
https://doi.org/10.1007/s11280-018-0605-y

Parallel computation of hierarchical closeness centrality
and applications

Hai Jin1 ·Chen Qian1 ·Dongxiao Yu1 ·
Qiang-Sheng Hua1 ·Xuanhua Shi1 ·Xia Xie1

Received: 15 December 2017 / Revised: 4 April 2018 / Accepted: 25 May 2018

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract It has long been an area of interest to identify important vertices in social net-
works. Closeness centrality is one of the most popular measures of centrality of vertices.
Generally speaking, it measures how a node is close to all other nodes on average. However,
closeness centrality measures the centrality from a global view. Consequently, in real-world
networks that is normally composed by some communities connected, using closeness cen-
trality may suffer from the flaw that local central vertices within communities are neglected.
To resolve this issue, we propose a new centrality measure, Hierarchical Closeness Cen-
trality (HCC), to depict the local centrality of vertices. Experiments show that comparing
with closeness centrality, HCC is a better index in finding most influential vertices and
community detection. Furthermore, we present a parallel algorithm for HCC computation,

This article belongs to the Topical Collection: Special Issue on Social Computing and Big Data
Applications
Guest Editors: Xiaoming Fu, Hong Huang, Gareth Tyson, Lu Zheng, and Gang Wang

� Dongxiao Yu
dxyu@hust.edu.cn

Hai Jin
hjin@hust.edu.cn

Chen Qian
M201572720@hust.edu.cn

Qiang-Sheng Hua
qshua@hust.edu.cn

Xuanhua Shi
xhshi@hust.edu.cn

Xia Xie
shelicy@hust.edu.cn

1 Services Computing Technology and System Lab, Big Data Technology and System Lab, Cluster
and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of
Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China

/
Published online: 19 June 2018

World Wide Web (2019) 22:3047–3064

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0605-y&domain=pdf
http://orcid.org/0000-0001-6835-5981
mailto: dxyu@hust.edu.cn
mailto: hjin@hust.edu.cn
mailto: M201572720@hust.edu.cn
mailto: qshua@hust.edu.cn
mailto: xhshi@hust.edu.cn
mailto: shelicy@hust.edu.cn

by well analyzing the independence between vertices in the computation procedure. Exten-
sive experiments on real-world datesets demonstrate that the parallel algorithm can greatly
reduce the computation time compared to trivial algorithms.

Keywords Data mining · Closeness centrality · Parallel algorithm

1 Introduction

In the social network, a crucial problem is to identify nodes that are most central. The most
central nodes can be for example those that are traversed by a large fraction of shortest paths
[4], those that can quickly reach the rest of the graph or the ones that recur more often in
random walks [17]. Many centrality indices have been proposed, such as Betweeness Cen-
trality [10], Closeness Centrality [15], and PageRank [7]. Among these indices, closeness
centrality is a widely-used centrality measure. Formally, given a graphG = (V ,E) to repre-
sent the network and a distance-decay (monotone decreasing) f : N → R

+, the Generalized
Closeness Centrality (GCC) [15] of a vertex u, denoted as Cc(u), is defined as

Cc(u) =
∑

v∈V \{u}
f (d(u, v)) (1)

Intuitively, GCC measures how the node is close on average to all the other nodes in the net-
work. Hence, nodes with higher GCC means they are more important regarding centrality.

But in social networks, the central vertex is not unique. In most instances, a social net-
work is composed of some clusters (also called communities) connected. Hence, in many
applications, it is more vital to identify locally central nodes in each community. Unfortu-
nately, this might not be accomplished using GCC, since GCC measures centrality globally,
and local centrality cannot be reflected by this index. Take the network in Figure 1 as a sim-
ple example. The most central nodes identified by GCC is the green one and the red one,
but the blue one will be ignored, even if it is a central node in its community.

In this work, we propose a centrality measure, called Hierarchical Closeness Central-
ity(HCC), which can reflect the local nature of communities. In principle, by removing the
most central nodes in each layer, HCC measures the connectivity of a node with others that
have equal or smaller closeness centrality. Our contributions are summarized as follows.

– We propose a local centrality measure HCC, to complement the default that GCC can-
not reflect local centrality within communities. Experiments on real datasets show that
compared with GCC, HCC can be used to select more influential vertices and better
detect communities.

