
Efficient Graph Processing with Invalid
Update Filtration

Long Zheng ,Member, IEEE, Xianliang Li, Xi Ge, Xiaofei Liao ,Member, IEEE,

Zhiyuan Shao ,Member, IEEE, Hai Jin , Fellow, IEEE, and Qiang-Sheng Hua ,Member, IEEE

Abstract—Most of existing graph processing systems essentially follow pull-based computation model to handle compute-intensive

parts of graph iteration for high parallelism. Considering all vertices and edges are processed in each iteration, pull model may suffers

from a large number of invalid (vertex/edge) operations that do not contribute to graph convergence, leading to potential performance

degradation. In this paper, we have the insight that these invalid operations can be filtered by leveraging a small fraction of critical

information. However, most of critical information are often beyond the visibility of active vertices being processed. We present two

novel filtration approaches to (cooperatively) identify out-of-visibility critical information with boundary-cut heuristics and speculative

prediction for many graph algorithms.We have integrated both approaches and their hybrid solution into three state-of-art graph

processing systems (including Ligra, Gemini, and Polymer). Experimental results using a wide variety of graph algorithms on both real-

world and synthetic graph datasets show that neither of these approaches can have an absolute win for all graph algorithms. Boundary-

cut, predictive, and hybrid approaches can improve the performance by 115.1, 38.1, and 136.6 percent on average.

Index Terms—Graph processing, pull computation model, invalid update, performance

Ç

1 INTRODUCTION

GRAPH has been widely used to represent the connections
between different entities for many real-world applica-

tions, e.g., distributed optimization [1], web search [2], and
social network analysis [3]. As graph scale is increasingly
expanding with billions or even trillion edges, there becomes
a high demand for graph processing in seeking top perfor-
mance. Existing graph processing systems basically follow
pull-based [4], [5], [6], [7] computation model (propagating
the data via the in-coming edges) to parallelize the dense
phase of graph processing where a very large number of
active vertices need to be processed.

Not knowing which vertices would be activated, pull
model in each iteration always has to schedule all vertices
of input graph with their in-coming edges. Unfortunately,
most of these scheduled vertices do not necessarily con-
tribute to a valid update in the sense that the value of ver-
tex can be modified with a new value. It is observed that
these invalid operations for many graph algorithms con-
sume a large number of compute and memory-bandwidth
resources, leading to significant performance degrada-
tion [8], [9] (as will be also discussed in Section 2.2). In
actual, invalid updates make no contribution to graph

convergence, and they also do not impact the final
result [9], [10]. It is therefore a natural consequence of
skipping the invalid operations for enhancing the perfor-
mance of graph processing.

Notify-pull model enforces that only vertices associ-
ated to activated vertices can be scheduled [11], but it still
suffers from invalid updates since all converged vertices
associated to the activated vertices will also be notified
and scheduled. Break-early mechanism [8], [12] skips the
processing of the remaining edges if a vertex finds a vis-
ited neighbor, but this optimization is only suitable for
BFS, which has unique feature that all of its vertices are
just traversed only once. ~-stepping SSSP [13] prioritizes
to schedule the vertices with lower tentative distance to
reduce the number of relaxation operations. Disjoint-set
based CC [14] adopts disjoint-set to merge vertices in the
same component into one set while scanning each edge
only once. Unlike these algorithm-by-algorithm special-
ized designs that are often hard to understand and gener-
alize [15], this work is devoted to a common, easy yet
fast solution that can be applied for different algorithms
with invalid operations filtered as well.

In this paper, we follow the convergence-guided ide-
ology [8], [12] to filter the invalid operations. It has the
basic principle that, if a given vertex has been already
converged, all of its (remaining) associated edges can
hence have no necessity of processing. It is notoriously
difficult, if not impossible, to accurately judge the con-
vergence of a vertex before it is finished due to several
tremendous challenges.

First, vertex convergence is highly associated to the opera-
tion semantics of graph algorithm. For instance, vertex in CC
can be converged by getting a minimal label while SSSP does

� The authors are with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan
430074, China.
E-mail: {longzh, xianliang, xge, xfliao, zyshao, hjin, qshua}@hust.edu.cn.

