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Abstract—Fully Homomorphic Encryption (FHE) is a promising
technology for secure, non-interactive outsourced computation.
One notable method to increase the throughput of FHE-based out-
sourcing is batching, which typically involves large-scale matrix-
matrix multiplications (MM). However, the substantial overhead
inherent in existing FHE schemes poses a major challenge for
processing these large-scale tasks, often resulting in insufficient
memory or prolonged delays on a single machine, making it
practically unviable. Utilizing multi-machine parallelism in cloud
clusters for outsourced computation offers a natural solution to
these obstacles. In this work, we propose FHE4DMM, a distributed
algorithm that provides a unified view on encrypted matrices, ac-
commodating various FHE schemes and any matrix dimensions, to
accelerate large-scale encrypted MM. A key innovation is its reuse
optimizations for parallelized homomorphic computations, which
can offer valuable insights for broader FHE-based applications. We
utilized FHE4DMM to conduct large-scale square (4096 × 4096)
and rectangular (32768 × 32768, 32768 × 16 ) matrix multi-
plications on 256 machines, achieving computation time of 172.2 s
and 76.1 s, respectively, while ensuring a 128-bit security level. For
scalability, the experiments demonstrate that FHE4DMM achieves
linear speedup for 2i (i is from 0 to 6) machines across various
matrix dimension cases. In addition, within the range of matrix
dimensions that the state-of-the-art (SOTA) distributed FHE-MM
algorithm (Huang et al. 2023) can handle, FHE4DMM attains a
maximum speedup of 16.62x. To assess its practical performance,
FHE4DMM is applied in a basic multi-layer feedforward network.
We used 64 machines to perform secure outsourced inference on
MNIST and CIFAR-10 datasets with encrypted models and data.
Compared to using the SOTA, our method achieved speedups of up
to 3.54x and 4.22x respectively, with the MM module obtaining a
4.09x and 4.87x speedup.

Index Terms—Homomorphic encryption, distributed algorithm,
matrix-matrix multiplication (MM).

I. INTRODUCTION

FULLY Homomorphic Encryption (FHE) stands out as the
most promising technology for ensuring the security of data

in use. However, its status as the preferred choice in practical
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scenarios is restrained by the considerable computational and
memory resource demands during computing on encrypted data,
thereby posing challenges for real-world applications. Over
the past decade following Gentry’s breakthrough [2] in FHE,
there has been a substantial enhancement in the efficiency
of homomorphic encryption schemes. Currently, schemes like
BFV/BGV/CKKS [3], [4], [5], which integrate powerful packing
techniques, and FHEW/TFHE [6], [7], supporting fast boot-
strapping, become the mainstream. Moreover, a well-practiced
arithmetic framework has been devised to handle high-precision
integers using the Residue Number System (RNS) and ac-
celerate polynomial multiplication through the Fast Fourier
Transform (FFT).

On this foundation, numerous FHE libraries [8], [9], [10] have
surfaced, alongside accelerated implementations on GPUs [11],
[12], [13], FPGAs [14], and ASICs [15], [16]. Notably, their
main focus is single-node optimization, specifically tailoring
the deep optimization of underlying polynomial arithmetic to
enhance the resource utilization of individual hardware. How-
ever, the substantial performance gap of 105 between ciphertext
and plaintext computation presents an obstacle to executing
large-scale applications on a single node. When considering
computation-intensive applications such as machine learning
(ML), the overhead in privacy-preserving ML (PPML) becomes
more pronounced. Meanwhile, the inherent support of FHE for
secure outsourced computation aligns seamlessly with cloud
computing clusters. Thus, it is important to investigate efficient
distributed FHE algorithms.

This paper focuses on matrix-matrix multiplication (MM),
a fundamental building block in ML and scientific computing.
Based on insights gained from the following preliminary exper-
iments, we are motivated to delve further into the distributed
algorithm in FHE.

Single Machine Cannot Handle Large FHE Parameters.
Employing the state-of-the-art FHE-based general MM algo-
rithm [17] (FHE-MM), we conduct tests on a 1 TB large memory
machine to perform a MM with two 512× 512 square matrices.
The experimental findings reveal a significant memory usage of
546 GB, surpassing the memory size of the server-side common
processors.

Medium-Sized FHE-MM Suffices to Exhaust the Computa-
tional Resources on a Single Machine. Adopting block matrix
multiplication (BMM) is a natural idea to avoid using large
FHE parameters. Therefore we decompose the original MM
into 43 small MMs with a block size of 128× 128 (ensuring
the 128-bit security level). We executed these smaller MMs
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Fig. 1. Time breakdown(s) of FHE-MM.

concurrently on a single machine and collaboratively on multiple
machines, respectively. Each small MM is also computed in
parallel internally. The outcomes in Fig. 1(a) show an execution
time of 401.42 s on a single machine, which remains impractical;
however, the observed linear speedup of 15.52x across multiple
machines implies that single-machine parallelism is insufficient
for accelerating these medium-sized FHE-MMs due to limited
resources.

The parallel general matrix multiplication (PGEMM) algo-
rithm on unencrypted data has been studied quite maturely.
This well-established research provides an optimistic insight
that leveraging multiple machines can significantly accelerate
FHE-based applications. We then execute FHE-PGEMM using
two distinct processor grids with identical FHE parameters: one
derived from the state-of-the-art PGEMM algorithm [18] (i.e.,
[4,1,4]) and another using an arbitrary partitioning [1,1,16] (see
Fig. 1(b)). However, both configurations show comparable com-
munication costs, with the former incurring more computations.
These observations suggest that homomorphic computation is
related to raw data partitioning. This realization emphasizes the
need to optimize FHE-PGEMM by considering both communi-
cation and computation costs.

Our Contribution. We propose FHE4DMM, a low-latency
FHE-based distributed MM for any matrix dimension and
processor number. Our key insight is that certain poten-
tial redundancies in homomorphic computations, obscured by
plaintext-perspective algorithm designs, consume significant
time. FHE4DMM contributes optimizations in “higher di-
mensions” compared to a traditional distributed 3DMM algo-
rithm [19] (3DMM). The additional dimension aims to address
the above issues, including the careful selection of a fixed data
layout to ensure optimal computation before task partitioning
and eliminating redundant computations.