Figure 1 The central nodes in a network

World Wide Web (2019) 22:3047–30643048

– By analyzing sufficient conditions for independently reconnecting vertices in a BFS
tree after deleting some vertices, we give a parallel algorithm for computing HCC.
Extensive experiments on real datasets show that our parallel algorithm can greatly
reduce the computation time of HCC, compared with the natural one obtained by the
definition of HCC.

2 Related work

Centrality is a fundamental tool in the study of social networks. Many centrality measures,
such as closeness centrality [4], betweenness centrality [10] and Pagerank [7], have been
proposed. Among these measures, closeness centrality is a widely adopted one.

Closeness centrality can be computed by solving the APSP problem. For this problem,
there is not known solution that is always better than running a BFS from each vertex. But
these BFS-based algorithms take O(n(m + n)) time, which may be unacceptable for large
networks. So there have been many efforts on deriving approximate solutions. Eppstein and
Wang [9] proposed an approximate algorithm using sampling. With that the time complex-
ity is reduced to �(m + n ∗ log n) and an error bound is provided by applying Hoeffding’s
inequality. Brandes and Pich [6] conducted an experimental evaluation of this approxima-
tion algorithm, considering different ways of sampling the source vertices. Okamoto [18]
also proposed a similar approximate algorithm. A more refined approximation algorithm
with better practical performance has recently been given in [15]. Although approxima-
tion algorithms can often offer solutions that are close to the real ones, they may fail in
preserving the ranking, in particular for vertices with similar closeness.

Another line of research is on exactly computing the ranking of the top-k vertices with
the highest closeness centrality, exactly with high probability guarantee [19] or heuristic
[2, 5, 20]. Although these algorithms can actually save time compared to the exhaustive
computation of closeness centrality for all vertices, it was shown that in many instances
their running time is very close to that of APSP.

Recently, there are increasingly many works scaling centrality calculations by distribut-
ing the computation using MapReduce. For example, Kang [16] developed a parallel graph
mining tool to estimate single node centrality on Hadoop. Oktay [8] presented a method
to estimate pair-wise nodes shortest distance using MapReduce. Sariyuce [22] presented
a distributed framework for calculating closeness centrality incrementally over dynamic
graphs.

3 Hierarchical closeness centrality

We are given a undirected graph G = (V ,E), where V and E denote the vertex and edge
sets respectively. Without loss of generality, graph G is assumed to be connected. For each
pair of vertices u, v ∈ V , let d(u, v) denote the distance between them, i.e., the length of
the shortest path between u, v. Let N(v) be the set of neighbors of v in G and N [v] =
N(v) ∪ {v}.

The hierarchical closeness centrality of vertices is defined hieraichically. Basically, the
HCC of vertices are defined as follows:

– In each step, the vertices in the current graph that have the largest closeness centrality
are identified, denoted as V ∗;

World Wide Web (2019) 22:3047–3064 3049

– The HCC of vertices in V ∗ is defined as their closeness centrality;
– Delete V ∗ and edges connected with vertices in V ∗, and repeat the above process, until

the HCC of all vertices are computed.

Clearly, from the above computation process, we can see that HCC measures the cen-
trality of a vertex in the network that are constituted by vertices with similar or poorer
centralities.

We next define HCC formally. In particular, for L ≥ 0, denote by GL the graph obtained
after deleting L − 1 layers of vertices with large HCC, and let V ∗

L be the set of vertices
that have the largest closeness centrality in GL. Furthermore, we use E∗

L to denote the
set of edges connected with vertices in V ∗

L . GL = (VL,EL) can be formally defined as
follows

GL =
{

G L = 0,
GL−1 \ (V ∗

L−1, E
∗
L−1) L ≥ 1.

For two vertices u, v in GL, denote by dL(u, v) the distance in GL. From above def-
initions, {V ∗

L} constitute a division of vertices in V . Then we define the HCC of each
vertex.

Definition 1 (Hierarchical Closeness Centrality, HCC) Given a connected graph G =
(V ,E), the hierarchical closeness centrality of a vertex u ∈ VL for L ≥ 0 is defined as

CH (u) =
∑

v∈VL\{u}
f (dL(v, u))

4 Applications: HCC VS. GCC

Using hierarchical closeness centrality, one can gain a deeper understanding of the hier-
archical structure of a data graph. We next show that the HCC can replace or supplement
the generalized closeness centrality in some sense, by illustrating the comparison of these
two indexes in two applications: maximum influence vertices identification and community
detection.