Manuscript received 29 Nov. 2018; revised 17 May 2019; accepted 23 May
2019. Date of publication 7 June 2019; date of current version 29 June 2021.
(Corresponding author: Xiaofei Liao.)
Recommended for acceptance by M. Piccardi.
Digital Object Identifier no. 10.1109/TBDATA.2019.2921358

590 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

2332-7790 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0003-2139-6465
https://orcid.org/0000-0003-2139-6465
https://orcid.org/0000-0003-2139-6465
https://orcid.org/0000-0003-2139-6465
https://orcid.org/0000-0003-2139-6465
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
https://orcid.org/0000-0002-3909-5719
mailto:

so by finding a shortest path [16], [17]. Finding a shortest
path for SSSP is often more complex than identifying a mini-
mum label for CC [13]. In addition, even for the same graph
algorithm, vertex convergence is notoriously difficult to iden-
tify due to the non-determinism of edge scheduling [18], [19].
This dynamic property results in non-trivial efforts to ana-
lyze the runtime status of vertex for convergence judgment.
Second, vertex convergence is closely related to the inherent
topology of graphs as well. A most intuitive situation for
understanding this point is that, for a given graph, if we
have gotten rid of a (few) particular edge(s) across vertices,
the convergence of each vertex may have a significant differ-
ence before and after graph modification [20], [21]. This also
makes it difficult to make an accurate judgment for vertex
convergence with limited information of graph topology.

We have the insight that the vertex convergence for many
graph algorithms (e.g., CC and SSSP) can be judged by
leveraging a small fraction of critical information from a few
(instead of all) vertices. For instance, inDijkstra’s single short-
est path theory [17], a vertex can be considered converged if
the shortest path among all unconverged vertices is found,
even though not all vertices are converged. Unfortunately,
most of critical information are often beyond the visibility of
active vertices being processed. This is particularly true for
existing graph systems using vertex-centric programming
model [16], [22], [23] where each vertex can only capture the
information from its neighbors.

One interesting and important observation, we have
exploited in this work, is that these critical information dur-
ing graph iteration for a wide variety of real-world graph
algorithms often behaves two significant features.

First, vertex value for many graph algorithms (such as CC
and SSSP) is monotonically-changing. For instance, all verti-
ces in CC attempt to find a smaller label. This enables to find
a strict boundary line, which can clearly separate vertices
into the absolutely converged collection and uncertain collec-
tion. Once a vertex value that falls into the boundary can be
then judged as converged immediately. Second, a vertex that
has not been activated in the past few iterations for many
graph algorithms have a high possibility of convergence. For
instance, vertices for PageRank-Delta on twitter-2010 have
more than 99.2 percent possibility to be converged if it has
not been activated in the last two iterations (as witnessed in
Section 4.1). This allows to predict the convergence of verti-
ces with a speculative decision.

This paper makes the following contributions:

� We make an in-depth comprehensive study to
understand the performance issues arising from
invalid operations for pull-based computation model
(Section 2).

� We present a suite of novel filtration approaches,
which can break through the local visibility limitation
to capture critical information for the accurate and
efficient vertex convergence judgment (Sections 3, 4,
and 5).

� We integrate our filtration approaches into three state-
of-the-art graph processing frameworks (including
Ligra [9], Gemini [23], and Polymer [10]). Experimen-
tal results show boundary-cut, predictive, and hybrid
judgment can improve the performance of graph

processing by 115.1, 38.1, and 136.6 percent on aver-
age, respectively. (Section 6).

The rest of this paper is organized as follows. Section 2
describes background and motivation. Sections 3 and 4
present our invalid update filtration approaches. Section 5
puts these two approaches together. Section 6 shows the
results. We survey related work in Sections 7 and 8 con-
cludes this work.

2 BACKGROUND AND MOTIVATION

We first review basic terminologies for parallel graph proc-
essing, followed by a motivation study for understanding
the invalid update problem and their potential impact,
finally motivating our approach.

2.1 Parallel Graph Processing

Graph (i.e., G) often consists of vertex (i.e., V) and edge (i.e.,
E), denoted as G ¼ ðV;EÞ. Vertex represents the entity
while associated edges between entities indicate their rela-
tionship. For a directed graph, its edge often points from a
source vertex to a destination vertex.

Vertex-Centric Programming. This model processes the
graphs via “Think like a vertex” philosophy [2]. For each
vertex, it has three basic steps with data gather, vertex
update, and updated value scatter. Thus, programmers
only need to focus on programming these three meta-opera-
tions on vertex. Vertex-centric programming model is easy
to use, parallelize, and scale [16], [22], [24], [25].

Push Versus Pull. For a given vertex, there are twoways for
message propagation. Push model schedules on the source
vertex, and delivers its updated value to the (neighboring)
destination vertices. It maintains a set of active vertices, also
known as Frontier, to indicate which vertices should be com-
puted during the iteration. Pullmodel schedules on the desti-
nation vertex. The core operations for each vertex have two
types:Gather andUpdate. Gather operation collects informa-
tion from in-coming vertices and their associated edges.
Update operation tries to compute a newvalue of destination
vertex with collected value(s). Note that all (active and inac-
tive) in-coming source vertices will be scanned to gather
their values in each iteration, leading to useless edge process-
ing that does not necessarily contribute to valid vertex
update (as will be discussed in Section 2.2).

