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Abstract. Almost all the existing wireless data aggregation approaches
need a topology construction step before scheduling. These solutions as-
sume the availability of flexible topology controls. However, in real sce-
narios, lots of factors (impenetrable obstacles, barriers, etc.) limit the
topology construction for wireless networks. In this paper we study a
new problem called Minimum-Latency Aggregation Scheduling for Arbi-
trary Tree Topologies (MLAT). We first provide an NP-hardness proof
for MLAT. Second, we draw an important conclusion that two frequently
used greedy scheduling algorithms result in a large overhead compared
with the optimal solution: the scheduling latency generated by these two
greedy solutions are

√
n times the optimal result, where n is the to-

tal number of links. We finally present an approximation algorithm for
MLAT which works well for the tree with a small depth. All the above
results are based on the SINR (Signal-to-Interference-plus-Noise Ratio)
model.

1 Introduction

Data aggregation is a fundamental operation in wireless sensor networks. Given
a set of sensor nodes distributed on the Euclidean plane, the data aggregation
problem is to compute an aggregate function (e.g. a maximum or average func-
tion) on the data from all nodes in the wireless sensor network, and let the final
aggregated value to be sent to a sink node in the fewest timeslots. To solve the
data aggregation problem, also called as the MLAS (Minimum-Latency Aggre-
gation Scheduling) problem in the literature, the interference models employed
will play an important role. Compared with exceedingly simplified graph based
models or the protocol models used in many previous studies of data aggrega-
tion [1,7,17,19], a more realistic SINR (Signal-to-Interference-plus-Noise-Ratio)
interference model [3] has been widely adopted in the community [12,11,10,4].
The SINR model is also called the physical model since it reflects the physical
reality more accurately. The advantages and robustness of the SINR model are
analyzed in [14]. In this paper, we employ the SINR model to study the data
aggregation problem for arbitrary tree topologies.

For the MLAS problem, the best result to date under the SINR model is
O(log n) given by Halldórsson et al [4]. There is a hardness result for the MLAS
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with uniform power assignment in [10]. The data aggregation problem for arbi-
trary directed acyclic networks under the SINR model is also studied in [6]. In
this paper, the authors first show that this problem is NP-hard and give both
heuristic and approximation algorithms. Note that the NP-hardness result for
the directed acyclic networks may not mean the same hardness result for the
tree topologies and the latter is the most frequently used topology for data ag-
gregation. In addition, compared with the directed acyclic networks [6], one may
get better scheduling results for the restricted tree topologies.

Also by using the SINR model, some other related wireless scheduling prob-
lems have been studied in the literature. Moscibroda et al. in 2006 [14] first
initiated the connectivity scheduling problem (to construct a spanning tree over
a set of sensor nodes on the plane in the fewest number of timeslots). This kind
of connectivity scheduling problem has been further studied and better results
have been proposed in [15,13,16]. The NP-hardness of the One-Shot scheduling
problem (to pick the maximum number of links to be scheduled in the same
timeslot) with uniform power (all the nodes take the same power) was proposed
by Goussevskaia et al.[16]. This result was extended to the non-uniform power
version later [8]. Very recently, some further hardness results have been given:
Halldórsson and Wattenhofer [5] proved that One-Shot scheduling with uniform
power assignment is in APX (the set of NP optimization problems that allow
constant-factor approximation algorithms) and Kesselheim [9] extended the re-
sult to the power control version.

Note that, the typical solution for MLAS involves the construction of an
appropriate data aggregation tree, followed by scheduling its transmission links.
For example, the nearest neighbor tree is one of the widely used topologies.
However, in a dynamic physical environment, it can not be guaranteed that
any two nearest neighbors can communicate with each other successfully. This
problem arises if there are obstacles or barriers restricting the kinds of links that
can be formed between nodes that could otherwise be within communication
range. Based on this observation, we study the Minimum Latency Aggregation
Scheduling for Arbitrary Tree Topologies (MLAT ). The only difference between
MLAT and MLAS is that the tree topology is given in advance for the MLAT
problem instead of first constructing a tree in the MLAS problem.