4.1 Maximum influence vertices identification

Themaximum influential vertices identification has been extensively studied, due to its wide
applications with approaches developed in network analysis [13, 23]. A natural measure for
influence of a vertex is the number of vertices that it can reach. The closeness centrality is
a commonly used index to find the most influential vertices.

To compare the effect of GCC and HCC on finding the maximum influence vertices,
we fix the number of the most influential vertices that are needed to find, and compare the
influence of these vertices by the number of vertices they can reach. The experiments are
implemented on four datasets YT (Youtube), GP (Google Plus) DB(DBLP) and Sl (soc-
Slashdot) given in Table 1.

The comparison results on the four datasets are shown in Figure 2. In the figures, the x-
axis represents the specified number of most influential vertices, and the y-axis represents
the number of reachable vertices from selected influential vertices. From the figures, we can

World Wide Web (2019) 22:3047–30643050

Table 1 DataSets
Datasets n = |V | m = |E|

DB(DBLP) 0.31M 1.01M

YT(Youtube) 1.13M 5.97M

Sl(soc-Slashdot) 82.1K 500.5K

GP(Google Plus) 82.1K 500.5K

Figure 2 Comparisons of HCC and GCC on finding most influential vertices

World Wide Web (2019) 22:3047–3064 3051

see that comparing with GCC, with the same specified number of influential vertices, the
influential vertices found using HCC can reach more vertices. Hence, using HCC can find
vertices that are more influential.

4.2 Community detection

Community detection is one of the pivotal tools for understanding the underlying structure
of complex networks and extracting useful information from them. It has been widely used
in fields such as biology [21], economics [3], human mobility [14], communications [11],
and scientific collaborations [12].

We compare effects of GCC and HCC as indexes in communicty detection. In particu-
lar, we use the modularity to measure the effect of community detection. The modularity
is a widely used index for measuring the strength of division of a network into commu-
nities. High modularity means in the division, the nodes have dense connections within
communities and sparse connections with nodes in different communities.

The comparison results are given in Table 2. Comparing the results in Table 2, in all of
datasets using HCC in community detection gets higher modularity than using GCC.

5 Natural algorithm for HCC computation

By the definition, we can get a natural algorithm for computing HCC of vertices, by iter-
atively computing the closeness centrality of vertices in the graph obtained by deleting
vertices with larger HCC. The algorithm is given in Algorithm 1, and it is easy to see that
the algorithm can correctly compute the HCC of each vertex. However, Algorithm 1 incurs
a high complexity in running time. In the subsequent section, by investigating the paral-
lelism in maintaining the BFS tree during the process of hierarchical computation of HCC,
we propose a more efficient parallel algorithm for HCC computation.

Algorithm 1 Natural algorithm for HCC computation

Input:
Output:

1

2 while do
3 foreach vertex do
4 foreach vertex do
5 compute
6

7 max
8

9 foreach vertex do
10

11 1
12 1
13 1

World Wide Web (2019) 22:3047–30643052

Table 2 Modularity of
community detection using GCC
and HCC

Datasets n = |V | m = |E| GCC HCC

DB(DBLP) 0.31M 1.01M 0.406563 0.417814

YT(Youtube) 1.13M 5.97M 0.519832 0.540152

Sl(soc-Slashdot) 82.1K 500.5K 0.915008 0.943071

GP(Google Plus) 82.1K 500.5K 0.528459 0.551347

6 Parallel algorithm for HCC computation

In this section, based on some key observations, we propose a parallel algorithm to
accelerate the computation of HCC.

The most costly part of the computation of HCC is to calculate the distance of a vertice
with others. Our basic idea is to construct BFS trees for each vertex, and update the BFS
trees after the deletion of vertices in each layer. With some key observations on the inde-
pendence of reconnecting vertices on a BFS tree, a parallel approach for updating each BFS
tree will be proposed.

In subsequence, we first discuss the independence of vertices, i.e., the reconnection on a
BFS tree can be processed independently. In this case, the reconnection of these vertices on
a BFS can be processed in parallel. Based on some key observations on independence, we
propose our parallel algorithm.