Combined with highly optimized single-node FHE-MM
at both algorithmic and hardware resource utilization levels,
FHE4DMM achieves excellent scalability, demonstrated by its
linear speedup across various matrix dimensions and weak scal-
ability across different problem sizes. Using 64 machines, we
applied FHE4DMM for secure outsourced inference on MNIST
and CIFAR-10 datasets, representing two types of large-scale

TABLE I
NOTATIONS AND THEIR DEFINITIONS

applications, with varying batch sizes. The experimental results
show that FHE4DMM achieves a greater speedup for larger data
scales.

II. BACKGROUND

We first provide an overview of existing FHE schemes based
on learning with errors over rings (RLWE). We then differentiate
between PGEMM algorithms with and without FHE. Following
this, we introduce our system model and outline our optimization
goals. Table I summarizes commonly used symbols in this paper.

A. RLWE-Based FHE Schemes

RNS Variants. Current FHE schemes all mask plaintext
in noise terms. When the noise exceeds a certain thresh-
old, the original plaintext becomes irretrievable. In RLWE-
based schemes, this critical threshold is almost determined by
log (q/t). The modulus q is derived from a polynomial ring
Rq = Zq[X]/(f(X)) within RLWE, where f(X) is a cyclo-
tomic polynomial of degree N − 1.

To accommodate more noise, log q is normally set from 102

to 103. Current FHE libraries adopt the RNS variants to handle
large integer operations with higher parallelism. In the RNS,
computation over Rq is decomposed into multiple computations
over Rqi , where q = Πl

i=1qi and each qi is a small prime. Com-
pared to the relatively inexpensive (i.e., O(l ·N)) ciphertext-
ciphertext addition (ADD) and plaintext-ciphertext multiplica-
tion (PMULT), ciphertext-ciphertext multiplication (MULT) and
ciphertext rotation (ROT) are more costly (i.e., O(l2 ·N logN))
due to key-switching [20].

Packing Techniques. Packing techniques allow homomorphic
operations to imply some specific computation on batches of raw
data. We focus mainly on SIMD encoding (see Fig. 2), using S
to denote the number of fully packed plaintext slots to unify
different schemes (i.e., for CKKS, S = N/2; for BFV/BGV,
which supports hypercube encoding [21], S = N ).

B. Parallel General Matrix Multiplication

GEMM. There exist well-established linear algebra li-
braries [22], [23], [24] that support high-performance GEMMs
on unencrypted data. However, SIMD computations vary across
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Fig. 2. SIMD encoding and SIMD homomorphic operations.

TABLE II
THE COMPLEXITY OF [17] DESCRIBED BY THE NUMBER OF HOMOMORPHIC

OPERATIONS (CADD = 2k + d3; CROT = 2k + 2d3)

different applications, and there is no standardized FHE-MM
yet. In this paper, we focus on relatively general MM with two
encrypted matrices (aka, CGEMM).

We adopt the state-of-the-art efficient CGEMM algo-
rithm [17] applicable to any matrix dimensions. The complexity
of this algorithm is summarized in Table II. Note that differ-
ent FHE schemes and optimizations (e.g., Baby-step/Giant-step
(BSGS)) may introduce some variations, but these do not affect
the overall analysis.

PGEMM. PGEMM is commonly employed for efficient large-
scale MMs. Regardless of the matrix partitioning scheme em-
ployed, PGEMM ensures that the total computation of O(mnk)
multiplications and additions remain constant.1 For modern
processors with peak performance over 1012 FLOPS, practical
latency is significantly impacted by data transfers. The recent
works such as COSMA [26] and CA3DMM [18] both have
optimal or near-optimal communication costs for all matrix
dimensions and any number of processors through properly
partitioning data across processors.

In contrast, when using packing techniques, FHE-PGEMM
must account for homomorphic data movement (e.g., ROT and
PMULT). Moreover, encoding is related to FHE parameters,
which can significantly impact performance. Therefore, opti-
mization methods for traditional distributed algorithms [18],
[26], [27] may not always be appropriate for FHE-PGEMM.

C. System Model

To perform distributed matrix multiplication with FHE, a
client initially encrypts the two input matrices. These encrypted
matrices and evaluation keys (i.e., part of the public key) are
then distributed to semi-honest [28], interconnected servers. The
servers then conduct collaborative matrix multiplication through
inter-server communication and homomorphic operations on

1This paper considers only the conventional MM without utilizing the fast
matrix multiplication [25] (aka, Strassen’s matrix multiplication).

Fig. 3. Distributed 3DMM with FHE.

local ciphertexts. Finally, the client receives the encrypted results
from the servers and then decrypts them.

We model a parallel machine as described in [29]. Traditional
distributed algorithms often focus on the number of synchro-
nizations and communication costs W . This is because data
partitioning does not affect the sum of computation cost F
across all processors, denoted as F ∗. However, partitioning can
influence computation in FHE, potentially altering F ∗.

Optimization Goals. The overarching objective is to minimize
the total latency in the design of FHE4DMM. In the current
FHE-based application ecosystem, we prioritize reducing the
total computation cost, especially for homomorphic data move-
ment. We then aim to devise a scheduling strategy that ensures
optimal or near-optimal communication costs under such fixed
computations.

III. TRIVIAL DISTRIBUTED MM WITH FHE

In this section, we employ the state-of-the-art CGEMM al-
gorithm to design a distributed FHE-MM directly (Section II-
I-A). Subsequently, we analyze its issues (Section III-B), which
lead us to introduce the block intermediate representation
(Section III-C).

A. A Trivial FHE3DMM Algorithm

3DMM is a classic distributed MM algorithm designed to min-
imize synchronization and communication costs. Moreover, [18]
demonstrated that 3DMM can achieve optimal or near-optimal
communication costs through appropriate processor grid par-
titioning. Utilizing these benefits is advantageous for efficient
FHE-PGEMM.

