Accelerator

register file

shared memory

instruction buffer

warp scheduler

core ...

warp

core core

warp

...

Figure 2: A GPU-accelerated heterogeneous architecture

Scaph. §4 describes value-driven differential scheduling while
§5 discusses how to accomplish this effectively. §6 presents
results. §7 discusses the related work. Finally, §8 concludes.

2 Background and Motivation

We first review the background. We then present some case
studies to reveal why the poor host-GPU bandwidth utilization
has limited the performance achieved by existing heteroge-
neous graph systems, finally motivating Scaph.

2.1 Host-GPU Heterogeneous Architectures
Figure 2 shows a representative GPU-accelerated heteroge-
neous architecture that integrates the hardware advantages
of the host (with a larger host memory) and the GPU (with
a stronger computing ability). A GPU consists of multiple
streaming multiprocessors (SMXs), each of which includes
hundreds of cores. Compared to the high-speed internal band-
width (e.g., ∼720GB/s for NVIDIA Tesla P100 [41]) of GPU
cores accessing global memory, a GPU is generally connected
to the host with a relatively slow interface. For example, the
host-GPU bandwidth via PCI Express 3.0 can be limited to
be as low as ∼11.4GB/s in practice [5]. This significant per-
formance gap often severely limits the performance potential
achieved on a GPU-accelerated heterogeneous architecture if
the host-GPU data transfers are frequent [17, 26]. This work
makes use of a PCI Express interconnect since it is commonly
used in the current commodity market.

2.2 A Motivating Study
Existing heterogeneous graph systems [17, 26, 47], with Gra-
phie [17] as a representative compared against in our evalua-
tion, generally use host memory to store large-scale graphs
(partitioned into subgraphs) and rely on GPUs exclusively to
accelerate graph analytics on these subgraphs. Figure 3 de-
picts their generic graph processing engine used, with the func-
tion calls in blue executed on GPU. Due to the limited GPU
memory, a graph G is first divided into subgraphs, G̃1, · · · , G̃n
(line 2). During the entire iterative graph processing, the ver-
tex data of G always reside in GPU memory, but the edge
data of G, which are spread across these subgraphs, will be
streamed to GPU on-demand [17, 26, 34, 47].

At each iteration (lines 5 – 12), G̃active represents the set
of active subgraphs, i.e., the ones containing some out-going
edges of an active vertex. In each iteration, all active vertices

1 Procedure SimpleSubgraphEngine(Graph G)
2 Load G̃’s subgraphs in {G̃1, · · · , G̃n} into the host
3 VertexInitialization(G)
4 G̃active← FindActiveSubgraph(G)
5 while G̃active 6= /0 do
6 foreach G̃i ∈ G̃active do
7 stream← DispatchStream(G̃i)
8 if G̃i is not resident in GPU memory then
9 GBuf← AllocateDeviceMemory()

10 TransferData(stream, GBuf, G̃i, CPU2GPU)

11 Kernel (stream, G̃i)

12 G̃active← FindActiveSubgraph(G)

/* Graph Processing Kernel on the GPU */
13 Procedure Kernel(Subgraph G̃)
14 foreach v ∈ G̃.SetOfVertices do
15 if v is active then
16 foreach e ∈ v.outedges do
17 if Update(v, e) = SUCCESS then
18 Activate(e.destination_vertex)

Figure 3: Existing graph processing engine on a GPU-
accelerated heterogeneous architecture (with the function
calls in blue executed on GPU and all the rest on the host)

Table 1: The amount of
used/unused data in the sub-
graphs transferred to GPU

Algo. Used Unused

TW
CC 12.15GB 21.44GB

SSSP 22.74GB 77.42GB
MST 25.78GB 106.47GB

UK
CC 43.41GB 688.43GB

SSSP 81.64GB 1302.85GB
MST 134.97GB 2099.25GB

 C C
 S S S P
 M S T

0 2 4 6 8 1 0 1 2 1 4 1 6

0 . 0 5

0 . 1 0

0 . 1 5

Gig
a T

ran
ve

rse
d E

dg
es

 Pe
r S

ec
.

S M X

Figure 4: Performance of
Graphie for TW with differ-
ent number of SMXs

are processed. If their out-going edges are not in the GPU,
their containing (active) subgraphs are transferred to GPU
in their entirety. Afterward, these active vertices will be pro-
cessed on the GPU (lines 13 – 18) to activate more destination
vertices possibly. Note that Graphie [17] may schedule first
the subgraphs processed at the end of the previous iteration
as they are still in GPU memory (line 8).

This simple graph processing engine does not effectively
utilize the limited, scarce host-GPU bandwidth since many
vertices in an active subgraph are not active. Simply transfer-
ring an entire subgraph to GPU (line 10) but consuming only
a fraction of its data (lines 14 – 15) will waste a considerable
amount of the host-GPU bandwidth. As a result, all the re-
quired data cannot arrive at the GPU promptly, limiting the
performance that can be potentially achieved on GPU.

Let us examine the ratios of the unused over used data in the
subgraphs transferred to GPU for three graph algorithms oper-
ating on two graphs, twitter (TW) [29] and uk-2007 (UK) [6],
by Graphie [17] using the graph processing engine given
in Figure 3. Table 1 gives the results obtained through an
offline trace analysis, showing that these ratios range from
6.29 to 36.17. This indicates that the host-GPU bandwidth
under Graphie is utilized rather ineffectively. Consequently,
as shown further in Figure 4, the performance of Graphie for

USENIX Association 2020 USENIX Annual Technical Conference 575

V2

V1

2

4

V3

1

V4

7

V5

6 V7

V6

5

4

3

Current Iteration Future Iterations

 Active
 Vertices

UD

PUD

NUD

Figure 5: UD, PUD, and NUD in a subgraph, which may
change across the iterations, illustrated for SSSP. The weight
of an edge denotes its distance. The shortest distance found
so far by SSSP at a vertex is depicted next to it in orange.

1 6 11 16 21 26
0

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

11k

12k

13k
 NUD PUD UD

D
a
ta

 S
iz

e
(M

B
)

(a) CC
1 3 5 7 9 11 13 15 17

0

2k

4k

6k

8k

10k

12k

14k

16k
 NUD PUD UD

D
a
ta

 S
iz

e
(M

B
)

(b) SSSP
1 2 3 4 5 6 7 8 9 10 11 12

0

1k

2k

3k

4k

5k

6k

7k
 NUD PUD UD

D
a
ta

 S
iz

e
(M

B
)

(c) MST
Figure 6: The amount of UD, PUD, and NUD across the
iterations for three graph algorithms on twitter (TW) [29]

each graph algorithm (operating on TW) has plateaued as
soon as #SMXs = 4. However, mainstream GPU accelerators
usually have far more than 4 SMXs. For example, NVIDIA’s
Tesla K80 has 26 SMXs, while P100 has been integrated with
56 SMXs. Thus, a significant gap remains between the poor
provision of data and high-speed computation of GPU.

2.3 Value-Driven Subgraph Scheduling
For a subgraph, its active vertices vary across the iterations.
However, from the perspective of an active vertex, it always
contains three types of edge data, as illustrated in Figure 5:

• Useful Data (UD). These are the edge data associated with
all the active vertices in a subgraph, i.e., V1

2−→V3, V1
3−→V4,

and V2
1−→V4 in Figure 5. UD will definitely be used in the

current iteration (lines 15 – 16 in Figure 3) and must be
transferred to GPU [17, 26, 47].

• Potentially Useful Data (PUD). These are the edge data
associated with all the future active vertices in future itera-
tions in a subgraph. In Figure 5, PUD will be just V4

4−→V5,
since V4 will be the only one activated by both V1 and V2
in current and future iterations. Unlike UD, PUD is not ac-
tually used in the current iteration, but may be transferred
repeatedly to GPU if not handled carefully (as in the case
of Figure 3 where PUD is usually discarded).

• Never Used Data (NUD). These are the edge data that
will never be used again in a subgraph, associated with its
vertices that have converged and will thus never be active.
In Figure 5, NUD are V3

5−→V6 and V3
6−→V7.

Note that the same vertex may be activated many times
in different iterations. Given a subgraph, its UD, PUD, and
NUD computed at different iterations can vary dynamically.

