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Abstract—This article studies the core maintenance problem for dynamic graphs which requires to update each vertex’s core

number with the insertion/deletion of vertices/edges. Previous algorithms can either process one edge associated with a vertex

in each iteration or can only process one superior edge associated with the vertex (an edge hu; vi is a superior edge of vertex u

if v’ core number is no less than u’s core number) in each iteration. Thus for high superior-degree vertices (the vertices

associated with many superior edges) insertions/deletions, previous algorithms become very inefficient. In this article, we

discovered a new structure called joint edge set whose insertions/deletions make each vertex’s core number change at most

one. The joint edge set mainly contains all the superior edges associated with the high superior-degree vertices as long as

these vertices are 3þ-hop independent. Based on this discovery, faster parallel algorithms are devised to solve the core

maintenance problems. In our algorithms, we can process all edges in the joint edge set in one iteration and thus can greatly

increase the parallelism and reduce the processing time. The results of extensive experiments conducted on various types of

real-world, temporal, and synthetic graphs illustrate that the proposed algorithms achieve good efficiency, stability and

scalability. Specifically, the new algorithms can outperform the single-edge processing algorithms by up to four orders of

magnitude. Compared with the matching based algorithm and the superior edge based algorithm, our algorithms show a

significant speedup up to 60� in the processing time.

Index Terms—Graph analysis, core maintenance problem, parallel algorithm

Ç

1 INTRODUCTION

CORE number is one of the most efficient and helpful
indexes adopted in graph analytics to depict the

cohesiveness of a graph, as previous work has proposed
a linear time complexity algorithm to compute this index
defined on vertices of a graph [6]. Specifically, the k-core
in graph G is a subgraph that each vertex’s degree in the
subgraph is no less than k. For a given vertex v, if we
can find that v is contained in a k-core and cannot find v
is contained in a ðkþ 1Þ-core, we say vertex v’s core
number equals to k. Core number has been widely used
in large numbers of real-world applications, including

analyzing the Internet topology [8], learning dynamic
dependency network structure [12], the study of the
influential spreader in complex networks [17], large-scale
software systems structure analysis [19], [24], the predic-
tion of the function of biology networks [4], and graph
visualization [2].

As dynamicity is inherent in a wide spectrum of graph
applications, such as social networks where there are persis-
tent node joining/leaving or edge insertion/deletion. Recent
studies on core computation turn attention to the core main-
tenance problem, which is to correctly update each vertex’s
core number after the graph change. If we recompute the
vertices’ core numbers using the algorithms described in
static graphs, the time and space cost is high especially in
large-scale graphs with millions of vertices and hundreds of
millions of edges. Besides, the number of updated edges is
usually small such that only a small proportion of vertices
need to update their core numbers. Thus, the two main
issues to be solved in core maintenance as discussed in [14]
are: (1) find the vertices whose core numbers will change
after the insertion/deletion of edges, and (2) identify how
large the core numbers of these vertices have changed. The
main difficulties are, even if the same number of edges are
inserted/deleted, the vertex set whose core numbers will
change and the changed values may be different.

To overcome the challenges for core maintenance,
Sariy€uce et al. [23] presented the single edge based algo-
rithm focusing on the case of one edge insertion/deletion in

� Q.-S. Hua, Y. Shi, H. Jin, and H. Chen are with National Engineering
Research Center–Big Data Technology and System Lab, Key Laboratory of
Services Computing Technology and System, Key Laboratory of Cluster and
Grid Computing, School of Computer Science and Technology, Huazhong
University of Science and Technology,Wuhan 430074, P.R. China.
E-mail: {qshua, m201672783, hjin, chen}@hust.edu.cn.

� D.Yu andX. Cheng are with the School of Computer Science and Technology,
ShandongUniversity, Qingdao 266237, P.R. China.
E-mail: {dxyu, xzcheng}@sdu.edu.cn.

� J. Yu is with the School of Computer Science and Technology (Shandong
Academy of Sciences), Jinan, Shandong, 250353, P.R. China.
E-mail: jiguoyu@sina.com.

� Z. Cai is with the Department of Computer Science, Georgia StateUniversity,
Atlanta, GA 30303. E-mail: zcai@gsu.edu.

Manuscript received 24 Apr. 2019; revised 28 Oct. 2019; accepted 10 Dec.
2019. Date of publication 17 Dec. 2019; date of current version 27 Jan. 2020.
(Corresponding author: Dongxiao Yu.)
Recommended for acceptance by M. Guo.
Digital Object Identifier no. 10.1109/TPDS.2019.2960226

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020 1287

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0001-6451-1158
https://orcid.org/0000-0001-6451-1158
https://orcid.org/0000-0001-6451-1158
https://orcid.org/0000-0001-6451-1158
https://orcid.org/0000-0001-6451-1158
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
https://orcid.org/0000-0002-0164-6853
mailto:qshua@hust.edu.cn
mailto:m201672783@hust.edu.cn
mailto:hjin@hust.edu.cn
mailto:chen@hust.edu.cn
mailto:dxyu@sdu.edu.cn
mailto:xzcheng@sdu.edu.cn
mailto:jiguoyu@sina.com
mailto:zcai@gsu.edu


each iteration. They proved that in this scenario, each
vertex’s core number will be changed by at most 1. Hence, it
overcomes the second issue as above mentioned. As a
result, it only needs to find an efficient algorithm to identify
the vertex set that each vertex in the set changes its core
number. Scott et al. [21] presented incremental graph proc-
essing for on-line analytics. Based on the single edge algo-
rithm, Jin et al. [14] presented a matching based algorithm
and Wang et al. [25] presented a superior edge based algo-
rithm to simultaneously insert/delete multiple edges and
ensure that each vertex’s core number change is at most 1.
Thus, more edges can be processed in each iteration and the
total number of iterations can be reduced.

However, the matching based algorithm can only process
one edge associated to a vertex in each iteration and the
superior edge based algorithm can only process one supe-
rior edge associated to the vertex (hu; vi is a superior edge
for vertex u if v’s core number is no less than u’s core num-
ber) in each iteration. When considering the scenario that a
vertex v adds multiple superior edges, for example the ver-
tex v4 in Fig. 1 adds 5 superior edges, the algorithms in [14]
and [25] need at least 5 iterations to process the newly
added edges. Thus we need to give special treatment to
these vertices to reduce the iteration times.

In this paper, we prove that: when we insert/delete all
superior edges associated to the vertex v in one iteration,
each other vertex’s core number can be changed by at most
1 from its previous core number; and the vertex v’s core
number can be changed by at most 1 from its defined pre-
core number(c.f. Definition 7 and Fig. 2) which is calculated
from v’s all neighbors’ previous core numbers.

Based on this observation, in this paper, a new algorithm
is presented for core maintenance that admits multiple
edges insertions/deletions in one iteration. In particular, we
treat those vertices inserting/deleting multiple superior
edges as central vertices, and find an available structure of
inserted/deleted edges that the insertion/deletion of the
structure makes each vertex except central vertices change
the core number by at most 1. As for each vertex in central
vertices, its core number changes by at most 1 from its pre-
core number. Then the core maintenance problem can also
be simplified as finding the vertex set that each vertex in the
set will change its core number with the insertion/deletion
of the available structure. As a result, we can devise efficient
core maintenance algorithms consisting of two key steps in

each iteration: 1) find the available structure, and 2) find out
those vertices whose core numbers really change with the
insertion/deletion of the available structure.

The following summarizes the major contributions:

� We propose an available structure called Joint Edge
Set whose insertion/deletion in each iteration makes
each vertex except the central vertices change its
core number by at most 1.

� Based on the proposed joint edge set structure and by
adapting the TRAVERSAL algorithms for single-edge
insertion/deletion in [23],we present parallel coremain-
tenance algorithms that can handle multiple edge inser-
tions/deletions simultaneously. Our algorithms can
greatly reduce the times of iterations needed for core
number update. If we denote the number of inserted/
deleted edges asmc, the sequential single-edge process-
ing algorithm needsmc iterations, while our algorithms
can reduce the times of iterations tominfD2;Deg, where
D2 is the maximum number of central vertices within
each central vertex’s 2-hopneighbors, andDe is themax-
imum number of edges inserted/deleted to every ver-
tex. Notice that even if a large number of edges are
inserted/deleted, D2 and De are usually very small in
large-scale networks. Compared with algorithms in [25]
and [14], our special treatment to central vertices can
greatly reduce iteration times with the insertion/dele-
tion ofmultiple vertices/edges.