1.1 Formal Description of the MLAT Problem

We are given a tree consisting of nodes V = {v0, v1, v2, . . . , vn} with root v0. We
divide time into timeslots, defined to be the unit of time required to transmit
once for any link. All the nodes are arbitrarily distributed in the Euclidean
plane and can be both a sender and receiver, but only in different timeslots.
The distance between any two nodes vi, vj is denoted by d(vi, vj). Each edge
lij = (vi, vj) represents a communication request from a sender vi to a receiver
vj . The length of link lij is denoted by dij = d(vi, vj), where dgj = d(vg, vj)
denotes the distance between the sender of link lgh and receiver of link lij .

Formally, the SINR model is defined as follows. The signal power Pi(j) re-
ceived at vj from sender vi depends on the transmission power Pij of vi and the
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distance dij . The path loss radio propagation model for the reception of signals
says the signal strength that vj receives degrades at d−α

ij (α denotes the path-
loss exponent, and is usually a constant between 2 and 6), i.e. Pi(j) = Pij/d

α
ij .

Every sender vg (with corresponding receiver vh) that sends concurrently with
vi causes an interference Ig(j) = Pg(j) = Pgh/d

α
gj at receiver vj . All interfer-

ences accumulate. The total interference I(vj) experienced by receiver j is given
as the sum of all interferences caused by other concurrently sending nodes, i.e.
I(vj) =

∑
lgh �=lij

Ig(j). A receiver vj successfully receives a message from its

sender vi if and only if it obeys the precedence constraint (a node cannot send
its data to the parent node until it has received data from all children nodes)
and the following SINR threshold holds:

SINRS(vj) =
Pi(j)∑

lgh∈S\lij Ig(j) +N
≥ β

where N is ambient noise, β ≥ 1 denotes the minimum SINR required for a
message to be successfully received, and S is the set of concurrently transmitting
links. We call the set SINR-feasible set. Denote all edges of the given tree as E =
{l1, l2, . . . , ln} (for notational simplicity, we omit the sender and receiver suffix
here), we strive to find a sequence of t sets, i.e. a schedule: S = {L1, L2, . . . , Lt},
L1 ∪ L2 ∪ · · · ∪ Lt = E and Li ∩ Lj = ∅, ∀i, j ∈ [t] i �= j, such that:

S = argmin
S′={L1,L2,...,Lt}

t

h > g ∀i, j, k lij ∈ Lg and ljk ∈ Lh,

SINRLm(vj) ≥ β, ∀m ∀lij ∈ Lm

1.2 Results

In Section 2, we will present the first NP-hardness proof for MLAT under two real
conditions: (i) ambient noise exists, and (ii) all nodes have limited power ranges.
We then analyze the gap between local optimal solution and global optimal
solution for the MLAT Problem. Section 3 provides the evidence of that most
local greedy approaches of existing aggregation scheduling algorithms perform
poorly compared with the optimal result. The timeslots (scheduling latency)
needed by the local optimal methods could be

√
n times larger than the global

optimal solution, where n is the total number of wireless links. We then present
an approximation algorithm for MLAT in Section 4, which adopts an existing
strategy of iteratively maximizing concurrently transmitting links. We derive
the exact approximation ratio bounded by O(min{d · logn, n/d}), where d is the
depth of the given tree. Even though the greedy approaches have been proved
to perform poorly, this analysis shows that it still has guaranteed efficiency for
the tree with a small depth.
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2 NP-Hardness Proof for MLAT

In this section, we will show the following NP-hardness result.

Theorem 1. MLAT with given power range and nonzero background noise is
NP-hard.

Proof. Let Pvi ∈ [Pmin, Pmax] be the transmission power assigned to every
sender vi, and let N > 0.

We will give a polynomial time reduction that expands on methods used in
[16,8] from the Partition Problem to the decision version of MLAT, when one
must decide whether there exists a schedule of a specified length for a given
aggregation tree.

Partition Problem: Do there exist sets I1, I2 ⊂ I where I = {i1, i2, . . . , in}
is a set of integers s.t.

I1 ∪ I2 = I, I1 ∩ I2 = ∅,
∑

ij∈I1

ij =
∑

ij∈I2

ij =
1

2

∑

ij∈I
ij =

1

2
σ.

This problem was proved to be NP-complete by Karp [2]. We construct a many-
to-one reduction from an arbitrary Partition Problem instance to an instance of
MLAT. We will argue that the instance of MLAT can be scheduled in T ≤ n+3
timeslots if and only if the reduced Partition Problem instance can be solved.