6.1 Theoretical basis

We next present some theoretical results that constitute the basis of our parallel algorithm.
We will first discuss the impact on the BFS tree reconnection when a vertex is deleted,
and then define the independence of reconnecting of two vertices in a BFS after some ver-
tices are deleted. Based on these discussions, we will prove some sufficient conditions for
independence of reconnecting vertices in a BFS tree.

We assume that BFS trees are constructed for each vertex. Speifically, the BFS tree
rooted at a vertex r is denoted as T (r). The root r is at level 0 in T (r), and vertices with
distance i from r are at level i. The following property is a straightforward result of BFS
tree.

Property 1 In a BFS tree T (r) and for each vertex v at level i > 0, it may only be possible
to be adjancent to vertices at levels i − 1, i and i + 1.

Based on the above property, in a BFS tree T (r), we divide the neighbors of v at level
i > 0 into three classes α(v), β(v) and γ (v). Speicifically, these three sets denote the
sets of neighbors of v that are at level i − 1, i and i + 1 respectively. Furthermore, we
use desr (v) to denote the set of vertices in the subtree of T (r) that is rooted at v, and let
domr(v) = desr (u) ∪ {u}.

We next consider the reconnection of vertices on a BSF tree T (r) after some vertices are
deleted. Clearly, when a vertex u is deleted, only vertices in desr (u) that are not deleted need
to reconnect to the BFS tree during the update procedure. So in the following, for a BFS

World Wide Web (2019) 22:3047–3064 3053

tree T (r), after a set of vertices V ∗ are deleted, we consider the reconnection of vertices in
desr (V

∗) = ∪u∈V ∗desr (u). In subsequence, all notations are defined on the left vertex set
after the vertex deletion.

To analyze parallelly processing the reconnections of vertices, we define independence
of vertices and subtrees as follows.

Definition 2 (Independence of Vertices) In the maintenance procedure of a BFS tree T (r),
if the reconnections of a vertex u and a vertex v can be processed in parallel, i.e., the recon-
nections of these two vertices do not interact with each other, then we say these two vertices
are independent.

Definition 3 (Independence of Subtrees) In the maintenance procedure of a BFS tree T (r),
if the reconnections of vertices in two subtrees can be processed in parallel, i.e., the recon-
nections of vertices in these two subtrees do not interact with each other, then we say these
two subtrees are independent.

In the following, we analyze the independence of subtrees, such that we can get sufficient
conditions for processing reconnections of vertices on subtrees in parallel. In subsequence,
for a vertex v at level i, we use α′(v) to denote the set of v’s neighbors u satisfying:
(i) u ∈ α(v); and (ii) all vertices in the path on T (r) between the root r and u are not
deleted.

Speicifically, there are two cases for a vertex v ∈ desr (V
∗): α′(v) �= ∅ and α′(v) =

∅. At first, we consider the case that α′(v) �= ∅. In this case, v can be reconnected to
another vertex except its deleted parent, such that the length of the shortest path between
r and each vertex in the subtree rooted at v does not change. Then we have the following
result.

Lemma 1 In a given graph G(E, V) and a BFS tree T (r), after a vertex u was deleted
from G, if for a vertex v ∈ desr (u), α′(v) �= ∅, the update of reconnection of vertices in the
subtree rooted at v can be accomplished by just connecting v to a neighbor in α′(v) and
keeping the subtree rooted at v stable.

Proof Assume that v is at level i. By the BFS construction process, we know that in T (r)

the path between r and any vertex belong to T (r) is a shortest path between them. So the
path between r and each vertex in α′(v) is still the shortest path. Since the ditance between
r and any other vertex that is not deleted cannot decrease after the vetex deletion. Hence,
each vertex in the subtree rooted at v cannot decrease the levels they locate in the new BFS
tree. Clearly, by connecting v to a vertex in α′(v), the levels of vertices in domr(v) keeps
the same with their levels at T (r). This means that the update is correct, which will not
break the structure of the BFS tree.

By the definition of independence, it can easily to see that if a vertex v with α′(v) �= ∅,
the subtree rooted at v is independent with other subtrees, which is formally given in the
following Lemma.

Lemma 2 If a vertex v has α′(v) �= ∅, the subtree rooted at v is independent with other
subtrees.

World Wide Web (2019) 22:3047–30643054

But in the case of α′(v) = ∅, the reconnection becomes much more complicated, as its
and its neighbors’ reconnections may interact each other. We next present two sufficient
conditions that can guarantee independence of reconnection. For a vertex u, let D(u) =
∪w∈domr (u)N [v].