The general 3DMM organizes p processors into a 3D
grid pm × pn × pk (see Fig. 3), indexed by Pijt. A trivial
FHE3DMM can then be described in the following three steps:

Step 1: Pi0t broadcasts encrypted Ai,t to the processor group
Pi:t, and P0jt broadcasts encrypted Bt,j to the group P:jt.

Step 2: Subsequently, each processor Pijt possesses both Ai,t

and Bt,j , and then performs CGEMM(Ai,t, Bt,j) locally.
Step 3: When local computation is completed, the processor

group Pij: collectively reduces the partial result to Pij0.

B. Issues of Trivial FHE3DMM

Trivial FHE3DMM treats CGEMM as a black box, directly
partitioning data at the raw data layer. Its failure to deep dive
into FHE makes it impractical for real-world applications.
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Limited Packing. FHE parameters should be determined
solely by noise capacity and security level rather than the amount
of encoding. Otherwise, encrypting each matrix block in Fig. 3
as one ciphertext would result in a largeN (orS), which presents
potential issues for existing FHE schemes: (1) overflow of the
security level; (2) significant increases in precomputation time
and memory usage in FHE libraries, as well as (3) the overhead
of each homomorphic operation.

Data Transfer and Computation Modifications in the Rect-
angular Matrix Case. Rectangular matrices are frequently en-
countered in practical applications. However, the constraints
imposed by FHE’s SIMD paradigms complicate the handling of
rectangular MM in existing works [17], [30], [31]. Therefore, the
demand forS does not scale linearly with the actual encoded data
volume. For CGEMM in [17], the number of required plaintext
slots Sr is defined as

Sr(m,n, k) = max {m, k} ·max {k, n}. (1)

For any rectangular matrix case, (m+ n)k < 2Sr. This en-
coding process reconstructs the raw data, potentially altering
the original meaning of partitioning based on dimensions of
plaintext matrices (e.g., processor grid partitioning for reducing
communication costs).

Furthermore, Table II shows that for rectangular MM with the
same Sr, the required homomorphic operations vary depending
on its type. Referring back to Fig. 1, when local CGEMM has the
same minimum dimension and Sr, the larger dimension k in the
case where p = 4× 1× 4 necessitates more homomorphic data
movements.

C. Block Intermediate Representation (BIR) of FHE-MM

The above issues (Section III-B) suggest the need to introduce
an intermediate representation to eliminate factors influenced
by FHE. A critical step is determining the optimal number of
plaintext slots Sr (referred to as So),2 where the optimal value is
precisely determined by noise and security considerations. For
convenience, this paper also uses the partitioning configuration
[bm, bn, bk] to represent the number of blocks in matrices Am×k

and Bk×n along the m, n, and k dimensions, respectively. This
configuration is called the block layout to distinguish it from the
processor grid.

Given So and a block layout, the block size H can be
straightforwardly defined 2. In the block layout [bm, bn, bk], all
encryptions share a uniform size H . Only mod-switching or
rescaling operations can potentially modify (or reduce)H within
CGEMM. Here, the initial size is taken as an approximate upper
bound. A BIR of Am×kBk×n, denoted as BIR(AB), can then
be defined as two sets of encrypted matrix blocks, A∗ and B∗.
Here, A∗ is an abbreviation for A∗

[0:bm;0:bk]
when a block layout

is provided in context; similarly for B∗.
Algorithm 1 uses BIR to describe the standard FHE-BMM.

2More details and more formal definitions are provided in Appendix A,
available online.

Algorithm 1: Standard FHE-BMM.

Total computation cost F ∗: According to Algorithm 1, the
total computation costs can be expressed as

F ∗ = bmbnbk · CGEMMF

(
m

bm
,
n

bn
,
k

bk

)
+ bmbnbk · FADD,

(2)
where CGEMMF and Fop denote the computational complexity
of CGEMM and the homomorphic operation op, respectively.

IV. THE ENHANCED FHE3DMM ALGORITHM

Based on BIR(Section III-C), we propose an enhanced
FHE3DMM to mitigate the impact of partitioning on com-
putation costs. Furthermore, leveraging this BIR enables us
to efficiently schedule computation tasks on encrypted data,
akin to scheduling on unencrypted data, thereby minimizing
communication costs. Here, we assume that So has already been
obtained.

A. Optimal Block Layout (OBL) of FHE-MM

Consider performing Am×kBk×n. The following analysis is
confined to the scenario where Sr(m,n, k) > So; otherwise,
a single CGEMM is adequate. Once [bm, bn, bk] is determined,
the total computation costs are fixed from (2). To approach
optimal parameters, Sr(

m
bm

, n
bn
, k
bk
) needs to be close enough

to So. Thus, the optimization problem of finding the OBL
for minimizing F ∗ is equivalent to minimizing the number
of homomorphic operations asymptotically with a sub-target
min bmbnbk as follows:

minimize: bmbnbk · CGEMM
(

m

bm
,
n

bn
,
k

bk

)
(3)

subject to:
max { m

bm
, k
bk
} ·max { k

bk
, n
bn
} ≤ So

bmbnbk �= 1 and bm, bn, bk ≥ 1
(4)

Algorithm 2 delineates an OBL of matrices Am×k and Bk×n

guaranteed by Theorem 1.
Theorem 1. Given matricesAm×k andBk×n, the block layout

determined by Algorithm 2 results in equality for (4), and (3)
approaches a minimum asymptotically.

A detailed proof of Theorem 1 is provided in Appendix B,
available online. To illustrate the generality of our method, we
compare it with existing methods through concrete examples in
Fig. 4.
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Fig. 4. Partitioning methods for Am×kBk×m with FHE. Here, So = 1282 and ⊗ denotes CGEMM. (All these partitioning have the same Sr . Fig. IV: naive
partitioning [2,1,2]. Fig. IV: diagonal block partitioning proposed in [1]. Fig. IV and IV: the sub-case (1.2) in Algorithm 2, where OBL(256, 64, 256) =
[mn
So

, 1, k
n ] = [1, 1, 4] and OBL(64, 256, 128) = [1, mn

So
, k
m ] = [1, 1, 2]).

Algorithm 2: Optimal Block Layout Generation.