Figure 6 shows the amount of UD, PUD, and NUD for the

Subgraphs

Subgraph
Dispatcher

High-value
subgraphs

Low-value
subgraphs

UD
Extraction Single-Round Processing

Multi-Round Processing

Low-Value Subgraph Processing Engine

High-Value Subgraph Processing Engine

HOST GPU

Value
Assessment

1

2

3

4

UD PUD NUD

Subgraph Scheduler

Figure 7: The workflow of Scaph

active subgraphs across all the iterations for three graph algo-
rithms operating on twitter (TW) [29], partitioned sequentially
into subgraphs of 32MB each. Graphie [17], a representative
of existing heterogeneous graph systems [17, 26, 47], wastes
the host-GPU bandwidth in two ways (Figure 3). First, PUD,
usually discarded by Graphie but needed in future iterations,
is substantial in earlier iterations. Second, NUD, which is
becoming increasingly more dominant as the iteration pro-
gresses, is streamed to GPU redundantly.

For a subgraph, it will be cost-ineffective to stream just
its UD, since its PUD cannot be exploited simultaneously.
Instead, our key insight for improving the effective utilization
of the host-GPU bandwidth is to look beyond the current iter-
ation, by considering not only its UD in the current iteration
but also its PUD in future iterations. Based on a cost-benefit
analysis, we aim to leverage rather than discard its PUD (once
streamed to GPU) in iterative graph processing. Thus, the
value of a subgraph at an iteration should be measured in
terms of not only its UD but also its PUD.

Now, how do we extract the UD and PUD from a subgraph
at a given iteration so that both can be transferred to GPU?
Extracting the UD from a subgraph is easy as its active ver-
tices in the current iteration are known (lines 4 and 12 in
Figure 3). However, extracting precisely the PUD (without
NUD) from a subgraph is difficult, as its future active vertices
are not known yet during the current iteration.

For a given subgraph, we propose to predict its PUD size
at an iteration from the UD sizes in the current and past
iterations. This enables to adopt a value-driven differential
scheduler that computes the value of a subgraph adaptively
and schedules it depending on if it has a high value (when its
UD and PUD are dominant) or a low value (otherwise).

3 Scaph Overview
Figure 7 shows the workflow of Scaph, in which all the sub-
graphs of a graph are computed on the GPU while the host
is responsible for their preparation. At each iteration, its dis-
patcher classifies a subgraph into either a high-value or low-
value subgraph and sends it to its corresponding engine to
facilitate value-driven differential scheduling. Both engines
schedule their subgraphs for acceleration on GPU indepen-
dently but concurrently.

Value-Driven Subgraph Dispatcher. Conceptually, the
value of a subgraph at a given iteration is proportional to the

576 2020 USENIX Annual Technical Conference USENIX Association

amount of its UD and PUD. The key insight here is that, for
a given subgraph, although accurately computing its PUD is
difficult, its PUD size can be approximated based on the UD
sizes in the current and past iterations. For a subgraph at a
given iteration, Scaph’s subgraph dispatcher (§4), classifies it
adaptively as a high-value subgraph if it contains a sufficient
amount of UD and PUD to justify its transfer in its entirety to
GPU and a low-value subgraph to request only its UD to be
transferred to GPU otherwise. This is done adaptively as the
value of a subgraph changes as the iteration progresses.

Value-Driven Subgraph Scheduler. Scaph has two sep-
arate graph processing engines, described in §5, to process
differentially high- and low-value subgraphs. For a high-value
subgraph, we use a queue-assisted multi-round processing en-
gine, which streams it entirely from the host to GPU (if it
is not in GPU memory) and exploits both its UD and PUD
adequately to enable faster convergence. For a low-value sub-
graph, Scaph relies on the graph processing engine given
in Figure 3 but transfers only its UD to GPU, with the UD
extracted in a NUMA-aware manner on the host.

Scaph is essentially a hybrid graph system that allows out-
of-order computation of high-value subgraphs in each syn-
chronous iteration. The use of asynchronous execution allows
fast convergence but also changes the vertex scheduling prior-
ity of subgraphs. Therefore, a graph algorithm can use Scaph
safely for preserving the convergence and the converged val-
ues, if it satisfies the correctness condition that the final vertex
results are insensitive to the value propagation order.

4 Value-Driven Subgraph Dispatching
In Section 4.1, we quantify the value of a subgraph. In Sec-
tion 4.2, we discuss how to estimate the value of a subgraph
to support value-driven differential scheduling.

4.1 Quantifying the Value of a Subgraph

Graph computations proceed iteratively until convergence.
Conceptually, the value of a subgraph G̃ can be measured
in terms of its UD used in the current iteration and its PUD
used in future iterations. Therefore, the value of G̃, denoted
Val(G̃), from the current iteration Cur to the MAX-th iteration
(beyond which G̃ is no longer active), is defined as:

Val(G̃) =
MAX

∑
i=Cur

∑
v∈G̃.SetOfVertices

D(v)∗Ai(v) (1)

where D(v) represents the number of out-going edges of ver-
tex v restricted to G̃ and Ai(v) ∈ {0,1} indicates that v is ac-
tive (inactive) in the i-th iteration when Ai(v) = 1 (Ai(v) = 0).
Val(G̃) represents the amount of computations arising from
G̃ from the current iteration until convergence. According
to Equation (1), the PUD of a subgraph is quantized by the
number of its edges that will be used in future iterations.

The value of a subgraph depends upon its active vertices
and their degrees. In the case of uniform degree distribu-
tions, the activation status of vertices can still differentiate the
amount of UD, PUD, and NUD for a subgraph.

4.2 Value-Driven Differential Scheduling
Scaph emphasizes value-driven data transfers, which should
directly reflect how the bandwidth is effectively utilized in
order to enable faster convergence.

The intuition behind Val(G̃) is clear. If Val(G̃) is high, G̃
should be a high-value subgraph. Then we should transfer
G̃ as a whole to GPU and also exploit its UD and PUD ade-
quately by iterating over G̃ multiple times before it is removed
from GPU memory. Otherwise, G̃ should be treated as a low-
value subgraph. In this case, we will opt to transfer only its
UD to GPU and just iterate over the resulting G̃ once.

If G̃ is a high-value subgraph, then the throughput of pro-
cessing G̃ on GPU can be measured as follows:

THV (G̃) =
|UD|+λ|PUD|
|G̃|/BW + tbarrier

(2)

The denominator |G̃|/BW + tbarrier, which represents the
data transfer time for G̃, is used to approximate the time
elapsed on processing G̃ by assuming a complete overlap
between data transfers and computations on GPU. As G̃ is
transferred in its entirety to GPU, |G̃| denotes the amount of
data thus transferred, BW represents the host-GPU bandwidth,
and Tbarrier is the synchronization overhead for G̃ (amortized
by the number of active subgraphs processed). The numerator
|UD|+ λ ∗ |PUD| represents the amount of UD and PUD
accessed when G̃ is iterated over on GPU. We use a balancing
factor λ to decay |PUD|, where 0 6 λ 6 1, to signify the
actual amount of PUD accessed.

If G̃ is a low-value subgraph, then we have:

TLV (G̃) =
|UD|

|UD|/BW + tbarrier
(3)

This time, only the UD of G̃ is streamed to GPU.
Now, G̃ is a high-value subgraph if THV (G̃)> TLV (G̃) and

a low-value subgraph otherwise. Thus, we need to analyze:

|UD|+λ|PUD|(1+ tbarrier

|UD|/BW
)> |G̃| (4)

To verify THV (G̃) > TLV (G̃), the key lies in determining
|PUD|, which is difficult to obtain directly. In fact, for a sub-
graph, its PUD is technically activated from its UD, motivat-
ing us to estimate the PUD of a subgraph heuristically based
on the UD of the same subgraph. In this work, we consider a
subgraph to have a high value if either of the following two
conditions (which we found to work well across all of our ap-
plications, as confirmed in §6) holds to simplify Equation (4):

USENIX Association 2020 USENIX Annual Technical Conference 577

1 Procedure VDDSEngine(Graph G)
2 Distribute G’s subgraphs {G̃1,· · · ,G̃n} to NUMA

nodes
3 VertexInitialization(G)
4 G̃active← FindActiveSubgraph(G)
5 Transfer VertexStates from GPU to CPU
6 while G̃active 6= /0 do
7 foreach G̃ ∈ G̃active do
8 if Predictor(G̃) = “HIGH-VALUE” then
9 Push(HVworklist, G̃)

10 else
11 Push(LVworklist, G̃)

12 HVSPEngine(HVworklist)
13 LVSPEngine(LVworklist, VertexStates)
14 G̃active← FindActiveSubgraph(G)
15 Transfer VertexStates from GPU to CPU

Figure 8: Value-driven differential scheduling for high- and
low-value subgraphs, with the calls in blue executed on GPU

• |UD|/|G̃)|> α. This indicates that UD is dominant among
G̃. Intuitively, G̃ is a high-value subgraph.

• |UDcurrent |− |UDlast |> 0 and |UD|/|G̃|> β. UD remains
a medium level and is also growing increasingly over iter-
ation, indicating the potentially growing PUD. G̃ can be
thus treated as a high-value subgraph.