Lemma 3 Consider the update of a BFS tree T (r) on a graph G. For two vertices u and v,
if D(u) ∩ domr(v) = ∅ and D(v) ∩ domr(u) = ∅, then the subtrees rooted at u and v are
independent.

Proof For the reconnection of each vertex w in the subtree rooted at u, it can be con-
nected only to its neighbors. By the condition, it means that w’s neighbor set is disjoint with
domr(v). Hence, the reconnection of vertices in the subtree rooted at u do not rely on the
reconnection of vertices in the subtree rooted at v. Similarly, it can be shown that the recon-
nection of vertices in the subtree rooted at v also do not rely on the reconnection of vertices
in the subtree rooted at u. Hence, the subtrees rooted at u and v are independent.

For a vertex u, the largest level of vertices in domr(u) locate in the tree T (r) is called
the depth of domr(u), denoted as depu, and the level of u is called the peak of domr(u),
denoted as peaku. We consider two vertices u and v. Without loss of generality, we assume
that the level of u is larger than that of v.

Lemma 4 Consider a graph G and a BFS tree T (r) rooted at vertex r . For two vertices u

and v, if peaku − depv > 2, then the subtrees rooted at u and v are independent.

Proof By Lemma 1, for a vertex w at level i in T (r), its neighbors locate at levels i − 1, i
and i + 1. Hence, if peaku − depv > 2, this means that D(u) ∩ domr(v) = ∅ and D(v) ∩
domr(u) = ∅. Then by Lemma 3, the result is proved.

6.2 Parallel algorithm for BFS tree maintenance

Based on above observations on the independence of vertices and subtrees in the reconnec-
tion procedure of a BFS tree, we present a parallel algorithm for computing HCC. The basic
idea is as follows. BFS trees rooted at each vertex are used to compute the distance between
each node and others in each layer. After deleting vertices whose HCC have been computed
in each layer, each BFS tree is updated by reconnecting independent vertices and subtrees
in parallel. Notice that we here give a parallel algorithm for updating a particular BFS tree,
not updating different BFS trees in parallel. Clearly, parallelly updating different BFS trees
is trivial.

The algorithm for computing HCC is given in Algorithm 2. Initially, BFS trees rooted at
each vertex are constructed. The layer number L is set as 0 and the set of survival vertices
is set as V ′ = V . The states of all vertices in each BFS tree is set as certain.

At the first step, the GCC of each vertex is computed by the definition. The HCC of
vertices that have the largest GCC is set as the value of GCC. Then those vertices and con-
nected edges are deleted from the graph. In each of the subsequent iterations, the procedure
is repeated, until every vertex gets its HCC. The main costly part of the algorithm is the
maintenance of the BFS trees. We introduce a parallel algorithm to speed up the procedure,
as given in Algorithm 3.

World Wide Web (2019) 22:3047–3064 3055

Algorithm 2 Parallel HCC computation

Input:
Output:

1

2 foreach do
3 construct
4 foreach do
5 calculate the distance
6 if then
7

8 search these vertices to get
9 get in

10

11 foreach do
12

13 while do
14 foreach do
15 0;
16 maintain
17 foreach do
18 if then
19

20 search these vertices to get
21 get in
22

In Algorithm 3, the basic idea is as follows: after deleting some vertices after a layer,
all vertices whose parents are deleted and their descendants are set as uncertain; then
independent vertices and subtrees among uncertain vertices are first found using sufficient
conditions given before; finally the reconnection of these vertices and subtrees are assigned
to different threads such that they can be processed in parallel.

Specifically, we first delete vertices that are unreachable from the root r . Then vertices
are divided into two categories by the condition of α′(v) �= ∅ or not. By Lemma 2, these
subtrees rooted at vertices with α′(v) �= ∅ are independent with others. The determination
on whether a vertex v satisfies the condition α′(v) �= ∅ is given in Algorithm 4.

For vertices with α(v) = ∅, we need to use Lemma 4 and Lemma 3 to determine the
independence between these vertices and subtrees rooted at these vertices. The detailed
algorithms are given in Algorithms 6 and 7. In particular, in Algorithm 6, by computing the
depth of each subtree, we can obtain the independence of subtrees that can be determined
by Lemma 4. And in Algorithm 7, by computing the neighborhoods of vertices in subtrees,
independent subtrees are found using the condition given in Lemma 3.