Lemma 1. The Partition Problem can be reduced to MLAT in polynomial time.
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Nβ )

1
α, 0)

sj

rj
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s2

s3

r1
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rn

sn+1
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r

Fig. 1. Example of constructed instance of
MLAT from Partition Problem
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Nβ )
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ij
)
1
α

O C

Fig. 2. The semicircle in the plane

Without loss of generality, we assume all elements in the Partition Problem
instance I = {i1, i2, . . . , in} to be distinct and positive. Next, we construct an
instance of MLAT with 2n+3 links L = {l1, l2, . . . , l2n+3} (cf. Fig. 1). We define
the sender and receiver of link li as si and ri, respectively.
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To begin, we must scale all the integers in I by the same factor k such that
k · imin ≥ NβPmin

2αPmax
, where the imin and imax (used in the definition of dε below)

are the smallest and largest integers in I, respectively. In the following we regard
the set I to be properly scaled.

We assign every node a position in the Euclidean plane. First, we fix a semi-
circle of radius R1 = (Pmax/(Nβ))1/α to the plane centered at some point C,
followed by another semicircle with radius R2 = R1 + dε also centered at C, dε
a small constant. Let Imin be defined as:

Imin = min
ig ,ih∈I,ig �=ih

|(Pmin

ih
)

1
α − (

Pmin

ig
)

1
α |.

We will show that for any small ε > 0,

dε = min{ Imin

( (1+ε)nβPmax

εPmin
)

1
α + 1

, (
Pmin

Nβ(1 + ε)
)

1
α , (

Pmin

imax
)

1
α }

is sufficiently small for our reduction.
For each integer ij ∈ I, we place sender sj on the larger semicircle such

that its distance from the leftmost point of the smaller semicircle (origin O) is
(Pmin/ij)

1/α (cf. Fig.2). Because of our scaling of I and choice of dε, such a
point will always exist.

d(sj , O) = (
Pmin

ij
)

1
α ∀1 ≤ j ≤ n

Next, we designate the position for every receiver rj , 1 ≤ j ≤ n to be the
intersecting point on the smaller semicircle of the line which passes through
both sj and C. Note that the distance between any pair sj, rj , 1 ≤ j ≤ n is
always dε.

Finally we place four nodes sn+1, sn+2, rn+1,n+2 and r. Note that rn+1,n+2 is
the receiver corresponding to senders sn+1 and sn+2. Node r is the parent node
for all receivers r1, r2, . . . , rn, rn+1,n+2 in the tree (cf. Fig. 1).

pos(sn+1) = (−(
Pmax

β(N + σ
2 )

)
1
α , 0), pos(rn+1,n+2) = (0, 0)

pos(sn+2) = (0, (
Pmax

β(N + σ
2 )

)
1
α ), pos(r) = ((

Pmax

Nβ
)1/α, 0)

Next n+ 3 links of the tree are constructed as follows:

ln+1 = (sn+1, rn+1,n+2), ln+2 = (sn+2, rn+1,n+2)

ln+3 = (rn+1,n+2, r), ln+(i+3) = (ri, r) 1 ≤ i ≤ n
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We then prove four properties of this tree:

1. ln+1, ln+2 must transmit in different timeslots.
2. All li, 1 ≤ i ≤ n, and one of ln+1, ln+2 can transmit concurrently (i.e. in

the same timeslot).
3. ln+1, ln+2 can transmit successfully if and only if the total interference from

other senders is not greater than σ/2.
4. lj , n+ 3 ≤ j ≤ 2n+ 3, can only transmit alone.

The first property arises directly from the observation that ln+1 and ln+2 have
a common receiver rn+1,n+2. If they transmit in the same timeslot, there is no
possibility that both of their SINR is greater than β.

The second property can be derived from the following lemma:

Lemma 2. Every transmission li ∈ L′ = {l1, l2, . . . , ln} is successful using
transmission power Pmin, no matter how many other links lj ∈ L′ along with
either ln+1 or ln+2 transmit concurrently, even if all transmitting links, except
for li, use power Pmax.