� Extensive experiments conducted on various kinds
of graphs, including real-world, temporal and syn-
thetic graphs show that the proposed algorithms
achieve good stability and scalability. Besides, when
comparing with existing algorithms, our approach
outperforms the single-edge approach by Sariy€uce
[23] by up to four orders of magnitude. In addition,
our algorithms can achieve up to 60 � faster than the
matching based algorithm in [14] (Fig. 7a) and the
superior edge based algorithm in [25] (Fig. 8a), espe-
cially when there are lots of vertices/edges inser-
tions/deletions.

The rest of this paper is organized as follows. We briefly
discuss the related work in Section 2 and give some formal
definitions used in this paper in Section 3. The theoretical
basis of our algorithms is given in Section 4. Based on the theo-
retical analysis, we propose the parallel core maintenance
algorithms for the insertion and deletion cases in Sections 5
and 6, respectively. We conduct extensive experiments and

Fig. 1. In the sample graph G, the dotted lines are newly added edges.
The number on top of each vertex means the vertex’s core number
before inserted edges. Vertex v4 is a newly added vertex with initial core
number 0 and thus all its connected edges are superior edges. The
added edges for existing vertices v13; v17 are also superior edges since
they connect to higher or equal core number vertices.

Fig. 2. In (a) and (b), new vertex v6 joins the original graph and adds
some edges to existing vertices. The final core number the vertex v6 is
either equal to pre-core(v6) or pre-core(v6)+1.

1288 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020



present the results in Section 7. We show the algorithm’s
application in distributed core decomposition in Section 8.
The conclusion of ourwork ismade in Section 9.

2 RELATED WORK

The core decomposition problem is to compute the core num-
ber of each vertex in static graphs. Batagelj and Zaversnik [6]
presented a linear time complexity algorithm to compute the
core numbers. It is a bottom-up approach to continuously
remove vertices whose degrees are less than k until all vertices
are processed. In [10], Cheng et al. proposed a disk oriented
algorithm when the random access memory is too small to
hold the entire graph. Their top-down approach computes
core numbers from large values to smaller ones recursively. It
greatly reduces the disk I/O cost. Based on the locality prop-
erty of the core decomposition, Montresor, Pellegrini and
Miorandi studied the distributed k-core decomposition in
[20]. The above three algorithms were implemented and com-
pared in [16] under the GraphChi and WebGraph models
using a single consumer-grade machine. Besides, with the
popularity of multi-core processors, Dasari, Desh and Zubair
proposed a parallel core decomposition algorithm in [11].
Their experiment results indicate that the parallel algorithm
using 32 cores can achieve speedup up to 21 times compared
with the sequential algorithm.

In contrast, the core maintenance problem is to update a
subset of vertices’ core numbers instead of recomputing with
the evolvement of the graph. Specifically, in [23], Sariy€uce
et al. proved that the core number change of each vertex is at
most one after inserting/deleting one edge. Based on this
statement, they proposed a fast algorithm called TRAVERSE
to identify the vertex set whose core numbers really change
with the insertion/deletion of edges. In [18], Li, Yu and Mao
gave a similar result only to maintain certain vertices’ core
numbers when the graph insert/delete an edge. In [26],
Wen et al. proposed a disk oriented approach for I/O effi-
cient core decomposition. Distributed algorithms for the
core maintenance were studied in [1] and [3]. They both
aggressively prune unnecessary computations and only
need to re-evaluate the core number of a fixed number of
vertices after the edge insertions/deletions. In [25] and [14],
Wang et al. proposed parallel algorithms to simultaneously
process multiple edges in each iteration. They are the first
one to explore the available structure that the insertion/
deletion of the structure can only make each vertex’s core
number change by at most 1.

3 PROBLEM DEFINITIONS

Given an undirected and unweighted graph G ¼ ðV;EÞ,
where V ðGÞ and EðGÞ represent the sets of vertices and
edges in G, respectively. Let N ¼ jV ðGÞj and M ¼ jEðGÞj.
In this paper, for a vertex u 2 V ðGÞ, u0s neighbors and
degree are denoted as NGðuÞ and dGðuÞ ¼ jNGðuÞj, respec-
tively. When the context is clear, they are simplified as NðuÞ
and dðuÞ, respectively. DðGÞ is the maximum degree of ver-
tices in G. dðGÞ is the minimum degree of vertices in G. We
say graph H is a subgraph of G if it satisfies that
EðHÞ � EðGÞ and V ðHÞ � V ðGÞ. We next give some useful
formal definitions.

Definition 1 (k-Core). A k-core of a graph G is a maximal sub-
graphH of G that 8v 2 V ðHÞ; dHðvÞ � k, i.e., dðHÞ � k.

Definition 2 (Max-k-Core). For a given vertex v in the graphG,
if v is contained in a k-core and there does not exist a ðkþ 1Þ-core
containing vertex v, the k-core is called the max-k-core of vertex v
in graphG.

Definition 3 (Core Number of a Vertex). For a given vertex
v in the graph G, if there exists a max-k-core containing vertex
v, the core number of vertex v equals to k. We use coreGðvÞ to
denote the vertex v0s core number in graph G. When the context
is clear, it can be simplified as coreðvÞ.
According to the above definitions, we have the follow-

ing equation to compute the core number of the vertex v

coreðvÞ ¼ argmax
K�0
fjfu 2 NðvÞjcoreðuÞ � Kgj � Kg:

(1)

The equation tells us that one vertex’s core number is
related only to its neighbors’ core numbers information.

Definition 4 (Core Number of an Edge). For an edge
e ¼ hu; vi, the core number of the edge e equals to the smaller
value of coreðuÞ and coreðvÞ. We use coreðeÞ to denote edge e’s
core number.

Definition 5 (Superior Edge[25]). For an edge e ¼ hu; vi in
graph G, if coreðuÞ � coreðvÞ, we say edge e is a superior edge
of vertex u.

Definition 6 (Superior Degree). For a graph G, the superior
degree of v is defined as the number of superior edges of v. We
use SDGðvÞ to denote vertex v’s superior degree. When the con-
text is clear, it can be simplified as SDðvÞ.
In this work, we study the core maintenance problems

with the insertions/deletions of vertices/edges in dynamic
graphs. Specifically, the core maintenance problems under
the insertion and the deletion cases are known as the incre-
mental and the decremental core maintenance, respectively.

4 THEORETICAL BASIS

As mentioned earlier, the state-of-art algorithms can either
process one edge associated to a vertex in each iteration (the
matching based method in [14]) or can only process one
superior edge associated to the vertex in each iteration (the
superior edge based method in [25]). Thus, for high supe-
rior-degree vertices (the vertices with many superior edges)
insertions/deletions, these algorithms become inefficient.

We discover that if we compute the pre-core values (Defi-
nition 7) of the vertices in a 3þ-hop independent set (Defini-
tion 8) in advance, each vertex in the independent set can
change its core number by at most 1 from its pre-core value.
Thus, for each vertex in the 3þ-hop independent set, even it
adds/deletes arbitrary number of superior edges, we can pro-
cess these edges in one iteration. Based on this discovery, we
propose a new structure called joint edge set whose inser-
tions/deletions onlymake each vertex change its core number
by at most 1. The joint edge set mainly contains all the edges
with the high superior-degree vertices as long as these verti-
ces are 3þ-hop independent. Note that the matching structure
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in [14] is a subset of the superior edge structure in [25], and the
superior edge structure is a subset of the proposed joint edge
set structure. Table 1 lists some important notations with their
descriptions used in this paper.

4.1 The New Structure Called Joint Edge Set

After the graph change, the core numbers of vertices com-
puted using Equation (1) may not be correct any more. But as
shown later, this value is very helpful in the core number
update procedure. Hence, we define this value as the pre-core
of each vertex v in the changed graph, denoted as pre-coreðvÞ.
The formal definition is given as follows.

Definition 7. After inserting/deleting edges into graph G ¼ ðV;
EÞ,G becomesG0 ¼ ðV 0; E0Þ. The pre-core number of the vertex
v 2 V 0 is defined as argmaxK�0fjfu 2 NG0 ðvÞjcoreGðuÞ �
Kgj � Kg.
For example, considering the vertex v4 in Fig. 1, it adds 5

new neighbors whose core numbers are core(v1)=1, core(v3)
=3, core(v5)=3, core(v6)=3 and core(v7)=3. According to Defi-
nition 7, K ¼ 3 is the maximum value satisfying the condi-
tion. Thus, pre-core(v4)=3.