After all independent vertices and subtrees are found, these independent vertices and
subtrees are assigned to different threads. In each thread, the assigned vertices or subtree
are reconnected to the BFS tree, using Algorithm 8, in which the vertices in each subtree
are traversed and each vertex is reconnected to one of its neighboring vertices that are in the
state of certain and at the smallest level.

World Wide Web (2019) 22:3047–30643056

Algorithm 3Maintain

Input:
1 create queue
2

3 while do
4

5

6 if then
7 foreach do
8

9

10 else if then
11

12

13 foreach is child of do
14

15 0;
16

17

18

19 if then
20

Algorithm 4

Input:
Output: after the deletion of

1

2 while do
3

4

5 if then
6

7 insert into
8 create queue
9

10 while do
11

12

13

14 remove from
15 foreach do
16

World Wide Web (2019) 22:3047–3064 3057

Algorithm 5

Input:
1

2 while do
3

4

5

6

7 if then
8

9 while do
10

11 if then
12

13

14

Algorithm 6

Input:
1

2 while do
3

4

5 creat queue
6

7

8

9 while 2 do
10

11

12

13 1;

14 foreach do
15 if then
16 create a thread;
17 execute relink();

18 else
19

World Wide Web (2019) 22:3047–30643058

Algorithm 7

Input:
Output: after the deletion of

1 0;
2 while do
3 if then
4

5 foreach do
6 if then
7

8 else if then
9

10 if then
11 1;
12 creat queue
13 0;
14 foreach do
15 if then
16

17 1;

18 if 1 then
19

20 else

21

22 1;

23 foreach do
24 create a thread to execute

Table 3 Graph datasets
Datasets n = |V | m = |E|

AP(ca-Astropg) 18.7K 198.1K

Sl(soc-Slashdot) 82.1K 500.5K

DB(DBLP) 0.31M 1.01M

YT(Youtube) 1.13M 5.97M

WT(wiki-Talk) 2.4M 9.3M

BS(web-BerkStan) 0.68M 13.3M

LJ(live-Journal) 4.0M 34.7M

World Wide Web (2019) 22:3047–3064 3059

Algorithm 8
Input:
Output: relink with

1 while do
2

3 while do
4

5

6 if then
7

8

9

10 while do
11

12

13 foreach do
1415

16

17

18 remove from

7 Experimental studies

In this section, we conduct empirical studies to evaluate the performances of our proposed
algorithms. Throughout all of the experiments, the distance-decay function f (d(u, v)) was
set to 1/d(u, v).

We perform evaluations as follows.

– We first evaluate the efficiency of our parallel algorithms on real-world graphs, by
comparing with the natural algorithm. The datasets used are six real-world graphs

Figure 3 Runtime of our parallel algorithm on different datasets

World Wide Web (2019) 22:3047–30643060

Table 4 Runtime of natural
algorithm and parallel algorithm Datasets n = |V | m = |E| Natural Parallel

AP(ca-Astropg) 18.7K 198.1K 855847 584853

Sl(soc-Slashdot) 82.1K 500.5K 4327148 2966559

DB(DBLP) 0.31M 1.01M 18124961 8797673

YT(Youtube) 1.13M 5.97M 70485762 52287903

WT(wiki-Talk) 2.4M 9.3M 142898453 96183489

BS(web-BerkStan) 0.68M 13.3M 106283712 90605892

LJ(live-Journal) 4.0M 34.7M 324578615 246296702

of different sizes, including social network graphs (Youtube, soc-Slashdot LiveJour-
nal), collaboration network graphs (DBLP, ca-astroph), communication network graphs
(WikiTalk) and Web graphs (web-BerkStan). Table 3 summarizes basic information of
these six graphs. Then we evaluate our parallel algorithm using synthetic graphs, by
changing the sizes of synthetic graphs.

– We also evaluate the scalability of our parallel algorithm by changing the number of
threads used.

– We finally evaluate the key factors that may impact the performance of the parallel
algorithm.

All experiments are conducted on a Linux machine with Intel Xeon CPU E5-
4655@3.20 GHz and 32 GB main memory, implemented in C++ and compiled by g++
compiler. If without specified, the number of threads used in our experiments is 16.