Fig. 4(b), (c), and (d) perform the same MM on the encryption
of Fig. (a). They all execute the same number of CGEMMs.3 For a
single CGEMM, an equivalent number of MULTs can be observed
in Table II and the analysis presented in [30]. Disregarding the
logarithmic terms in Table II and inter-block rotation in [1],
Fig. 4(c) and (d) also perform the same number of ROTs (i.e.,
1024 times), and both showcase a reduction by half compared

3In Fig. 4, the technique proposed in [30] involves encrypting multiple
matrices into a single ciphertext and performing simultaneous inter-CGEMMs.

to Fig. (b) (i.e., 2048 times). In the scenario in [1], eliminating
the logarithmic term is feasible through the pre-copy-stacking
of four identical Bi,0 into a single plaintext before encryption.
Therefore, it becomes apparent that our partitioning method
demonstrates the same computation costs as their specifically
optimized BMM method for slim MM.

However, diagonal partitioning inherently imposes restric-
tions on matrix shapes, rendering the extension of [1] to general
matrices still reliant on standard block partitioning (or block
layout). For instance, to perform the MM in Fig. 4, one can
further decompose B into square blocks to apply diagonal
partitioning, leading to Sr = 128× 64 < So. Note that So can
be only determined by the required security level and the depth
of homomorphic circuits. [1] imposes strict limitations on Sr,
making it difficult to match So in many scenarios, thus
resulting in wasted idle plaintext slots.

Remark Our method prioritizes generality, making it ap-
plicable to any MM. It ensures optimal computation for all
cases, but the trade-off lies in not minimizing (bm + bn)bk
for the truly minimum number of encrypted matrices. In-
stead, it minimizes bmbnbk to simplify the OBL generation.
Most importantly, we emphasize the necessity of introduc-
ing BIR, which is independent of the partitioning method.
Thus, subsequent task scheduling based on BIR and optimiza-
tions in FHE4DMM are also applicable to other partitioning
methods.

B. Framework of Enhanced FHE3DMM

The algorithm comprises the client and server sides. The
former chooses how to distribute encrypted data, while the latter
is responsible for collaborative computation. The server-side
part is identical to trivial FHE3DMM. Therefore, we focus
on devising a scheduling strategy based on BIR with OBL to
achieve optimal or near-optimal communication costs.

Client-Side Setup: Algorithm 3 shows how the client dis-
tributes data. In contrast to the trivial on e, we first obtain
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Algorithm 3: Client-Side Setup for Plaintext Matrices
Am×k, Bk×n, and p Server-Side Processors.

the OBL [b̂m, b̂n, b̂k]. If p =≥ b̂mb̂nb̂k, we directly consider
[b̂m, b̂n, b̂k] as the processor grid; otherwise, we partition the
processor grid on BIR. The encrypted matrices can then be
viewed as new matrices of dimensions b̂m × b̂k and b̂k × b̂n,
with each element of size H .

For any processor grid [pm, pn, pk], the surface area of the sub-
cuboid, which corresponds to the data sent and received within
local GEMMs on individual processors, serves as a metric for
the communication costs on each processor [18]. We can directly
employ this idea on BIR to enhance FHE3DMM. The optimal
or near-optimal communication costs can thus be achieved by
minimizing (5),

W ∗
3D = (pmb̂k b̂n + pnb̂mb̂k + pk b̂mb̂n) ·H, (5)

with constraint pmpnpk ≤ p and a sub-target max pmpnpk.
In practice, the optimal solution can be obtained by enumerat-

ing all possible [pm, pn, pk]. While this scheduling is premised
on the use of OBL, the minimality of b̂mb̂nb̂k indicates that no
other block layout is superior.

C. Issues of Enhanced FHE3DMM

Using BIR can directly integrate traditional PGEMM into
FHE, but it overlooks potential problems associated with per-
forming homomorphic operations on large-scale data, particu-
larly data dependencies across multiple ciphertexts (e.g., FHE-
BMM). These issues can be categorized into two types of
redundant data movement: (1) redundant homomorphic data
movement and (2) redundant transfer of its corresponding
rotation keys (i.e., a type of evaluation key).

When executing server-side FHE3DMM, we simplify by
considering only the case where sub-MMs involve square ma-
trices (i.e., CGEMM(d, d, d)). Additional pre- or post-operations
required in the rectangular matrix case face similar issues.

Fig. 5(a) illustrates the computational details of CGEMM,
where internal homomorphic data movements are divided into
two stages: RotateAlign and ShiftByStep.4 In enhanced

4The semantic of ROT here is in the context of hypercube encoding, which
indicates the data movement along specific dimensions of plaintext slots.

Algorithm 4: FHE-BMM With 4D Optimization.

FHE3DMM, after broadcasting the initial data, each processor
must perform these internal homomorphic data movements be-
fore completing the remaining computations indicated on the
right side of the equation in Fig. 5(a). There are considerable
redundant data movements in the broadcast group related to
each sub-matrices of A and B. These redundant operations are
also the root cause of redundant transmissions during client-side
public key broadcasting.

V. THE FHE4DMM ALGORITHM

Improper SIMD homomorphic computations (Section IV-C)
can waste network bandwidth, storage, and computational re-
sources. Hence, FHE4DMM builds on enhanced FHE3DMM
to eliminate the redundancy caused by additional homomorphic
data movement compared to traditional 3DMM.

A. Server-Side 4D Optimization

For simplicity, we consider cases where sub-MMs involve
square matrices. Redundant computations can be eliminated
through a MapReduce-like process (see Fig. 5(b)). Similar
processes can be easily extended to additional pre- or post-
operations required in the rectangular matrix case. Specifically,
FHE4DMM refines Step 2 of FHE3DMM (Section III-A) into
the following sub-steps:

Step 2.1. Mapping Phase: Processor group Pi:t evenly dis-
tributes the computations in RotateAlign on A∗

i,t (cf. Al-
gorithm 3). Aggregation Phase: Each processor in the group
reduces local results, followed by a global reduction by all-
reduce. Similarly, processor group P:jt undertakes analogous
procedures for B∗

t,j .
Step 2.2. The homomorphic data movements in Shift-

ByStep are computed collaboratively like Step 2.1. All inter-
mediate results are shared by all-gather to conclude the
remaining computations.

