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Abstract—Core maintenance for dynamic hypergraphs has been
receiving an increasing attention. However, existing works mainly
focus on the insertion/deletion of hyperedges. This article revisits
the problem from the view of vertices change. We study core main-
tenance when the vertices are inserted/deleted into/from specific
hyperedges in the hypergraph, which is a challenging task since
the deletion of the vertex may increase the core numbers and
the insertion of the vertex may decrease the core numbers. We
discuss in detail the possible changes of core numbers in different
situations. For the insertion/deletion of vertices contained by a
single hyperedge, we design sequential algorithms to discover the
vertices whose core numbers have changed. Compared with static
recomputation (Leng et al. 2013) and LYCLC (Luo et al. 2021)
algorithms, our sequential algorithms can accelerate more than
1,000× and 12× at most in the processing time, respectively. For
the insertion/deletion of vertices contained by different hyperedges,
we find that core numbers of all vertices change 1 at most if these
hyperedges form a matching. We design parallel algorithms that
divide a matching into different sets based on their core numbers
and allot a thread to each set. Experiments show that our parallel
algorithms have good stability, scalability, and parallelism. Com-
pared with the parallel static algorithm (Gabert et al. 2021) and the
parallel dynamic algorithm GPC (Gabert et al. 2021), our parallel
algorithms with 32 threads can accelerate 33× and 22× at most in
the processing time, respectively.

Index Terms—Core maintenance, dynamic hypergraphs, par-
allel algorithm.

I. INTRODUCTION

M INING cohesive subgraphs in graphs is a critical task
in graph analysis. There are a variety of cohesive sub-

graphs, e.g., k-core [3], k-peak [7], k-truss [14], [24], and
(r, s)-nucleus [18]. Among them, k-core has attracted extensive
attention since it can be calculated in linear time. For an un-
weighted and undirected graph, a k-core refers to the maximal
subgraph where degrees of all vertices are not less than k. The
concept closely related to k-core is core number. For a vertex
u, its core number is k if it is in a k-core where k is the
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Fig. 1. u1, u2, u3 are coauthors of one paper and u1, u4, u5, u6 coauthor
another paper. The number next to the vertex represents the core number.

largest. k-core and core number are widely applied in many
fields, including network modeling and analysis [8], anomaly
detection [20], detection of influential spreaders [1], network
visualization [27] and text analytics [23].

Unfortunately, the classic k-core model fails to depict
polyadic relationships. More than two entities may participate
in the same connection in many real-world problems. For ex-
ample, the paper has several coauthors, the email has multiple
recipients, and the club has numerous members. To better model
polyadic relationships, researchers put forward the concept of
the hypergraph. An unweighted and undirected hypergraph is
composed of vertices and hyperedges, where each hyperedge
can contain any number of vertices. We emphasize that vertices
are contained rather than connected by hyperedges to distin-
guish hypergraphs from ordinary graphs. For a vertex u in the
hypergraph, its degree is defined as the number of hyperedges
containing the vertex u.

The concepts of k-core and core number can be easily ex-
tended to the hypergraph. Fig. 1(a) shows an ordinary graph
and Fig. 1(b) is the hypergraph corresponding to it. u1, u2, u3

are coauthors of one paper and u1, u4, u5, u6 coauthor another
paper. What we model as hyperedges form 3-clique and 4-clique
in the traditional model, respectively [22]. The core numbers
of all vertices are two or three in Fig. 1(a), while the core
numbers of all vertices are one in Fig. 1(b). In the ordinary graph
model, the authors who have written a paper with many coau-
thors earn great impact, which obviously does not accord with
the actual situation. Thus hypergraph k-core model can depict
influential vertices better than ordinary graphs in multi-entity
networks.

In the real world, neither ordinary graphs nor hypergraphs
are invariant. In social networks, creating a new account means
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the formation of a new vertex, and following and unfollowing
between users correspond to the appearance and disappearance
of edges. Core numbers of vertices change with the change of
the graphs/hypergraphs. Updating core numbers after changes
is usually called core maintenance. The natural method of core
maintenance is recomputing core numbers of all vertices in the
updated graphs/hypergraphs, which needs a large time overhead.
In fact, if the changed region is very small, only a few vertices
need to have their core numbers updated.

Researchers usually only consider the insertion/deletion of
edges when studying core maintenance in dynamic graphs be-
cause the insertion/deletion of vertices can be regarded as the
insertion/deletion of all edges connected to them. Following
this trend, some recent works [13], [22] on core maintenance
in dynamic hypergraphs also focus on computing new core
numbers after the insertion/deletion of hyperedges. However,
when we revisit the problem, we can find another dynamic
change in the hypergraph: the insertion/deletion of vertices in
particular hyperedges, which may not cause the appearance and
disappearance of the hyperedge since a hyperedge can contain
any number of vertices. This change is meaningful. For example,
Alice, a member of group A, group B, and group C, has now
quit group C, corresponding to the hypergraph, which means
that vertex Alice has been removed from the corresponding
hyperedge of group C. But the hyperedge of group C may still
exist since there are other members. In addition, group A and
group B remain unchanged.

Core maintenance is a challenging task after vertices change in
the hyperedges. Unlike the one-to-one correspondence between
the insertion/deletion of hyperedges and the increase/decrease
of core numbers, there is no significant relationship between
the insertion/deletion of vertices in hyperedges and the in-
crease/decrease of core numbers. In other words, even deleting
a vertex in a hyperedge may increase the core numbers of other
vertices. The trivial method is to rerun static core decomposition
from scratch, which is not applicable since the cost of recalcu-
lation is expensive.

We note that the insertion/deletion of vertices in hyperedges
is closely related to the insertion/deletion of hyperedges. The
insertion of a hyperedge can be regarded as inserting vertices
into a hyperedge that does not contain any vertex. The deletion
of a hyperedge means that all vertices are deleted from the
hyperedge. On the other hand, the insertion/deletion of vertices
in hyperedges can also be regarded as deleting hyperedges and
then inserting new hyperedges. Therefore, we can use the core
maintenance algorithm for the insertion/deletion of hyperedges
to deal with the insertion/deletion of vertices in hyperedges.
However, this method also has a lot of redundant calculations.