7.1 Performance evaluation

We compare the performances of the parallel algorithm and the natural one on real-world
graphs. The evaluation results are shown in Figure 3 and Table 4. It can be seen that

Figure 4 Runtime of our parallel algorithm on synthetic graphs

World Wide Web (2019) 22:3047–3064 3061

Figure 5 Runtime of our parallel algorithm on different datasets with different threads

the parallel algorithm can greatly reduce the computation time of HCC, by 10% to 50%,
comparing the natural algorithm.

We then evaluate the performance of the parallel algorithm on synthetic graphs gen-
erated using Chung-Lu model [1]. This model is specified by a collection of weights
w = (w1, . . . , wn) that represent the expected degree sequence. The probability of an
edge between i to j is

wi∗wj∑
k wk

.They allow loops from i to i so that the expected degree

at i is ∑

j

wi ∗ wj∑
k wk

= wi (2)

The evaluation results are shown in Figure 4. The x-axis represents the number of vertices,
and the y-axis represents the runtime. From the figure, we can see that the increasing speed
of the runtime of the parallel algorithm is much slower than �(|V | ∗ |E|), which is the
runtime of the natural algorithm.

7.2 Scalability evaluation

We select Youtube, web-BerkStan and DBLP as test datasets to evaluate the scalability
of the parallel algorithm. For the evaluation, HCC is computed for each dataset using our
parallel algorithm that runs on 1, 2, 4, 8 and 16 threads respectively. The natural algorithm
is used as baseline.

The evaluation results are shown in Figure 5. From the figures, it can be seen that as the
number of thread increases, the computation time decreases nearly linearly. Furthermore,
the figures also show that when the number of threads is small, such as less than 8 for the
case of web-BerkStan, the runtime of the parallel algorithm is larger than that of the natural
algorithm. This is because, comparing with the natural algorithm, the parallel one needs to
perform some preprocessing computation, to determine the independence of vertices and
subtrees in a BFS tree’s reconnection. But as the number of threads increases, the runtime
of the parallel algorithm is reduced to be smaller than that of the natural one.

Table 5 Generated graphs data
Generated graphs no. n = |V | m = |E|

1 0.64M 13.51M

2 1.28M 27.14M

3 0.64M 7.21M

World Wide Web (2019) 22:3047–30643062

Figure 6 Runtime of our parallel algorithm in different generated graph datasets with different threads

7.3 Impact factors

We evaluate the key factors that may impact the speedup of the parallel algorithm over the
natural one. Two factors are considered, the network size and the average degree. To evaluate
the impact of these two factors, we perform our parallel algorithm on 3 generated graphs
given in Table 5 using 4, 8 and 16 threads respectively. The evaluation results are shown in
Figure 6. By Figure 6a and b, it can be seen that the number of vertices does not heavily
affect the speedup of the parallel algorithm over the natural one. Figure 6a and c show that
the average degree impact the speedup significantly. The larger the average degree is, the
smaller the speedup is. This is because when the average degree gets larger, nodes will have
more neighbors, and hence independence of vertices and subtrees in the reconnection of a
BFS tree becomes poorer.

7.4 Summary of experiment results

The experiment results show that comparing with the natural algorithm, the parallel algo-
rithm can greatly reduce the computation time of HCC, when multiple threads are used. The
parallel algorithm exhibits good scalabilty and parallelism.

8 Conclusion

We proposed a new centrality measure, Hierarchical Closeness Centrality, to reflect the local
centrality of vertices. Experiments on real-world graphs show that HCC is better than the
global measure GCC in some applications, such as maximum influence vertices identifica-
tion and community detection. We also gave an efficient parallel algorithm for computing
HCC, by investigating the independence of vertices and subtrees during the reconnection
procedure of a BFS tree. Extensive experiments demonstrate that our parallel algorithm is
much more efficient than the natural algorithm. It is also shown that our algorithm has good
scalability and parallelism.

HCC has exhibited its usefulness in some crucial applications in social networks. So it
deserves to futher understanding this centrality measure, and applying it in more domains.
Furthermore, implementing our algorithm on real parallel platform is also our future work.