When α is relatively large, which implies that the UD in
a subgraph tends to be dominant, we can determine if it is a
high-value subgraph by considering only its UD. β is needed
to identify the high-value subgraphs where the amount of UD
is relatively low and that of PUD is potentially high. Thus,
β is often smaller than α. As shown in Table 1, considering
both together is often more effective than considering either
alone. In this work, α and β are set empirically as 50% and
30% to represent a nice point for yielding good results.

Figure 8 gives our value-driven differential scheduler,
VDDSEngine(), for scheduling a graph G. Initially, G is parti-
tioned into subgraphs, G̃1, · · · , G̃n, at the host and distributed
across its NUMA nodes (to facilitate their scheduling). Scaph
uses two graph processing engines, as described in §5 be-
low, HVSPEngine() for scheduling high-value subgraphs, and
LVSPEngine() for scheduling low-value subgraphs. In line 8,
Scaph uses the above heuristic predictor to estimate the value
of an active subgraph. Note that both engines work indepen-
dently but concurrently. LVSPEngine() needs VertexStates
in order to perform UD extraction for the active vertices in
each subgraph. The UD extraction can be overlapped effec-
tively with the data transfers in HVSPEngine(). At the end
of each iteration (line 15), Scaph will transfer back the up-
dated vertices from the GPU to the CPU. Edges, which are
not modified, are thus not transferred.

5 Value-Driven Subgraph Processing

Scaph has two graph processing engines. We describe the one
for handling high-value subgraphs in §5.1 and the one for
handling low-value subgraphs in §5.2.

95

1

63
2

4
7

8

G1 G2 G3UD

PUD

NUD

Active
Vertices

Figure 9: An example illustrating value propagation across
the subgraphs, with ¶ activatable by ¹ and ¼. The PUD in
G̃1 can be exploited only if G̃2 and/or G̃3 are processed first.

5.1 High-Value Subgraph Processing

The key to extracting the most value out of high-value sub-
graphs lies in how to fully exploit their PUD. A useful idea
of running each loaded subgraph multiple times is leveraged
in the out-of-core settings [2, 53, 69] to exploit the intrinsic
value in a subgraph for reducing the number of I/Os between
memory and disk. However, under a GPU-accelerated hetero-
geneous architecture, subgraphs must often be small enough
(in several tens of millions of bytes [17, 26]) against the ones
in out-of-core settings, to enable fine-grained GPU scheduling.
In this case, simply iterating over such a small-sized subgraph
multiple times is often ineffective, since it can exploit only the
PUD of its active vertices activated by its other active vertices
but not active vertices from other subgraphs.

In Scaph, we improve the PUD exploitation significantly by
enabling exploiting the external value across the subgraphs.
Our key observation is that: given a subgraph already avail-
able in GPU memory, scheduling it again after a period of
delay can expose its PUD more fully than processing it repeat-
edly. Figure 9 illustrates this with three subgraphs, exhibiting
some complex inter-subgraph data dependencies (as is often
the case in practice). We see that ¶ in G̃1 can be activated by
¹ in G̃2 and ¼ in G̃3. Once ¶ in G̃1 is activated, · in G̃1 may
get activated (as shown). In this case, the edge data for ¶→·,
¶→¸, and ·→¸ are part of the PUD of G̃1. By process-
ing G̃1 after G̃2 or G̃3 or both (even better), we can exploit
such PUD to enable faster convergence. That is, repeatedly
processing G̃1 would not help.

Queue-Assisted Multi-Round Processing. The schedul-
ing of high-value subgraphs at a given iteration is shown in
Figure 10. We use a k-level priority queue (PQ1, . . . ,PQk)
to enable re-scheduling a GPU-resident subgraph after some
delay, where k indicates the maximum number of times some
subgraphs have been processed in the current iteration. Thus,
k varies from iteration to iteration. Figure 11 shows a case.

In each differential scheduling iteration orchestrated by
VDDSEngine (Figure 8), HVSPEngine(worklist) is invoked,
where worklist contains all the high-value subgraphs in this it-
eration. During the pre-processing (lines 2–6), each subgraph
G̃i in worklist is examined in turn. G̃i will be enqueued into
PQ1 (if not already there) if G̃i remains to be GPU-resident
(i.e., in one of {PQ1, . . . ,PQk}) from the previous iteration
and inserted into TransSet (waiting to be streamed to GPU)
otherwise. Thus, there are two concurrently executed modules,

578 2020 USENIX Annual Technical Conference USENIX Association

1 Procedure HVSPEngine(worklist)
2 foreach G̃i ∈ worklist do
3 if G̃i is resident in GPU memory then
4 Push(PQ1, i)
5 else
6 Push(TransSet, i)

/* Subgraph Transferring Module */
7 while TransSet 6= /0 do
8 if copystream is available then
9 i← Pop(TransSet)

10 if GPU has available memory for one subgraph then
11 Gbuf← AllocateDeviceMemory()
12 else
13 j← Pop(PQk)
14 Gbuf← GetGbuf(G̃ j)

15 TransferData(copystream, Gbuf, G̃i, CPU2GPU)
16 Push(PQ1, i)

/* Subgraph Scheduling Module */
17 while worklist 6= /0 do
18 if at least one stream in execstreams is available then
19 stream← Available(execstreams)

/* Exploit the UD of a subgraph in PQ1 */
20 if PQ1 6= /0 then
21 i← Pop(PQ1)
22 Kernel(stream,G̃i)
23 Erase(worklist, G̃i)

/* Exploit the PUD of a subgraph in PQi, where i6=1
*/

24 else
25 for p← 2 to k do
26 if PQp 6= /0 then
27 i← Pop(PQp)
28 Kernel(stream,G̃i)
29 break

30 priority← GetPriority(G̃i)
31 Push(PQpriority+1, G̃i)

Figure 10: High-value subgraph processing in each iteration
(called from Figure 8). The Kernel function is from Figure 3.
The two colored code regions are executed in parallel.

Subgraph Transferring and Subgraph Scheduling.
The Subgraph Transferring module (lines 7 – 16) is respon-

sible for streaming asynchronously the subgraphs in TransSet
to GPU. This is done by using some free GPU memory when-
ever possible (line 11) or making some free by dequeuing a
subgraph from the multi-level queue (lines 13 – 14). Due to
lines 4 and 16, all subgraphs in worklist are initially enqueued
into PQ1, and thus assigned with the highest priority.

The Subgraph Scheduling module (lines 17 – 31) is re-
sponsible for scheduling the subgraphs in PQ1, · · · ,PQk. The
subgraphs in PQ1 are processed first (for the first time in
the current iteration) to exploit their UD (lines 21 – 23). If
PQ1 = /0 (implying that some subgraphs are still being trans-
ferred to GPU asynchronously), the scheduler will dequeue a
subgraph from a non-empty PQi, where i is the smallest, to
exploit its PUD (lines 25 – 29), as this will be the i-th time
that the subgraph is processed (in the i-th round) of the current
iteration. Simultaneously, the data transfers for PQ1 and the
computations for PQ2, · · · ,PQk are maximally overlapped,
too. In either case, the priority of a subgraph, once processed,
drops by one (lines 30 – 31). This delayed re-scheduling at-

TransSet
Scheduling
Priority...

PQk

PQ2

PQ1

G9

G7 G4 G3

G8 G6

G5 G2 G1

Figure 11: Subgraph processing with a k-level priority queue.
PQi represents a queue PQ with the i-th priority. The smaller
i is, the higher the priority is. All the subgraphs streamed from
the host to GPU enter into PQ1 initially.

tempts to maximize the PUD exploitation, by, e.g., increasing
the chances for G̃1 to be processed after G̃2 and/or G̃3 in Fig-
ure 9 (as motivated earlier). Consider G̃3, which resides in
PQ1, in Figure 11. Once we have exploited its UD, we will
move it to PQ2 so that we can exploit its PUD after G̃7, G̃4,
G̃8, and G̃6 have been processed.

Our scheduler with a multi-level priority queue guarantees
that subgraphs are scheduled fairly, preventing them from
bearing too many useless computations in the sense that the
data of a vertex is computed but not updated.

Time and Space Complexity Analysis. k is expected to
be bounded by BW ′

BW where BW ′ is the internal bandwidth of
GPU and BW is the host-GPU bandwidth. In our computing
platform, BW ′ = 224GB/s and BW = 11.4GB/s. Thus, k 6 20
is typically expected.