Proof. For links in L′, the worst case scenario is that all senders si, 1 ≤ i ≤ n,
and either sn+1 or sn+2 transmit concurrently with Pmax. Recall that we have
chosen a very small dε (i.e. the distance between si and ri, 1 ≤ i ≤ n). It is
easy to see that d(sn+1, rn+1,n+2) = d(sn+2, rn+1,n+2) ≥ dε. We can bound the
distance between ri and sj , 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 2, i �= j.

d(ri, sj) ≥ d(sj , si)− d(si, ri) ≥ |d(sj , O)− d(si, O)| − dε (1)

≥ Imin − dε ≥ ((
(1 + ε)nβPmax

εPmin
)

1
α + 1− 1)dε (2)

= (
(1 + ε)nβPmax

εPmin
)

1
α dε (3)

The first inequality follows from two triangle inequalities (cf. Fig.3). The second
inequality follows from the definition of Imin and dε. Thus, we can derive an
SINR lower bound for all receivers ri, 1 ≤ i ≤ n:

SINR(ri) =

Psi

d(si,ri)α

N +
∑

lj∈L′/li∪{ln+1 or ln+2}

Psj

d(ri, sj)α

≥
Pmin

dα
ε

N + nPmax

d(sj,ri)α

=

Pmin

dα
ε

N + εPmin

(1+ε)dα
ε β

.

On the other hand, according to the value of dε, we know dε ≤ (Pmin/(Nβ(1 +
ε)))1/α. So we obtain N ≤ Pmin

(1+ε)dα
ε β

.

Combining these, we get

SINR(ri) ≥
Pmin

dα
ε

( Pmin

(1+ε)dα
ε β

) + εPmin

(1+ε)dα
ε β

= β.
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Fig. 3. The distance between ri and sj
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√
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Fig. 4. Counterexample for the Leaf-First
approach

The third property can be derived from the total interference suffered by rn+1,n+2

from sk, 1 ≤ k ≤ n. When these senders transmit with minimum power Pmin,

Irn+1,n+2(sk) =
Pmin

((Pmin

ik
)

1
α )α

= ik.

However, even if sn+1 uses transmission power Pmax, we have:

Psn+1(rn+1,n+2) =
Pmax

(( Pmax

β(N+σ
2 )
)

1
α )α

= β(N +
σ

2
).

If we want sn+1 to transmit successfully, the following inequality must hold:

Psn+1(rn+1,n+2)

N + I
=

β(N + σ
2 )

N + I
≥ β.

It is easy to see that if sn+1 transmits using a smaller power or if other senders
transmit using larger powers, then the SINR balance will be destroyed. The same
analysis also holds for sn+2. Thus the following lemma can be derived from these
three properties:

Lemma 3. There exists a 2-slot schedule for all links in L′′ = {l1, l2, . . . , ln+2}
if and only if there is a solution to instance I of the Partition Problem.

Proof. By the second property, we only need to consider ln+1, ln+2.
If {I1, I2} is a solution to I, then ∑

ij∈I1
ij =

∑
ik∈I2

ik = σ/2. This means
we can let ln+1 and all lj, ∀ij ∈ I1 transmit concurrently in the first timeslot,
and ln+2, lk, ∀ik ∈ I2 transmit in the second timeslot. The correctness of this
schedule is guaranteed by the third property.

From the first property, if there is a 2-slot schedule for L′′, ln+1, ln+2 must
transmit in different timeslots. Without loss of generality, we assume ln+1 trans-
mits in the first timeslot, ln+2 in the second. Let L1 and L2 be the sets of links
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transmitting in first and second timeslot, respectively. According to the third
property,

∑
lj∈L1

ij ≤ σ/2, and
∑

lk∈L2
ik ≤ σ/2. However, we already know

∑
lj∈L1∪L2

ij = σ. So the following equation holds:

∑

lj∈L1

ij =
∑

lk∈L2

ik = σ/2

which means we have a solution for the Partition Problem instance I.
The fourth property follows naturally. Since the lengths of all lj, n + 3 ≤ j ≤
2n+3 are (Pmax/(Nβ))1/α, i.e., the radius of the smaller semicircle, receivers rj ∈
{r1, r2, . . . , rn, rn+1,n+2} become senders with transmission power Pmax. Then
Prj (r) = (Pmax)/((Pmax/Nβ)1/α)α = Nβ, which means any other additional
interference will make SINRrj(r) fall below the threshold β, i.e., lj, n+3 ≤ j ≤
2n+ 3, can only transmit alone.

Combining all four properties, we conclude that the constructed instance of
MLAT can be scheduled in T ≤ n + 3 timeslots if and only if the reduced
Partition Problem instance can be solved. Therefore, if we have a polynomial
time algorithm A for MLAT, then we may also solve the Partition Problem using
A as a subroutine in polynomial time.