We next give two sufficient conditions for the core num-
ber change, which will be useful in the subsequent proofs.

Lemma 1. Considering a vertex w 2 V and coreðwÞ ¼ q, if the
core number of each vertex in w’s neighbors increases/decreases
by at most 1, then the vertex w’s core number will increase/
decrease by at most 1.

The proof of Lemma 1 can be found in Appendix A, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2019.296
0226.

Lemma 2. After the insertion/deletion of a vertex u and its con-
nected edges hu; v1i; hu; v2i; . . . ; hu; vpi in graph G, for each
vertex w 2 V ðGÞ; w 6¼ u and coreðwÞ ¼ q, its core number
changes by at most 1.

Proof. We first consider the insertion case. We assume that
vertex w’s core number increases by Dq > 1 to q þ Dq
after the insertion of edges. The max-k-core of vertex w
before the insertion is denoted as Hw. The max-k-core of
vertex w after the insertion is denoted as Hw

þ. It can be

concluded that u 2 Hw
þ, as otherwise Hw

þ is a (q þ Dq)-core
before the insertion, which conflicts with our assumption.
As coreðwÞ ¼ q þ Dq after the insertion of edges, w has
at least q þ Dq neighbors in Hw

þ whose degrees are at
least q þ Dq. Let Z ¼ Hw

þ n u, if Z is connected, we can
find that w has at least q þ Dq-1 neighbors whose degrees
are at least q þ Dq � 1, since the removal of a single vertex
can make the degree of every vertex in Z decrease by at
most 1. As a result, Z must form a (q þ Dq � 1)-core,
which conflicts with our assumption, since q þ Dq � 1 >
q but Hw is the maximal k-core before the insertion. If Z is
disconnected, there are at most pþ 1 components as we
insert p edges. We denote the components as Ci where
1 � i � pþ 1. In Hw

þ each vertex has at least q þ Dq neigh-
bors, as each vertex’s degree reduces by at most 1 after
removing vertex u, there are at least q þ Dq � 1 neighbors
for each vertex in graph Z. So each component Ci must be
a (q þ Dq � 1)-core and vertex w is contained in one of
these components, which also leads to a contradiction.

Next, we consider the deletion case. We assume that
coreðwÞ is decreased by Dq > 1 after the removal of ver-
tex u. If we add vertex u back to the graph, vertex w’s
core number will increase by Dq, which contradicts with
the result proved above in the insertion case. tu
By the above Lemma 2, after the insertion/deletion of a

vertex u and its connected edges, the core number change of
each vertex except u is at most 1. For vertex u itself, by Lemma
1, its core number change is at most 1 from pre-core(u), since
the core number changes of all its neighbors are at most 1. As
pre-core(u) can be calculated using all its neighbors’ core
numbers in the original graph, to simplify our presentation,
when we say vertex u changes its core number by at most 1,
wemean it changes by atmost 1 frompre-core(u).

Then we reconsider the situation when a new vertex joins
the original graph. As shown in Figs. 2a and 2b, we can calcu-
late the pre-core number of the newly added vertex in
advance and need only one another iteration to identify the
final core numbers of all vertices. This approach is more effi-
cient than the algorithms given in [25] and [14] since they
need at leastm0 iterations, wherem0 is the number of the new
inserted superior edges the newly added vertex connected to.

In fact, it can be ensured that even if multiple vertices are
deleted from/inserted into a graph, every other vertex’s
core number will be changed by at most 1, as long as these
deleted/inserted vertices satisfy some properties as defined
subsequently. Before that, we first introduce some notation.

Definition 8 (3þ-hop Independent Set). For a graph G, the
3þ-hop independent set of V ðGÞ, denoted as V3h, is a subset of
V ðGÞ in which for any u; v, NG½u� \NG½v� ¼ ;.

Definition 9 (Maximal 3þ-hop Independent Set). For a
graphG, V3h is a 3

þ-hop independent set inG. If V3h is maximal,
i.e., there does not exist a vertex u 2 V ðGÞ; u =2 V3h such that
8v 2 V3h, NG½u� \NG½v� ¼ ;, we say V3h is a maximal 3þ-hop
independent set of V ðGÞ inG.

We then consider the insertion/deletion of multiple
vertices.

Lemma 3. Given a graph G ¼ ðV;EÞ, a vertex set V 0 ¼ fu1; u2;
. . . ; upg and its connected edge set E0 ¼ fe1; e2; . . . ; ekg, after

TABLE 1
Notations and Their Descriptions

Notations Description

NGðuÞ vertex u’s neighbors in graph G
dGðuÞ vertex u’s degree in graph G
DðGÞ the maximum degree of vertices in graph G
dðGÞ the minimum degree of vertices in graph G
coreGðuÞ vertex u’s core number in graph G(c.f.

Definition 3)
SDGðuÞ vertex u’s superior degree in graph G(c.f.

Definition 6)
pre-coreðuÞ vertex u’s pre-core number(c.f. Definition 7)
Vc central vertex set (c.f. Definition 11)
KPTu K-Path-Tree of vertex u(c.f. Definition 15)
RI insertion root vertex set(c.f. Definition 16)
RD deletion root vertex set(c.f. Definition 17)

1290 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

http://doi.ieeecomputersociety.org/10.1109/TPDS.2019.2960226
http://doi.ieeecomputersociety.org/10.1109/TPDS.2019.2960226


inserting/deleting E0 into/from G, G becomes G0. If it satisfies
that V 0 constitutes a 3þ-hop independent set in the new graph,
that is to say, NG0 ½ui� \NG0 ½uj� ¼ ;, where 1 � i � p,
1 � j � p, i 6¼ j, then for each vertex u 2 V n V 0, coreðuÞ can
change by at most 1.

The proof of Lemma 3 can be found in Appendix B, avail-
able in the online supplemental material.

By the above Lemmas 3 and 1, it can be obtained that
with the insertion/deletion of a 3þ-hop independent vertex
V3h from a graph, each vertex u 2 V3h changes its core num-
ber by at most 1 from pre-coreðuÞ. Hence even if a large
number of edges are inserted/deleted due to the insertion/
deletion of a 3þ-hop independent set, all these edges can be
handled efficiently in one iteration.

Definition 10 (Superior Vertex Set). For a graph G, we
insert/delete edges E0 into/from the graph. V 0 is the vertex set
connected to E0. For a vertex u 2 V 0, if edge e ¼ hu; vi 2 E0

and coreGðvÞ � coreGðuÞ, edge e is a newly inserted/
deleted superior edge of u. Superior vertex set contains ver-
tex u 2 V 0 such that the number of u’s newly inserted/deleted
superior edges is more than 1.

For example, in Fig. 1, fv4; v13; v17g is a superior vertex set
as each vertex adds at least two superior edges.

Definition 11 (Central Vertex Set). With the insertion/dele-
tion of an edge set E0, graph G becomes G0. The central vertex
set in graph G0 is a subset of the superior vertex set, denoted as
Vc, which satisfies a maximal 3þ-hop independent set in graph
G0. Each vertex in Vc is called a central vertex.

For example, in Fig. 1, the sets fv4; v13g and fv4; v17g are
both central vertex sets as each vertex in the set shares no
common neighbors with other vertex in the set. However,
fv13; v17g is not a central vertex set as v13 and v17 have a com-
mon neighbor v15 in the updated graph.

By Lemmas 3 and 1, it has been shown that the edges
connected to vertices in a central vertex set can be processed
together. A question is whether it is possible to handle more
edges. In the following, we define a new structure of
inserted/deleted edges, called Joint Edge Set (JES), based on
edges connected to the central vertex set and the superior
edge set structure presented in [25] whose insertion/deletion
also ensures that each vertex’s core number will be changed
by at most 1 from its previous core number. We next simply
borrow the definition of the superior edge set.

Definition 12 (k-Superior Edge Set [25]). A k-superior edge
set Ek ¼ fe1; e2; . . . ; epg satisfies that if one edge (with core
number k) ei ¼ hu; vi 2 Ek and coreðuÞ � coreðvÞ, there does
not exist another edge ej ¼ hu;wi 2 Ek; i 6¼ j and coreðuÞ �
coreðwÞ.
It can be known that there does not exist one vertex in the

k-superior edge set connecting to more than two superior
edges. For example, in Fig. 1, each edge connected to vertex v4
constitutes a 0-superior edge set and each of these five 0-supe-
rior edge sets can only have one edge in this example. In [25], it
is shown that only vertices whose core numbers equal to kwill
be affectedwith the insertion/deletion of a k-superior edge set.