Fig. 2 shows an example, and Table I lists all hyperedges in
Fig. 2. The core numbers of u1–u4 are 2, and the core numbers
of u5–u10 are 3. To update core numbers after u8 is deleted from
e1, we utilize the algorithms of hyperedge insertion/deletion
to process the deletion of e1 first and then the insertion of e′1
where e′1 = {u1, u3, u5}. After e1 is deleted, the core numbers
of u1–u4 will be decreased by 1. After e′1 is inserted, the core
numbers of u1–u4 will be restored to 2. In fact, if u8 is deleted
from e1, the core numbers of all vertices will not increase or

Fig. 2. The core numbers of u1–u4 are 2 and the core numbers of u5–u10

are 3 in the original hypergraph. If u8 is deleted from e1, all core numbers
remain unchanged. But if the algorithms for the insertion/deletion of hyperedges
perform, core numbers of u1–u4 decrease by 1 after e1 is deleted and their core
numbers restore to 2 after e′1 where e′1 = {u1, u3, u5} is inserted.

TABLE I
ALL HYPEREDGES IN FIG. 2(A)

decrease. Thus the algorithms of hyperedge insertion/deletion
make redundant calculations. Another challenge is that the core
numbers may increase or decrease regardless of how the vertices
in the hyperedge change. For example, in Fig. 2, if u1 and u3

are deleted from e1, the core value of u1–u4 will decrease, and
the core value of u5–u10 will increase.

Note that a recent work by Gabert et al. [29] also paid
attention to the insertion/deletion of vertices in hypergraphs.
The work maintains a temporary core number for each vertex
and then iteratively updates them. The vertices whose tempo-
rary core numbers changed will be put into a set with their
neighbors. The temporary core numbers of all vertices in the
set would be recalculated in the next iteration until all of them
converge to the proper core numbers. Their parallel maintenance
algorithm (abbreviated as GPC) initialized the temporary core
numbers based on their original core numbers and the updated
hyperedges. However, the initialized core numbers might be
far away from their proper core numbers, leading to limited
improvement compared against the parallel static algorithm
where the temporary core number of each vertex is initialized
as its vertex degree. In contrast, the algorithms we proposed in
this paper tackle the problem from a different way which can
efficiently identify the vertices whose core numbers will not
change. As a result, our method can avoid many unnecessary
computations.

After the vertices change, our core maintenance needs to:
(1) identify the affected vertices; (2) judge how many the core
numbers of affected vertices change. For the change of vertices
in a single hyperedge, we analyze the sufficient conditions for
increase or decrease of core numbers and give algorithms to
identify the affected vertices. Further, to deal with the vertex
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changes in multiple hyperedges, we prove that if these hyper-
edges form a matching, the core numbers of all vertices will only
change by 1. In order to quickly identify the affected vertices,
we use multithreading to accelerate the process. Previous works
on core maintenance in ordinary graphs used matching [10],
superior edge set [25] and joint edge set [9]. Superior edge set
and joint edge set are not applicable to hypergraphs since their
insertion/deletion cannot ensure that the core numbers change
by 1 at most. It is not trivial to use matching in hypergraph
core maintenance since there are vertices with increasing and
decreasing core numbers at the same time. Our contributions
are summarized as follows:
� For the insertion/deletion of vertices in the single hy-

peredge, we analyze the different situations and propose
sequential algorithms to perform core maintenance.

� For the insertion/deletion of vertices in multiple hyper-
edges, we prove that if the hyperedges containing in-
serted/deleted vertices construct a matching, all vertices
change their core numbers by 1 at most. We design parallel
algorithms to solve this problem.

� Extensive experiments have presented that our sequential
algorithms and parallel algorithms are are superior to the
existing algorithms.

The rest of this paper is organized as follows. We give
some formal definitions and theoretical basis in Sections II and
III, respectively. The detailed implementation of algorithms is
introduced in Section IV. The experimental setup and result
analysis can be found in Section V. The related work is made in
Section VI. Finally, we summarize the paper in Section VII.

II. PRELIMINARIES

An unweighted and undirected hypergraph H = (V,E) is a
generalization of a graph, where V or V (H) means a vertex
set and E or E(H) means a hyperedge set. In contrast to an
ordinary edge which connects exactly two vertices, a hyperedge
contains any number of vertices. We denote a hyperedge in E
as e, or ei for a specific one. For a vertex u ∈ V (H), we denote
a hyperedge that contains u as eH(u) ∈ E(H) and denote the
set of all hyperedges that contain u as EH(u) ⊆ E(H). The
degree of u, denoted as dH(u), is the number of hyperedges that
u belongs to, i.e., |EH(u)|. If there is no ambiguity, we omit
the subscript for brevity. For example, we use E(u) instead of
EH(u). We denote a sub-hypergraph of H as S where V (S) ⊆
V (H) and E(S) ⊆ E(H). Some definitions are formally given
to explain related concepts in the following.

Definition 1 (.k-Core). A k-core in an unweighted and undi-
rected hypergraph H is defined as a maximal sub-hypergraph
S in which the minimum degree of all vertices is k, i.e.,
∀u ∈ V (S), dS(u) ≥ k.

Definition 2 (Core Number of a Vertex). The core number
of a given vertex u in the hypergraph H is k if u is in a k-core
where k is the largest. It is denoted as vCoreH(u) or vCore(u).

Definition 3 (Core Number of a Hyperedge). The core num-
ber of a given hyperedge e in the hypergraph H is k if the
core number of each vertex that belongs to e is not less than
k. It is denoted as eCoreH(e) or eCore(e). It satisfies that

TABLE II
NOTATIONS AND THEIR DESCRIPTIONS

eCore(e) = min{vCore(u) | u ∈ e}. If not particularly em-
phasized, the core number in the following refers to the core
number of a vertex (not a hyperedge).

According to Definitions 2 and 3, we have the following
equation to reveal the connection between the two.

vCore(u) = argmax
c≥0

{|{e ∈ E(u)|eCore(e) ≥ c}| ≥ c}
(1)

where c is a non-negative integer.
Eq. (1) implies that if the core number of a vertex is k, the

vertex is contained by at least k hyperedges whose core numbers
are equal to or greater than k.

Definition 4 (Pre-Core Number of a Hyperedge). Given a
hyperedge e in the original hypergraph H and an updated hy-
peredge e′ in the updated hypergraphH ′, we denote the pre-core
number of e′ as preCoreH ′(e′) or preCore(e′). It satisfies that
preCore(e′) = min{vCoreH(u) | u ∈ e′}. It is obvious that
eCore(e) ≤ preCore(e′) if some vertices are deleted from e
and eCore(e) ≥ preCore(e′) if some vertices are inserted into
e. For example, after we delete u1 and u3 from e1 in Fig. 2(a),
preCore(e′1) is 3 where e′1 = {u5, u8}.

