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Abstract— We present a distributed stable protocol for local
broadcast in multi-hop wireless networks, where packets are
injected to the nodes continuously, and each node needs to quickly
disseminate the injected packets to all its neighbors within a
given communication range R. We investigate the maximum
packet injection rate and the minimum packet latency that can
be achieved in a stable protocol. This paper assumes the signal-
to-interference-plus-noise-ratio (SINR) interference model, which
reflects more accurately the physical characteristics of the wire-
less interference, such as fading and signal accumulation, than
conventional local interference models, e.g., graph-based models.
More specifically, we present a stable protocol that can handle
both stochastic and adversarial injection patterns. The protocol is
asymptotically optimal in terms of both injection rate and packet
latency. To the best of our knowledge, this paper is the first one
studying the properties of stable protocols for the basic primitive
of local broadcast in a multi-hop setting under SINR. Our
proposed protocol utilizes a static local broadcast algorithm as a
subroutine. This static algorithm is of independent interest, and
it closes the O(log n) gap between the upper and lower bounds
for static local broadcast. Simulation results indicate that our
proposed algorithms can perform well in realistic environments.

Index Terms— Multi-hop wireless networks, distributed
algorithm, stable protocol, SINR, continuous local broadcast.

I. INTRODUCTION

INFORMATION exchange between nodes in wireless net-
works is typically done via local broadcast (to neigh-

boring nodes only) on a shared channel. The Static Local
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Broadcast (SLB) problem, in which all the packets are stored
at the nodes before dissemination, has been extensively studied
under a variety of interference models, from local graph-based
ones [2], [15] to the global SINR model [4], [19], [21], [27],
[33]–[35]. The primitive of local broadcast is frequently used
as a buliding block in algorithms for upper-layer functions
such as Neighbor Discovery [8], [9], Broadcast [16], [24], and
Consensus [25]. Continuous packet Local Broadcast (CLB),
in which packets are injected into the nodes continuously, takes
into consideration the reality that packets may actually arrive
over time. There have been a fair amount of work focusing
on this more realistic problem. However, these work usually
assume a single-hop network topology, and are based on local
interference models. Little is known about CLB in a multi-hop
network setting, especially under the more sophisticated inter-
ference models. We believe this is an important missing piece
for the study of information exchange in wireless networks,
which is the focus of this paper. Specifically, we tackle the
challenges of whether a protocol can be derived for continuous
local broadcast that can achieve good performance with respect
to certain crucial metrics.

Particularly, we consider the three most crucial aspects of
the network protocol performance: stability, throughput, and
packet latency. A protocol is said to be stable with respect to
a packet injection pattern if, in any execution of the protocol,
it ensures that the number of packets stored in the local queues
of the nodes is bounded at any time. The throughput of a
protocol is then defined to be the highest injection rate that
a stable protocol can handle, where the injection rate is the
average number of packets injected to each node per round.
Packet latency is the maximum time at which a packet may
stay in a queue. Obviously, it is an extremely hard task to
devise stable protocols attaining optimal performance in terms
of both throughput and packet latency, as high injection rate
can easily give rise to long queues. Then the following natural
questions arise: what is the tradeoff between throughput and
packet latency for a stable local broadcast protocol? can we
get a stable protocol that attains optimality (or asymptotic
optimality) in terms of both throughput and packet latency?
In this paper, we answer the above two questions affirmatively
by proposing a stable protocol with asymptotically optimal
throughput and packet latency.

The hardness of designing stable protocols for continuous
local broadcast comes from the facts that packets are injected
to the nodes continuously and the transmissions are easily

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-6451-1158
https://orcid.org/0000-0001-5912-4647
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3934-7605


YU et al.: STABLE LOCAL BROADCAST IN MULTIHOP WIRELESS NETWORKS UNDER SINR 1279

interrupted by wireless interference. Hence, the modeling of
packet injection and wireless interference has a strong bearing
on the complexity of the protocol design. There are two
broad packet injection patterns: stochastic injection [14] and
restricted adversarial injection [3]. In the former pattern,
the packets are injected to nodes by a stochastic process,
while the latter pattern usually imposes an upper bound on
the number of packets injected (by an adversary) to each node
in an interval of rounds. We mainly present and analyze our
protocol with respect to the stochastic packet injection, which
could incur an extremely high degree of burstiness at times.
In this case, an unpredictably large amount of collisions may
happen in the network, making transmission coordination as
well as the analysis of the stability and other performance
guarantees of the protocol rather difficult. As for the restricted
adversarial injection pattern, our protocol achieves the same
performance guarantee as in the stochastic injection case
(see the discussions in Section V-D). To model the wireless
interference, we adopt the SINR (Signal-to-Interference-plus-
Noise-Ratio) model, which is also known as the physical
model. The SINR model captures more faithfully the physical
features of wireless interference, such as fading and signal
accumulation, than other simpler models including the graph-
based ones and the protocol model.

We design a distributed protocol for continuous local broad-
cast in this paper. A local distributed algorithm is always
desirable in wireless networks as it allows each node to
perform its operations independently and simultaneously. But
distributed algorithm design is always a hard task because each
wireless node can only communicate directly with the nodes
within its communication range while SINR insists on a much
wider scope when interference is taken into calculation.

Our main contributions are summarized as follows.
• We present the first known distributed stable protocol

for CLB in multi-hop wireless networks under the SINR
model. Our protocol is asymptotically optimal in terms
of both throughput (injection rate) and packet latency.
Moreover, it can handle both stochastic and restricted
adversarial packet injection patterns.

• The proposed continuous protocol is based on a dis-
tributed algorithm for SLB, which makes each node
disseminate its packets to all neighbors within a specified
local broadcast range R in O(m + log2 n) rounds with
a high probability guarantee,1 where m is the maximum
number of packets stored at the neighborhood of each
node and n is the total number of nodes in the network.
This algorithm matches the lower bound in [21], and
closes the O(log n) gap between the upper and lower
bounds in existing work [21], [34], under the setting in
which geometric location information and physical carrier
sensing are not available.

We conduct extensive simulations to evaluate our algorithms,
and the simulation results corroborate our theoretical analysis.

Organization: The remaining part of the paper is organized
as follows. Section II introduces the most related work.

1“with high probability”, w.h.p. for short, means with probability 1 − n−c

for some constant c > 0.

TABLE I

TIME BOUNDS FOR SLB

In Section III, we present the network model, problem
definitions, and preliminary knowledge. A distributed algo-
rithm for SLB is given in Section IV, based on which we
propose our protocol for CLB in Section V. The simulation
results are reported in Section VI. We conclude the paper with
a future research discussion in Section VII.

II. RELATED WORK

The SLB problem under the SINR model has been exten-
sively studied [4], [19]–[21], [27], [34], [35]; but these existing
work mainly consider the case in which each node only has
one packet to share with its neighbors, which is different from
our setting. In other words, m = Δ is assumed in these
existing research, where Δ is the maximum number of neigh-
bors of each node, while m ≥ Δ is under our consideration.
Comparisons of our results under the setting of m = Δ with
existing ones are given in Table I. Goussevskaia et al. [19]
gave the first results for local broadcast under the SINR model,
with running time O(Δ log n) and O(Δ log3 n) for the cases
with known and unknown Δ, respectively. For the case of
knowing Δ, an O(Δ(log n + log Γ) + log Γ(logn + log Γ))
time algorithm was given in [20], where Γ is the ratio of the
maximum and the minimum distances between nodes and this
global parameter needs to be known by nodes. We improve
the result to O(Δ + log2 n) in this paper. The latter result
in [19] was improved in [21], [34], and [35], and the best
known result is O(Δ log n + log2 n) independently given
by [21] and [34]. Under a setting different from that in this
paper, where free acknowledgement is provided, the result
can be improved to O(Δ + log2 n) [21]. If further Δ is
available, static local broadcasting can be accomplished in
O(Δ+log n · log logn) under the spontaneous setting [4]. The
SLB problem under the setting of arbitrary power assignment
was studied in [13], where algorithms that can accomplish
local broadcast in O(ΔK2 logn) time when Δ is known and
O((Δ + logn)K2 logn) otherwise were given, with K being
the ratio of the maximum and minimum transmission ranges
of nodes. In [27], Pei and Vullikanti considered a variance of
the local broadcast problem, which requires to find the maxi-
mum set of nodes such that they can perform local broadcast
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at the same time. This can be seen as an “independent set”
version of the SLB problem.