As for the space complexity, a k-level priority queue is
used to keep track of only the indices of the active sub-
graphs processed in an iteration. Thus, the worst complexity is
O(MemGPU × sizeof(SubgraphIndex)

|G̃|), where MemGPU is the global

memory size and |G̃| is the size of a subgraph G̃. In our com-
puting platform, we have used 4GB×4B

32MB = 0.5KB.

5.2 Low-Value Subgraph Processing
The key to exploiting the most value of low-value subgraphs is
to extract their UD efficiently. We use multiple CPU cores at
the host to parallelize the UD extraction. Due to non-uniform
memory access (NUMA), however, scanning naively all the
vertices in a subgraph to extract its UD can still be costly. In
addition, different subgraphs exhibit different amounts of UD.
Such scanning tasks are also prone to load imbalance.

Figure 12 gives our scheduler for low-value subgraphs.
In each value-driven scheduling iteration orchestrated
by VDDSEngine() in Figure 8, LVSPEngine(worklist,
VertexStates) is invoked, where worklist contains all the
low-value subgraphs that are active in this iteration, with their
active vertices indicated in VertexStates. There are three mod-
ules, UD Extraction, Subgraph Transferring, and Subgraph
Scheduling, which all execute concurrently. The major contri-
bution here is a NUMA-aware parallel UD extraction.

UD Extraction. Initially, all the subgraphs partitioned
from a graph are evenly distributed to different NUMA nodes,

USENIX Association 2020 USENIX Annual Technical Conference 579

1 Procedure LVSPEngine(worklist, VertexStates)
/* UD Extraction Module */

2 para_for G̃i ∈ worklist do
3 G̃′i ← UDExtraction(G̃i, VertexStates)
4 Push(TransSet, i)

/* Subgraph Transferring Module */
5 while TransSet 6= /0 do
6 if copystream is available then
7 i← Pop(TransSet)
8 Gbuf← AllocateDeviceMemory()
9 TransferData(copystream, Gbuf, G̃′i, CPU2GPU)

10 Push(ExecFIFO, i)

/* Subgraph Scheduling Module */
11 while worklist 6= /0 do
12 if at least one stream in execstreams is available then
13 stream← Available(execstreams)
14 i← Pop(ExecFIFO)
15 Kernel(stream, G̃′i)
16 Erase(worklist, G̃i)

/* Extract UD on the host */
17 Procedure UDExtraction(G̃, VertexStates)
18 G̃′ ← /0

19 Offset← 0
20 while offset 6 |G̃.SetOfVertices| do
21 WORD← Load(VertexStates(G̃).bitmap, offset, 32)
22 if WORD 6= 0 then
23 foreach BYTE ∈WORD do
24 if BYTE 6= 0 then
25 foreach BIT ∈ BYTE do
26 if BIT = 1 then
27 v← GetVert(offset, BYTE,

BIT)
28 G̃′ ← G̃′

⋃
v.outedges

29 offset← offset + 32

30 return G̃′

Figure 12: Low-value subgraph processing in each iteration
(called from Figure 8). The Kernel function is from Figure 3.
The three shaded code regions are executed in parallel.

with a NUMA node consisting of a CPU socket and its own
memory banks (line 2 in Figure 8). The UD extraction module
is given in terms of lines 2 – 4 and lines 17 – 30. To boost
performance and improve intra-node load balancing, the UD
extraction for each subgraph is done in its own thread, which
is bound to the NUMA node storing the subgraph (line 3).
To improve inter-node load balancing (as a minor optimiza-
tion), we also duplicate in a NUMA node an equal number of
randomly selected subgraphs from the other nodes (if there
is still some memory space available). We adopt a simple
bitmap-based approach to extract the UD from a subgraph G̃
efficiently (lines 17–30). All its vertices are stored in a bitmap,
VertexStates(G̃).bitmap, with 1 (0) indicating that the corre-
sponding vertex in G̃ is active (inactive). To accelerate its
construction, the total of active vertices is computed on GPU.

Unlike high-value subgraphs, which can each be stored
in the same-sized chunk in GPU memory (§5.1), low-value
subgraphs may give rise to UD-induced subgraphs of varying
sizes. To reduce fragmentation, Scaph further divides each
chunk for storing a subgraph into smaller tiles (totaling 32
in our implementation). To store a UD-induced subgraph in
GPU memory, Scaph will try to find consecutive tiles first in

a partially filled chunk and then in a vacant chunk.
Subgraph Transferring. As in the case of high-value sub-

graph streaming in Figure 10, this module proceeds similarly
except that a multi-level queue is no longer used.

Subgraph Scheduling. As in the case of scheduling high-
value subgraphs to GPU in Figure 10, this module schedules
UD-induced subgraphs (without using a multi-level queue).

6 Evaluation
We evaluate the efficiency and scalability of Scaph by answer-
ing the following four research questions (RQs):

• RQ1: How much more efficient is Scaph over state-of-the-
art heterogeneous graph systems?

• RQ2: How effective is Scaph’s value-driven differential
scheduling in helping it achieve the overall performance?

• RQ3: How well does Scaph scale?
• RQ4: How much runtime overhead does Scaph introduce?

6.1 Experimental Setup
We compare Scaph with the following three state-of-the-art
CPU-GPU heterogeneous graph systems:

• Totem [14]. A graph is divided into two subgraphs, which
are processed by CPU and GPU, respectively. At the end
of each iteration, the states of the active vertices that are
activated reciprocally by the two subgraphs are exchanged.

• Graphie [17]. Like Scaph, a graph is initially partitioned at
the host CPU and the subgraphs are then streamed to GPU
for graph processing. Unlike Scaph, however, all active
subgraphs are transferred to GPU in their entirety.

• Garaph [34]. At an iteration, all the subgraphs that are
partitioned from a graph are processed concurrently by
both the host and GPU if the number of outgoing edges of
all active vertices in the entire graph exceeds 50% of the
total number of edges and on the host only otherwise.

Subgraph Size. For Totem, Graphie, and Garaph, the sizes
of subgraphs are selected from their papers. In Scaph, a graph
is partitioned into subgraphs of 32MB each for several reasons.
First, the host-GPU bandwidth tends to be under utilized with
smaller sizes. Second, subgraphs will be streamed to GPU
more frequently with larger sizes, as they tend to contain ac-
tive vertices for more iterations. Finally, the kernel launching
overheads appear to be well hidden with 32MB.

Graph Applications. We consider the first three typical
graph algorithms (from different categories) and the latter
two actual graph workloads (with different complexities): (1)
Single-Source Shortest Path (SSSP) [60]–Sequential traver-
sal, (2) Connected Components (CC) [20]–Parallel traversal,
(3) Minimum Spanning Tree (MST) [37]–Graph mutation,
(4) Neural Network Digit Recognition (NNDR) [4], and (5)
Graph-based Circuit Simulation (GCS) [25]. All these al-
gorithms fit the correctness criteria discussed in §3, though
NNDR and GCS are already typically executed in an asyn-

580 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Graph datasets. The graph size is evaluated in the
weighted edgelist representation.

Dataset #Vertices #Edges Avg. Degree Size
twitter (TW) 41.7M 1.47B 39.5 32.8GB

comfriend (FR) 124.8M 1.81B 14.5 40.4GB
sk-2005 (SK) 50.6 M 1.95B 38.5 43.6GB
uk-2007 (UK) 105.9M 3.74B 35.3 83.6GB

altavista-2002 (AV) 1.41G 6.64B 4.695 148.3GB
fb-2009 (FB) 139.1M 12.3B 88.7 275.6GB

RMAT-k (25<k<31) 2k 2k+4 16 -

Table 3: Execution times of Scaph, Totem, Graphie, and
Garaph. Here, ‘N/A’ indicates that a graph algorithm has
abnormally terminated due to some runtime error.
Algorithm System Execution Time (Secs)

TW FR SK UK AV FB

CC

Totem 2.41 5.01 2.72 9.32 N/A N/A
Graphie 1.89 4.46 16.53 23.61 57.49 133.21
Garaph 1.17 2.53 2.90 7.07 31.46 86.24
Scaph 0.28 0.91 1.08 2.47 7.08 15.35

SSSP

Totem 5.94 5.78 7.07 19.21 N/A N/A
Graphie 5.32 9.24 52.01 89.44 218.51 413.07
Garaph 3.71 4.45 6.83 16.52 114.68 204.35
Scaph 0.92 1.67 3.17 6.64 29.06 38.87

MST

Totem 7.93 10.90 21.33 42.84 N/A N/A
Graphie 8.45 16.24 32.19 53.22 198.85 304.51
Garaph 4.14 7.38 12.35 25.82 101.25 131.45
Scaph 1.39 1.99 2.93 6.36 25.23 35.41

NNDR

Totem 6.47 6.63 12.17 29.43 N/A N/A
Graphie 5.38 7.32 28.19 49.81 234.04 457.13
Garaph 3.41 4.76 9.28 28.74 116.34 175.34
Scaph 1.77 2.08 2.99 5.13 20.19 33.55

GCS

Totem 19.77 23.04 59.51 98.11 N/A N/A
Graphie 24.08 38.84 50.34 93.29 454.41 834.59
Garaph 10.53 15.56 20.438 39.45 185.58 299.76
Scaph 3.33 4.08 10.46 16.13 39.52 54.94

chronous way, while the other algorithms are typically run in
a synchronous, iterative manner.