It is necessary to point out that, throughout the paper, we
distinguish between before and after the change by adding
prime in the upper right corner of the symbol. For example,
e and e′ mean the original hyperedge and updated hyperedge,
respectively.

Definition 5 (Core Maintenance). Core maintenance in dy-
namic hypergraphs is to update the core number for each ver-
tex u ∈ V (H ′) when the hypergraph H(V,E) is updated to
H ′(V,E ′). Note that the core number of each hyperedge can
be computed from the vertices′ core numbers easily.

We list some essential notations and their descriptions in
Table II.

III. THEORETICAL BASIS

When the hypergraph changes, the core numbers of many
vertices remain unchanged, so it is unwise to start static cal-
culation from scratch. In order to avoid a large number of
redundant calculations, core maintenance needs to solve two
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key problems: identifying potentially affected vertices and ac-
curately judging the core number change of affected vertices. In
this section, we give the theoretical basis for solving these two
problems.

A. Core Number Change

Prior work has shown that core numbers of all vertices in-
crease (resp. decrease) by 1 at most after a single hyperedge
is inserted into (resp. deleted from) the original hypergraph.
Since the insertion/deletion of vertices in a single hyperedge
can be regarded as inserting a new hyperedge after the old hy-
peredge is deleted, the changed value of core numbers is at most
1. However, the insertion/deletion is not a simple one-to-one
correspondence with the increase/decrease of core numbers. In
other words, the deletion of vertices in a hyperedge may lead to a
larger core number, and the insertion may lead to a smaller core
number. According to the above analysis, an obvious solution is
to utilize the ready-made core maintenance algorithms for the
insertion/deletion of hyperedges. But the solution will cause a
lot of redundant calculations. Therefore, solving the nontrival
problem requires more efforts.

Through further observation, we find that whether the core
numbers of vertices increase or decrease is closely related to
the core numbers of inserted/deleted vertices and the pre-core
numbers of the target hyperedges. When the deleted vertices
meet certain conditions, the core numbers of all vertices will
only decrease and remain unchanged. Inserting vertices has a
similar conclusion.

Lemma 1. Given a hyperedge e ∈ E(H) and a set of vetices
VD ⊆ e, let e′ = e \ VD be the updated hyperedge. After VD are
deleted from e,
(i) if eCore(e) = preCore(e′), then core numbers of all

vertices decrease by 1 or remain unchanged.
(ii) if eCore(e) < preCore(e′), then core numbers of all

vertices will be changed by at most 1.
The proof of Lemma 1 can be found in Appendix A.1, which

can be found on the Computer Society Digital Library at http:
//doi.ieeecomputersociety.org/10.1109/TPDS.2023.3236669.

Lemma 2. Given a hyperedge e ∈ E(H) and a set of vetices
VI ⊆ V that ∀u ∈ VI , u /∈ e, let e′ = e ∪ VI be the updated
hyperedge. After VI are inserted into e,
(i) if eCore(e) = preCore(e′), then core numbers of all

vertices increase by 1 or remain unchanged.
(ii) if eCore(e) > preCore(e′), then core numbers of all

vertices will be changed by at most 1.
The proof of Lemma 2 is similar to that of Lemma 1 and will

not be repeated here.
For example, after u1 and u3 are deleted from e1 in Fig. 2(a),

the core numbers ofu1–u4 decrease by 1 and the core numbers of
u5–u10 increase by 1. The eCore(e1) is 2 and the preCore(e′1)
is 3 where e′1 = {u5, u8}, which meets case (ii) of Lemma 1.
After core numbers of all vertices are updated, we insert u1

and u3 back into e′1, which makes e′1 restore as e1. We have
eCore(e′1) = 4 and preCore(e1) = 1. Case (ii) of Lemma 2 is
satisfied so that the core numbers of some vertices increase and
the core number of some vertices decrease.

Lemmas 1 and 2 answer the question of core number change
in the case of vertices insertion/deletion in a single hyperedge.

B. Affected Vertices

Sariyüce et al. [17] provided the algorithms to identify the
affected vertices when a single edge is inserted/deleted in an or-
dinary graph. Inspired by the algorithms, we design a scheme to
identify the affected vertices when the vertices in the hyperedge
are inserted/deleted. We first give several helpful definitions and
then find the affected vertices through Lemmas 3 and 4.

Definition 6 (Auxiliary Degree). Given a vertex u ∈ V (H),
the auxiliary degree of u is the number of hyperedges containing
u whose core numbers are equal to or greater than vCore(u),
which is denoted as AD(u), i.e., AD(u) = |{e|e ∈ EH(u) ∧
eCore(e) ≥ vCore(u)}|. It is obvious that the auxiliary degree
of a vertex cannot be less than its core number based on (1). We
take u5 with core number 3 in Fig. 2(a) as an example. u5 is
contained by e1, e4, e6, e9 and their core numbers are 2, 3, 3, 3,
respectively. Thus the auxiliary degree of u5 is 3.

The auxiliary degrees of all vertices are easy to be calculated
if we know the core numbers of all vertices.

Definition 7 (Joint Common Vertices Set of a Path). The
common vertices set between two hyperedges e1 and e2 refer
to the intersection of e1 and e2. A path in a hypergraph is a
sequence of hyperedges such that each consecutive hyperedge
pair shares at least one vertex. Then the common vertices sets
of the consecutive hyperedge pairs constitute the joint common
vertices set of a path. For example, there exists a path (e1, e6, e8)
in Fig. 2(a) and the joint common vertices set is {{u5}, {u7}}.

Definition 8 (Reachable Sub-hypergraph of a Vertex). Given
a vertex u ∈ V (H) with core number k, a reachable sub-
hypergraph of u is a sub-hypergraph of H , which satisfies two
conditions:
(i) core numbers of all hyperedges in the sub-hypergraph are

k.
(ii) a vertex in the sub-hypergraph with core number k has

a path to u where the minimum core number of each element
in the joint common vertices set is k. Note that each element in
the joint common vertices set is also a set consisting of common
vertices between two hyperedges.