Stable protocols for CLB were studied in single-hop net-
works. Early work include the popular protocols such as
Aloha [1] and binary exponential backoff [10]. We refer the
interested readers to [7] for an overview. More recent work
include [17], [18], [22], [28] under the stochastic packet
injection model and [3], [5], [6] under the adversarial injection
model. All these results are obtained by considering the graph-
based interference models, where it is assumed that a packet
can be successfully disseminated on a channel iff there is
only one node transmitting in the network. Although these
oversimplified assumptions can help derive protocols with high
throughput and low packet latency, the designed protocols
may perform dramatically different in practice from theoretical
analysis, as they ignore the transmission collisions caused
by the interference from non-neighboring transmitters, which
occur in the multi-hop setting when considering a global
interference model.

In multi-hop networks, local broadcast with continuous
packet arrivals has been studied under both the graph-based
interference model [29]–[32] and the SINR model [26]. These
work however do not consider stable protocols. Instead, they
develop randomized algorithms achieving a constant through-
put on a jamming channel, where the throughput is defined
as the average number of packets a node can receive per
round. To the best of our knowledge, there is no known stable
results under the multi-hop setting, and this gap is filled by
the distributed stable protocol for CLB in multi-hop wireless
networks under the SINR model proposed in this paper.

III. PROBLEM DEFINITION AND MODELS

We consider a network of n nodes placed arbitrarily on a
plane, possibly in a worst-case fashion. Denote by V the set
of nodes, and each node v ∈ V has a unique identifier IDv.
Note that the IDs are only used for a receiver to recognize
a sender. In networks where nodes do not feature any kind
of unique identifications, a node can randomly and uniformly
choose an ID from {1, . . . , n3}. This can guarantee that each
node has a unique ID with a high probability. Time is split
into discrete rounds, and the length of a round is long enough
to send a message, e.g., a multiple of the 50μs unit in 802.11,
depending on the packet size. Each node is equipped with a
half-duplex transceiver, i.e., each node can transmit or listen on
the channel at each round, but cannot do both concurrently.
Note that the designed algorithms can be easily applied in
networks with both half-duplex and full-duplex transceivers
equipped.

Interference Model

Nodes communicate on a shared channel in which simul-
taneous transmissions interfere with each other. We adopt the
practical SINR model to depict the interference. Let d(u, v)
denote the distance of u and v. A message sent by node u to
node v can be correctly received by v if the following SINR
formula holds.

Pu

d(u,v)α

N +
∑

w∈V \{u,v}
Pw

d(w,v)α

≥ β. (1)

In the above inequality, Pu (Pw) denotes the transmission
power of node u (w); α is called the path-loss exponent,
whose value is normally in the range (2, 6); β > 1 is the
decoding threshold determined by hardware; N denotes the
ambient noise; and

∑
w∈V \{u,v}

Pw

d(w,v)α is the interference
experienced by the receiver v caused by all simultaneously
transmitting nodes in the whole network.

The transmission range RT of a node u is defined as the
maximum distance at which a node v can receive a clear
transmission from u when there is no other simultaneous
transmissions in the network. From the SINR inequality (1),
RT = ( P

β·N )1/α for the given power level P .

Continuous Packet Local Broadcast

We study the problem of local broadcast, i.e., each node
disseminates the stored packets to its neighbors within a
specified local broadcast range R. We consider the continuous
scenario, where nodes are injected with packets continuously.
Particularly, we take into account both the stochastic injection
pattern and the restricted adversarial injection pattern.

In stochastic injection, packets are injected to each node at
each round based on a stochastic injection process. Note that
we do not set any special injection probability distribution, but
assume that the injection probability distribution is identical
and independent among different nodes or at different rounds.
This assumption is common in related literature such as [23].
The injection rate λ is defined as the expected number of
packets injected to a node per round.

For restricted adversarial packet injection, we consider a
typical window-type model. Specifically, the packet injection,
determined by an adversary, is restricted by the injection rate λ
and window size ω as follows: during any continuous interval
of ω rounds, the number of packets injected to each node is
upper bounded by λω.

Notations

Given a distance d and a node v, a node u is called a
d-neighbor of v if d(u, v) ≤ d. The set of d-neighbors of
v is called the d-neighborhood of v, denoted by Nd(v). Let
Nd[v] = Nd(v) ∪ {v} and Δ = max{NR(v) : v ∈ V }, where
R is the local broadcast range.

A set of nodes S is called an independent set with respect
to a distance d if for each pair of nodes u, v ∈ S, d(u, v) > d.
An independent set S is maximal w.r.t. d if for each node
w /∈ S, there exists a node v ∈ S such that d(v, w) ≤ d.

A coloring on a node set is proper with respect to a distance
d if the nodes in the set with the same color constitute an
independent set w.r.t. d.

Some important notations are summarized in Tab. II.

Knowledge of Nodes

We assume that each node knows n and Δ. For the
parameter n, a polynomial estimate (with the form of nc

for some constant c > 0) suffices as it will not affect the
asymptotic bounds on the running time of the algorithms.

In our algorithms, nodes do not need to know the precise
values of the SINR parameters α, β, and N . Instead, an upper
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TABLE II

NOTATIONS

and a lower bound of these parameters suffice, i.e., αmin

and αmax, βmin and βmax, and Nmin and Nmax. This also
indicates that our algorithms can work well in a network where
the parameters may vary at different regions. For simplicity,
in this version of the paper, we perform calculations assuming
that exact values of these parameters are known. In order
to take into account the uncertainty regarding these parame-
ters, we choose their maximal/minimal values depending on
whether their upper or lower estimates are provided.

Preliminaries

We present the preliminary results that will be used in our
algorithm analysis. Two sufficient conditions for successful
packet disseminations are given in Lemmas 1 and 2.

Lemma 1: Let r1 and r2 be distance parameters with r1 ≥
(

α−2
48β(α−1)

)− 1
α · r2 and r2 = 2−1/αRT . Let S be a set of

transmitting nodes that form an independent set w.r.t. r1.
Then each transmission of a node w ∈ S can be properly
received by every node in Nr2(w).

Proof: Since S is an independent set w.r.t. r1, it satisfies
that d(u, v) > r1 for any pair of nodes u, v ∈ S. For a node
w ∈ S, we compute the interference experienced by a node
x ∈ Nr2(w). Let Ct be the annulus with distance from w in
the range (tr1, (t + 1)r1] for t ≥ 1. Without confusion, Ct

is also used to denote the set of nodes in Ct. Because any
two transmitting nodes are separated by at least r1, the disks
centered at these nodes with radii r1/2 are disjoint. Notice
that these disks are in the range ((t − 1

2 )r1, (t+ 3
2 )r1]. Then

we can get

|Ct| ≤
π((t+ 3

2 )r1)2 − π((t− 1
2 )r1)2

π(1
2r1)

2
≤ 8(2t+ 1) (2)

The above area argument is demonstrated in Fig. 1. Based
on this argument, we can bound the interference at a node
x ∈ Nr2(w) caused by other transmitters in S as follows:

Ix =
∑

y∈S\{w}

P

dα
yx

≤
∞∑

t=1

NβRα
T

(tr1)α
· 8(2t+ 1)

≤ 24r−α
1 NβRα

T

∞∑

t=1

t−α+1 ≤ 24r−α
1 NβRα

T · α− 1
α− 2

≤ N.