Graph Datasets. We use (1) 6 real-world graphs [6, 31])
for performance evaluation, and (2) 5 large synthesized graphs
(generated by the RMAT tool [7]) for scalability evaluation.
Table 2 gives all the graphs used. For SSSP and MST that
work on the weighted graphs, we randomly assign each edge
of an unweighted graph with a weight ranging from 1 to 100.

Computing Platform. We evaluate Scaph on a machine
where the host is equipped with two Intel 14-core Xeon CPUs,
E5-2680v4@2.40GHz with 512GB memory (256GB on each
of the two NUMA nodes). The GPU is NVIDIA P100 (with
56 SMXs, 3584 cores, and 16GB memory), connected to the
host via the PCI Express 3.0 at 16x. The host-GPU bandwidth
is around 11.4GB/s. We use NVCC V8.0.61 and g++ V5.4.0
to compile all the applications under “-O3”. The operating
system is Ubuntu 14.04 with Linux kernel 4.13.

6.2 RQ1: Efficiency

To answer RQ1, we compare Scaph against Totem [14], Gra-
phie [17], and Garaph [34]. Table 3 depicts the results.

Scaph vs. Totem. The speedup of Scaph over Totem ranges
from 2.23× (for SSSP on SK) to 7.64× (for CC on TW) with
an average of 4.12×. Totem’s critical performance bottleneck
lies in its severe load imbalance, as it partitions each graph
into only two subgraphs, one for the host (with 512GB mem-
ory) and one for GPU (with only 16GB memory). As a result,
Totem cannot tap GPU’s processing power to exploit ade-
quately the UD and PUD in a graph. Its bottleneck is to ask
the CPU to process most of the graph data, which would have
been processed more efficiently by the GPU otherwise. A typ-
ical measurement for FB is for the CPU to handle 358.1GB
and the GPU to handle only 16GB. In contrast, Scaph streams
all subgraphs dynamically to GPU with value-driven differ-
ential scheduling, thereby exploiting more adequately GPU’s
processing power, and consequently, the UD and PUD in all
the subgraphs. In the case of CC operating on FR, SK, and
UK, their GPU portions under Totem are 39.6%, 36.7%, and
19.1%, respectively. As a result, Scaph outperforms Totem by
5.51x (FR), 2.52x (SK), and 3.77x (UK).

Scaph vs. Graphie. Scaph is faster than Graphie by 8.93×
on average, with its speedup ranging from 3.03× (for NNDR
on TW) to 16.41× (for SSSP on SK). Both Graphie and
Scaph process all subgraphs on GPU only. So Graphie can
be understood as a version of Scaph, where every subgraph
is treated as a high-value subgraph except that only its UD is
used but its PUD is exploited rather inadequately. Graphie is
inferior to Scaph for several reasons. First, Graphie transfers
an active subgraph entirely to GPU even though it contains
only a few active vertices (i.e., a lot of NUD), wasting the
host-GPU bandwidth. Second, Graphie exploits the UD only
but PUD inadequately in an active subgraph.

Let us examine SSSP on SK, where the speedup of Scaph
over Graphie is the highest (at 16.41×). Graphie converges
in 75 iterations, by transferring 18,019 subgraphs totaling
374.4GB data to GPU. In contrast, Scaph converges in 16 iter-
ations, by transferring 9,897 subgraphs totaling only 19.6GB
data, comprising 13.2GB for 798 high-value subgraphs and
6.4GB for 9,099 low-value subgraphs. For Scaph, its signifi-
cantly improved utilization for the host-GPU bandwidth has
resulted in its significantly improved overall performance.

Scaph vs. Garaph. Scaph is faster than Garaph by 3.71×,
with an overall rang from 1.93× (for NNDR on TW) to 5.62×
(for CC on FB). Unlike Scaph, Garaph processes all the sub-
graphs on both the host and GPU if the active vertices in the
entire graph have a lot of outgoing edges and on the host only
otherwise (§6.1). Despite this, Garaph cannot distinguish high-
value from low-value subgraphs as Scaph does. While being
more effective than Graphie in reducing the amount of NUD
transferred, Garaph is inferior to Scaph as it still transfers
more NUD to GPU and exploits PUD less adequately.

Let us examine CC on FB, where the speedup of Scaph
over Garaph is the highest (at 5.62×). Garaph processes all
the subgraphs on the host only (as the outgoing edges of FB’s
active vertices over the total is under 6.9% at any iteration), by

USENIX Association 2020 USENIX Annual Technical Conference 581

TW SK FR
U

K
R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
TW SK FR

U
K

R
28

R
29

R
30

A
V

G
0

2

4

6

8

GCSNNDRMSTSSSP

S
p

e
e
d

u
p

 Scaph-LBASE Scaph-HBASE Scaph-HVSP Scaph-LVSP Scaph

CC

Figure 13: Speedup of Scaph, Scaph-HVSP, and Scaph-LVSP (normalized to Scaph-LBASE)

using a so-called notify-pull model. In contrast, Scaph uses
a fine-grained value-driven differential scheduler to identify
high-value and low-value subgraphs even though it has active
vertices only in its local regions at any iteration, so that the
GPU’s processing power is adequately exploited.

6.3 RQ2: Effectiveness
To answer RQ2, we consider four variations of Scaph: (1)
Scaph-HVSP, where all the low-value subgraphs can be un-
derstood as being misidentified as high-value subgraphs, (2)
Scaph-LVSP, where all the high-value subgraphs can be un-
derstood as being misidentified as low-value subgraphs, (3)
Scaph-HBASE, which applies the differential processing, but
every subgraph transferred to the GPU has kept computation
with a specific number of times (without using queue-based
delayed scheduling), as used in CLIP [2], and (4) Scaph-
LBASE, a variation of Scaph-LVSP except that every sub-
graph is streamed to GPU entirely (without UD extraction),
as used in Graphie [17].

Figure 13 gives the results. We see that neither of Scaph-
HVSP and Scaph-LVSP is always better than the other, and
also Scaph is the best performer for all the algorithms on all
the graphs. Thus, Scaph’s value-driven differential scheduling
with heuristic subgraph identification is highly effective.

Scaph-HVSP. Scaph-HVSP achieves better speedups for
the graphs where algorithms take longer iterations to con-
verge, as this allows it to exploit PUD more adequately and
thus stream less redundant data to GPU. For example, each
algorithm on SK has the longest number of iterations against
on other graphs, thereby delivering considerable speedups.
We also see that Scaph-HBASE is significantly inferior to
Scaph-HVSP. This is because small subgraphs often contain
very little PUD from themselves worthy of being exploited.
Our queue-based scheduling allows the availability of PUD
from other subgraphs via delayed scheduling. Thus, multi-
time processing under Scaph-HVSP can expose significantly
more PUD than that under Scaph-HBASE (i.e., by simply
applying the idea from CLIP) for boosting performance.

Scaph-LVSP. Just like Scaph-HVSP, Scaph-LVSP can be
quite effective in some cases. For example, the top two
speedups achieved by Scaph-LVSP for MST are 5.26x and
3.58x on SK (14.8GB) and UK (27.61GB), respectively. The
corresponding speedups from Scaph are 5.99x and 4.19x.
However, Scaph-LVSP can be rather ineffective for the graphs
that can nearly fit into the 16GB GPU memory, since Scaph-

LBASE will then make GPU-resident for nearly all the sub-
graphs. For R28 with 16.78GB (unweighted) and 29.48GB
(weighted), Scaph-LVSP offers little or even negative benefits
for CC, NNDR, and GCS (on unweighted graphs) but positive
ones for SSSP and MST (on weighted graphs).

Scaph. Scaph obtains the best of both worlds, Scaph-HVSP
and Scaph-LVSP. For CC, SSSP, MST, NNDR, and GCS, the
average speedups achieved by Scaph-HVSP (Scaph-LVSP)
are 1.63x, 1.87x, 1.66x, 1.84, and 2.18x (1.33x, 2.12x, 2.41x,
2.15x, and 1.90x), respectively. As for Scaph, these average
speedups are 2.38x, 3.79x, 3.01x, 3.12x, and 3.44x. Note that
Scaph has the highest gain on SK, where Scaph-HVLP and
Scaph-LVSP are also most effective.