We take Fig. 2(a) as an example to explain the concept of
reachable sub-hypergraph. The reachable sub-hypergraph of u1

with core number 2 contains e1, e2 and e3. Even if the core
number of e6 is 2, it is not on the reachable sub-hypergraph of
u1, since the core number of the common vertex u5 between e1
and e6 is not 2. It should be pointed out that the reachable sub-
hypergraph of a group of vertices refers to the union of reachable
sub-hypergraphs of each vertex in the group. The reachable sub-
hypergraph of vertex u can be determined by depth-first search
(DFS).

Lemma 3. Given a hyperedge e ∈ E(H) and a set of vetices
VD ⊆ e, let e′ = e \ VD be the updated hyperedge. The vertices
with the minimum core number of VD and e′ are denoted as
VDmin

and e′min, respectively. After VD are deleted from e,
(i) if the core number of a vertex decreases, it is contained by

the reachable sub-hypergraph of VDmin
.
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(ii) if the core number of a vertex increases, it is contained
by the reachable sub-hypergraph of e′min.

The proof of Lemma 3 can be found in Appendix A.2, avail-
able in the online supplemental material.

Lemma 4. Given a hyperedge e ∈ E(H) and a set of vetices
VI ⊆ V (H) where ∀u ∈ VI , u /∈ e. Let e′ = e ∪ VI be the up-
dated hyperedge. The vertices with the minimum core number
of VI and e are denoted as VImin

and emin, respectively. After
VI are inserted into e,
(i) if the core number of a vertex increases, it is contained by

the reachable sub-hypergraph of VImin
.

(ii) if the core number of a vertex decreases, it is contained
by the reachable sub-hypergraph of emin.

The proof of Lemma 4 is similar to that of Lemma 3 and will
not be repeated here.

C. Parallel Batch Processing

We consider the insertion/deletion of vertices contained by
different hyperedges. After inserting/deleting vertices into/from
different hyperedges, it is difficult to judge how many the
core numbers change. Fortunately, we find that inserted/deleted
vertices can be divided into different batches such that the core
numbers change by 1 at most after we insert or delete each batch.

Definition 9 (Matching). Given a set of hyperedges EM , if
e1 ∩ e2 = ∅ where ∀e1 ∈ EM , e2 ∈ EM , then EM is a match-
ing. For example, e1, e3, and e8 form a matching in Fig. 2(a).

Lemma 5. Given a matching EM ,
(i) core numbers of all vertices increase by 1 at most if EM

are inserted into the original hypergraph H .
(ii) core numbers of all vertices decrease by 1 at most if EM

are deleted from the original hypergraph H .
The proof of Lemma 5 can be found in Appendix A.3, avail-

able in the online supplemental material.
Lemma 6. Given a vertex set VD = {. . . , VDi, . . .} and a

hyperedge set ED = {. . . , ei, . . .} where VDi is the deletion
vertex set in a hyperedge ei ∈ E(H) and VDi ⊆ ei. If the
original hyperedge set ED is a matching, then core numbers
of all vertices change by 1 at most afterVD is deleted fromED.

Lemma 7. Given a vertex set VI = {. . . , VIi, . . .} and a
hyperedge set EI = {. . . , ei, . . .} where VIi is the insertion
vertex set in a hyperedge ei ∈ E(H) and VIi ∩ ei = ∅. If the
updated hyperedge set E′

I
is a matching, then core numbers of

all vertices change by 1 at most afterVI is inserted into EI.
It is obvious that Lemmas 6 and 7 can be derived from Lemma

5. Lemmas 6 and 7 provide a theoretical basis to judge how many
the core numbers change in the case of inserting/deleting vertices
into/from different hyperedges. Next, we focus on identifying
the potentially affected vertices. Similar to the insertion/deletion
of vertices in a single hyperedge, the potentially affected vertices
are in the reachable sub-hypergraph.

Lemma 8. Given a vertex set VD = {. . . , VDi, . . .} and a
hyperedge set ED = {. . . , ei, . . .} where VDi is the deletion
vertex set in a hyperedge ei ∈ E(H) and VDi ⊆ ei. Let Vmin =
{· · · ∪ VDimin

∪ · · · } where VDimin
is the vertex set with the

minimum core number in VDi and Emin = {· · · ∪ e′imin
∪ · · · }

where e′imin
is the vertex set with the minimum core number in

e′i. If the original hyperedge setED is a matching, after deleting
VD,
(i) if the core number of a vertex decreases, it is contained by

the reachable sub-hypergraph of Vmin.
(ii) if the core number of a vertex increases, it is contained

by the reachable sub-hypergraph of Emin.
Lemma 9. Given a vertex setVI = {. . . , VIi, . . .} and a hy-

peredges setEI = {. . . , ei, . . .}whereVIi is the insertion vertex
set in a hyperedge ei ∈ E(H) and VIi ∩ ei = ∅. Let Vmin =
{· · · ∪ VIimin

∪ · · · } where VIimin
is the vertex set with the

minimum core number in VIi and Emin = {· · · ∪ eimin
∪ · · · }

where eimin
is the vertex set with the minimum core number of

ei. If the updated hyperedge setE′
I

is a matching, after inserting
VI,
(i) if the core number of a vertex increases, it is contained by

the reachable sub-hypergraph of Vmin.
(ii) if the core number of a vertex decreases, it is contained

by the reachable sub-hypergraph of Emin.
The proofs of Lemmas 8 and 9 are omitted since they are

similar to Lemmas 3 and 4, respectively. The core numbers of
hyperedges in the same reachable sub-hypergraph are the same,
which ensures that reachable sub-hypergraphs with different
core numbers will not overlap each other. The vertices in a batch
(matching) are divided into different sets according to their core
numbers, and the core numbers of vertices in the same set are
the same. For parallel processing, we will assign a thread to each
set which can avoid resource consumption and performance loss
caused by locking and unlocking since different threads do not
compete with each other.

Parallel batch processing brings a new issue. A vertex may be
contained by the reachable sub-hypergraphs with both increased
and decreased core numbers at the same time. For example,
e1 and e8 form a matching in Fig. 2(a). We delete {u1, u3}
from e1 and delete {u7, u10} from e8. All core numbers change
by 1 at most based on Lemma 6. In fact, the core numbers
of u1–u4 decrease 1 and those of other vertices don’t change.
The reachable sub-hypergraph of {u5, u8} and that of {u7, u10}
overlap, but the core numbers of the former may decrease and
those of the latter may increase. In response to this situation,
the algorithms first identify the vertices with decreased core
numbers, then identify the vertices with increased core numbers.