3 Gap between the Local and Global Optimization

In this section, we will show that two greedy approaches (layer-first and leaf-
first) result in very poor schedules: the scheduling latencies generated by greedy
solutions could be

√
n times the optimal result, where n is the total number of

links. Note that most existing data aggregation scheduling algorithms use the
greedy ideas after the topology construction step, even the best O(log n) result
for the MLAS problem [4]. This may give some hint that using an appropriate
topology construction algorithm could help reducing the scheduling latency for
the data aggregation problem.

3.1 Leaf-First Method

Assume we have a black box which can find the maximum size set of concur-
rently transmitting links, from all the given links. This black box is used for
greedily select operation in this section. We want to show that even we can find
the local optimal concurrent transmissions using this black box, it still leads to
a very poor performance compared with the global optimal solution in the worst
case.

Definition 1. For any given data aggregation tree defined in Section 1.1, in any
round, greedily select the leaves of the tree (i.e. choose the maximum number of
links that can transmit simultaneously) at the beginning of that round to transmit,
without violating the SINR threshold. This approach is called Leaf-First.
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Theorem 2. Given a data aggregation tree with n links, assume the output of
the Leaf-First approach is the schedule Sleaf and the minimum-latency schedule
of this tree is Sopt. In the worst case, |Sleaf | = Ω(

√
n)|Sopt|.

Proof. Construct the data aggregation tree with
√
n layers and every layer con-

sists of
√
n links, as shown in Fig.4. Except for the links in the top layer, this

tree has only two types of links: long link and short link. The long links only
appear in the deepest layer and their lengths are all dlong = (Pmax

Nβ )1/α. It is easy

to show that every long link can only transmit alone since
Pmax/d

α
long

N = β, i.e.
any additional interference from other senders let the transmission of a long link
fail. The remaining links are short links which is very short compared with dis-
tance (denoted as d′ in the figure) between any two short links such that all the
short links in the same layer can transmit concurrently. Simply set their length
as dshort = ( Pmin

β(
√
nPmax/d′α+N)

)
1
α , then the required property above for short link

holds.
After the construction, we apply the Leaf-First approach on this data aggre-

gation tee. Its performance is shown in Fig.5. Obviously, the Leaf-First approach
needs Θ(n) timeslots in total to finish the aggregation. However, a much better
aggregation should be finishing all the long links one by one and then short links
layer by layer, which results in a 2

√
n − 2 time-slot schedule, and all the links

in the top layer still needs extra
√
n timeslots. Therefore, 3

√
n − 2 timeslots is

enough to finish the aggregation. So we get |Sleaf | = Ω(
√
n)|Sopt|.

1 step 2 step 3 step √
n step

Fig. 5. Performance of the Leaf-First approach on counterexample

3.2 Layer-First Approach

For simplicity, we assume Pmax = Pmin = P and β = 1 in this part, i.e.,
adopting the special case –uniform power assignment– in the following analysis.
In addition, the ambient noise is so small compared with P that it can be ignored.
We give the formal definition of the Layer-First approach like above.

Definition 2. For any given data aggregation tree defined in Section 1.1, in any
round, greedily select the wireless links belong to the deeper layers (i.e. transmit
the deepest links as many as possible, then the second deepest ones, and so on)
at the beginning of that round to transmit, without violating the SINR threshold.
This approach is called Layer-First.



148 G. Wang, Q.-S. Hua, and Y. Wang

A

B

C

E

F

D

Fig. 6. Example of counter-block links
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Fig. 7. Counterexample for the Layer-First
approach

Theorem 3. Given a data aggregation tree with n links, assume the output of
the Layer-First approach is the schedule Slayer and the minimum-latency sched-
ule of this tree is Sopt. In the worst case, |Slayer| = Ω(

√
n)|Sopt|.

Before we start the proof, we need to define a special pair of links called
counter-block links.

Definition 3. Two links are called counter-block links if and only if they are
axially symmetric (as lAB, lDE and lCB, lFE shown in Fig.6) and can transmit
concurrently without any additional interference (i.e. the existence of any other
transmission makes their SINRs lower than the threshold).