Lemma 4 ([25]). With the insertion/deletion of a k-superior edge
set, only the vertices whose core numbers equal to k will change

by at most 1 and other vertices whose core numbers greater or
smaller than k will not be affected.

Further, a superior edge set is the union of all distinct
k-superior edge sets. Then we have the following Lemma 5.

Lemma 5 ([25]). After the insertion/deletion of a superior edge
set Ek1 [ Ek2 [ 	 	 	 [Ekq in the graph G, where Eki , 1 � i � q
is a ki superior edge set, the core number of each vertex in
V ðGÞ will be changed by at most 1.

Based on the above discussions, we can define our new
structure called joint edge set.

Definition 13 (Joint Edge Set (JES)). Given a graph G, after
inserting/deleting edges E0, G becomes G0, and Vc is a central
vertex set of G0. The JES contains the following two types of
edges in E0:

(i) an edge ei ¼ hu; vi 2 E0; u 2 Vc or v 2 Vc, then ei 2
JES. We denote the set of these edges as Ec;

(ii) assume edge ej ¼ hu; vi 2 E0 n Ec is a superior edge of
u, and u does not have another superior edge contained
in JES, then ej 2 JES. We denote the set of these edges
as Es.

The matching structure in [13] is a subset of the superior
edge structure in [22], and the superior edge structure is a
subset of the proposed joint edge set structure of this
paper.

For example, in Fig. 1, Vc ¼ fv4; v17g is a central vertex set,
Ec contains all inserted/deleted edges associated to each ver-
tex in Vc, i.e., the 8 edges set fhv4; v3i; hv4; v5i; hv4; v6i; hv4; v1i;
hv4; v7i; hv17; v18i; hv17; v14i; hv17; v15ig, and Es ¼ fhv13; v11ig or
fhv13; v10ig.

4.2 Core Number Change of Vertices Affected by
Joint Edge Set

We next show that with the insertion/deletion of a joint
edge set, each vertex’s core number will be changed by at
most 1 from its previous core number (for vertex not in Vc)
or from its pre-core (for vertex in Vc).

Because a joint edge set only contains two types of edges:
Ec and Es, according to Lemmas 3 and 5, we can get the fol-
lowing Lemma 6.

Lemma 6. After the insertion of a joint edge set EU ¼ Ec [Es in
the graphG, 8u 2 V ðGÞ n Vc, coreðuÞ can increase by at most 2.

Proof. It can be seen that inserting the joint edge set has the
same result as the scenario of inserting Es first and then
inserting Ec. According to Lemma 5, each vertex in
V ðGÞ n Vc will increase its core number by at most 1 after
inserting Es. Then we insert Ec. It can be seen that Vc is a
3þ-hop independent set as no edges in Es connect to verti-
ces in Vc. According to Lemma 3, each vertex in V ðGÞ n Vc

will increase its core number by at most 1. In summary,
8u 2 V ðGÞ n Vc, coreðuÞ can increase by at most 2. tu
The result in Lemma 6 can be further optimized as shown

later that the core number change upper bound can be
reduced from 2 to 1. Before that, we partition the edges in a
joint edge set into different groups and define each group as a
k-joint edge set.
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Definition 14 (k-Joint Edge Set). Given a joint edge set
EU ¼ Ec [ Es, an edge set Ek ¼ fe1; e2; . . . ; epg � ðEc [EsÞ
is a k-joint edge set if each edge ei ¼ hui; vii, 1 � i � p satisfies
one of the following two conditions:

(i) ei 2 Ec , ui 2 Vc and coreðviÞ ¼ k.
(ii) ei 2 Es and the core number of ei equals to k.

A joint edge set Ec [Es consists of the union of all dis-
tinct k-joint edge sets. We first show that the insertion of a
k-joint edge set will affect which vertex set.

Lemma 7. After inserting a k-joint edge set Ek ¼ fe1; e2; . . . ;
epg from a graph G, if we consider the vertex v 2 V ðGÞ n Vc,
only if coreðvÞ ¼ k will increase its core number by at most 1.

The proof of Lemma 7 can be found in Appendix C,
available in the online supplemental material.

Similar as the insertion case, we can get the following
result for the deletion case.

Lemma 8. After deleting a k-joint edge set Ek ¼ fe1; e2; . . . ; epg
from a graph G, if we consider the vertex v 2 V ðGÞ n Vc, only
if coreðvÞ ¼ k will decrease its core number by at most 1.

Now, we can further extend the conclusion to the case of
inserting a joint edge set based on Lemma 7.

Lemma 9. Given a joint edge set � ¼ Ek1 [ Ek2 [ 	 	 	 [Ekq ,
where Eki (1 � i � q) is a ki-joint edge set and ki < kj if
i < j. After inserting � into the graph G, each vertex v =2 Vc

will increase its core number by at most 1.

Proof. It can be seen that inserting edges of � into G all
together has the same result with inserting Eki one by one.
We next assume Eki is inserted one by one. To prove the
lemma, we need to prove that if inserting Eki makes a ver-
tex increase its core number from ki to ki þ 1, its core num-
ber will not change any more when inserting Ekj for j > i.
Clearly, we only need to prove the above result for Ekiþ1 .
There are two caseswe need to consider.

If kiþ1 > ki þ 1, by Lemma 7, the core number of uwill
not increase anymorewhen insertingEkiþ1 , since only ver-
tices with core numbers of kiþ1 may increase their core
numbers.

Wenext consider the case of kiþ1 ¼ ki þ 1.We claim that
if there is a vertex increasing its core number from ki to
ki þ 2 after the insertions of Eki and Ekiþ1 , the vertex must
have a neighbor which increases the core number from ki
to ki þ 2 as well during the insertions. Let u be a vertex
whose core number is increased from ki to ki þ 2 after
inserting Eki and Ekiþ1 . Notice that u does not connect to
edges in Ekiþ1 . Hence, the degree of u does not change
when inserting Ekiþ1 . Furthermore, if u increases its core
number from ki þ 1 to ki þ 2 after inserting Ekiþ1 and its
number of neighbors can increase by at most 1, it has at
least ki þ 2 neighbors whose core numbers are no less than
ki þ 1 before inserting Ekiþ1 and some of these neighbors
have a core number of ki þ 1. The vertices in NðuÞ whose
core numbers are ki þ 1 before inserting Ekiþ1 are denoted
byPkiþ1ðuÞ. It can be obtained that theremust exist a vertex
w 2 Pkiþ1ðuÞ whose core number is ki before inserting Eki ,
as otherwise, the core number of u is ki þ 1 before inserting
Eki , which contradictswith our assumption.

Let V2 denote the vertex set that each vertex in V2

changes its core number from ki to ki þ 2 after the inser-
tions of Eki and Ekiþ1 . Because inserting Ekiþ1 does not
change the degrees of vertices in V2, there must be a vertex
w 2 V2 whose core number change is caused by the core
number change of vertices in NðwÞ n V2, as otherwise no
vertex in V2 can change the core number. Assume w has at
most ki neighbors whose core numbers are no less than
ki þ 1 in NðwÞ n V2 before inserting Eki and Ekiþ1 , then
inserting Eki , w can add at most 1 new neighbor whose
core number is not smaller than kiþ1. When insertingEkiþ1 ,
w does not add new neighbors, so it has at most ki þ 1
neighbors whose core numbers are not smaller than ki þ 1.
It cannot cause w increase its core number from ki þ 1 to
ki þ 2. So w has at least ki þ 1 neighbors whose core num-
bers are not smaller than ki þ 1 in NðwÞ n V2 before insert-
ing Eki and Ekiþ1 . It concludes that coreðwÞ ¼ ki þ 1 before
inserting Eki and Ekiþ1 . However, it contradicts with the
fact that coreðwÞ is ki before insertions. The contradiction
shows if a vertex changes its core number when inserting
Eki , its core numberwill not change anymorewhen insert-
ingEkiþ1 . tu
We have the following similar result for the deletion case.

Lemma 10. Given a joint edge set � ¼ Ek1 [ Ek2 [ 	 	 	 [ Ekq ,
where Eki (1 � i � q) is a ki-joint edge set and ki < kj if
i < j. After deleting � from the graph G, each vertex v =2 Vc

will decrease its core number by at most 1.