IV. IMPLEMENTATION

In Section III, we settle down the issue of which vertices are
affected by the insertion/deletion and how their core numbers
would change. In this section, we present the algorithms of
core maintenance in dynamic hypergraphs based on the findings
in Section III. We consider two scenarios, one is a sequen-
tial algorithm for the insertion/deletion of vertices in a single
hyperedge, and the other is a parallel batch algorithm for the
insertion/deletion of vertices in different hyperedges.

A. Insertion/Deletion of Vertices Contained by a Single
Hyperedge

Algorithm 1 gives the basic process of core maintenance for
the deletion of vertices contained by a single hyperedge, which
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Algorithm 1: Vertdeletion.

first initializes the necessary variables and then discusses two
circumstances according to Lemma 1: (1) when eCore(e) =
preCore(e′), we only need to consider the decrease of core
numbers; (2) otherwise, it is necessary to consider the increase
of core numbers. In lines 4–8, Algorithm 1 calls Algorithms
3 and 4 to discover the vertices with decreased core numbers
and the vertices with increased core numbers, respectively. The
Root parameters that are passed into Algorithms 3 and 4 are
determined by Lemma 3. Finally in lines 9–12, the core numbers
of the vertices in the Vdec and Vinc are updated. Algorithm 2
deals with core maintenance in the case of insertion, and the
basic process is similar to Algorithm 1.

Algorithm 3 searches for vertices with decreased core num-
bers in the reachable sub-hypergraphs of Root. The local vari-
able vF lag indicates whether the vertex has been visited and
rF lag is used to track whether the core numbers of vertices
decrease. In lines 6–28, for each vertex u ∈ Root whose core
number is k, we perform a DFS whose start vertex is u in
the reachable sub-hypergraph of u. Each vertex maintains td,
the number of hyperedges that contain the vertex and could
contribute to the core number of the vertex. We initialize the td of
each vertex asAD. For a vertex in the reachable sub-hypergraph,
if its td is less than k, which indicates that its core number
will decrease, we push it into the stack, and the td values of its
neighbor vertices will decrease by 1. Finally, the vertices whose
vF lag and rF lag are true will be returned. Their core numbers
decrease by 1.

Algorithm 4 searches for vertices with increased core num-
bers in the reachable sub-hypergraph. The function of the local
variable vF lag is the same as that of Algorithm 3. The other
local variable rF lag is used to mark the evicted vertices whose
core numbers will not increase. Different from Algorithms 3,

Algorithm 2: Vertinsertion.

4 has two DFS processes. In lines 12–19, the first DFS takes
the vertex u ∈ Root whose core number is k as the start vertex
and seeks the vertices whose td values are greater than k in the
reachable sub-hypergraph. Their core numbers may increase.
When encountering a vertex v with td[v] < k, the td values of
its neighbors decrease by 1. In lines 21–32, the second DFS is
conducted in the reachable sub-hypergraph to spread the impact
to other vertices. Finally, the vertices whose vF lag are true
and rF lag are false are returned. Their core numbers increase
by 1.

Theorem 10. Algorithms 1 and 2 can correctly update core
numbers after the insertion/deletion of vertices contained by a
single hyperedge.

Proof. According to Lemma 1, Algorithms 1 and 2 cover
two possible circumstances and and correctly determine core
numbers’ changes. Then according to Lemma 3, Algorithms 3
and 4 update the reachable sub-hypergraph of Root correctly,
ending in updating core numbers correctly.

Performance Analysis. To analyze the time complexity of our
sequential algorithms (Algorithms 1 and 2), we need to introduce
some notations.

For a hypergraph H , we assume that each hyperedge has f
vertices at most and each vertex is contained by dmax hyper-
edges at most. Let Vk(H) be the vertex set with core number
k and Ek(H) be the hyperedge set with core number k. Let
nk = |Vk(H)| and mk = |Ek(H)|. In addition, n represents the
number of all vertices in the hypergraph.

Both Algorithms 1 and 2 call Algorithms 3 and 4. We need to
analyze the time complexity of Algorithms 3 and 4. Algorithm
3 calculates the AD values of all vertices with core numbers k,
whose time complexity isO(dmax ∗ nk). Then performing DFS
in the reachable sub-hypergraph takesO(dmax ∗ nk + f ∗mk).
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Finally, the cost time of checking each vertex in V is O(|n|). So
the total time complexity is O(dmax ∗ nk + f ∗mk + n). The
time complexity of Algorithm 4 is same as that of Algorithm 3.
According to above results, the time complexity of Algorithms 1
and 2 is O(dmax ∗ nk + f ∗mk + n), which is almost same as
that of LYCLC algorithms (O(dmax ∗ nk + f ∗mk)). It should
be pointed out that the above analysis is the worst case. Since
our algorithms can accurately identify the case where all core
numbers do not change at a small cost, the overhead is reduced.
The experiment results show that our sequential algorithms are
superior to LYCLC algorithms.

B. Insertion/Deletion of Vertices Contained by Different
Hyperedges

In this subsection, we design parallel core maintenance al-
gorithms for the insertion/deletion of vertices contained by
different hyperedges. We take the deletion case as an example to
illustrate the algorithm implementation in detail. The insertions
case is similar to deletions, so they are not repeated to save space.

Algorithm 6 shows specific procedures, which consist of two
parts. Initially, a preprocessing divides hyperedges containing
deleted vertices into different maximal matchings in line 1. Note
that, finding the maximal matchings can be done by a trivial
greedy strategy. Next, the algorithm searches for the vertices
whose core numbers may change for each matching.

We know that if the hyperedges containing deleted vertices
construct a matching, then the core numbers of all vertices in
the hypergraph change by 1 at most, as shown by Lemma 6.
Given a vertex set VD = {. . . , VDi, . . .} and a hyperedge set
ED = {. . . , ei, . . .} where VDi is the deletion vertex set in a
hyperedge ei ∈ E(H) and VDi ⊆ ei. We can find a matching
EM from ED. VDM is a subset of VD where VDi ∈ VD is the
deletion vertex set in ei ∈ EM . VDMmin

is the vertex set with
the minimum core number of each set in VDM. E ′

Mmin
is the

vertex set with the minimum core number of each hyperedge in
E ′

M . According to Lemma 8, the vertices whose core numbers
may decrease are contained by the reachable sub-hypergraph of
VDMmin

and the vertices that may increase their core numbers
are contained by the reachable sub-hypergraph of E ′

Mmin
. In

order to process in parallel, Algorithm 6 divides VDMmin
into

different sets according to their core numbers in lines 7–10. Then
it assigns a thread to each set, and calls Algorithm 3 to find
the vertices with decreased core numbers. A similar process is
conducted for E′

Mmin
to find the vertices with increased core

numbers in lines 13–16.
Theorem 11. Algorithm 6 can correctly update core numbers

after the deletion of vertices contained by different hyperedges.
Proof. Algorithm 6 divides affected hyperedges into differ-

ent maximal matchings to guarantee that core numbers of all
vertices change by 1 at most, which is proven in Lemma 6.
Then according to Lemma 8, the vertices whose core numbers
may decrease or increase are separated into different vertex sets
induced by reachable sub-hypergraphs. Similar to Theorem 10,
Algorithms 3 and 4 are called to find out the correct core values.