(3)

Then according to the SINR condition, x can receive the
messages sent by w. �

Fig. 1. Area argument: {v1, . . . , v5} are transmitting nodes that are separated
by a distance larger than r1; all transmitting nodes are in the annulus between
the two solid lines with distance tr1 and (t+1)r1 to node x; hence, the disks
centered at the transmitting nodes with radii r1/2 are disjoint and are located
in the annulus between the two dotted lines (with distance (t − 1/2)r1 and
(t + 3/2)r1 from node x).

Our algorithms are randomized, i.e., each node determines
whether or not to transmit with a probability. For random-
ized transmissions, we have the following Lemma 2, which
has been implicitly proved by previous work such as [19]
(Lemma 4.1 and Lemma 4.2).

Lemma 2: Given that all nodes have the same transmission
power P = ηNβRα with constant η > 1. If for each node v,
the transmission probability sum of the nodes in NR/2(v) is
bounded by a constant ρ, then, with a constant probability ζ,
a node u can send its message to all its R-neighbors if it
transmits.

Finally, we present a result proved in [23], which will be
used in the analysis of our continuous algorithm.

Lemma 3 [23]: Given two independent non-negative inte-
ger random variables X and Y , with X being distributed as
follows: X takes only values −1, 0, i · H + 1 with Pr[X =
−1] = q, Pr[X = 0] = 1 − a − q, and Pr[X = i · H +
1] = a

1−b · bi, where b ≤ 1
8 and a < q

4H . If we have
Pr[Y ≥ k] ≤ (1 − 1

H )k for Y , then this bound also holds
for max{Y +X, 0}.

IV. STATIC LOCAL BROADCAST

Our continuous local broadcast algorithm employs a static
local broadcast (SLB) algorithm as a subroutine. Specifically,
in our continuous algorithm, the execution is divided into
stages; and at each stage, the nodes intend to disseminate
the packets injected in the previous stage. In other words,
the packet dissemination at each stage can be seen as a static
local broadcast, as the nodes only disseminate packets that
have been received before the beginning of the current stage.
Formally, we define the SLB problem as follows:

Definition 1 (Static Local Broadcast (SLB)): Given a local
broadcast range R. Assume that for each node v, there exist at
most m ≤ n packets stored at the nodes (a node may possess
more than one packet) in NR[v] initially, and each message
transmitted by the nodes can contain one packet. Then the
SLB problem seeks to make each node deliver its packets to
all its R-neighbors with minimum accomplishment time.
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We next present an almost asymptotically optimal algorithm
for SLB. At first, we present a version of the algorithm which
can disseminate each packet with high probability. And then
we adapt the algorithm to be a Las Vegas one such that it can
be used in our continuous protocol.

A. A SLB Algorithm Without Physical Carrier Sensing

Our SLB algorithm consists of three stages, with the first
two being employed for initialization, in which nodes are
first clustered and then the clusters (actually their nodes) are
colored. At the third stage, nodes execute a 4-slot scheme
to accomplish packet local broadcast. Each cluster consists
of a dominator and a number of dominatees; the dominator
adjusts the contention within its cluster (the transmission
probabilities of its dominatees) and arranges the transmissions
of its dominatees. Using a coloring process on the clusters,
we design a TDMA-like scheme to coordinate the transmis-
sions of the nodes in neighboring clusters, such that the inter-
ference among the neighboring clusters can be avoided. The
TDMA-like scheme ensures that when a dominator transmits,
all its dominatees can successfully receive the transmission.
Hence, the dominator can efficiently control the contention
within its cluster and effectively adjust the transmissions of
its dominatees, which makes the algorithm achieve a more
efficient running time compared to the ones given in previous
work. In the following we introduce the algorithm in detail.

Clustering Stage: In this stage, the nodes are assigned
to clusters. Each cluster consists of a dominator and the
corresponding dominatees. The dominators are selected by
letting the nodes compute a Maximal Independent Set (MIS).
Specifically, nodes execute the MIS algorithm given in [35]
to compute an MIS w.r.t. the local broadcast range R. The
length of this stage is set to Θ(log2 n) rounds, which is
the time complexity of the MIS algorithm. The nodes in the
computed MIS become dominators. Every other node selects
the first MIS node from which it has received a controlling
message (to stop the competition) as its dominator and joins
the corresponding cluster.

We denote by Cu the cluster with dominator u.
Coloring Stage: In this stage, the dominators are properly

colored w.r.t. the distance RC = (((α− 2)/48β(α− 1))−
1
α +

2) ·R. The color of a dominator is also called the color of its
cluster. RC is selected based on Lemma 1, to ensure that when
only the nodes in the clusters with the same color transmit
and at each cluster there is at most one node transmitting, all
transmitters can successfully disseminate their packets within
distance R.

The proper coloring is obtained as follows. The whole
stage consists of (κ+ 1)γ log2 n rounds, where κ is an upper
bound on the maximum number of dominators within the
RC -neighborhood of each node, and γ is a sufficiently large
constant such that γ log2 n rounds are enough to execute the
MIS algorithm in [35] whose running time is Θ(log2 n). Using
a similar area argument as that employed by the proof of
Lemma 1, one can obtain that κ = (2RC/R + 1)2, which
is a constant. The coloring stage is then split into κ + 1
phases, and each phase contains γ log2 n rounds. At each

phase, the dominators that have not been colored execute the
MIS algorithm in [35] with respect to distance RC , and the
nodes elected into the MIS in phase i get color i.

After this stage, the dominators are colored with colors
1, 2, . . . , κ, κ + 1. The dominators then execute a (κ + 1)-
round scheme to inform their dominatees of their colors:
at round i, the dominators with color i transmit a message
containing its assigned color. Lemma 2 ensures that after this
informing procedure, each node is aware of the color of its
cluster (dominator).

Local Broadcast Stage: In this stage, the nodes execute an
algorithm in a TDMA fashion to avoid the interference among
neighboring clusters. In particular, time is divided into phases
of κ+1 rounds. At the i-th round of each phase, the nodes with
cluster color i execute the 4-slot scheme given in Algorithm 1.
The TDMA approach ensures that the nodes whose clusters
have the same color execute the algorithm simultaneously.

Each node v stores its packets in a queue Qv. Each round
contains four slots for the execution of the 4-slot scheme: the
first slot is used by the dominators to disseminate their packets,
while the other three slots are used by the corresponding
dominatees, who need to get authorization from their dom-
inators first before packet dissemination. Hence, in the second
slot, each dominatee transmits an AskRight message with a
specified probability to its dominator; then in the third slot,
the dominator sends a Grant message to the dominatee from
which it receives the AskRight message; and in the fourth
slot, the dominatees receiving authorization in the third slot
transmit their messages.