When each processor runs standard FHE-BMM locally in
Step 2.1, performing all-gather on all encrypted sub-
matrices at once incurs a substantial memory burden. Processing
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Fig. 5. Server-side 4D optimization for FHE3DMM.

sub-matrices individually fails to eradicate local redundancy.
Therefore, FHE4DMM adopts loop interchanging to optimize
the workflow of Algorithm 1, as shown in Algorithm 4.5 Ro-
tateAlign does not involve all-gather, only Step 2.2
requires fine-tuning. For ShiftByStep, FHE4DMM con-
ducts bkR rounds to batch these redundant homomorphic data
movements (cf. the highlighted blue part in Algorithm 4) col-
laboratively before all-gather. We later (Section VI-A3)
elaborate on the practical parallel strategies, where some loops
can be swapped or merged.

B. Client-Side FHE4DMM

The FHE4DMM alters the computation and communication
costs of enhanced FHE3DMM, necessitating adjustments to the
client-side setup for greater efficiency.

1) Rotation Key Pruning: Existing FHE schemes handle
ROTs with different offsets using different rotation keys. In
contrast to enhanced FHE3DMM, which broadcasts a complete
set of rotation keys, server-side 4D optimization (Section V-A)
eliminates redundant ROTs. This allows the client to scatter
only the necessary rotation keys to the servers, thereby reducing
client-side data transfers and server-side memory requirements
of FHE4DMM.

2) Adjustments on Data Partitioning: Under BIR, data par-
titioning includes (1) OBL generation and (2) task scheduling.

Optimal Block Layout: FHE4DMM merely fine-tunes Algo-
rithm 2 to achieve a more favorable block layout for near-optimal
computations, rather than solving a completely precise optimiza-
tion problem. Specifically, for Case (2) in Algorithm 2 (i.e.,
at least one among bm and bn can be dynamically adjusted),

5For simplicity, Algorithm 4 breaks down CGEMM but hides some PMULTs,
which are also included in homomorphic data movements.

FHE4DMM employs a selection that minimizes bm + bn to
reduce computations.

Task Scheduling: Apart from broadcasting and reduction in
the original 3DMM phase, each processor in the group P:j:

engages in all-reduce and all-gather, with a total data
volume of bmbn(R+ 1) ·H , respectively. Similar to the analy-
sis ofPi::, FHE4DMM replaces the optimization objective of the
processor grid partitioning in Algorithm 3 with the minimization
of the following:

W ∗
4D = {pnbmbk · [1 + (0.5 ·R+ 1) · σ(pn)]

+ pmbkbn · [1+(0.5 ·R+ 1) · σ(pm)]+pkbmbn}·H,
(6)

where σ(x) = min {x− 1, 1}. The σ(·) term is used for zero-
one normalization, which cancels additional communication
costs term when RotateAlign and ShiftByStep phases
are completely degenerated to local computation.

C. Complexity Analysis of FHE4DMM

Before presenting the formal analysis, we summarize our
observations of FHE-PGEMM in Table III. The OBL(Section
IV-A) is identified under standard partitioning, achieving the
same computations as [1], but capable of handling arbitrary
matrix dimensions. The diagonal partitioning renders scheduling
based on data transfer areas of MM meaningless. Therefore, we
consider [1] a weaker version of enhanced FHE3DMM.

We assume that butterfly network collectives for communi-
cation costs analysis in [32] are optimal or near-optimal in the
α-β model [29] (α signifies network latency and β represents
the time for moving a word between processors). The costs of
these collective operations used are listed here, where w is the
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TABLE III
INTUITIVE COMPARISON OF FHE-PGEMM

TABLE IV
MEMORY REQUIREMENTS (MR) OF E3D AND 4D IN TABLE III

message size, and p is the number of processors involved:

Tbroadcast(w, p) = α(log (p)+p− 1)+2β · w· p− 1

p
,

Tall-gather(w, p) = α log (p) + β · w · p− 1

p
,

Treduce/all-reduce(w, p) = 2α log (p) + 2β · w · p− 1

p
.

Assuming the OBL [bm, bn, bk] has been attained, the optimal
processor grid p = pm × pn × pk can be achieved by minimiz-
ing (6). We can thus derive the communication latency L of
FHE4DMM as follows:

L=α·[2 log (pmpn)+(pm−1)+(pn−1)+2 log p]+2β ·W
∗
4D

p
.

(7)
Note that [pm, pn, pk] is determined by minimizing W ∗

4D in (6),
which tends to minimize pm and pn.

FHE4DMM primarily reduces the number of ROTs and
PMULTs. In existing approaches, these operations on A∗ or B∗

are performed several times equivalent to the number of those
within a single CGEMM multiplied by bmbnbk

p . Presently, this

factor has been reduced to bmbk
pmpk

for A∗ and bnbk
pnpk

for B∗. This
optimization alters the memory demands of FHE-PGEMM, as
summarized in Table IV.

VI. IMPLEMENTATIONS OF FHE4DMM

The implementation relies on hybrid parallelism integrating
Message Passing Interface (MPI) and Open Multi-Processing

Fig. 6. Encoding reuse optimization. The encoded constants are denoted by
polynomials f and fi. A ciphertext is a polynomial pair, denoted by �c.

(OpenMP). This section focuses on optimizing CGEMM and
provides several workarounds to facilitate MPI in FHE.

A. Efficient Single-Node CGEMM

In response to performance bottlenecks observed during ex-
periments, we systematically optimized local computation from
both algorithmic and hardware resource utilization levels.

1) Encoding Reuse: In the evaluation of the CGEMM with
large FHE parameters (i.e.,N ≈ 216, log q = 614), we observed
that encoding accounts for 59.48% of the total execution time.
In our scenarios where encoded constants only consist of 0 s
or 1 s, the encoding process can be regarded as polynomial
additions (i.e., a special case of the Chinese Remainder The-
orem (CRT) for polynomials) in BFV/BGV. Specifically, each
non-zero plaintext slot contributes to one polynomial addition,
implying N modular additions.