Algorithm 3: Deletefunc.

Performance Analysis. To analyze the time complexity of
Algorithm 6, we continue to use the symbols used in the
performance analysis of sequential algorithms. In addition, β
represents the number of matchings in ED. Let nE and mE be
the number of vertices and hyperedges in ED, respectively. We
assume that each hyperedge has fE vertices at most and each
vertex is contained by dEmax at most in ED.
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Algorithm 4: InsertFunc.

We first analyze the time complexity of finding matchings. All
hyperedges in ED are divided into dEmax matchings at most. So
the time complexity is O(dEmax ∗mE ∗ fE), denoted by Tpre.
We denote the time complexity of each iterator in Algorithm 6
as Ti such that Ti = max{dmax ∗ nk + f ∗mk + n} where k
is a non-negative integer. The total time complexity is O(Tpre +∑β

i=1 Ti).

Algorithm 5: ComputeAD.

Algorithm 6: ParallelVertDeletion.

V. EVALUATION

We design thorough experiments on 12 real-world hyper-
graphs to evaluate our proposed algorithms. First, we test the
stability and scalability of our algorithms. Next, the parallelism
of the parallel algorithms is shown. Finally, we compare our al-
gorithms with existing algorithms, including the sequential static
core decomposition [12], LYCLC algorithms [13], the parallel
static algorithm and the parallel dynamic GPC algorithm [29].
The first utilizes the idea of the peeling algorithm [19]. LYCLC
extends the core maintenance algorithms in ordinary graphs [17]
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to hypergraphs. The latter two parallel algorithms are based on
the local h-index algorithm [31]. We utilize C++ 11 to implement
all algorithms. All source codes are compiled by g++ 9.3.0
with -O3 level optimization. The evaluations are performed on
a Linux machine with 56 Intel Xeon E5-2680@2.40 GHz CPUs
and 250 GB main memory.

The algorithms read two files from the disk, the original
hypergraph, and the changed hyperedges. Each row representing
a hyperedge in the original hypergraph has several unsigned
integers representing vertices that are contained by the hyper-
edge. The first unsigned integer in each row of the updated
hypergraph represents a hyperedge. The following unsigned
integers represent the vertices, indicating that these vertices are
inserted/deleted in the hyperedge. We first delete these vertices
from the specific hyperedges to test deletion algorithms, and
then insert them back into original hyperedges to test insertion
algorithms. We use two 2-D vector data structure to store the
hypergraph. All vertices that make up a hyperedge are stored in
the first vector. The elements in the second vector represent all
hyperedges containing the vertex. We design a thread pool to
implement the parallelization of the algorithm. The thread pool
determines the number of threads through the parameters from
the command line. There are a thread queue and a task queue in
the thread pool. One thread executes one task. When the thread
finishes processing the current task, it will fetch a task from the
task queue for execution.

For our sequential algorithms, the LYCLC algorithms, the
sequential and parallel static core decomposition algorithms,
and the parallel dynamic GPC algorithm, we record the sum of
the time for updating hyperedges and the time for core decompo-
sition or maintenance. For our parallel algorithms, in addition to
the above time, the preprocessing time for finding matchings
in updated hyperedges needs to be added. In the following
experiments, we use cost time as an indicator to evaluate the
efficiency of the algorithms. We use time per hyperedge when
evaluating the influence of the size of the updated hyperedge
set. In order to eliminate interference factors, we repeated all
the experiments five times and took the average values as the
final results. In the following figures, the units of the y-axis are
milliseconds, abbreviated as ms. We compare the core numbers
of all vertices updated by our algorithms with the correct core
numbers calculated by the static algorithm [12] to verify the
correctness of our algorithms.

Datasets. Table III shows 12 real-world datasets, which can
be accessed and downloaded from KONECT1 and CORNELL.2

These graphs are chosen from domains representing social net-
works, tagging networks, and authorship networks. AT, BC, LJ,
OK, PD, and VI are static hypergraphs, and other hypergraphs
are temporal hypergraphs where each hyperedge is associated
with a time stamp. In the table, accu.v refers to the sum of the
number of vertices contained by all hyperedges in the hyper-
graph, and max k refers to the maximum core number of all
vertices in the hypergraph. Fig. 3 shows the distribution of core
numbers in these hypergraphs. The core numbers are in a log

1[Online]. Available: http://konect.cc/networks/
2[Online]. Available: https://www.cs.cornell.edu/~arb/data/

TABLE III
ATTRIBUTES OF DATASETS

Fig. 3. Core number distribution of real-world datasets.

Fig. 4. The stability of our sequential algorithms.

axis. For most hypergraphs, the core numbers of more than half
of the vertices are only 1.

A. Stability Evaluation

After the vertices in the hyperedges are inserted/deleted, we
update the core numbers of the affected vertices. One issue is
whether the efficiency of the sequential and parallel algorithms
is stable if the updated hyperedge sets come from different
regions of the hypergraph. For sequential algorithms, we ran-
domly sample 100 hyperedges and select several vertices in each
hyperedge as updated vertices. We first delete these vertices from
the hyperedges and then insert them back into the hyperedges.
After each change occurs, the corresponding algorithm is called
to maintain the core numbers. We accumulate the total time to
process 100 selected hyperedges. Finally, we repeat the above
steps 100 times and get 100 sets of results.

Fig. 4(a) and (b) show the results of deletion and insertion,
respectively. The x-axis represents the number of samples and
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Fig. 5. The number of visited vertices for our sequential algorithms.

Fig. 6. The stability of our parallel algorithms.