Algorithm 1 4-Slot Scheme

Initially, pv = 1
2n ; κ = (2RC/R+ 1)2; ζ is the constant

given in Lemma 2;
The 4-slot scheme for a dominator u:

1 if Qu is not empty then
transmit the first packet in Qu; discard the transmitted
packet from Qu;

2 listen;
3 if received AskRightv from a node v in its cluster then

transmit Grantv;
4 listen;

The 4-slot scheme for a dominatee v:
5 listen;
6 if Qv is not empty then

transmit AskRightv with probability pv;

7 listen;
8 if received Grantv from its dominator then

transmit the first packet in Qv; discard the transmitted
packet from Qv;

if received less than 12 logn Grant messages from its
dominator and pv does not change in the past
96κζ−1 logn rounds then
pv = 2pv;

Note that in Algorithm 1 a dominatee v doubles its trans-
mission probability pv if there are not many message deliveries
in its cluster in the past Θ(logn) rounds. At this stage,
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the transmission power of the nodes is set to be PL = 2NβRα.
By definition, the transmission range of the nodes is RT =
2

1
αR. In Algorithm 1, ζ is the constant given in Lemma 2, and
κ = (2RC/R+1)2 defines an upper bound on the number of
colors.

B. Analysis on the SLB Algorithm

Analysis of the Clustering and Coloring Stages: We first
state the efficiency of the MIS algorithm. The following
lemma (Lemma 4) is given in [35].

Lemma 4 [35]: An MIS can be computed in O(log2 n)
rounds w.h.p.

With the above Lemma 4, we then analyze the algorithm
execution of the clustering and coloring stages. Lemma 5 is
a direct corollary of Lemma 4 for the algorithm execution of
the clustering stage.

Lemma 5: After the clustering stage, w.h.p., each node is
assigned to a cluster and the dominators constitute an MIS
w.r.t. distance R.

For the coloring stage, we have the following result:
Lemma 6: After the coloring stage, the dominators are

colored properly w.r.t. RC w.h.p., and each dominatee can
acquire the color of its dominator.

Proof: For each dominator u, after each phase, either
it gets a color or one of its RC -neighboring dominators is
colored by the algorithm. Because each node has at most κ
RC -neighboring dominators, after at most κ phases, either u
gets a color or all its RC -neighboring dominators are colored.
If it is the second case, u gets colored in the subsequent
phase and joins the MIS. The correctness of the MIS algorithm
ensures that the computed coloring is proper.

For the second part of the Lemma, the proper coloring
ensures that at each round of the color informing procedure,
the transmitting nodes are separated by a distance RC . Accord-
ing to Lemma 1, these nodes can send their colors to their
dominatees simultaneously, since dominatees are R-neighbors
of their dominators. �

Analysis on the Local Broadcast Stage: To proceed,
we assume that the clustering and coloring stages are correctly
executed. In other words, we temporarily ignore the error prob-
abilities in Lemmas 5 and 6, and take them into consideration
in the final result.

Lemma 7: For each cluster Cu with dominator u and at
each round t,

(i) when the dominator u transmits in the first slot or in the
third slot, the transmitted message can be received by all its
R-neighbors;

(ii) if a dominatee v ∈ Cu transmits in the fourth slot, its
transmission can be received by all its R-neighbors.

Proof: The TDMA approach ensures that each pair of
nodes executing the algorithm concurrently are separated by a
distance of at least RC − 2R if they are in different clusters.
By the algorithm, when the dominator u transmits in the first
slot or in the third slot and the dominatee v transmits in the
fourth slot, they are the only transmitters in Cu. Therefore this
lemma holds from Lemma 1. �

We then present the following result, which employs
Lemma 2 as a sufficient condition to determine a success-
ful packet dissemination. For a dominator u, let P (u) =∑

v∈Cu
pv , i.e., the sum of the transmission probabilities of

its dominatees.
Property 1: For any cluster Cu at any round t throughout

the execution of the algorithm, P (u) ≤ 1
2 .

The proof of Property 1 is given later in Lemma 9.
With Property 1, one can see that the condition in Lemma 2

holds, as the R/2-neighbors of u belong to a constant number
of clusters. Thus, in the following, we can use Lemma 2 to
determine a successful packet dissemination.

Lemma 8: Each node v sends its packets to all its
R-neighbors successfully in O(m+ log2 n) rounds, w.h.p.

Proof: Clearly, we only need to bound the time a
dominatee takes to successfully disseminate its packets, as a
dominator can successfully disseminate a packet when it
transmits in each round, and therefore it takes O(m) rounds
for a dominator to accomplish the local broadcast.

Consider a dominatee v ∈ Cu. According to Algorithm 1,
within every 96κζ−1 logn rounds, either in a constant fraction
of these rounds u transmits Grant messages or v doubles
its transmission probability. For the convenience of analysis,
we split the time into substages of 96κζ−1 logn rounds.
By Lemma 7, for each dominatee that has received a Grant
message from its dominator, it can locally broadcast a packet
in the fourth slot of the same round. Hence, v can receive
at most m Grant messages. This means that the number of
substages at which the transmission probability of v is not
changed is at most m/12 logn+ 1. Then after m/12 logn+
m/ logn + logn + 1 substages, there are at least m/ logn
substages at which v attains a constant transmission probability
1
2 . At each round of these substages, v can send an AskRight
message to its dominator with constant probability ζ/2 by
Lemma 2. Based on the above analysis and Lemma 7, v can
disseminate 48 logn packets in expectation during each of
these substages. Using Chernoff Bound, one can show that v
can send 24 logn packets with probability 1−O(n−3). Then,
in the substages with a constant transmission probability, v
can send all packets to all its R-neighbors with probability
1 − n−2, as v has at most m packets to deliver. This result
holds for all nodes by the union bound. �

Before presenting the final result, we need to show that
Property 1 holds with a high probability.

Lemma 9: Property 1 holds for any cluster with probability
1 −O(n−1).

Proof: Assume that Cu is the first cluster that violates
Property 1 and the round at which the violation happens is t∗.
Then before t∗ we can still assume that the property holds for
all clusters. Next we show a result that is a little bit stronger:
for each node v in Cu and at any round t, with probability
1 − O(n−3), pv ≤ 1

2|Cu| . Then
∑

v∈Cu
≤ 1

2 and there is no
such a violation round t∗ for Cu with probability 1−O(n−3).

Otherwise, assume that at timeslot t, for the first time,
there is a node in Cu with a transmission probability larger
than 1

2|Cu| . By Lemma 7, u can send each Grant message
to nodes in Cu. Thus nodes in Cu change their transmission
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probabilities at the same time. Hence, they have the same
transmission probability at any round. Then during the interval
I = [t − 96κζ−1 logn, t − 1], it holds that for any node v,

1
4|Cu| < pv ≤ 1

2|Cu| , since each node in Cu only doubles its
transmission probability once during I . Before t, nodes in each
cluster Cw has a sum of transmission probabilities at most 1

2 .
From the above analysis, one can see that Lemma 2 can still

be employed to determine a successful packet dissemination
during I . Then if a node v ∈ Cu transmits, with constant
probability ζ, u can successfully receive this message. Then
the probability that u can receive an AskRight message from
the nodes in Cu is at least

∑
v∈Cu

pv ·ζ ≥ |Cu|· 1
4|Cu| ·ζ = ζ/4.

During I , u can receive at least 96κζ−1 logn · 1
κ · ζ

4 =
24 logn AskRight messages in expectation. Then using Cher-
noff bound, the probability that u receives less than 12 logn
AskRight messages is at most e

1
8 ·24 log n = n−3. Thus with

probability at least 1 − n−3, each node can receive at least
12 logn Grant messages during I . Then all nodes in Cu at
round t do not change their transmission probabilities, which
contradicts the assumption.

Finally, we bound the number of such potential violation
rounds for u. Based on the above analysis, we know that
before any potential violation round, there are Ω(log n) nodes
in Cu that can receive a Grant message and successfully
perform a local broadcast. Thus there are at most O( m

log n ) ∈
O( n

log n ) potential violation rounds. Therefore with probability
1 −O(n−2), there is no such a violation time for u. And the
claim is true for all clusters with probability 1−O(n−1). �

Based on Lemmas 5, 6, and 8, we obtain the following
result characterizing the algorithm performance.