6.4 RQ3: Sensitivity Study
To answer RQ3, we investigate Scaph’s scalability in terms
of #SMXs, graph sizes, memory sizes, and GPU generations.
We select Graphie as a reference on CC, MST, and NNDR.

#SMXs. Figure 14(a) compares Scaph and Graphie in
terms of CC, MST, and NNDR on UK [6] for varying #SMXs
by using all the 8GB GPU memory available. Scaph is signifi-
cantly more scalable than Graphie for all the three graph algo-
rithms, since Scaph can utilize the host-GPU bandwidth more
effectively as already motivated earlier (Figures 1 and 4). For
example, Graphie-MST reaches its plateau when #SMXs = 2,
but Scaph-MST continues to offer a scalable performance
improvement. CC and NNDR exhibit a similar trend.

However, Scaph’s scalability degrades gradually as #SMXs
increases, due to the integrated impacts of the intrinsic random
accesses of graph processing on GPU [5, 25, 57] and the in-
creasingly more SMXs competing for the memory bandwidth.
As also shown in Figure 14(a), Groute [5], an in-memory
graph system that can not handle over-subscription, on UK-
2007@1M [6] (a sample graph with 1M vertices and 41M
edges generated from UK), suffers from exactly the same
scalability problem, which is beyond the scope of this work.
We leave addressing this problem in future work.

Graph Sizes. Figure 14(b) compares Scaph and Graphie
as the graph size increases. For CC and NNDR working on
unweighted graphs, Scaph (Graphie) can store up to 4 billion
(2 billion) edges in GPU memory. For MST working on the
weighted graph, these edge counts drop to roughly 2 billion
and 1 billion. Both Scaph and Graphie maintain their through-
put well as the graph size increases but degrade visibly for
the graphs that can no longer fit into GPU memory. However,

582 2020 USENIX Annual Technical Conference USENIX Association

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
0

5

10

15

20

25

30

 Grounte-CC

 Groute-MST

 Groute-NNDRN
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Graphie-CC

 Graphie-MST

 Graphie-NNDR

 Scaph-CC

 Scaph-MST

 Scaph-NNDR

(a) #SMXs
512M 1B 2B 4B 8B 16B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

 N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Scaph-NNDR

 Scaph-CC

 Scaph-MST

 Graphie-NNDR

 Graphie-CC

 Graphie-MST

(b) Edge sizes
10 11 12 13 14 15 16

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 Scaph-NNDR

 Scaph-CC

 Scaph-MST

 Graphie-NNDR

 Graphie-CC

 Graphie-MST

(c) GPU memory (GB)
CC MST NNDR

0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 s
p

ee
d

u
p

 GTX980

 K40

 P100

(d) GPU generations
CC MST NNDR

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

z
e
d
 R

u
n
ti

m
e

 A1 (0%, 0%)

 A2 (25%, 15%)

 A3 (50%, 30%)

 A4 (75%, 45%)

 A5 (100%, 60%)

(e) Varying α and β

Figure 14: Performance of Scaph and Graphie (including Groute for (a) only) in terms of varying (a) #SMXs: UK [6] and 8GB
GPU memory, (b) graph sizes: R26–R30 [7] and 16GB GPU memory and #SMX=56, (c) GPU memory capacities: FB [31] and
#SMX=56, (d) GPU genreations: FB [31], and (e) configurations of (α, β): FB [31], respectively. All results are normalized to
the one obtained by itself with the smallest configuration.

Scaph has a slower performance reduction rate than Graphie,
for two reasons. First, Scaph can better tap GPU’s processing
power due to its use of a multi-level priority queue for exploit-
ing PUD more adequately and overlapping data transfers and
GPU computation more effectively. Second, Scaph avoids
transferring a large amount of NUD for low-value subgraphs.

GPU Memory Capacities. Figure 14(c) compares Scaph
and Graphie for varying GPU memory sizes. Graphie is highly
sensitive to the GPU memory capacity used, which determines
directly how many subgraphs can be resident on GPU at an
iteration and how many of these get re-processed in the ensu-
ing iteration (before they are removed from GPU memory). In
contrast, Scaph is nearly insensitive, since it exploits UD and
PUD for high-value subgraphs and UD only for low-value
subgraphs always. Note that Scaph is significantly faster than
Graphie (Table 3). In Figure 14(c), Graphie improves over it-
self (normalized to 10GB) as the GPU memory size increases.

GPU Generations. Figure 14(d) characterizes the perfor-
mance of Scaph on different GPU generations. Compared to
Graphie that shows few speedups as shown in Figure 1, Scaph
enables the significant speedups for K40 (1.99×∼3.12×) and
P100 (4.26×∼5.02×) against that of GTX980.

Varying α and β. Figure 14(e) shows the sensitivity of the
performance results of Scaph with respect to α and β. Here,
A1 can be understood as Scaph-HVSP and A5 as Scaph-LVSP.
Looking at A3, we see that increasing α and β causes more
subgraphs to be mis-identified as low-value subgraphs (A4
and A5) and decreasing α and β causes more subgraphs to be
mis-identified as high-value subgraphs (A1 and A2). Thus,
A3 seems to represent a nice sweet spot for yielding good
performance results. As for the problem of finding an optimal
setting, we leave it as future work.

6.5 RQ4: Runtime Overhead
We discuss Scaph’s overheads incurred in its value-driven
differential scheduling (VDDS) given in Figure 8, high-value
subgraph processing (HVSP) given in Figure 10, and low-
value subgraph processing (LVSP) given in Figure 12.

VDDS. The cost of computing the subgraph value comes
from computing the UD size for each iteration, on GPU, in
line 8 of Figure 8. This is negligible, as shown in Figure 15(a).

 UD Sizing

 Graph Processing

1 3 5 7 9 11 13
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
(s

ec
s)

(a) VDDS

 Scaph-LBASE

 Queuing

 Graph Processing

1 6 11 16 21 26
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
(s

ec
s)

(b) HVSP

 Bitmap Transferring

 Graph Processing

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
(s

ec
s)

(c) LVSP
Figure 15: Scaph’s runtime overhead for running CC on UK
[6] across the iterations

HVSP. The main overhead of HVSP lies in its queue man-
agement. In Figure 15(b), the cost incurred per iteration is
small, representing an average of 0.79% of the total process-
ing time. This small overhead is more than offset by the
benefit reaped. In particular, the iteration count is reduced
since most of the PUD can be computed ahead of schedule.
The per-iteration time can be improved mainly because most
of the NUD is discarded (rather than transferred expensively).

LVSP. The main overhead of LVSP lies in transferring a
bitmap representation for all the active vertices in a subgraph
from GPU to the host. As shown in Figure 15(c), the aver-
age cost incurred per iteration represents 4.3% of the total
graph processing time. However, this cost increases relatively
towards the last few iterations, reaching 57.4% at the end,
where each subgraph has little UD to be acted upon.

6.6 Limitations
Graph Partition. Various partitions may show different value
variations of subgraph at runtime. Scaph adopts a greedy
vertex-cut partition [15] with the time taken depending on
the number of partitions. It would be interesting future work
to find a more reasonable partition method that can make
most of UD and PUD exploited in the early stage of graph
processing for faster convergence.

Disk-based Heterogeneous Graph Systems. The perfor-
mance of Scaph is insensitive to the difference between CPU
and GPU memory, given that the whole graph is assumed
to fit into the CPU memory. To support even larger graphs
on a single machine, using the disk (e.g., SSD) as secondary
storage is promising. In this case, a new dimension of perfor-
mance bottleneck will be the I/O inefficiency, which has been
studied in prior work [2, 32, 35, 55]. We can combine Scaph

USENIX Association 2020 USENIX Annual Technical Conference 583

with these past disk-based solutions to cooperatively handle
graphs that cannot fit into the host memory.

Performance Profitability. Scaph delivers performance
benefits by processing all the subgraphs differentially. Scaph
is currently not expected to be applied to graph algorithms
where the set of active vertices does not shrink as computation
goes on. For example, all vertices in PageRank are active in
every iteration. Thus, all the data of a subgraph can be re-
garded as UD without any PUD. In fact, we can extend Scaph
to distinguish these all-active subgraphs further for PageRank
by considering not only the degrees and the activation but also
the state variation rate for each vertex, which is a potential
direction of future work.