Especially for SELECT operation [10], two complementary
constant vectors (i.e., S non-zero plaintext slots in total) are
required, leading toO(NS)modular additions. The encoding on
the fly before each PMULT would result in significant overhead
when parameters are large. Therefore, we decouple the encoding
process from PMULTs, treating it as a pre-computation phase
independent of CGEMM.

The encoding phase for any given CGEMM is executed only
once. To enhance parallelism, the encoding phase is divided
into encoding and combination processes (see Fig. 6) to op-
timize the reuse of polynomial constants. For instance, our
application initially performs row- or column-wise pre-encoding
based on matrix dimensions. These pre-encoded constants are
then reassembled according to the specific constants required.
This optimization reduces the number of modular additions in
CGEMM(d, d, d) from O(d3 ·N) to O(d2 ·N).

2) Parallel BSGS: We employ BSGS optimization for
CGEMM and utilize OpenMP’s task dependency feature to fully
overlap the independent computations.

3) 4D Optimization for Shared Memory: FHE4DMM,
through data reuse, diminishes redundant computations and
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thus imposes a minimum requirement on memory size. This
minimum demand (Section V-C) is sufficient for multi-machine
parallelism and is typically much less than the available memory
of modern machines. Current high-performance applications,
including FHE4DMM, extensively employ multi-machine and
multi-core hybrid parallel mechanisms.

The available shared memory directly influences the al-
gorithm’s parallel strategy. FHE4DMM employs two distinct
strategies based on the size of extra memory held by each proces-
sor: (1) Limited Memory: no loop parallelization is conducted.
Instead, only the results of either the loop at Line 5 or Line 7 in
Algorithm 4 are preserved in memory. While the other loop is
merged into Lines 9∼10 as an outer loop and computed on the
fly. (2) Large Memory: building upon the “limited memory”
parallel strategy, one or both of the loops at Lines 3 and 4 in
Algorithm 4 is parallelized based on the hardware resources
available.

B. MPI-Enabled FHE

We implement FHE4DMM based on serializable ciphertexts
without involving distributed polynomial operations.

Adaptation of MPI Collectives: It is difficult to reduce
ciphertexts with dynamically varying lengths through ex-
isting MPI APIs. Therefore, FHE4DMM employs binary-
tree all-to-all reduction based on basic MPI_Send/Recvs.
For all-gather, FHE4DMM introduces a proposed
MPI_Allreduce to ascertain the maximum message length,
subsequently padding the message buffer to the same length
before actually invoking MPI_Allgather.

Packing MPI Operations: Considering the additional over-
head introduced by each MPI operation, particularly evi-
dent when each processor holds multiple encrypted blocks,
FHE4DMM utilizes message-packing techniques to alleviate
the impact of excessive ciphertexts. Specifically, we pack all
bitstreams representing these encrypted blocks into a unified
message, supplemented with necessary auxiliary data for un-
packing. This approach significantly reduces the actual number
of MPI operations within FHE4DMM.

C. Variants for Different FHE Schemes

Given that only HElib [10] supports BGV with hypercube
encoding, our implementation of FHE4DMM is based on it.
Specifically, we implement both BGV and CKKS variants.
For CKKS, due to the necessity of consuming moduli after
processing non-scalar PMULT, there are slight differences in
implementing homomorphic data movement.

VII. EXPERIMENT

The experiments (Section VII-A and VII-B) were conducted
on an AMD EPYC 7452 cluster equipped with an InfiniBand
network boasting 56 Gbps bandwidth. Each processor features
2× 16 cores (at 2.35 GHz), coupled with 256 GB DDR4 mem-
ory in total. Consequently, every machine within the cluster can
concurrently execute up to 64 threads. All performance tests

utilized the hypercube-encoding version (Section VI-C) with
the appropriate number of threads.

Infrastructure Details: All implementations were compiled
using GCC 12.2.0. Intel MPI 2017.5.239 was chosen for the MPI
backend. Multi-core programming was facilitated using GNU
OpenMP 4.5. HElib 2.3.0 was utilized for the implementation
of FHE schemes.

A. Performance of FHE4DMM

Baseline: Some intuitive comparisons between [1] (TDSC-
Baseline) and FHE4DMM are listed in Table III. We reproduce
TDSC-Baseline in the same environment as FHE4DMM due
to several reasons: (1) TDSC-Baseline is implemented based on
CKKS in SEAL. It is difficult to achieve fair comparisons across
different libraries and schemes. (2) FHE4DMM enhances indi-
vidual CGEMMs through encoding reuse and thread-task overlap.
These optimizations are also applied to Baseline to ensure
that the focus remains on the core enhancements introduced
by FHE4DMM. (3) TDSC-Baseline supports only three matrix
shapes, which does not encompass all problem dimensions
tested here. We employ enhanced FHE3DMM to address the
cases not supported by TDSC-Baseline.

Comparison Targets and Test Cases: We compare two ver-
sions of FHE4DMM (FHE4DMM-Shared and FHE4DMM)
with Baseline: (1) 4D-S uses the same processor grid as Baseline
and eliminates “L” redundancy (cf. Table III). (2) 4D further
eliminates “G” redundancy of 4D-S and uses 4D scheduling (cf.
Table III).

We test four classes of matrix dimensions, covering vari-
ous cases of Algorithm 2: (1) Square: m = n = k. (2) Flat:
m = n 	 k. (3) LargeM: m 	 n ≈ k. (4) Slim: m = k 	 n.
Table V lists the specific test cases and configurations.

Scalability Tests: We conducted tests employing 8 to 128
nodes, with each processor initiating one MPI process. Fig. 7
illustrates the server-side execution time of three methods. Time
measurements ensure synchronization before and after execu-
tion through explicit barriers. All tests ensure full parallelism:
Baseline uses nested parallelism, and FHE4DMM selects the
appropriate parallel strategy.