Theorem 2: The proposed SLB algorithm can make all
nodes accomplish packet local broadcast in O(m + log2 n)
rounds w.h.p.

C. Adapting to a Las Vegas Algorithm

In our continuous algorithm that will be given in the
next section, each node needs to deterministically figure out
whether a transmitted packet is disseminated to all its
R-neighbors. For this purpose we need to adapt the static algo-
rithm to a Las Vegas one, i.e., the algorithm can successfully
disseminate the packets or inform about the failures of packet
disseminations.

We add an explicit acknowledgement step into our SLB
algorithm. Specifically, the 4-Slot Scheme in Algorithm 1
is expanded to a 5-Slot one, as shown in Algorithm 2.
The difference of these two algorithms lies in the last slot:
by listening in the fourth slot, a dominator u determines
whether the authorized dominatee v has successfully delivered
a packet by detecting whether or not the interference exceeds a
threshold T = 4−α ·N ; if true, it ensures that the transmission
of v is also received by all v’s R-neighbors. Thus u sends
back an Ack message to v in the last slot. The dominatee
discards a packet only after receiving the Ack message from
its dominator.

Analysis: The difference of the Las Vegas algorithm and
the SLB algorithm lies in that it needs to ensure not only
successful packet dissemination but also that the interference

Algorithm 2 5-Slot Scheme

Initially, pv = 1
2n ; κ = (2RC/R+ 1)2; ζ is the constant

given in Lemma 2;
The 5-slot scheme for a dominator u:

1 if Qu is not empty then
transmit the first packet in Qu; discard the transmitted
packet from Qu;

2 listen;
3 if received AskRightv from a node v in its cluster then

transmit Grantv;
4 listen;
5 if received a message fron node v and detects that the

interference is at most T then
transmit Ackv;

The 5-slot scheme for a dominatee v:
6 listen;
7 if Qv is not empty then

transmit AskRightv with probability pv;

8 listen;
9 if received Grantv from its dominator then

transmit the first packet in Qv;

10 listen;
if received ACKv then

discard the transmitted packet from Qv;
if received less than 12 logn Grant messages from its
dominator and pv does not change in the past
96κζ−1 logn rounds then
pv = 2pv;

at the dominator does not exceed the threshold T . Using a
very similar argument as that for proving Lemma 2, we can
get the following result:

Lemma 10: Assume that for each node v in the network,
the transmission probability sum of the nodes in NR/2(v) is
upper bounded by a constant ρ. Then if a node u transmits,
with some constant probability ζ1, u can send its message to
all its R-neighbors, and the interference at u’s dominator is at
most T .

The following Lemma 11 states that the threshold T
based condition is sufficient to determine a successful packet
dissemination.

Lemma 11: When a dominator u receives a message from
one of its dominatees v and detects that its experienced
interference is not larger than T , the transmission of v can
be received by all v’ R-neighbors.

Proof: Let X be the set of nodes transmitting simulta-
neously with v. By the setting of T , the transmitters other
than v have a distance at least 4R from u. Then for each
node w ∈ NR(v) and each x ∈ X , we have d(x,w) ≥
d(x, u) − d(u,w) ≥ d(x, u) − 2R ≥ 1

2d(x, u). Then the
interference at w can be upper bounded as follows:

∑

x∈X

PL

d(x,w)α
≤ 2α ·

∑

x∈X

PL

d(x, u)α
≤ 2α · T ≤ N. (4)

By the SINR condition defined in Eq. (1), it can be shown
that w can successfully receive the transmission of v. �
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Similar to Lemma 7, it can be shown that when a dominator
transmits an Ack message, all its dominatees can success-
fully receive the message; and Lemma 11 ensures that when
a dominatee receives an Ack message from its dominator,
the dominatee must have successfully disseminated a packet to
all its R-neighbors. In other words, Algorithm 2 is a Las Vegas
one. Then based on the above two Lemmas and an argument
similar to that in the proof of Lemma 8, one can show that
each node can disseminate all its packets in O(m + log2 n)
rounds w.h.p. Thus, the following result holds.

Theorem 3: There exists a Las Vegas algorithm that can
make each node disseminate all packets in O(m + log2 n)
rounds w.h.p.

V. STABLE ALGORITHM FOR CLB

We present our stable algorithm for CLB in this section.
The algorithm is articulated and analyzed w.r.t. the stochastic
packet injection, and the performance of the protocol under
the adversarial packet injection will be discussed in Sec. V-D.
At the end of this section, we give an upper bound on the
maximum injection rate and a lower bound on the minimum
packet latency with which a stable protocol can attain, to show
the asymptotic optimality of our proposed protocol.

The basic idea of the algorithm is sketched as follows:
the execution is divided into stages of a designated length;
and at each stage, the packets injected in the past stages are
disseminated by making the nodes execute the SLB algorithm
in two consecutive phases, in which by elaborately setting
the length of each phase one can ensure that the algorithm
can disseminate the packets injected in the past stages while
maintaining the stability of its execution. Indeed, we give
a general framework on how to construct a CLB algorithm
based on a SLB algorithm. However, the maximum packet
injection rate under which the obtained stable protocol can
attain is determined by the efficiency of the SLB algorithm.
Our proposed SLB algorithm ensures that the maximum stable
injection rate that can be attained by the obtained CLB
algorithm is asymptotically optimal. Furthermore, the length
of the stages determines the packet latency in the algorithm.
On one hand, each packet needs to wait for the beginning of
the next stage to be disseminated, and therefore the packet
latency is lower bounded by the length of a stage in the worst
case. This requires to set the stage as short as possible. On the
other hand, if the length of the stage is set to be too short,
the variance of the number of packets injected to the nodes
may become too large, leading to the scenario with too many
packets injected within a stage to be processed in time. In our
study, we set the length of each stage to be Θ(Δ + log2 n),
with which it can be shown that the obtained packet latency
is asymptotically optimal.

Though the basic idea of the algorithm is not very com-
plicated, the analysis on the stability, throughput, and packet
latency is non-trivial, as both the variance during the stochastic
packet injection and the failures of the algorithm execution are
necessary to be carefully counted.

In sequel, we denote our Las Vegas algorithm for SLB
(Algorithm 2) given in the last section as A(n), where n is
the number of nodes in the network. Furthermore, we assume

Fig. 2. A stage of the CLB protocol.

that the time complexity of the Las Vegas algorithm is
μ(m + log2 n) when the number of packets in each node’s
R-neighborhood is bounded by m, where μ is an upper bound
of the constant hidden behind the big O notation of the running
time in Theorem 3.

A. Stable Algorithm

We consider the packet injection rate λ that is in the range
(0, (1−ε)μ−1 ·(Δ+1)−1]. Here ε can be set to be any constant
in the range [12 , 1). To simplify our analysis, we set ε = 1

2 .
As shown later (Thoerem 5), the maximum injection rate we
consider is asymptotically optimal.

We define the following parameters that will be used in
the algorithm. Let φ = 5(ln((1 + ε)1+ε/eε))−1. We set T =
ψ(Δ+log2 n) for some constant ψ, such that T ≥ max{2(1−
ε)−1μ · φ ln(φ(1 + ε)), 60(1 − ε)−1μ ln(30(1 + ε))} and T ≥
max{(1− ε2)−1μΔ, 3

ε2μ log2 n}. Let J = (1 + ε)λ(Δ + 1)T .
It can be verified that J ≥ Δ.