Proof. As shown in Fig.6, we just need to choose appropriate ||AB|| and ||AE||
such that P/||AB||α

P/||AE||α = β then lAB and lDE are counter-block links. It is easy

to show that if ||CB|| is a little shorter than ||AB||, we can also set ||CE|| to
make sure that lCB and lFE are also counter-block links. Obviously, this method
allows us to have infinitely many pairs of counter-block links with two common
receivers. Using this technique, we construct the data aggregation tree which is
shown in Fig.7, whose ith layer has 
i/3� pairs of counter-block links (except
for the top layer). Assume this tree has n links in total and m layers, then
3(m− 1)m/2 = (n− 2)/2, i.e., the number of layers m = Θ(

√
n).

Still, we need to apply the Layer-First approach on this data aggregation tree.
For every layer, the maximum number of concurrently transmitting links is two
due to the fact that there are only two receivers. One pair of counter-block links
can be selected to transmit any timeslot by the Layer-First approach, so the
whole aggregation needs (n − 2)/2 + 2 timeslots. Next, we will show a more
efficient scheduling which needs just m = Θ(

√
n) timeslots.

Except for the top layer, we separate the tree into left part and right part.
For the left (or the right) part, in the ith timeslot, one link in the (3k+ i− 1)th
layer, k = 1, 2, · · · , can transmit. In other words, for one single side, links are
chosen at intervals of three layers in one timeslot (no vertical links can be chosen
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except for the deepest layer). So after two timeslots (one for each side), the 1st
layer of the tree finishes transmission. At the same time, the 4th layer leaves
one vertical link for each side, which means after eight timeslots, all the deepest
four layer are removed from the tree after transmission, and so on. Finally,
this scheduling can finish aggregation of this tree with 2m timeslots. We show
|Sleaf | = Ω(

√
n)|Sopt| by plugging in the definition of m. Next lemma explains

that this schedule satisfies the SINR constraint.

Lemma 4. For a set of links in one side of the tree constructed above, it is
SINR-feasible if any two links in this set are at least three layers far away from
each other.

Proof. Assume this SINR-feasible set is L. For any link l0 in L, there are at most
two links (denoted as l3 from higher layer and l−3 from lower layer) which are
three layers far away from it. The distance between the sender of l3 (or l−3) and
the receiver of l0 is at least 2||l0|| (or 4||l0||). Similarly, there are two links l6, l−6

which are six layers far away from l0. Corresponding distances between senders
and l0’s receiver are at least 5||l0|| and 7||l0||, and so on. Since the total number
of links in one side of the tree is bounded by n/2, the SINR of l0 can be easily
derived:

SINR(l0) ≥
P

||l0||α
P

2||l0||)α + P
4||l0||)α + · · ·+ P

(2+3(n
2 −1))||l0||)α + P

(4+3(n
2 −1))||l0||)α

>

P
||l0||α

2

n/2∑

k=1

P

(k||l0||)α

>
1

2

∞∑

k=1

1

kα

>
1

2 α
α−1

> 1

where the second-to-last inequality follows the Riemann’s zeta-function and the
last one based on the fact that α ∈ [2, 6].

4 Approximation Algorithm for MLAT

In this section, we describe a greedy algorithm that solves MLAT, using existing
techniques for the Wireless Capacity Maximization Problem (the same as the
One-Shot Scheduling problem) [9,18] ( [9] needs much larger Pmax). Our algo-
rithm is performed in a layer-by-layer style. Note that even though the greedy
approaches have been proved to perform poorly without appropriate topology
control, we show that we can still acccomplish an acceptable approximation ratio
when data aggregation trees have small but reasonable depths.

The basic assumption for this section:

– The maximum power Pmax for all senders is large enough that every link
can transmit successfully in some case: Pmax/(Ndαmax) ≥ β, where dmax is
the length of the longest edge of the aggregation tree.
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– All the edges in the aggregation tree have lengths greater than 1. Any in-
stance can be transformed into this case by scaling.

According to the analysis in [9,18], the correctness of the SINR-feasible sets
generated in line 18 of Algorithm 1 is guaranteed. The approximation ratio
for maximizing concurrently transmitting links is constant, which leads to an
approximation algorithm for minimum latency scheduling with an approximation
ratio bounded by O(log n). Note that the algorithm in [9] needs a very large
maximum transmitting power.