In the above, we have shown that each vertex v 2 V n Vc

will change its core number by at most 1 with the insertion/
deletion of a joint edge set. As for each vertex u in Vc, we can
compute pre-core(u) using the core number of its neighbors.
With the insertion/deletion of a joint edge set, its core number
can also change by at most 1 from pre-core(u) by Lemma 1, as
all its neighbors’ core numbers can increase by at most 1.
Thus, we can process all these edges in one iteration. Hence,
we finally get the results for the insertion/deletion of a joint
edge set.

Lemma 11. Given a joint edge set �, with the insertion/deletion of
� in the graph G, each vertex in V ðGÞ will change its core num-
ber by at most 1.

4.3 Parallel Approach for Identifying the Core
Number Changed Vertex Set After Deletion/
Insertion of a JES

In [23], Sariy€uce et al. give TRAVERSAL algorithms to iden-
tify the vertex set whose core number will be affected after
the insertion/deletion of an edge. When multiple edges are
updated, we need to generalize the result to the scenario of
inserting/deleting a JES. We first define the K-Path-Tree of
vertex that is used for TRAVERSAL.

Definition 15 (K-Path-Tree of a vertex u). Given a vertex u
such that coreðuÞ ¼ K, the K-Path-Tree of the vertex u in the
graph G is a subgraph of G that is reachable from u and each
vertex’s core number equals to K in the subgraph. We denote
theK-Path-Tree of vertex u asKPTu for simplicity.

It has been proved in [23] that with the insertion/deletion
of an edge hu; vi and coreðuÞ � coreðvÞ, only for each vertex w
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in KPTu satisfying SDðwÞ > coreðuÞ (for insertion) or
SDðwÞ < coreðuÞ (for deletion) will change its core number
by 1. So when combining the idea behind the TRAVERSAL
algorithm, we only need to find all available root vertices
when inserting/deleting a JES.

For the insertion case, the root vertex set is defined as
follows.

Definition 16 (Insertion Root Vertex Set). Given a graph
G, after inserting JES ¼ Ec [ Es, the new graph is G0. The
insertion root vertex set RI contains the following vertices:

(i) for each edge hu; vi 2 Es and core(u)� core(v), u 2 RI ;
(ii) for each vertex v 2 Vc, we denote init-core(v) and pre-

core(v) as its original core number in G and pre-core
number in G0, respectively. For each edge hv; ui, if init-
core(v)� core(u)� pre-core(v), u 2 RI .

The next Lemma 12 points out that RI contains all avail-
able root vertices when inserting a JES.

Lemma 12. After inserting a JES to a graph G, if we do not con-
sider the vertex in Vc, only the vertices in

S
u2RI

KPTu have
chances to increase the core numbers by at most 1.

Proof. We define P ¼ S
u2RI

KPTu. Assume a vertex v =2 Vc

and v =2 P , its core number increases by 1 from k. First, v
does not have any neighbor in Vc whose pre-core number is
no less than k, otherwise vwill be added toRI according to
the definition ofRI . Thus, the increase of v’s core number is
not related to its neighbors in Vc as their final core numbers
will be less than kþ 1. For other neighbors those are not in
Vc and the core numbers are less than k, those core numbers
won’t help v increase to kþ 1. The reason is these
neighbors’ final core numbers change by at most 1 accord-
ing to Lemma 9 and will be less than kþ 1. Besides, v does
not insert any superior edge as otherwise it will also be
added to RI . Thus the reason for the increase of v’s core
number is because the core numbers of its neighbors
increase from k to kþ 1 and all these neighbors are not con-
tained in Vc and P . The reason for the increase of the core
numbers of these neighbors is the same as v. As the original
graph has a limited size, it cannot go on indefinitely. Thus
our assumption is incorrect, that is to say, only vertices in P
have chances to increase the core numbers by atmost 1. tu
For the deletion case, the root vertex set is defined as

follows.

Definition 17 (Deletion Root Vertex Set). Given a graph
G, after deleting JES ¼ Ec [ Es, the new graph is G0. The
deletion root vertex set RD contains the following vertices:

(i) for each edge hu; vi 2 Es and core(u)�core(v), u 2 RD;
(ii) for each vertex v 2 Vc, we denote init-core(v) and pre-

core(v) as its original core number in G and pre-core
number in G0, respectively. For each edge hv; ui, if pre-
core(v) � core(u) � init-core(v) , u 2 RD.

Similar to the insertion case, we can get the following
Lemma 13.

Lemma 13. After deleting a JES to a graph G, if we do not con-
sider the vertex in Vc, only the vertices in

S
u2RD

KPTu have
chances to decrease the core numbers by at most 1.

After we have found all root vertices after inserting/
deleting a JES, we traverse the K-Path-Tree of each vertex
in root vertices to identify the change of core numbers. For
distinct k, the traversing vertices are disjoint. Thus, we can
split the tasks to different processes to take advantage of
multi-core processors. As our algorithms spend most of the
time to traverse, this parallelized task partition can improve
the efficiency of our algorithms.

5 INCREMENTAL CORE MAINTENANCE

We propose the parallel algorithm to maintain each vertex’s
core number with the insertion of arbitrary edges EI into
the graph G in this section.

Algorithm 1. JointInsert(G, EI , core)

Input
G ¼ ðV;EÞ is the original graph;
EI are edges to be inserted;
core is the set of each vertex’s core number before the
insertion;
Output
Each vertex’s updated core number;
Initially
C  empty set;
" EU is a mapping from core number k to the k-joint edge set

1 while EI is not empty do
2 EU; Vc  ComputeInsertEdgeSet(G, EI , core);
3 C  all core numbers of vertices in Vc;

"EU ½k� is a k-joint edge set
4 insert

S
k2CEU ½k� into G;

5 delete
S

k2CEU ½k� from EI ;
6 for each core number k 2 C in parallel do
7 Vk  k-JointInsert(G, k, EU ½k�, core);
8 for each v 2 Vk do
9 coreðvÞ  coreðvÞ þ 1;
10 for each v in Vc do
11 coreðvÞ  re-compute using Equation (1);

Algorithm. The detailed algorithm to maintain each
vertex’s core number with the insertion of edges given in
Algorithm 1 is executed until all edges in EI have been
processed(Line 1). In each iteration, the algorithm invokes
the subroutine ComputeInsertEdgeSet to find a JES and
divides it into disjoint k-joint edge sets (Line 2); then, it exe-
cutes k-JointInsert algorithm (Lines 6-9) in parallel to find
the vertex set that each vertex in the set changes its core
number from k to kþ 1; finally, for each vertex in the central
vertex set, its core number is recalculated using its
neighbors’ updated core numbers (Lines 10-11).

The Algorithm 2 finds a JES from unprocessed edges in
EI . Basically, this is done in two steps: (1) a central vertex
set Vc is found from the superior vertex set (Line 1) and
edges connected to these vertices are added to JES. Spe-
cially, for each vertex u in Vc, it updates its core number as
pre-core value and saves its previous core number (Lines 2-
4). At Lines 5-8, we record u’s neighbors whose core num-
bers lie between init-core(u) and pre-core(u) as insertion
root vertices according to Definition 16; (2) for each vertex
v =2 Vc, we ensure that vertex v connects to at most one supe-
rior edge (Lines 9-15).
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Algorithm 2. ComputeInsertEdgeSet(G;EI; core)

Input
G ¼ ðV;EÞ is the graph;
EI are edges to be inserted;
core is the set of each vertex’s core number before the
insertion;
Output
Amapping from k to the k-joint edge set and a central vertex set;
Initially
EU  empty map, Vc  ;;
8v 2 V ,mark½v�  false;
1 Vc  a maximal 3þ-hop independent set of the superior ver-
tex set after inserting EI ;

2 for each vertex v in Vc in parallel do
3 init-coreðvÞ  coreðvÞ;
4 coreðvÞ  pre-coreðvÞ;
5 for each vertex u 2 NGðvÞ do
6 if init-coreðvÞ � coreðuÞ � coreðvÞ then
7 add hu; vi to EU ½coreðuÞ� ;
8 mark½u�  true;
9 for each edge hx; yi 2 EI with coreðyÞ � coreðxÞ in parallel do
10 if y 2 Vc or (coreðyÞ < coreðxÞ andmark½y� = false)

then
11 add hx; yi to EU ½coreðyÞ�;
12 mark½y�  true;
13 if coreðxÞ ¼ coreðyÞ andmark½x� =mark½y� = false

then
14: mark½x�  true;mark½y�  true;
15: add hx; yi to EU ½coreðxÞ�;
16: return EU , Vc;

After the JES is found, for each k-joint edge set, we use
Algorithm 3 to find out all vertices whose core numbers will
change. For each root vertex u, we first compute the SD value
of each vertex in the KPTu and push it to a stack (Lines 1-4).
Then it executes until the stack is empty (Line 5). In the loop,
starting from each root vertex u, it does a depth-first search
(DFS) procedure to record all vertices in KPTu whose SD val-
ues are greater than k (Lines 6-10). When we encounter with a
vertex w that SDðwÞ � k during the DFS procedure, another
DFS process rooted from vertex w (we call this DFS as a nega-
tive DFS) will be performed to eliminate vertices those cannot
find kþ 1 neighbors whose SD values are not less than kþ 1
(Lines 12-20). Finally, the remaining vertices will change their
core numbers from k to kþ 1 (Lines 21-23).