World Wide Web (2019) 22:3047–3064 3063

Acknowledgements This work is supported by the National Key Research and Development Program
of China No.2017YFC0803700, the National Natural Science Foundation of China Grants 61602195,
61572216, 61433019 and U1435217, Natural Science Foundation of Hubei Province 2017CFB301, the
Outstanding Youth Foundation of Hubei Province 2016CFA032, and Fundamental Research Funds for
HUST.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Exp. Math. 10(1), 53–66
(2001)

2. Al-Baghdadi, A.: Computing Top-K Closeness Centrality in Unweighted Undirected Graphs Revisited.
Ph.D. thesis (2017)

3. Bargigli, L., Gallegati, M.: Finding communities in credit networks. Economics 7(17), 1 (2013)
4. Bavelas, A.: Communication Patterns in Task-Oriented Groups. J. Acoust. Soc. Am. 22(6), 725–730

(1950)
5. Bergamini, E., Borassi, M., Crescenzi, P., Marino, A., Meyerhenke, H.: Computing top-k closeness

centrality faster in unweighted graphs. In: Proceedings of the Meeting on Algorithm Engineering and
Experiments (ALENEX), vol. V, pp. 68–80 (2016)

6. Brandes, U., Pich, C.: Centrality estimation in large networks. Other 17(7), 2303–2318 (2007)
7. Cutts, M.: How does Google collect and rank results? http://www.google.com/librariancenter/articles/

0601 03.html (2010)
8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of the

of the OSDI, pp. 137–149 (2004)
9. Eppstein, D., Wang, J.: Fast Approximation of Centrality. J. Graph Algorithms Appl. 8(1), 2 (2000)
10. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35 (1977)
11. Fu, L., Gao, L., Ma, X.: A centrality measure based on spectral optimization of modularity density. Sci.

China Inf. Sci. 53(9), 1727–1737 (2010)
12. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad.

Sci. 99(12), 7821–7826 (2002)
13. Gu, Q., Xiong, S., Chen, D.: Correlations between characteristics of maximum influence and degree

distributions in software networks. Sci. China Inf. Sci. 57(7), 1–12 (2014)
14. Hossmann, T., Spyropoulos, T., Legendre, F.: A complex network analysis of human mobility. In:

2011 IEEE Conference on Computer Communications Workshops (INFOCOMWKSHPS), pp. 876–881
(2011)

15. Inariba, W.: Random-radius ball method for estimating closeness centrality. In: Proceedings of the 31th
Conference on Artificial Intelligence (AAAI 2017), pp. 125–131 (2017)

16. Kang, U.: Centralities in large networks: algorithms and observations. In: SIAM International Confer-
ence on Data, pp. 119–130 (2011)

17. Mora, R., Gutierrez, C.: Random-walk closeness centrality satisfies boldi-vigna axioms. In: CEUR
Workshop Proceedings, vol. 1378, pp. 110–120 (2015)

18. Okamoto, K., Chen, W., Li, X.Y.: Ranking of closness centrality for large-scale social networks. In:
Proceedings of the 2nd Annual International Workshop on Frontiers in Algorithmics, pp. 186–195 (2008)

19. Olsen, P.W., Labouseur, A.G., Hwang, J.H.: Efficient top-k closeness centrality search. In: Proceedings
of ICDE, pp. 196–207 (2014)

20. Olsen, P.W. Jr., Labouseur, A.G., Hwang, J.H.: Efficient top-k closeness centrality search 196–207
(2014)

21. Sah, P., Singh, L.O., Clauset, A., Bansal, S.: Exploring community structure in biological networks with
random graphs. BMC Bioinf. 15(1), 220 (2014)

22. Sariyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Incremental closeness centrality in distributed
memory. Parallel Comput. 47, 3–18 (2015)

23. Zhuang, H., Sun, Y., Tang, J., Zhang, J., Sun, X.: Influence maximization in dynamic social networks.
In: 2013 IEEE 13th International Conference on Data Mining (ICDM). IEEE, pp. 1313–1318 (2013)

World Wide Web (2019) 22:3047–30643064

http://www.google.com/librariancenter/articles/0601_03.html
http://www.google.com/librariancenter/articles/0601_03.html

	Parallel computation of hierarchical closeness centrality and applications
	Abstract
	Introduction
	Related work
	Hierarchical closeness centrality
	Applications: HCC VS. GCC
	Maximum influence vertices identification
	Community detection

	Natural algorithm for HCC computation
	Parallel algorithm for HCC computation
	Theoretical basis
	Parallel algorithm for BFS tree maintenance

	Experimental studies
	Performance evaluation
	Scalability evaluation
	Impact factors
	Summary of experiment results

	Conclusion
	Acknowledgements
	References