7 Related Work
Heterogeneous Graph Systems. Such systems have been
studied on a range of heterogeneous architectures equipped
with varying hardware resources [21, 35, 44]. Compared to
GPU-accelerated solutions [43, 47], FPGA-accelerated alter-
natives are advantageous in energy-efficiency [10, 61]. In
developing Scaph, we focus on improving host-accelerator
bandwidth utilization. The basic idea behind can also be ap-
plied to improve the scalability of FPGA-accelerated hetero-
geneous graph systems with a few hardware specializations.

Distributed Graph Systems. The rationale is to aggre-
gate multiple machines to enable processing large-scale
graphs. The main challenge lies in obtaining good graph
partitions [3, 8, 16, 48, 52] so as to minimize the communica-
tion overheads across the machines. Some recent studies take
advantage of emerging high-speed networks (e.g., RDMA)
to reduce communication overheads [49, 58]. Aspire [54] de-
signs a relaxed consistency model to exploit asynchronous
parallelism for iterative algorithms. Gemini [67] includes a
series of adaptive runtime optimizations to enable obtaining
an attractive scale-out efficiency.

Disk-based Graph Systems. Many disk-based graph sys-
tems [12,45,64,65] exist for supporting large-scale graph pro-
cessing. GraphChi [30] relies on parallel sliding windows to
optimize disk accesses. GridGraph [68] uses 2-level hierarchi-
cal partitioning to reduce the I/O overhead. TurboGraph [18]
applies a pin-and-slide model to exploit the multicore and
I/O parallelism. Due to the low disk-to-memory bandwidth,
disk-based graph systems are often at least two orders-of-
magnitude slower than heterogeneous solutions.

Data Movement Reduction. Several previous studies
leverage an analogous idea of running graph partitions multi-
ple times for different purposes. CLIP [2] iterates over each
loaded subgraph multiple times to squeeze out the value of
each subgraph so that less amount of disk I/O is required.
GraphQ [69] enables computing the local subgraphs multiple
times in order to tolerate long latency across the compute
nodes. Unlike these efforts, Scaph emphasizes on a GPU
context that often requires small-size subgraphs to enable
fine-grained scheduling. Thus, simply computing a subgraph

multiple times is not sufficient to exploit its PUD fully. Scaph
enables value exploitation not only within a subgraph but also
across the subgraphs via a delayed scheduling mechanism.

In LUMOS [53], a subgraph in an iteration can be ex-
ploited asynchronously iff its updated values are independent
of the subsequent iteration. This dependency-aware technique
allows enjoying the efficiency of asynchronous execution
while ensuring synchronous processing semantics. Applying
this technique into Scaph can help identify the high-value
subgraphs that contain across-iteration dependencies, so that
Scaph can be extended to handle synchronous algorithms [22]
safely by scheduling these high-value subgraphs once. How-
ever, the downside is that many dependency-free low-value
subgraphs may also be allowed to be computed multiple times,
wasting the GPU computational and storage resources.

Wonderland [63] uses graph abstraction as a bridge over
on-disk subgraphs to speed up convergence. However, under
the context of small-sized subgraphs, such a graph abstraction
is often hard to keep concise, and extracting it from the whole
graph is also non-trivial. PowerLayer [8] presents differen-
tiated processing on high-degree and low-degree vertices to
improve the trade-off between load balance and communi-
cation overheads in a distributed setting. However, applying
the idea of PowerLayer cannot often identify the value of a
subgraph accurately while Scaph does with a fine-grained so-
lution. Mosaic [35] adopts a subgraph compression technique,
which can be used to work together with Scaph to improve the
bandwidth-efficiency of heterogeneous graph system further.

8 Conclusion

This paper tackles the challenge faced in achieving scale-up
large-scale graph processing on a GPU-accelerated hetero-
geneous architecture. We introduce Scaph, a value-driven
heterogeneous graph system that differentially schedules the
subgraphs partitioned from a graph according to their values
in order to improve the effective utilization of the host-GPU
bandwidth. Scaph outperforms state of the art, as evaluated
with representative graph algorithms operating on a range of
graph datasets. In addition, these performance benefits scale
up as more computing resources are available.

Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments. In particular, we thank our shepherd, Xiaosong Ma,
for her valuable suggestions. We would also like to thank
Pengcheng Yao, Chuangyi Gui, Qinggang Wang, and Jieshao
Zhao for their support. This work is supported by the Na-
tional Key Research and Development Program of China un-
der Grant No. 2018YFB1003502, National Natural Science
Foundation of China under Grant No. 61702201, 61825202,
61832006 and 61929103, and Australian Research Council
DP180104069. The correspondence of this paper should be
addressed to Xiaofei Liao.

584 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In
Proceedings of the 42nd ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 105–117. IEEE, 2015.

[2] Zhiyuan Ai, Mingxing Zhang, and Yongwei Wu. Squeez-
ing out all the value of loaded data: An out-of-core graph
processing system with reduced disk i/o. In Proceedings
of the USENIX Annual Technical Conference (USENIX
ATC), pages 125–137, 2017.

[3] Ching Avery. Giraph: Large-scale graph processing
infrastructure on hadoop. In Proceedings of the Hadoop
Summit, volume 11, pages 5–9, 2011.

[4] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung,
Henry Wong, and Tor M. Aamodt. Analyzing cuda work-
loads using a detailed gpu simulator. In Proceedingns
of the IEEE International Symposium on Performance
Analysis of Systems and Software, pages 163–174, 2009.

[5] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav
Pingali. Groute: An asynchronous multi-gpu program-
ming model for irregular computations. In Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages
235–248. ACM, 2017.

[6] Paolo Boldi and Sebastiano Vigna. The webgraph frame-
work I: Compression techniques. In Proceedings of the
13th International World Wide Web Conference (WWW),
pages 595–601, Manhattan, USA, 2004. ACM.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos
Faloutsos. R-mat: A recursive model for graph mining.
In Proceedings of the 2004 SIAM International Confer-
ence on Data Mining (SDM), pages 442–446. SIAM,
2004.

[8] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
Powerlyra: Differentiated graph computation and parti-
tioning on skewed graphs. In Proceedings of the 10th
European Conference on Computer Systems (Eurosys),
pages 13–21. ACM, 2015.

[9] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. One trillion
edges: Graph processing at facebook-scale. Proceedings
of the VLDB Endowment, 8(12):1804–1815, 2015.

[10] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu,
Yu Wang, and Huazhong Yang. Foregraph: Explor-
ing large-scale graph processing on multi-fpga archi-

tecture. In Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate
Arrays (FPGA), pages 217–226. ACM, 2017.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[12] Nima Elyasi, Changho Choi, and Anand Sivasubrama-
niam. Large-scale graph processing on emerging storage
devices. In Proceedings of the 17th USENIX Confer-
ence on File and Storage Technologies (USENIX FAST),
pages 309–316. USENIX, 2019.

[13] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Ji-
axin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao, and
Chao Tian. Parallelizing sequential graph computa-
tions. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD), pages
495–510. ACM, 2017.

[14] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu
Santos-Neto, and Matei Ripeanu. A yoke of oxen and
a thousand chickens for heavy lifting graph processing.
In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques
(PACT), pages 345–354. ACM, 2012.

[15] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 17–
30. USENIX, 2012.

[16] Joseph E. Gonzalez, Reynold S Xin, Ankur Dave, Daniel
Crankshaw, Michael J Franklin, and Ion Stoica. Graphx:
Graph processing in a distributed dataflow framework.
In Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 599–613, 2014.

[17] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Bu-
land. Graphie: Large-scale asynchronous graph traver-
sals on just a gpu. In Proceedings of the 26th Interna-
tional Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pages 233–245. IEEE, 2017.

[18] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-
Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu.
Turbograph: a fast parallel graph engine handling billion-
scale graphs in a single pc. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages 77–85.
ACM, 2013.

USENIX Association 2020 USENIX Annual Technical Conference 585

[19] Pawan Harish and Petter J. Narayanan. Accelerating
large graph algorithms on the gpu using cuda. In
Proceedings of the 2007 International Conference on
high-performance computing (HiPC), pages 197–208.
Springer, 2007.

[20] Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin
Yao, and Yuyan Chao. The connected-component la-
beling problem: A review of state-of-the-art algorithms.
Pattern Recognition, 70(6):25–43, 2017.

[21] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun.
Efficient parallel graph exploration on multi-core cpu
and gpu. In Proceedings of the 20th International Con-
ference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 78–88. IEEE, 2011.

[22] Unit Kang, Duen Horng “Polo” Chau, and Christos
Faloutsos. Inference of beliefs on billion-scale graphs.
In Proceedings of KDD Workshop on Large-scale Data
Mining: Theory and Applications (LDMTA), pages 1–7,
2010.

[23] Gary J. Katz and Joseph T. Kider. All-pairs shortest-
paths for large graphs on the gpu. In Proceedings of the
23rd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware, pages 47–55. Eurographics As-
sociation, 2008.