The algorithm is divided into stages and the length of each
stage is T . Each stage consists of two phases: the first phase is
used to disseminate the packets injected in the last stage, and
the second phase is used for the dissemination of the packets
that are not successfully disseminated so far. Fig.2 illustrates
one stage of the algorithm execution.

In the algorithm, each node v stores the packets it needs to
disseminate in three sets: Sv, Qv, and Fv . Specifically, v stores
the packets that are just injected into Sv. At the beginning of
each stage, v moves the packets in Sv into Qv, which includes
all the packets that are to be disseminated during the first phase
of the stage. The first phase consists of μ(J + log2 n) rounds,
in which v executes A(n) on the packets in Qv. After the first
phase, v moves the packets still in Qv into Fv . In other words,
Fv contains the packets that are not successfully disseminated
during the first phases of the past stages. The second phase
contains the remaining rounds in the stage. At the beginning
of this phase, each node v selects the first packet in Fv with
probability 1/Δ. If v selects a packet, it then executes A(n) for
μ(1 + log2 n) rounds. If v successfully disseminates a packet
to its R-neighbors, it discards the packet from Fv .

At each stage, as shown later, almost all packets in Qv can
be successfully disseminated during the first phase, and only
very few packets are moved to Fv . Hence, after the first phase,
the queue length |Fv| for each node v does not significantly
increase. Then in the second phase, it can be shown that the
queue length |Fv| of each node v can be effectively decreased.
Combining these two aspects together, we can conclude that
the protocol is stable. We next detail the performance analysis.

B. Performance Analysis

We can obtain the following result (Theorem 4) that
states the stability, throughput, and packet latency of the
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CLB algorithm. Note that Theorem 4 is a direct corollary of
Lemma 15 and Lemma 16, to be presented later.

Theorem 4: The proposed CLB algorithm is stable w.r.t.
packet injection at a rate up to Ω( 1

Δ ). The expected packet
latency is O(Δ + log2 n).

Stability and Throughput Analysis: We first show that the
algorithm for CLB is stable w.r.t. the considered injection rate
λ ≤ (1 − ε)μ−1 · (Δ + 1)−1 ∈ Ω( 1

Δ), i.e., the expected size
of |Fv| for each node v is bounded at any time. The proof
contains two parts: 1) bounding the increase on the expected
size of Fv after the first phase of each stage; and 2) showing
that the increase can be handled in the second phase.

We consider the first part of the proof. For an arbitrary node
v, let mi be the number of packets injected to the nodes in
NR[v] at stage i− 1. These packets are those that are moved
to the Qu’s (the set of packets to be disseminated in the first
phase of stage i) for u ∈ NR[v] at the beginning of stage i.

Lemma 12: For any δ > 0, Pr[mi ≥ (1+δ)λ (Δ+1)T ] ≤
(

eδ

(1+δ)1+δ

)λ(Δ+1)T

.

Proof: For a node u ∈ N [v], let It
u be the number of

packets injected to u at round t. Denote by R the rounds
of stage i − 1. Then mi =

∑
t∈R

∑
u∈NR[v] I

t
u. Because

the packet injections on the nodes are independent, and the
injections to the same node at different rounds are also
independent, the expected number of packets injected to the
nodes in NR[v] can be bounded as follows:

E[mi] = E[
∑

t∈R

∑

u∈NR[v]

It
u] =

∑

t∈R

∑

u∈NR[v]

E[It
u]≤λ(Δ+1)T.

Using Chernoff bound, we get

Pr[mi ≥ (1 + δ)λ(Δ + 1)T ] ≤
(

eδ

(1 + δ)1+δ

)λ(Δ+1)T

�
Lemma 13: For each node v, during any stage i, the proba-

bility that the expected size of Fv increases by at least r ·J+1
is at most J−4−r for any non-negative integer r.

Proof: We distinguish the proof into two cases.
Case 1 (r = 0): In this case, we need to bound the

probability that at least one packet is added to Fv after the
first phase of stage i. Denote by P1 this probability. There
are two reasons for Fv to grow: first, the number of packets
in Qv exceeds the bound that the algorithm A(n) can handle
in the first phase,2 i.e., mi > J ; second, the inherent failure
probability of the randomized algorithm is non-negligible.

In the following we consider the first increasing reason.
At first, we lower bound λ(Δ + 1)T and claim that

λ (Δ + 1)T ≥ φ · lnJ . Using the inequality x ≥ 2 lnx for
x > 0, we have

λ(Δ + 1)T
φ

≥ λ(Δ + 1)T
2φ

+ ln
(
λ(Δ + 1)T

φ

)

≥ ln(φ(1 + ε)) + ln
(
λ(Δ + 1)T

φ

)

= lnJ. (5)

2Notice that the first phase contains µ(J + log2 n) rounds. By Theorem 3
and the setting of constant µ, the algorithm A(n) works if mi ≤ J .

Now we use Lemma 12 to bound the probability that the event
mi > J occurs as follows:

Pr[mi > J ] = Pr[mi > (1 + ε)λ(Δ + 1)T ]

≤
(

eε

(1 + ε)1+ε

)λ(Δ+1)T

≤
(

eε

(1 + ε)1+ε

)φ ln J

= J−5 (6)

We next consider the second increasing reason. As stated,
by appropriately tuning the constant parameters used in the Las
Vegas algorithm, its failure probability can be upper bounded
by 1

2n
−5 ≤ 1

2J
−4.

Combining the above analysis, we can conclude that
P1 ≤ J−5 + 1

2J
−4 ≤ J−4.

Case 2 (r > 0): In this case, we only need to bound the
occurrence probability of the first increasing reason.

By the value of T and using a similar argument as that in
Eq. (5), one can obtain that λ(Δ + 1)T ≥ 30 lnJ .

Then according to Lemma 12 and Chernoff bound, we have

Pr[mi > rJ ] ≤ Pr[mi ≥ r(1 + ε)λ(Δ + 1)T ]
≤ e−

1
3 (r(1+ε)−1)·λ(Δ+1)T

≤ e−
1
3 (r(1+ε)−1)·30 ln J ≤ J−4−r. (7)

�
We next consider the decrease of |Fv| in the second phase.
Lemma 14: For a node v at the second phase of a stage i,

if Fv is non-empty, the probability that the expected number
of packets in Fv decreases by 1 is at least 1/2e(Δ + 1).

Proof: We consider the decrease of |Fv| in the case that:
1) v selects a packet in Fv; and 2) other nodes in NR[v] do
not select packets. The probability that v selects a packet is

1
Δ+1 , and the probability that other nodes in NR[v] do not
select packets is (1 − 1

Δ+1)Δ ≥ 1
e . Then, with probability

at least 1
e(Δ+1) , v is the only node in NR[v] that selects a

packet to transmit. Therefore, with probability at least 1/2, v
can successfully disseminate the selected packet by executing
algorithm A(n). Combining the above analysis, we conclude
that the lemma holds. �

Now we are ready to prove the stability of the algorithm.
Lemma 15: For each node v, the expected size of Fv is

bounded at any time for any injection rate λ ≤ (1 − ε)μ−1 ·
(Δ + 1)−1.

Proof: In Lemma 3, by setting a = J−4, b = J−1,
q = 1

2e(Δ+1) , H = J , it can be obtained that Pr[|F (v)| ≥
k] ≤ (1−J−1)k at any time t by Lemma 13 and Lemma 14.
Then,

E[|F (v)|] ≤
∞∑

k=1

k · Pr[|F (v)| ≥ k − 1]

≤
∞∑

k=1

k · (1 − J−1)k−1 = J2,

which completes the proof. �
Packet Latency Bounding:
Lemma 16: The expected packet latency is O(Δ+ log2 n).