The two versions of FHE4DMM exhibit good parallel scal-
ability on all problem classes in Table V. Baseline performs
poorly for LargeM and Slim, especially when utilizing more
processors. Moreover, the elimination of redundant computa-
tions through loop interchanging (Section V-A) yields substan-
tial performance enhancements for FHE4DMM. Compared to
Baseline, FHE4DMM achieves a maximum speedup of 4.31x
(averaging 3.61x) for Square, 16.62x (averaging 9.72x) for Flat,
10.59x (averaging 5.88x) for LargeM, and 14.44x (averaging
13.09x) for Slim.

To demonstrate the scalability of FHE4DMM more clearly,
we conducted experiments on a slightly smaller scale Square and
Slim, employing parameter configurations identical to the same
matrix classes in Table V. The experimental results depicted in
Fig. 8 show that FHE4DMM achieves a nearly linear speedup.
Furthermore, for Square, the workload of a single machine
in Fig. 8 coincides precisely with the workload distributed to
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TABLE V
CONFIGURATIONS AND FHE PARAMETERS. HERE, So = 214 AND NOISE CAPACITY IS SUFFICIENT FOR AT LEAST ONE CGEMM

Fig. 7. Strong scaling tests of Baseline, 4D-S and 4D. The minimal, mean (marked line), and the maximal execution time at least in five runs are shown. The top
right subfigure is a zoomed-in view of 4D-S and 4D.

Fig. 8. Strong scaling tests of FHE4DMM.

each machine in the 8-node case of Fig. 7, resulting in similar
execution time. This demonstrates that FHE4DMM has good
weak scaling performance.

Given the economical cost associated with testing larger
matrices, we limited our experiments with 256 machines to
Square (m = n = k = 4096) and Slim (m = k = 32768, n =
16). Similarly, we employ parameter configurations identical to
the corresponding matrix classes in Table V. The outcomes of
these experiments are presented in Table VI.

Performance Enhancement Analysis: Fig. 9 presents normal-
ized runtime breakdowns of Fig. 7. The hatched entries in
other versions notably diminish compared to those in Base-
line, signifying that FHE4DMM eliminates considerable re-
dundant homomorphic data movement. Comparisons between
4D-S and 4D in other test cases reveal that the introduc-
tion of minimal communication relative to the overall runtime
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Fig. 9. Normalized execution time breakdowns of Baseline, 4D-S and 4D with 8 processors in Fig. 7. The stacked entries with hatch markers represent local
computation (where CGEMM = RotateAlign+ ShiftCompute and ShiftCompute = ShiftByStep+ MULTs). The MPI entry includes time spent in
communication and synchronization. 4D∗ keeps the same processor grid as 4D-S. For Slim, 4D mirrors 4D-S, so only a zoomed-in view is provided.

TABLE VI
LARGE-SCALE TESTS OF FHE4DMM ON 256 MACHINES

reduces numerous redundant computations within the broadcast
group.

In Fig. 9(a), an additional comparative experiment has been
incorporated to elucidate the impacts of 4D scheduling. The
block layout per processor is [8,8,8] (i.e., [ bmpm

, bn
pn

, bk
pk
]) for both

4D-S and 4D∗. For the former, the total number of ROTs and
PMULTs is equivalent to the necessary number of these opera-
tions for A (or B) within CGEMM multiplied by (8 + 8) · 8 =
128. In contrast, the latter eliminates “G” redundancy, reducing
this factor to (8 + 8) · 8/2 = 64 (as pm = pn = 2) through ad-
ditional communication. For 4D, the block layout per processor
becomes [16,16,2], with the aforementioned factor related to
homomorphic data movement amounting to (16 + 16) · 2 = 64
and fewer additional communication costs. The increased some-
what computation cost observed in 4D compared to 4D∗, arises
from adjustments on parallel strategies (Section VI-A3) at the
implementation level.

B. Real-World Applications of FHE4DMM

We employ a basic convolutional neural network (CNN) to
evaluate the practical performance of FHE4DMM.

1) CNN Architecture and Dataset: A simple 5-layer network
is used for the Extended MNIST (EMNIST [33]) and CIFAR-
10 [34], both 10-class datasets. Fig. 10 illustrates the network
architecture, with the above showing the model we used for
training. Layers are labeled with input and output dimensions
between them. The highlighted boxes below indicate the homo-
morphic operations required for secure outsourced inference.
The table beneath Fig. 10 lists the network’s detailed parameters.
These two datasets represent different types of large-scale appli-
cations: (1) Predicting EMNIST involves smaller matrix dimen-
sions, which we scale up by increasing the batch size BS, thus
transforming it into large-scale MM and significantly enhancing

Fig. 10. Five-layer neural network (BS: batch size. Ci, Co: input and output
channels. K,S: filter size and filter stride. F1, F2: feature dimensions).

outsourcing throughput. (2) For CIFAR-10, this simple network
contains only one convolutional layer, leading to large matrix
dimensions in the fully connected layers, which we consider as
the application itself requiring large-scale MM.

Remark (Practicality): We emphasize that a key innovation of
FHE4DMM lies in its reuse optimization methods in SIMD ho-
momorphic computation, which, if neglected, will significantly
impact the practical latency. These optimizations include reusing
homomorphic data movements (Section V-A) and encoded con-
stants (Section VI-A2), providing valuable insights for broader
FHE-based applications. Using a 5-layer network allows for pa-
rameter settings that avoid bootstrapping, enabling us to focus on
FHE-PGEMM primarily. Indeed, the capability of this network
is limited, achieving 98.7% accuracy on EMNIST but only 61%
on CIFAR-10. It is noteworthy that FHE4DMM benefits from
the implementation of more complex networks. For example, we
can batch StC and CtS in CKKS bootstrapping [35], treating
them as plaintext-ciphertext MM. This approach enables us to
perform bootstrapping collaboratively while avoiding redundant
rotation keys.

2) Applying FHE4DMM to Practical Applications: The
OBL fixes the data layout for entire homomorphic computations.
Therefore, the other layers in Fig. 10 must adhere to the input
matrix format of the fully connected layers, which dictates how
the client packs the raw data before encrypting.