Performance Analysis. To analyze the efficiency of our
incremental algorithm, we first introduce some notations to
measure the time complexity of our algorithm.

Let G0 ¼ ðV;E [EIÞ. For a vertex v 2 V , let N2ðvÞ denote
the set of 2-hop neighbors of v, i.e., N2ðvÞ ¼ fNG0 ðvÞ[S

u2NG0 ðvÞNG0 ðuÞg, andN2½v� ¼ fvg [N2ðvÞ. We denote VS as

the superior vertex set, and DI as maxfjN2½v� \ VSj : v 2 VSg,
which is the maximum number of different central vertex sets
that can be selected in the algorithm.

We denoteGi ¼ ðVi;EiÞ as the new graph after the ith itera-
tion. We denote S as the JES to be inserted. Let GS ¼
ðVi�1;Ei�1 n SÞ,KðGSÞ is the set of core numbers of vertices in
V ðGSÞ. For a given k 2 KðGSÞ, let VSðkÞ be the vertex set that
the core number of each vertex in the set equals to k and ESðkÞ
is the set of edges connected to vertices in VSðkÞ. For simplicity,

we definenS;k ¼ jVSðkÞj andmS;k ¼ jESðkÞj, respectively.

Algorithm 3. k-JointInsert(G; k; Ek; core)

Input
G ¼ ðV;EÞ is the current new graph;
Ek is the k-joint edge set;
core is the set of each vertex’s core number before the
insertion;
Output
A vertex set that each vertex in the set will change its core
number;
Initially
Stk empty stack, Vt  empty set;
8v 2 V , evicted[v�  false, visited[v�  false, cd[v�  0;
" cd[v] counts the number of v’s neighbors whose core num-
bers are no less than k
1 for each edge hu; vi 2 Ek do
2 for each vertex w 2 KPTu do
3 cd½w�  SD value of w;
4 Stk.push(u);visited½u�  true;
5 while not Stk:empty() do
6 u Stk.pop();
7 if cd½u� > k then
8 for each edge hu; vi 2 E do
9 if not visited½v� and coreðvÞ ¼ k and cd½v� > k

then
10 Stk.push(v);visited½v�  true;
11 else
12 if not evicted½u� then
13 S2  empty stack;
14 S2:push(u);evicted½u�  true;
15 while not S2 empty do
16 x S2.pop();
17: for each hx; yi 2 E such that coreðyÞ = k

do
18 cd½y�  cd½y� - 1;
19 if not evicted½y� and cd½y�=k then
20 S2:push(y); evicted½y�  true;
21 for each vertex v in V do
22 if not evicted½v� and visited½v� then
23 Vt  Vt [ fvg;
24 return Vt;

InAlgorithm2, the time complexity is dominated by the for
loop in lines 5-8 which is OðDðGÞÞ. In Algorithm 3, the com-
plexity of the algorithm consists of two parts: compute SD
value of each vertex in VSðkÞ and traverse vertices in VSðkÞ.
The complexity of the former part isOðmS;kÞ since we need to
collect each vertex’s neighbors’ core numbers to compute its
SD value. For the latter part, when we traverse the vertices in
GS , the DFS procedure visits each vertex in VSðkÞ at most
once. And LS;k ¼ maxu2VSðkÞfSDðuÞ � coreGS

ðuÞ; 0g is the

maximum number of times a vertex will be accessed during
the negative DFS procedure, as each vertex v is accessed, cdðvÞ
will be decreased by 1 (Line 18 in Algorithm 3). By adding the
two parts, we have the time complexity of Algorithm 3 is
CS ¼ maxfmS;k þ LS;k � nS;k; k 2 KðGSÞg.

Combining all the above analysis, we can get the follow-
ing result.

Theorem 14. The time complexity of Algorithm 1 updating the
core numbers of vertices is OðDI �maxfCS; S � EIgÞ.

Proof. Consider a vertex v, in each iteration, if there are verti-
ces in N2½v�, one of these vertices must be selected into the
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central vertex set. Hence, OðDIÞ iteration times are needed
to process all vertices in the superior vertex set. After that,
there is at most one another iteration to process all remain-
ing superior edges. The total number of iterations is DI þ 1.
Since the time complexity of each iteration is dominated by
the time complexity of Algorithm 3, we can bound the time
complexity of the incremental algorithm as stated. tu

6 DECREMENTAL CORE MAINTENANCE

We propose the parallel algorithm to maintain each vertex’s
core number with the deletion of arbitrary edges ED from
the graph G in this section.

Algorithm. The detailed algorithm to maintain each vertex’s
core numberwith the deletion of edges given inAlgorithm 4 is
executed until all edges in ED have been processed (Line 1).
Similar to the incremental algorithm, in each iteration, it
invokes the subroutine ComputeDeleteEdgeSet to find a JES and
divides it intodisjoint k-joint edge sets (Line 2); then it executes
k-JointDelete algorithm in parallel to find vertices whose core
numbers change from k to k� 1 (Lines 6-7); finally, for each
vertex in the central vertex set, its core number is recalculated
using its neighbors’ updated core numbers (Lines 10-11).

Algorithm 5 finds a JES from unprocessed edges in ED.
The algorithm is similar to Algorithm 2 except that for each
root vertex u 2 Vc, we record u’s neighbors whose core num-
bers between pre-core(u) and init-core(u) as the root vertex
deletion according to Definition 17 at Line 6. When we tra-
verse vertices in Algorithm 6, the difference is that we evict
vertices whose cd values are less than k (Lines 6,8) in the
DFS traversing and in the negative DFS traversing (Line 17).
The reason is these vertices have less than k neighbors
whose core numbers are not less than k.

Algorithm 4. JointDelete(G, ED, core)

Input
G ¼ ðV;EÞ is the original graph;
ED are edges to be deleted;
core is the set of each vertex’s core number before the
deletion;
Output
Each vertex’s updated core numbers;
Initially
C  empty core set;
" EU is a mapping from the core number k to the k-joint edge
set
1 while ED is not empty do
2 EU; Vc  ComputeDeleteEdgeSet(G, ED; core);
3 C  all core numbers of vertices in EU ;

" EU ½k� is a k-joint edge set
4 delete

S
k2CEU ½k� from G;

5 delete
S

k2CEU ½k� from ED;
6 for each core number k 2 C in parallel do
7 Vk  k-JointDelete(G;EU ½k�; core);
8 for each v in Vk do
9 coreðvÞ  coreðvÞ � 1;
10 for each v in Vc do
11 coreðvÞ  re-compute using Equation (1);

Performance Analysis. To analyze the efficiency of our dec-
remental algorithm, we first define some notations to mea-
sure the time complexity of our algorithm.

For graph G ¼ ðV;EÞ, ED are edges to be deleted and VD is
the set of vertices associated with ED. We denote VS as the
superior vertex set of VD. Let G

0 ¼ ðV;E n EDÞ. For a vertex
v 2 V , N2ðvÞ ¼ fNG0 ðvÞ [

S
u2NG0 ðvÞNG0 ðuÞg. We denote DD

as maxfjN2ðvÞ \ VSj; v 2 VSg. It is the maximum number of
different central vertex sets that can be selected in the
algorithm.