Proof: We consider an arbitrary packet P that is injected
to a node v. Assume that P is injected to v at stage i. Then
according to the algorithm, P is moved to Qv at the beginning
of stage i + 1. If P is successfully disseminated during the
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first phase of stage i+ 1, clearly, the packet latency is upper
bounded by 2T ∈ O(Δ+log2 n). Otherwise, P is moved to Fv

and then disseminated in the second phases of the subsequent
stages.

Let Z be 1 if P is moved to Fv and 0 otherwise. Let D be
the number of stages used for P to be disseminated. Then we
have

E[D] = Pr[Z = 1]E[D|Z = 1] + Pr[Z = 0]E[D|Z = 0]
≤ Pr[Z = 1]E[D|Z = 1] + 2.

We next bound Pr[Z = 1]E[D|Z = 1]. As shown in
Lemma 13, Pr[Z = 1] ≤ J−4. Now we condition on Z = 1,
i.e., P is added to Fv. Let X be the number of packets in
Fv before P . By Lemma 14, from stage i + 1, there is a
packet in Fv being disseminated at each of the subsequent
stages with probability 1

2e(Δ+1) . Then in expectation, P can
be disseminated after 2e(Δ + 1) · (E[X ] + 1) ≤ 2e(Δ + 1) ·
E[|Fv|] ≤ 2e(Δ + 1) · J2 stages.

Combining the above analysis together, we can bound E[D]
as follows:

E[D] ≤ J−4 · 2e(Δ + 1) · J2 + 2
= 2e(Δ + 1) · J−2 + 2 ≤ 4eJ−1 + 2.

The last inequality holds by J ≥ Δ. Then the expected
delay of P is E[D] · T ≤ (4eJ−1 + 2)T ∈ O(T ) ∈ O
(Δ + log2 n). �

C. Optimality of the Proposed Algorithm

With the following result, one can show that our proposed
algorithm is asymptotically optimal in terms of both injection
rate and packet latency.

Theorem 5: For any stable local broadcast protocol,
the maximum injection rate it can handle is O( 1

Δ ), and the
minimum packet latency it can attain is at least Ω(Δ+log2 n).

Proof: For each node v, it can receive at most one packet
from its R-neighborhood within one round. Hence, the sum
of the number of injected packets to the nodes of NR[v] is
at most 1 at each round such that a stable protocol can be
obtained. It follows that the injection rate of each node is at
most 1

Δ+1 .
In [21], it is shown that to make v receive packets from each

of its R-neighbors, it takes at least Ω(Δ + log2 n) rounds to
succeed with a high probability guarantee, which is a lower
bound of the packet latency. �

D. Adversarial Packet Injection

Our CLB protocol can also handle adversarial packet
injection. The key point to ensure the stability of our protocol
is that the number of injected packets within a stage should
be upper bounded by the estimate J . For adversarial injection,
by bounding the injection rate to be λ ≤ (1−ε)μ−1(Δ+1)−1

for constant ε = 1
2 , the number of injected packets at each

stage can be upper bounded. Then using a similar argument
as that for the stochastic injection case, we can get the
following result.

Theorem 6: The proposed CLB algorithm is stable w.r.t.
the adversarial packet injection at a rate of up to Ω( 1

Δ ). The
expected packet latency is upper bounded by O(Δ + log2 n).

TABLE III

PARAMETER SETTINGS IN THE SIMULATION STUDY

Proof: We first consider the stability of the algorithm
for injection rate λ ≤ (1 − ε)μ−1(Δ + 1)−1. Recall that for
an arbitrary node v, mi denotes the the number of packets
injected to the nodes in NR[v] at stage i − 1. With a similar
approach as that in the proof of Lemma 12, we can bound mi

as follows:

mi =
∑

t∈R

∑

u∈NR[v]

It
u ≤ λ(Δ + 1)T < J. (8)

Based on the above bound, using a similar argument as
that in Lemma 13, one can conclude that during any stage,
the probability at which the expected size of Fv increases
by at least 1 is at most J−5, and the probability at which the
expected size of Fv increases by at least r ·J+1 for a positive
integer r is 0. Hence, Lemma 13 also holds in the adversarial
injection case. Then based on similar arguments as those used
in Lemma 14 and Lemma 15, one can prove the stability of
the protocol under the stated injection rate.

For packet latency, notice that the proof in Lemma 16 does
not depend on any packet injection pattern; thus one can
get the same asymptotic packet latency bound in the case of
adversarial packet injection. �

VI. SIMULATION RESULTS

We study the empirical performances of our continuous
algorithm in this section. Specifically, we investigate (i) the
range of the injection rate λ for the protocol to be stable;
(ii) the influence of the injection rate λ on the queue lengths
of the nodes, i.e., the length of |Fv| for each node v; and
(iii) the influence of the injection rate λ on the packet latency.
The performances of the algorithm under uniform, normal,
and exponential node distributions are evaluated. Both the
stochastic and the adversarial packet injection patterns are
considered. Particularly, for the stochastic packet injection
case, the packets injected to the nodes are generated using
a normal distribution.

We also investigate the performances of the proposed static
algorithm from two aspects: (i) the performance improvement
over existing ones; and (ii) the influence of SINR parameters
on the algorithm’s performance.

The simulations are conducted in a network whose nodes
can be deployed in a square area of 150 by 150. The default
settings are given in Tab. III. Over 20 runs of the simulation
have been carried out for each reported result.

All experiments are conducted on a Linux machine with
Intel Xeon CPU E5-2670@2.60GHz and 64 GB main memory,
implemented in C++ and compiled by g++ compiler.

A. CLB Protocol
The lengths of the first and the second phases at each stage

of the CLB protocol are set as 8000 and 320, respectively.
To better compare the performances of our protocol with the
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Fig. 3. Performance evaluations of the CLB Protocol under the stochastic packet injection pattern. We consider three types of node distributions: (a) Uniform;
(b) Normal, and (c) Exponential, and four aspects of performances: (1) Stability; (2) Average queue length; (3) Average packet latency; and (4) Packet latency
distribution. Subfigures (a1)-(a4), (b1)-(b4), and (c1)-(c4) illustrate the simulation results under the uniform, normal, and exponential node distributions,
respectively.

optimal solution, we scale the injection rate by a parameter
Δ + 1, and let λ1 = (Δ + 1)λ. It is easy to see that λ1 is
an upper bound on the sum of the injection rates of a node’s
R-neighbors. As shown in the proof of Theorem 5, for any
stable protocol, λ ≤ 1

Δ+1 . Hence, λ1 ≤ 1 holds for an
optimal stable protocol. We call an injection rate stable if
the protocol is stable under the packet injection with the
particular injection rate.

The simulation results of the CLB algorithm under the
stochastic and the adversarial packet injection patterns are
illustrated in Fig. 3 and Fig. 4, respectively. We next analyze
the simulation results in more detail.

1) Stochastic Packet Injection: In Fig. 3, the simulation
results under the uniform, normal, and exponential node
distributions are illustrated in Subfigures (a1-a4), (b1-b4),
and (c1-c4), respectively.

Range of injection rates for stability: The stabilities of
the protocol under different node distributions are illustrated
in Subfigures (a1), (b1), and (c1) in Fig. 3. In each of these
subfigures, the x-axis represents the number of rounds the
algorithm has been executed. To better illustrate the stability of
the protocol, in the y-axis, we count the total number of pack-
ets in the nodes’ queues (

∑
v∈V |Fv|) at each round, which

clearly upper bounds the maximum queue length of the nodes
during the algorithm execution in our simulation. We execute
the algorithm for 5 × 106 rounds. The subfigure (a1) demon-
strates that under the uniform node distribution, the protocol is
stable when the injection rate λ1 ≤ 0.10000, but is not stable
for λ = 0.10125. Hence the maximum injection rate λ1 for
the protocol to be stable is in the range [0.10000, 0.10125).
Hence, our protocol is inferior to the optimal solution by a
factor of less than 10 in the case of uniform node distribution.