[24] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani
Jamjoom, Dan Williams, and Panos Kalnis. Mizan: a
system for dynamic load balancing in large-scale graph
processing. In Proceedings of the 8th ACM European
Conference on Computer Systems (Eurosys), pages 169–
182. ACM, 2013.

[25] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N. Bhuyan. Cusha: Vertex-centric graph pro-
cessing on gpus. In Proceedings of the 23rd Interna-
tional Symposium on High Performance Parallel and
Distributed Computing (HPDC), pages 239–252, 2014.

[26] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok
Seo, and Jinwook Kim. Gts: A fast and scalable graph
processing method based on streaming topology to gpus.
In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD), pages 447–461. ACM,
2016.

[27] Efstathios Kirkos, Charalambos Spathis, and Yannis
Manolopoulos. Data mining techniques for the detec-
tion of fraudulent financial statements. Expert systems
with applications, 32(4):995–1003, 2007.

[28] Yusuke Kozawa, Toshiyuki Amagasa, and Hiroyuki Kita-
gawa. Gpu-accelerated graph clustering via parallel la-
bel propagation. In Proceedings of ACM Conference

on Information and Knowledge Management (CIKM),
page 567–576, 2017.

[29] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th International Confer-
ence on World Wide Web, pages 591–600. ACM, 2010.

[30] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a pc.
In Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 31–46. USENIX, 2012.

[31] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[32] Hang Liu and Howie H. Huang. Graphene: Fine-
grained io management for graph computing. In Pro-
ceedings of the 2015 USENIX Annual Technical Confer-
ence (USENIX ATC), pages 285–300. USENIX, 2017.

[33] Yucheng Low, Danny Bickson, Joseph Gonzalez, Car-
los Guestrin, Aapo Kyrola, and Joseph M Hellerstein.
Distributed graphlab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB
Endowment, 5(8):716–727, 2012.

[34] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and
Yafei Dai. Garaph: Efficient gpu-accelerated graph pro-
cessing on a single machine with balanced replication.
In Proceedings of the USENIX Annual Technical Con-
ference (USENIX ATC), pages 195–207, 2017.

[35] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a trillion-edge graph on a single ma-
chine. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys), pages 527–543. ACM,
2017.

[36] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (SIG-
MOD), pages 135–146. ACM, 2010.

[37] Abdullah A. Mamun and Sanguthevar Rajasekaran. An
efficient minimum spanning tree algorithm. In Pro-
ceedings of the IEEE Symposium on Computers and
Communication (ISCC), pages 1047–1052, 2016.

[38] Christian Mayer, Muhammad Adnan Tariq, Chen Li,
and Kurt Rothermel. Graph: Heterogeneity-aware graph

586 2020 USENIX Annual Technical Conference USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data

computation with adaptive partitioning. In Proceed-
ings of the 36th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), pages 118–128.
IEEE, 2016.

[39] Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable gpu graph traversal. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), volume 47, pages
117–128. ACM, 2012.

[40] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In Pro-
ceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 456–471. ACM, 2013.

[41] Tesla NVIDIA. P100. The Most Advanced Datacen-
ter Accelerator Ever Built Featuring Pascal GP100, the
World’s Fastest GPU, White paper, NVIDIA, 2016.

[42] Tesla NVIDIA. V100. NVIDIA Tesla V100 GPU Archi-
tecture Whitepaper, THE WORLD’S MOST ADVANCED
DATA CENTER GPU, NVIDIA, 2017.

[43] Sreepathi Pai and Keshav Pingali. A compiler for
throughput optimization of graph algorithms on gpus.
In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), volume 51, pages 1–19. ACM, 2016.

[44] Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and
Bin Ren. Graphphi: efficient parallel graph processing
on emerging throughput-oriented architectures. In Pro-
ceedings of the 27th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT),
pages 1–14. ACM, 2018.

[45] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out graph
processing from secondary storage. In Proceedings of
the 25th Symposium on Operating Systems Principles
(SOSP), pages 410–424. ACM, 2015.

[46] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages
472–488. ACM, 2013.

[47] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agar-
wal, and Karsten Schwan. Graphreduce: processing
large-scale graphs on accelerator-based systems. In
Proceedings of the 27th International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC), pages 28:1–28:12. ACM, 2015.

[48] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A dis-
tributed graph engine on a memory cloud. In Proceed-
ings of the 2013 International Conference on Manage-
ment of Data (SIGMOD), pages 505–516. ACM, 2013.

[49] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings of
the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI), pages 317–332.
USENIX, 2016.

[50] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin,
Ligang He, Bo Liu, and Qiang-Sheng Hua. Graph pro-
cessing on gpus: A survey. ACM Computing Surveys,
50(6), 2018.

[51] Julian Shun and Guy E. Blelloch. Ligra: a lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), volume 48, pages 135–146. ACM, 2013.

[52] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Ser-
afini, Georgos Siganos, Mohammed J. Zaki, and Ashraf
Aboulnaga. Arabesque: a system for distributed graph
mining. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (SOSP), pages 425–440. ACM,
2015.

[53] Keval Vora. Lumos: Dependency-driven disk-based
graph processing. In Proceedings of the USENIX Confer-
ence on Usenix Annual Technical Conference (USENIX
ATC), page 429–442, 2019.

[54] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. As-
pire: Exploiting asynchronous parallelism in iterative
algorithms using a relaxed consistency based dsm. In
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications (OOPSLA), page 861–878, 2014.

[55] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the
edges you need: A generic i/o optimization for disk-
based graph processing. In Proceedings of the 2016
USENIX Annual Technical Conference (USENIX ATC),
pages 507–522. USENIX, 2016.

[56] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen,
and Haibing Guan. Replication-based fault-tolerance
for large-scale graph processing. In Proceedings of the
44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 562–
573. IEEE, 2014.

[57] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D Owens. Gunrock:

USENIX Association 2020 USENIX Annual Technical Conference 587

A high-performance graph processing library on the gpu.
In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), pages 11–21. ACM, 2016.

[58] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,
Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and
Lidong Zhou. Gram: scaling graph computation to the
trillions. In Proceedings of the 6th ACM Symposium on
Cloud Computing (SoCC), pages 408–421. ACM, 2015.

[59] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 15–28. USENIX, 2012.

[60] F. Benjamin Zhan. Three fastest shortest path algorithms
on real road networks: Data structures and procedures.
Journal of Geographic Information and Decision Analy-
sis, 1(1):70–82, 1997.

[61] Jialiang Zhang, Soroosh Khoram, and Jing Li. Boosting
the performance of fpga-based graph processor using
hybrid memory cube: A case for breadth first search. In
Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA),
pages 207–216. USENIX, 2017.

[62] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-
aware graph-structured analytics. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 183–
193. ACM, 2015.

[63] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai
Qian, Chengying Huan, and Kang Chen. Wonderland:
A novel abstraction-based out-of-core graph process-
ing system. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-
LOS), page 608–621, 2018.

[64] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He,
Bingsheng He, and Haikun Liu. Cgraph: a correlations-
aware approach for efficient concurrent iterative graph
processing. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), pages 441–452.
USENIX, 2018.

[65] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogel-
stein, Carey E. Priebe, and Alexander S. Szalay. Flash-
graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of 13th USENIX Con-
ference on File and Storage Technologies (USENIX
FAST), pages 45–58. USENIX, 2015.

[66] Jianlong Zhong and Bingsheng He. Medusa: Simplified
graph processing on gpus. IEEE Transactions on Paral-
lel and Distributed Systems, 25(6):1543–1552, 2014.

[67] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A computation-centric dis-
tributed graph processing system. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 301–316. USENIX,
2016.

[68] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single ma-
chine using 2-level hierarchical partitioning. In Proceed-
ings of the 2015 USENIX Annual Technical Conference
(USENIX ATC), pages 375–386, 2015.

[69] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang,
Dimin Niu, Yanzhi Wang, and Xuehai Qian. GraphQ:
Scalable pim-based graph processing. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), page 712–725, 2019.

588 2020 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Host-GPU Heterogeneous Architectures
	A Motivating Study
	Value-Driven Subgraph Scheduling

	Scaph Overview
	Value-Driven Subgraph Dispatching
	Quantifying the Value of a Subgraph
	Value-Driven Differential Scheduling

	Value-Driven Subgraph Processing
	High-Value Subgraph Processing
	Low-Value Subgraph Processing

	Evaluation
	Experimental Setup
	RQ1: Efficiency
	RQ2: Effectiveness
	RQ3: Sensitivity Study
	RQ4: Runtime Overhead
	Limitations

	Related Work
	Conclusion