Algorithm 5. ComputeDeleteEdgeSet(G, ED, core)

Input
G ¼ ðV;EÞ is the graph;
ED are edges to be deleted;
core is the set of each vertex’s core number before the
deletion;
Output
A mapping from k to the k-joint edge set and the central ver-
tex set;
Initially
EU  empty map, Vc  ;;
8v 2 V ,mark½v�  false;
1 Vc  a maximal 3þ-hop independent set of a superior vertex
set after deleting ED;

2 for each vertex v in Vc in parallel do
3 init-coreðvÞ  coreðvÞ;
4 coreðvÞ  pre-coreðvÞ;
5 for each vertex u in NGðvÞ do
6 if coreðvÞ � coreðuÞ � init-coreðvÞ then
7 add hu; vi to EU ½coreðuÞ�;
8 mark½u�  true;
9 for each edge hx; yi 2 ED with coreðyÞ � coreðxÞ in parallel do
10 if y 2 Vc or

(coreðyÞ < coreðxÞ and mark[y]=false) then
11 add hx; yi to EU ½coreðyÞ�;
12 mark½y�  true;
13 if coreðxÞ ¼ coreðyÞ and mark½x�=mark½y�=false then
14 mark½x�  true;mark½y�  true;
15 add hx; yi to Ex½coreðxÞ�;
16 return EU , Vc;

WedenoteGi ¼ ðVi;EiÞ as the new graph after the ith itera-
tion. In each iteration, S is the JES selected to be deleted,
GS ¼ ðVi�1;Ei�1 n SÞ. We denote KðGSÞ as the set of core
numbers of vertices in V ðGSÞ. For k 2 KðGSÞ, let VSðkÞ be the
vertex set that each vertex’s core number equals to k andESðkÞ
is the set of edges connected to vertices in VSðkÞ. For simplicity,
we define nS;k ¼ jVS;kj and mS;k ¼ jESðkÞj, respectively. We
also define LS;k ¼ maxu2VSðkÞ fSDðuÞ � coreGS

ðuÞ; 0g. Similar

as the performance analysis discussed in the incremental algo-
rithm, the total time complexity of iteration i is CS ¼
maxfmS;k þ LS;k � nS;k; k 2 KðGSÞg.

Using a similar analysis as that of Theorem 14, we can
conclude the following result.

Theorem 15. The time complexity of Algorithm 4 updating the
core numbers of vertices is OðDD �maxfCS; S � EDgÞ.

7 EXPERIMENTAL STUDIES

We have conducted experimental studies using 12 real-world
graphs, 3 synthetic data sets and 3 temporal networks. We
first report the performance, scalability and stability of our
algorithms. Then, we show the parallelism of our algorithms.
Finally, we compare our algorithms with the single edge
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processing traversal algorithms proposed in [23] and [18], the
matching based algorithms proposed in [14] and the superior
edge based algorithms proposed in [25]. We timed the while
loop in Algorithms 1 and 4, that is the time cost by the com-
plete algorithm. We implement all algorithms in C++ lan-
guage and compile the source code using g++ with -O3
optimization level. The hardware environment is 64-bit Linux
machinewith 60 vCPUs and 128GB sizememory.

Algorithm 6. k-JointDelete(G; k;Ek; core)

Input
G is the current new graph;
Ek is the k-joint edge set, Ek;
core is the set of each vertex’s core number before the
deletion;
Output
A vertex set that each vertex in the set will change its core
number;
Initially
Vt  empty set;
8v 2 V , evicted½v�  false, cd½v�  0;
" cd[v] counts the number of v’s neighbors whose core num-
bers are no less than k
1 for each hu; vi 2 Ek do
2 for each vertex w 2 KPTu do
3 cd½w�  SD value of w;
4 for each hu; vi 2 Ek do
5 C  empty set;
6 if not evicted½u� and cd½u� < k then
7 add u to C;
8 if coreðuÞ ¼ coreðvÞ and not evicted½v� and cd½v� < k then
9 add v to C;
10 for each vertex w 2 C do
11 Stk empty stack;
12 Stk:push(w); evicted½w�  true;
13 while not Stk empty do
14 x S:pop();
15 for each hx; yi 2 E that coreðyÞ ¼ k do
16 cd½y�  cd½y�-1;
17 if cd½y� < k and not evicted½y� then
18 Stk.push(y); evicted½y�  true;
19 for each vertex v in V do
20 if evicted½v� then
21 Vt  Vt [ fvg;
22 return Vt;

Datasets. The 12 real-world graphs can be downloaded
from Stanford Network Analysis Platform [15] and 10th
DIMACS Implementation Challenge [22] and [7], including
Web Graphs (BerkStan), Social Networks (LiveJournal and
Pokec), Ground-truth Community Networks (DBLP, Youtube
and Orkut), Citation Networks (Patents), Road Network of
California (RoadNet-CA), Location-Based Social Networks
(Gowalla), coPapersCiteseer [22], uk-2002 [7], arabic-2005 [7].
We have converted directed graphs to undirected ones in
order to adapt to our algorithms. The statistics of real-world
graphs are listed in Table 2. In this table, “max k” means the
maximum core number of the graph.

We generate the synthetic graphs using Stanford Network
Analysis Platform system with the following three models:
the Barabasi-Albert (BA) preferential attachment model [5]
that the degree of each vertex is k; the R-MAT (RM) graph
model [9] that generates graph structures similar to real-world
graphs; the Block Two-Level Erd€os-R�enyi (BTER) graph
model [13] that accurately captures the observable properties
of many real world social networks. In our experiments, we
fix the average degree of every synthetic graph as 8. Specifi-
cally, for the BA graph, each vertex will have the same core
number 8 under the average degree assumption. This special
core number distribution of the BA graph will be used as the
extreme case for testing the scalability of our algorithms. The
reason is that the core number distribution covers a wide
range in real-world graphs [14]. The details of three temporal
networksWK, SU and ST are shown in Table 3.

7.1 Stability Evaluation

To test the stability of our algorithms, we select 8 real-world
graphs. In each graph, we randomly select Pi edges where
Pi ¼ 10i; 1 � i � 5. We first remove these edges from the orig-
inal graph and then insert back to this graph. The processing
time cost by each edge for insertion and deletion cases are
shown Figs. 3a and 3b, respectively. It can be shown that as
the exponential growth of the updated edges, the time cost by
each edge has a downward trend. It is because if there are
more updated edges, we can process more edges in each

Fig. 3. Influence of the number of updated edges in real-world graphs.

TABLE 3
Attributes of Temporal Networks

Dataset n=jV j Temporal Edges Static Edges

SU(Super User) 0.197M 1.44M 0.925M
WK(Wiki-talk) 1.14M 7.8M 3.3M
ST(Stack Overflow) 2.6M 63.5M 36.2M

TABLE 2
Attributes of Real-World Graphs

Dataset n=jV j m=jEj avg. deg max k

GW(Gowalla) 0.19M 0.91M 9.67 51
DB(DBLP) 0.30M 1.00M 6.62 113
CA(RoadNet-CA) 1.97M 2.77M 2.82 3
YT(Youtube) 1.08M 2.85M 5.27 51
BS(BerkStan) 0.65M 6.34M 19.41 201
PT(Patents) 3.60M 15.75M 8.75 64
PC(coPapersCiteseer) 0.43M 16.04M 73.72 384
PK(Pokec) 1.56M 21.27M 27.32 47
LJ(LiveJournal) 3.81M 33.07M 17.35 360
OK(Orkut) 2.93M 111.76M 76.28 253
UK(uk-2002) 18.52M 298.11M 16.10 943
AC(arabic-2005) 22.74M 639.99M 28.14 3247
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iteration and avoid unnecessary access. Consider the situation
in Fig. 2a, if we insert edge set f< v6; v1 > ; < v6; v3 > ; <
v6; v4 > ; < v6; v5 > g one by one using TRAVERSAL algo-
rithm, we need to visit vertex v1 four times, vertex v3 three
times, vertex v4 twice, vertex v5 once, respectively. However,
our proposed algorithm can process these edges using one
iteration and visit vertices v1; v3; v4; v5 once. Thus in the real-
world graphs, as we delete/insert more edges, the time cost
by each edge decreases.

Next, we use temporal graphs to test the performance of
our algorithms. In each temporal graph, we select five time
points Ti; 1 � i � 5 that the number of edges after Ti is
around 106�i. The processing time cost by each edge for the
insertion and deletion cases are shown in Figs. 4a and 4b,
respectively. We can also see that the average processing
time cost by each edge decreases as the number of inserted/
deleted edges increases.