From Subfigures (b1) and (c1), it can be seen that the
maximum stable injection rates λ1 are in the ranges
[0.0750, 0.0775) and [0.072, 0.075) under the normal and
exponential node distributions, respectively, which are a bit
smaller than that in the uniform distribution case. This is
mainly because networks of larger density tend to be generated
in the normal and exponential cases compared to uniform node
distribution case. Consequently, the network suffers from more
interference and conflicts.

Influence of injection rates on queue length: Subfig-
ures (a2), (b2), (c2) in Fig. 3 illustrate the average lengths
of the nodes’ queues for the three different node distribu-
tions. In all these cases, the average queue length is smaller
than 2.5, which is quite small. Furthermore, the subfigures also
exhibit the tradeoff between injection rate and average queue
length: the higher the injection rate is, the larger the average
queue length will be.

Tab. IV gives a detailed distribution of the nodes’ queue
lengths in a round when the network is in a stable state. In the
table, the rates of nodes with queue lengths |Fv| in different
ranges under different packet injection patterns and different
node distributions are illustrated. As shown in the table, under
all cases, 90% of the nodes have a queue length less than 5.
Furthermore, we observe that the maximum queue length of
the nodes is no more than 20.

Subfigures (a2), (b2), (c2) of Fig. 3 and Tab. IV indicate
that almost all packets are disseminated in the first phase of
each stage.

Influence of injection rates on packet latency: Subfig-
ures (a3), (b3), (c3) in Fig. 3 illustrate the average packet
latency as the algorithm executes under three different node
distributions. In these subfigures, the x-axis and y-axis
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Fig. 4. Performance evaluations of the CLB Protocol under the adversarial packet injection. Similar to Fig. 3, subfigures (a1)-(a4), (b1)-(b4), and (c1)-(c4)
illustrate the simulation results under the uniform, normal, and exponential node distributions, respectively.

TABLE IV

DISTRIBUTION OF THE QUEUE LENGTH UNDER DIFFERENT PACKET

INJECTION PATTERNS/RATES AND NODE DISTRIBUTIONS

represent the number of rounds that the algorithm has been
executed and the average packet latency, respectively. From
the subfigures, we observe that the average packet latency is in
the ranges of [8200, 8900], [8000, 10700], and [8800, 11300],
respectively, for the three distributions, which is about the
length of one stage in the protocol. This is consistent with our
theoretical analysis. The subfigures also show that a higher
injection rate results in a larger packet latency.

Subfigures (a4), (b4), (c4) from Fig. 3 illustrate the distri-
butions of the packet latency in a round when the network is

stable. As shown in these subfigures, one can see that about
95% of the packets under the uniform distribution and 90%
of the packets under the normal and exponential distributions
have latency less than 15000, which is the length of around
2 stages. Because each packet starts to be disseminated in
the subsequent stage after it is injected according to our
algorithm, such a latency indicates that most packets are
successfully disseminated in the first stage at which it starts
to be disseminated.

2) Adversarial Packet Injection: The simulation results of
the CLB protocol under the adversarial packet injection model
are illustrated in Fig. 4, in which Subfigures (a1-a4), (b1-b4),
and (c1-c4) report the simulation results under the uni-
form, normal, and exponential node distributions, respectively.
Furthermore, similar to Fig 3, in Fig 4, the stabilities of
the protocol under different node distributions are illustrated
in Subfigures (a1), (b1), and (c1); Subfigures (a2), (b2), (c2)
demonstrate the average lengths of the nodes’ queues under the
three different node distributions; the average packet latencies
as the algorithm executes under the three different node distri-
butions are illustrated in Subfigures (a3), (b3), and (c3), and
Subfigures (a4), (b4), (c4) report the distributions of the packet
latency in a round when the network is stable. Similarly as in
the stochastic packet injection case, in Tab. IV, we present a
detailed distribution of the nodes’ queue lengths within a round
when the network is in a stable state. Specifically, the queue
lengths |Fv| under different packet injection patterns/rates and
different node distributions when the protocol is stable are
illustrated.

From the subfigures in Fig. 4 and Tab. IV, we obtain
similar observations and conclusions as those in the stochastic
packet injection case. But it is worthy of pointing out that
the protocol can attain a larger stable injection rate under
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Fig. 5. Performance evaluation of the SLB algorithm. We consider three
types of node distributions: (a) Uniform distribution; (b) Normal distribution;
and (c) Exponential distribution.

the case of adversarial packet injection. This is because
in the stochastic injection case, the injection rate refers to
the expected packet injection speed, which implies that the
probability under which more packets are injected is not zero,
while in the adversarial case, the injection rate is the tight
upper bound of the injection speed.

In summary, the simulation results reported in Fig.3 and
Fig. 4 demonstrate that the protocol is stable for both stochas-
tic and adversarial packet injections with an injection rate up to
Ω( 1

Δ+1 ) under three different typical node distributions, and
attains asymptotically optimal packet latency. These simula-
tion results corroborate our theoretical analysis. Furthermore,
our simulation study also shows that the queue lengths of the
nodes are much smaller than the analyzed bound.

B. SLB Algorithm

The simulation results for our SLB protocol are shown
in Fig. 5, in which the Subfigures (a1-a2), (b1-b2), and (c1-c2)
illustrate the simulation results under the uniform, normal, and
exponential node distributions, respectively.

In Subfigures (a1), (b1), and (c1) of Fig. 5, we compare
the performance of our static algorithm with the following
three best known existing ones: LocalBroadcast1 (LB1) [21],
LocalBroadcast (LB) [34], and Nearly Optimal Local Broad-
cast (NOLB) [4]. Because the existing algorithms only con-
sider the case under which each node has exactly one packet
to disseminate, we conduct the simulation study under this
setting. It can be seen that our algorithm is at least twice
as fast as the LB and LB1 algorithms. NOLB achieves a

bit better performance than our algorithm under the normal
and exponential distributions, but it needs a strong assumption
that nodes can get free feedback on its transmissions, which
is impractical in real-world wireless networks. Furthermore,
we observe that the constant hidden behind the big O in the
running time of our algorithm is around 13.

In Subfigures (a2), (b2), and (c2) of Fig. 5, we investigate
the sensitivity of our algorithm to the SINR parameters. One
can see that the algorithm has almost the same running time
across different settings of α and β. In other words, our
algorithm is insensitive to these two parameters.

VII. CONCLUSION

In this paper, we initiate the study of the properties of
stable protocols under the SINR model for continuous local
broadcast in multi-hop networks. We propose a protocol that is
asymptotically optimal w.r.t. throughput (packet injection rate)
and packet latency, the two most important metrics measuring
the performance of stable protocols. Our protocol can handle
both stochastic and adversarial injection patterns. Furthermore,
our static algorithm, which is used as a subroutine in the con-
tinuous protocol, is of independent interest. It is also asymp-
totically optimal, which closes the O(log n) gap between the
upper and lower bounds as stated in previous work.

As a basic primitive of information exchange, local broad-
casting deserves more research effort that can lead to a better
understanding of the desirable performance of stable proto-
cols for this type of or similar fundamental operations. One
meaningful future research direction is to consider the pro-
posed idea under some graph-based potential applications in
dynamic networks such as uncertain networks [11] or random
networks [12].
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