Algorithm 1 labels all the edges of the given tree by first using a depth
first search approach and then finds the depth of this tree in lines 3-7. Sim-
ply, the currently deepest edges of the tree are selected as scheduling candidates
in lines 11-15. Then the existing scheduling algorithm for maximizing concur-
rent transmissions is used to select an approximated maximum SINR-feasbile
link set. It repeats this process until all the links have been scheduled.

Algorithm 1. The Layer-by-Layer Algorithm for MLAT

Input: An arbitrary aggregation tree T = {V, E} and N , α, β, Pmin, Pmax;
Output: A schedule S in which every edge can transmit successfully under SINR;
1: S := ∅, depth := 0, t := 1;
2: Use Depth First Search(DFS) to label every edge e with its layer, to be stored in

layer(e)
3: for every edge e in T do
4: if depth < layer(e) then
5: depth := layer(e);
6: end if
7: end for
8: L := E;
9: while |L| > 0 do
10: L′ := ∅;
11: for every edge li in L do
12: if layer(li) = depth then
13: L′ := L′ ∪ li;
14: end if
15: end for
16: L := L \ L′;
17: while |L′| > 0 do
18: Given N , α, β, Pmin, Pmax, use the constant-approximation algorithm for

maximizing concurrent transmissions (please refer to [9] or [18]), to compute
an approximate maximum SINR-feasible link set L′′ in L′;

19: St := L′′; S := S ∪ {St}; L′ := L′ \ St; t := t+ 1;
20: end while
21: depth := depth− 1;
22: end while
23: Return S;

In Algorithm 1, we divide the schedule generated by the algorithm into sub-
schedules: S = {S1, S2, . . . , Sd}. d is the depth of the input aggregation tree,
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and Si is the sub-schedule in which only links in the ith layer can appear:
S1 ∪ S2 ∪ · · · ∪ Sd = Salg, and Si ∩ Sj = ∅, ∀i, j ∈ [d], i �= j.

Define Topt = |Sopt|, where Sopt is the optimal solution of MLAT. If we only
schedule the links in the ith layer, the minimum number of timeslots Ti needed
must not exceed Topt. This is because if Ti is greater than Topt, we can find a
subschedule Si,opt in Sopt which schedules all links in the ith layer, i.e., |Si,opt| ≤
Topt < Ti, which contradicts the fact that Ti is the minimum number of timeslots
required to schedule these links. Thus, we have |S1,opt|+ |S2,opt|+ · · ·+ |Sd,opt| ≤
dṪopt. We already know that every sub-schedule from our algorithm adheres to
|Si| ≤ logn|Si,opt|, which implies that Talg ≤ d logn · Topt.

On the other hand, it is obvious that Talg, Topt, n, d are all greater than 0
and Topt ≥ d, Talg ≤ n. Therefore, we derive another bound: Talg ≤ (n/d)Topt.

From these, we bound the approximation ratio by O(min{d · logn, n/d}).
This gives an approximation ratio of O(log2 n) when d is either very small (d ≤
O(log n)), or very large (d ≥ Ω(n/ log2 n)). Fortunately, common aggregation
trees often fall within these depth ranges. For example, applying our algorithm
on a nearest neighbor tree (which has depth O(log n)) leads to an O(log2 n)
approximation ratio.

5 Conclusion

In this paper, based on the fact that lots of factors (impenetrable obstacles, bar-
riers, etc.) limit the topology construction for wireless networks in real scenarios,
we introduce the Minimum Latency Aggregation Scheduling for Arbitrary Tree
Topologies (MLAT) problem. We give the first NP-hardness proof for MLAT. In
addition, we prove that the scheduling latencies generated by the two frequently
used greedy algorithms could be

√
n times the optimal result, where n is the

total number of links. Given the fact that the MLAS problem could be solved in
O(log n) timeslots [4] using the greedy scheduling approaches and topology con-
trol, the gaps we find for the MLAT problem show that giving another freedom
of topology control could help reduce the aggregation latency. Finally, we pro-
pose an approximation algorithm for MLAT with approximation ratio bounded
by O(min{d · logn, n/d}) which is acceptable when the data aggregation trees
have small depths. One of our future work is to give an approximation algorithm
with a much better approximation ratio. Second, based on the preliminary ob-
servation that a clever mixture of different greedy approaches could lead to a
better performance, we hope to devise a new heuristic algorithm combining both
layer-first and leaf-first approaches. Another interesting extension to our work
would be to design a distributed solution for MLAT.
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