7.2 Scalability Evaluation

To test the scalability of our algorithms, we use 3 synthetic
graphs. In each graph, the average degree is fixed as 8 and
the number of vertices varies from 215 to 221. We randomly
select 10K updated edges, Figs. 5a and 5b show the result.
We can conclude that as the size of the original graph grows
exponentially, the average time cost by each edge has a gen-
tle growth trend. The experimental results mean that our
algorithms are suitable for processing large-scale graphs
and can achieve good scalability. However, it takes more
processing time for BA graphs as each vertex’s core number
is 8. Our algorithms are not suitable to handle this situation
for two reasons. First, the size of the traversed vertex set
grows exponentially as the graph size grows. Second, only
one thread is used to execute the algorithm as it has only
one 8-joint edge set. However, in real-worlds graphs, as the
core number distribution covers a wide range [14], the
extreme case will not occur.

7.3 Parallelism Evaluation

To evaluate the parallelism of our algorithms, we vary the
number of parallel threads to execute our algorithms. We
implement a thread pool using Linux POSIX threads to submit
tasks. In the implementation, we divide the edges of a joint
edge set into different groups anddefine each group as a k-joint
edge set. Then we process all k-joint edge sets in parallel. Each
thread processes a specific k-joint edge set for load balancing.

We experiment on 5 real-world graphs LJ, OK, UK, AC and
PC. For each graph, the number of updated edges are kept as 1
million and the size of the thread pool ranges from 1 to 60. We
show the results in Figs. 6a and 6b. It can be seen that as the size
of the thread pool grows, the total processing time is about half
of the time cost by single-core processing. The main reason for
limitingparallelism is the corenumbers arenotwell-distributed,
so some threads need to traverse a large subgraph that takes a
great amount of time. In addition, when the maximum core
number of a graph is smaller than the number of threads, some
threads have to be wasted which results in extra overheads. As
shown in Fig. 6b, the cost time has slightly increased when the
number of threads exceeds a centain value. In general, when the
size of the processing graph is large and updates lots of edges,
the parallelismof our algorithms can save considerable time.

7.4 Comparisons With Existing Algorithms

The comparison between our JES based algorithms(JBA)
with existing matching based algorithms(MBA) in [14],
superior edge based algorithms(SBA) in [25], TRAVERSAL
algorithms in [23] and the algorithms in [18] are made in
this section. When compared with MBA and SBA, we use 4
real-world graphs PT, PK, LJ, OK and randomly select
i%vertices and i%edges where 1 � i � 5 as updated sets.
The numbers of threads SBA, MBA and JBA used are the
same and the value is 16. The comparison results between
JBA and MBA are shown in Figs. 7a and 7b. The rate
(y-axis) means the ratio of the time cost by existing

Fig. 4. Influence of the number of updated edges in temporal networks.

Fig. 5. Influence of original graph’s size.

Fig. 6. Influence of the thread pool size.

Fig. 7. Comparison with the Algorithm MBA.
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algorithms over the time cost by our algorithms. For the
insertion case, the speedup can achieve at most 60 in the
largest graph OK. This is because in larger graphs, our algo-
rithms can select more central vertices in each iteration and
can process more edges. For the deletion case, the speedup
is between 10 and 20. The results of the comparisons
between JBA and SBA are shown in Figs. 8a and 8b. We can
get the similar speedup with the MBA. One of the most
important reasons why our algorithms beat the other two
algorithms is that our algorithms can process vertices
updating efficiently. Figs. 9a and 9b show the iteration times
used for three algorithms. It can be seen that the iteration
times cost by MBA and SBA are far more than the iteration
times needed by our algorithms. Especially for the largest
graph OK, the other two algorithms need over 1,000 itera-
tions while our algorithms need only about 35 iterations.

The comparison results compared with the TRAVERSAL
algorithms conducted on 4 real-world graphs GW, DB, YT, BS
are shown in Figs. 10a and 10b. The numbers of threads our
algorithms and TRAVERSAL algorithms used are 16 and 1
respectively as TRAVERSAL algorithms are sequential. We
randomly select f10; 100; 1K; 10K; 100Kg edges as updated
sets in each graph. The results indicate that when multiple
edges can be processed simultaneously, our algorithms out-
performTRAVERSAL algorithms by up to four orders ofmag-
nitude. The speedup comes from two main reasons: (i)
multiple edges processing in one iteration reduces the unnec-
essary visiting of vertices compared with processing these
edges one by one; (ii) parallel processing of our algorithms.

We also compare with the single edge processing algo-
rithms proposed in [18]. The number of threads our algo-
rithms and the algorithms [18] used is 16 and 1 respectively
as the latter one is sequential. The results are shown in
Figs. 11a and 11b. It can also conclude that our algorithms
outperform the existing single edge processing algorithms
by almost three orders of magnitude.

8 APPLICATION IN DISTRIBUTED CORE

DECOMPOSITION

In this section, we will show how to reduce the time com-
plexity of an existing distributed k-core decomposition algo-
rithm by using the “joint edge set” proposed in our core-
maintenance algorithms.

In [20], Montresor et al. give a distributed algorithm to
calculate each node’s core number based on the property of
locality of the k-core decomposition. The algorithm works
as follows: each node produces an estimate of its own core
number and communicates to its neighbors; at the same
time, it receives estimates from its neighbors and uses them
to recompute its own estimate; in the case of a change, a
new value is sent to the neighbors and the process goes on
until convergence. In the paper, the authors use the degree
as each node’s initial core number estimate as each node’s
core number is not greater than its degree. It is proved that
the algorithm will eventually converge to the correct core
number and the time complexity (the converging time) is
bounded by 1þP

u2V ½dðuÞ � kðuÞ� where dðuÞ is the initial

degree of u and kðuÞ is the actual core number of u. In
dynamic graphs, taking the insertion case as an example,
the time complexity of the distributed core decomposition
is 1þP

u2V 0 ½d0ðuÞ � k0ðuÞ� where d0ðuÞ and k0ðuÞ are the

degree and core number of u in the updated graph G0ðV 0;
E0Þ, respectively. Since the time complexity is bounded by
the sum of each node’s degree, the time complexity will be
greatly increased as more edges are inserted in the graph.

In our core maintenance algorithms, the structure of the
“joint edge set” (JES) can help get a more accurate upper
bound of the initial core number estimate than the degree,
so that the convergence procedure is accelerated.

When inserting a JES, the core number of each vertex
except the central vertices can increase by at most 1. From
the proof of Theorem 14, we know the iteration times of our

Fig. 8. Comparison with the Algorithm SBA.

Fig. 9. Comparison of iteration times.

Fig. 10. Comparison with the TRAVERSAL Algorithm.

Fig. 11. Comparison with the Algorithm in [18].
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algorithm is at mostDI þ 1 in the insertion case. For each ver-
tex which is not in the central vertex set, its core number can
increase by at most DI þ 1. For each vertex in the central ver-
tex set, it can obtain its pre-core by communicating with its
neighbors and then its core number will increase by at most
DI þ 1 from its pre-core number (c.f. Lemma 1). As already
mentioned, for a given vertex, its core number is not greater
than its degree. Thus, for a vertex u with core number k in
the original graph, its core number in the updated graph is at
most c0ðuÞ ¼ minfkþ DI þ 1; d0ðuÞg, where d0ðuÞ is the
degree of u in the updated graph. Now the complexity of the
distributed core decomposition algorithm is bounded by
1þP

u2V ½c0ðuÞ � k0ðuÞ� where k0ðuÞ is the core number of u
in the updated graph.

9 CONCLUSION

We propose new algorithms that can process multiple edges/
vertices insertions/deletions in the dynamic graphs. Based on
a structure of Joint Edge Set, we present faster parallel algo-
rithms for both the incremental and decremental core mainte-
nance problems. Extensive experiments show the superiority
of our approach comparing with previous single-edge proc-
essing algorithms, matching based algorithms and superior
edge set based algorithms.Meanwhile, our algorithms exhibit
good scalability and stability in practice.

In the future, we will futher optimize our algorithms and
multi-core implementations in three aspects. One is to find a
more efficient algorithm that can find out the vertex set inwhich
each vertex changes its core numberwith the insertion/deletion
of an edge from the graph. The second is trying to find a more
efficient structure that can accommodatemore edges in one iter-
ation. For example, our protocol requires the central vertices are
3þ-hop independent in each iteration. It will be interesting to
check if it is possible to relax this assumption. The third one is
trying to find amore efficient load balancing approach to adapt
to different core number distributions of various graphs so that
the protocol can better harness themulti-core parallelism.
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