TABLE IV
STATISTICAL MEASURES OF COST TIME IN STABILITY EVALUATION

the y-axis is the cost time of core maintenance for the sample.
Sequential algorithms show good stability on HT and VI. For
DB and GL, we observe that their results fluctuate frequently.
In fact, the cost time is positively correlated with the total
number of visited vertices, which is shown in Fig. 5(a) and
(b). If the number of visited vertices varies greatly, the cost
time fluctuates frequently. The number of visited vertices for
insertion and deletion is different for the same sample because
the insertion algorithm performs two DFS processes and the
deletion algorithm does it only once.

For our parallel algorithms, we set the number of threads to 8
and then evaluate the stability of the algorithms in the same way
as the sequential algorithms. The results are shown in Fig. 6(a)
and (b). Similarly, our parallel algorithms perform good stability
on HT and VI, while the stability on DB and GL is poor. The
reason is the same as the sequential algorithms.

The means and standard deviations (St. Dev.) of cost time
on 100 samples for our sequential and parallel algorithms are
showed in Table IV. Del. is short for deletion and ins. is short
for insertion. The units are milliseconds (ms).

Fig. 7. Influence of the size of updated hyperedge set.

B. Scalability Evaluation

In this subsection, we change the size of the updated hy-
peredge set and graphs to measure the scalability of parallel
algorithms. We change the size of the updated hyperedge set,
fix the number of threads to 8, and record how long it takes to
maintain the core numbers. The results are shown in Fig. 7(a) and
(b). The x-axis and the y-axis represent the size of the updated
hyperedge set and the ratio of the core maintenance time to
the size of the updated set, respectively. Both the x-axis and
the y-axis are logarithmic coordinates. For static hypergraphs,
updated hyperedge sets are sampled randomly, and for temporal
hypergraphs, we select latest hyperedges.

As can be seen from Fig. 7, with the exponential increase
of size of updated hyperedge set, the average cost time per
hyperedge shows a downward trend. This is because as the
number of updated hyperedges increases, the algorithms can
process more hyperedges in one iteration, thus reducing repeated
access. In addition, the core numbers may be distributed evenly
if the batch contains more hyperedges, which makes better use
of multi-threading acceleration. For hypergraphs (PD, VI) with
small vertices and hyperedges, when updated hyperedge set con-
tains a large of hyperedges, average time for core maintenance
increases. It is because that the changed region accounts for
a large proportion of the whole hypergraph so that algorithms
perform a DFS on the entire hypergraph to find affected vertices
almost.

To evaluate the influence of the size of hypergraph, we sample
hyperedges at rates from 10% to 100% to rebuild new hyper-
graph. For each new hypergraph, we further sample 1,000 (if the
number of hyperedges in the hypergraph is less than one million)
or 10,000 hyperedges for testing (if the number of hyperedges
in the hypergraph is not less than one million). The results are
shown in Fig. 8(a) and (b). The x-axis is the proportion of the
sampled hypergraph to the initial hypergraph and the y-axis
represents the cost time for core maintenance. Overall, the cost
time increase with the increase of the sizes of hypergraphs since
potentially affected vertices increase.

C. Parallelism Evaluation

We select four graphs AT, DB, SO, and VI to conduct the ex-
periment of parallelism. For static graphs, we randomly sample
10,000 hyperedges. For temporal graphs, we directly select the
latest 10,000 hyperedges (with maximum timestamps). Several
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Fig. 8. Influence of the size of hypergraph.

Fig. 9. Influence of the number of threads (deletion).

Fig. 10. Influence of the number of threads (insertion).

vertices are randomly deleted first and then inserted back for
each sampled hyperedge. The number of threads is set to 1, 2,
4, 8, 16, 32 in turn. We record the cost time to maintain the
core numbers under different threads. The experimental results
are shown in Figs. 9 and 10. For deletion cases (Fig. 9), the
cost time of the SO graph decreases as the number of threads
increases. For the other three graphs, the cost time reaches
the lowest point when the number of threads is 8 and then
increases slightly with the increase of the number of threads.
In the case of insertions (Fig. 10), the lowest point of the cost
time for all four graphs, including the SO graph, also appears on
8 threads.

As shown in Fig. 3, the distributions of the core numbers
of the hypergraphs are not uniform. The vertices with smaller
core numbers account for a more significant proportion, which
is the root cause of the limitation of parallelism. Threads corre-
sponding to smaller core numbers tend to need to access more
vertices and thus spend more time. Other threads may have
completed their work while the threads corresponding to smaller
core numbers are still working. Therefore, as the number of
threads increases continually, there is no significant acceleration
effect.

Fig. 11. Comparison with baseline algorithms for a single hyperedge.

D. Comparisons With Existing Algorithms

In this subsection, we first compare our sequential algorithm
with the sequential static algorithms [12] and the LYCLC algo-
rithms [13], and then compare our parallel algorithm with the
parallel static algorithm [29] and the parallel dynamic GPC algo-
rithm [29]. The two static algorithms are core decomposition of
the entire hypergraph from scratch after the hypergraph changes.
The LYCLC algorithms can effectively maintain core numbers
after a single hyperedge is inserted/deleted. The GPC algorithm
can maintain core numbers after the vertices in hyperedges
change.

We randomly sample 1,000 hyperedges from six static hyper-
graphs and select the latest 1,000 hyperedges from six tempo-
ral hypergraphs according to timestamps. We randomly select
several vertices from each hyperedge and delete them before
inserting them. Our sequential algorithms are used to handle
the insertion/deletion of vertices in a single hyperedge. The cost
time of core maintenance is recorded after the algorithms are
completed for each hyperedge. The average cost time of 1,000
hyperedges is taken as the final result. The result is shown in
Fig. 11 where the cost time is in a log axis. Our sequential
algorithms have the best performance in both deletion and
insertion cases. Compared with static algorithms, the sequential
algorithms have the highest speedup more than 1,000× (VI
graph) and the average speedup more than 300×. Compared
with the LYCLC algorithms, the sequential algorithms have the
highest speedup more than 12× (the deletion of AT graph) and
the average speedup 2.8×.

The above comparisons are for a single hyperedge. Next,
we compare our parallel algorithms with algorithms for multi-
ple hyperedges. The updated sets include 200, 400, 600, 800,
1,000 hyperedges. We randomly select several vertices from
each hyperedge and delete them before inserting them. The
deletion time and insertion time are recorded for our parallel
algorithms, the parallel static algorithm and the parallel dynamic
GPC algorithm. Our parallel algorithms divide these updated
vertices into several matchings according to hyperedges they are
on. Inserting/deleting all vertices from the same matching will
only make core numbers change by 1 at most. All hyperedges
contained by a matching are divided according to their core
numbers. Each thread corresponds to a specific core number to
speed up core maintenance.