FHE4DMM supports consecutive MMs. However, deriving
the OBL from any two pairs of matrices in the matrix chain
leads to varying homomorphic data movements. Fortunately, this



656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 4, APRIL 2025

Fig. 11. Execution time breakdowns and acceleration of secure outsourced
inference on EMNIST (top) and CIFAR-10 (bottom) with 64 processors.

optimization problem resembles the matrix chain multiplication
(MCM) algorithm. Based on the traditional MCM, we can
efficiently calculate the OBL for consecutive MMs in a greedy
way, rather than enumerating exponentially many cases. The
complete algorithm is provided in Appendix C, available online.

3) Secure Outsourced Inference: We implement outsourced
inference with encrypted data and model parameters. We uni-
formly use the hypercube-encoding version of FHE4DMM for
testing, requiring conversion from floating-point numbers to
fixed-point numbers to fit the underlying BGV scheme.

Client Setup and Finalization: To prevent overflow of t due to
excessively high fixed-point precision, we employ CRT on raw
data. In the 5-layer network for EMNIST and CIFAR-10 (see
Fig. 10), the MULT depth of 5 consistently dominates the total
noise (specifically log q is about 620 to 650). Thus, under the
condition of ensuring a 128-bit security level,So remains around
214. Although L,Ci, Co,K and S have a slight impact on noise
(i.e., only increasing the ADD depth), they considerably affect
the accumulation of plaintext values. By setting log t = 31 and
scaling by 210, a 4-layer CRT suffices for prediction on both
datasets without loss of accuracy.

Guided by Section VII-B2, we must implement convolution
using element-wise operations in the BS× F1 data format. The
client thus must pack and encrypt its input in this format before
distributing ciphertexts. Packing (i.e., data partitioning) should
be determined by the matrix dimensions involved in the fully
connected layers. Our application involves only two MMs, al-
lowing us to enumerate the optimal solution. For all tested batch
sizes BS, the OBLs for the EMNIST and CIFAR-10 datasets
are [1, BS

1024 , 4] and [1, BS
128 , 50] respectively, with plaintext slot

shapes 16× 1024 and 128× 128.
Upon receiving secure outsourced computation results (i.e.,

the encrypted output in CRT format), the client decrypts them
with the private key. Subsequently, the client retrieves the pre-
dicted labels from the clear data.

Performance Evaluation of Outsourcing: We utilize 64 pro-
cessors with 64 threads to test the performance under various BS
settings. The matrices involved in our applications exceed the
scope addressed by [1] (which also do not account for further
optimization opportunities from consecutive MMs). Therefore,
we selected its enhanced version, E3D (cf. Table III), as our
baseline. Compared to our method, Baseline includes only two
additional redundancies: homomorphic data movements and
encoded constants. We use the same parallelism strategies as
in Section VII-A. Fig. 11 presents a runtime analysis comparing
two methods during outsourced inference.

Note that the encoding time in our method is less than 2
seconds, which is almost negligible The high latency of MPI
in Baseline confirms its poor scalability (Section VII-A). Com-
parisons of different BS show that our method achieves greater
speedup for larger data scales. Specifically, ours achieved a max-
imum speedup of 3.54x on EMNIST and 4.22x on CIFAR-10.

VIII. RELATED WORK

FHE has spurred extensive research in secure outsourced
computation, with various approaches to secure matrix multi-
plication. We observed this diversity stems from the underly-
ing mathematical frameworks of FHE schemes (e.g., RLWE),
which permit a certain degree of data encoding. Some recent
studies [36], [37] employ coefficient encoding to avoid costly
homomorphic data movement. However, this method has a
low encoding capacity and only supports specific calculations,
necessitating the integration of other cryptographic techniques
(e.g., secret sharing), which requires additional communication.
This paper focuses on FHE-based matrix multiplication for
non-interactive secure outsourcing, opting for SIMD encoding.
Similar works [1], [30], [38] have two main characteristics: (1)
the difficulty of avoiding homomorphic data movement and (2)
the significant impact of specific applications on data layout
(e.g., privacy-preserving CNN inference requires operations in-
volving flexible data layouts, such as convolution and flattening).

Numerous studies [1], [17], [30], [31], [39], [40], [41] have
focused on optimizing matrix multiplication which packs the
entire matrix (referred to as CGEMM in this paper). However,
partitioning the raw data remains unavoidable in practical ap-
plications as noted in Section III-B. Several implementations of
distributed matrix multiplication have been proposed in [1], [42],
all of which are constrained to parallelizing specific applications.
In other words, None of these works delve into the combination
of distributed algorithms and FHE. While our method offers
maximum generality, it may not be directly suitable for all
applications. Nevertheless, it addresses common, often over-
looked issues that significantly impact the practical latency of
computations on large-scale encrypted data.

IX. CONCLUSION

This paper presents FHE4DMM, a low-latency large-scale se-
cure matrix multiplication based on fully homomorphic encryp-
tion with two encrypted matrices. Fundamentally, FHE4DMM
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introduces an HE-friendly data partitioning scheme, which com-
prehensively considers FHE parameters (i.e., FHE parameter-
adaptive). This partitioning, guided by mathematical methods,
aims to minimize the objective function relevant to compu-
tation while facilitating scheduling for achieving optimal or
near-optimal communication costs.

The key insight of FHE4DMM highlights new challenges
faced in parallel computing within FHE-based secure outsourc-
ing scenarios, particularly for parallelized SIMD homomor-
phic computation. First, and most importantly, it is crucial to
consider the reuse of costly homomorphic data movements.
If data parallelism is confined solely to the raw data layer, it
can lead to substantial redundant computation on encrypted
data both locally and across processors, resulting in significant
overhead. Second, the reuse of encoded constants required for
SIMD homomorphic operations (e.g., PMULT) is essential. An
evident observation is that the encoded constants required for
each algorithm are typically fixed. The encoding process should
be separated from homomorphic operations, and its results
should be reused. A deeper optimization is recognizing the
repetitive computations in the encoding process, such as within
CGEMM, where the encoded constants are reusable across matrix
rows or columns. Combined with the techniques inspired by
these insights, FHE4DMM demonstrates practical efficiency
for any matrix dimension and processor number in real-world
applications.
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