The experimental results are shown in Fig. 12. We compare the
average cost time each algorithm spent on an edge. The thread
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Fig. 12. Comparison with baseline algorithms for multi-hyperedges.

number is set to 32, where the parallel dynamic GPC algorithm
performs the best. In general, since a larger updated set has a
higher degree of parallelism, the average cost time decreases as
the size of updated set increases. In some cases, the average cost
time could be higher than others, such as the 800-hyperedges
deletion and insertion of GL graph in Fig. 12(c) and (d), the
1,000-hyperedges deletion and 600-hyperedges insertion of PD
graph in Fig. 12(g) and (h), and the 1,000-hyperedges insertion
of VI graph in Fig. 12(l). It is because that the parallelism of our
algorithms depends on matching divisions, and the distributions
of core numbers of the hypergraphs are not uniform, thus a
smaller random updated set could perform better.

It can be seen that our parallel algorithm performs better
than other algorithms in most cases. The parallel dynamic GPC
algorithm performs similarly to the parallel static algorithm,
since they are both convergence based algorithms and the former
one initialized a loose upper bound of temporary core numbers.
On VI graph (Fig. 12(k) and (l)), our parallel algorithm spends
more average cost time than the GPC algorithm when the size
of updated set increases. The reason might be twofold. First,
the size of VI graph is small and the cost time of each iteration
in the convergence-based GPC algorithm on VI is less than on
other graphs. Second, the size of updated set has more influences
on our parallel algorithm than on the GPC algorithm since our
parallel algorithm needs additional cost on matching divisions.

Compared with the parallel static algorithms, our parallel
algorithms with 32 threads have the highest speedup more than
33× (the insertion of SO graph in Fig. 12(j)) and the average
speedup around 7.3×. Compared with GPC algorithms, our al-
gorithms have the highest speedup more than 22× (the insertion
of SO graph in Fig. 12(j)) and the average speedup around 6.8×.
Our parallel algorithms can reduce the redundant accesses of
vertices and use multi-threading technology to speed up. Thus
it has a significant advantage in handling the change of multiple
hyperedges.

VI. RELATED WORK

For a static unweighted and undirected graph, the straight-
forward algorithm to compute the core numbers is the peeling
algorithm [19] that was proposed by Seidman. The peeling
algorithm initializes the parameter t to one, removes all vertices
whose degrees are less than or equal to t, and updates the degrees
of their neighbors. If the degrees of these neighbors are less
than or equal to t, they will also be removed. The core numbers
of these removed vertices are t. Then, the peeling algorithm
increases t by 1 and repeats the removal until there do not exist
vertices in the graph. This algorithm can be implemented with
a priority queue. Core decomposition and core maintenance
in the ordinary graph have been widely studied. For the core
decomposition of the static graphs, Batagelj and Zaversnik [3]
designed the first algorithm with linear time complexity by using
bin-sorting. Dasari, Ranjan, and Zubair [5] proposed the first
parallel solution (the ParK algorithm) of core decomposition.
Kabir and Madduri [11] designed a more scalable algorithm
(PKC) based on ParK algorithm. In [4], Dhulipala, Blelloch, and
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Shun represented the first work-efficient parallel core decompo-
sition algorithm. Distributed core decomposition was discussed
by Montresor, Pellegrini, and Miorandi [16]. Their algorithms
utilized the idea of h-index. Aridhi et al. [2] designed distributed
algorithms for core decomposition and core maintenance, which
were implemented by using the AKKA framework.3

For the core maintenance in the dynamic graphs, Sariyüce et
al. reported efficient sequential algorithms (the TRAVERSAL
algorithms) to handle the insertion/deletion of a single edge [17].
Another work for a single edge was completed by Zhang et
al. [28]. They designed k-order to reduce the redundant access
of vertices so that their algorithms beat the TRAVERSAL algo-
rithms. To deal with multiple edges in one iteration, Jin et al. [10],
Wang et al. [25], and Hua et al. [9] proposed parallel algorithms
based on different edge structures, respectively. Recently, Weng
et al. [26] designed efficient algorithms of core maintenance
for a distributed system. In addition, researchers studied many
varieties of k-core, which can be obtained from the survey by
Galimberti et al. [6] and Malliaros et al. [15].

Recently, k-core in the hypergraphs has attracted more and
more attention. The core decomposition of static hypergraphs
was first proposed by Leng et al. in [12]. Shun discussed a lot
of parallel algorithms for hypergraphs in [21], including core
decompositions by peeling. Gabert et al. [29] generalized the
static core decomposition on ordinary graphs to hypergraphs by
using a parallel algorithm based on convergence [31].

There are only a few studies focusing on core maintenance
in dynamic hypergraphs. Sun et al. [22] considered core main-
tenance from an approximate view, which can update core
numbers with a poly-logarithmic time complexity. Another work
considering the exact core maintenance on dynamic hypergraphs
was proposed by Luo et al. [13]. However, their algorithms
aim to deal with the insertion/deletion of a single hyperedge.
Gabert et al. also considered the exact core maintenance on
dynamic hypergraphs. In [30], they generalized traversal and
order algorithms to hypergraphs. Similar to work of [13], they
did not consider the situation of vertices changes. In their an-
other work [29], they presented parallel dynamic algorithms that
supported changes to vertices.

VII. CONCLUSION

Existing works for core maintenance on dynamic hypergraphs
mainly focus on the insertion/deletion of hyperedges, which
means inserting/deleting all the vertices in those hyperedges.
In this paper, we revisit this problem by observing that the hy-
pergraphs can also be updated with insertion/deletion of certain
vertices in particular hyperedges. Thus we study a generalized
setting compared with previous works. We design both sequen-
tial and parallel algorithms to deal with the problem. Extensive
experiment results show that our algorithms are superior to
baseline algorithms.

In the future, we intend to optimize our parallel algorithms
further to better deal with the insertion/deletion of vertices con-
tained by multiple hyperedges. On one hand, we try to find better

3[Online]. Available: https://akka.io/

structures than a matching so that more hyperedges and vertices
can be processed in each iteration. On the other hand, different
from allocating threads according to the core numbers, other
parallel schemes are also worth trying. In addition, maintaining
other properties such as betweenness centrality after the change
occurs is also an interesting topic in dynamic hypergraphs.
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