2.2 Invalid Updates of Pull Model and Their
Performance Impact: A Motivating Study

Invalid Updates of Pull Model. Invalid update indicates that the
gathered information from a neighboring vertex via in-com-
ing edge does not make a successful update on destination
vertex. In pull scheduling process, for each edge vSrc !
vDst, vSrc attempts to update vDst with the collected infor-
mation, but this operation might not always be successful
unless the given update condition is satisfied.

Fig. 3 depicts an illustrative example of how invalid
updates incur under pull model for Single-source Shortest
Path (SSSP) where update condition is that the cumulative
value is less than the current value of the destination vertex.
For vertex holding distance 9, it has three associated edges.
Pull model will gather the information from these edges,
and further check whether they can update it. For instance,

ZHENG ET AL.: EFFICIENT GRAPH PROCESSINGWITH INVALID UPDATE FILTRATION 591

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

the total path via in-coming edge
6! is 10, which is greater

than the original value (9) of destination vertex. In-coming

edge
4! has the similar result. Thus, no valid updates will

be made until the edge
3! is processed.

More serious is that pull model is oblivious to the conver-
gence of a vertex. It has to check its update procedure
repeatedly, even though this vertex has already been con-
verged. These invalid updates have extremely large num-
ber, which can be easily millions or even billions for large
graphs [8], [12]. Also, they may consume a large amount of
computational and bandwidth resources, resulting in the
significant performance degradation [26].

Experimental Demonstration. We conduct a set of experi-
ments to witness the performance impact of invalid updates
on twitter-2010. Fig. 1 illustrates the results. We capture an
execution snapshot of the first 20-time iteration using a
hybrid computationmodel. It shows that pull phase basically
occupies most of execution time. Particularly, pull phase for
all graph algorithms involve a wealth of performance loss
due to invalid updates. Invalid updates cause significant
performance loss for BFS, CC, SSSP, and PageRank-Delta by
71.8, 61.5, 46.3, and 35.7 percent, respectively.

2.3 Overview of Our Approach

The key contribution of this work stems from the following
observation that can greatly contribute to the easy, fast, and
accurate convergence judgment of a vertex.

Observation. For a vertex in vertex-centric program, a
small fraction of critical information out of its visibility
facilitates the convergence judgment of this vertex.

Fig. 2 elaborates this observation via an example. For CC,
all vertices try to replace their labels with a minimal label
from neighbors. Suppose all vertex labels are initialized to
vertex numbered identifier. For vertex 2, only associated
vertex 1 and vertex 4 are visible to it. That is, the rest of
graph structure is out of its visibility.

Let us consider the convergence of vertex 2. Assume
vertex 0 is not associated to vertex 1, vertex 2 will be
clearly converged with label 1 at the first iteration. Suppose
vertex 0 is associated to vertex 1, vertex 2 will be con-
verged with label 0 at the second iteration. In this graph, the
association between vertex 0 and vertex 1 is the key to
determine the convergence of vertex 2. However, this crit-
ical information is beyond the visible scope of vertex 2

when it is active during iteration. We therefore have the
insight of whether and how we can capture these unavailable crit-
ical information in advance to help judge the convergence of a
vertex for filtering its invalid updates.

Unfortunately, it is a well-known hard problem to capture
the critical information of vertex in a complete and accurate
manner due to the complex data dependencies and inter-
twined topology of graphs. In this work, we recognize two
major forms of critical information that can be identified eas-
ily for awide variety of real-world graph algorithms.

Boundary-Cut Judgment. (Section 3) Many graph
algorithms involve a common processing flow that, all
vertices try to search an optimal value until no better
results can be found for program convergence. For exam-
ple, vertices in CC search for a minimal label. These
algorithms aim at finding a boundary that is used for dis-
tinguishing converged vertices from the rest. A simple
example is that in CC all vertices have to be attached to a
vertex with minimal label in that component. Once a ver-
tex finds the minimum label, it is definitely converged.
This motivates us to develop a boundary-cut approach to
judge the vertex convergence by finding such a bounded
threshold for each vertex.

Fig. 3. Invalid updates for SSSP algorithm. The number inside a given
vertex represents the shortest distance from source vertex to this vertex.
The number on each edge indicates the distance from given source ver-
tex to the point-to destination vertex. A valid update means that the
source vertex has successfully updated the destination vertex with a
new value. Otherwise it makes an invalid update.

Fig. 1. Execution time breakdown over iteration. Invalid indicates the wasted time arising from invalid updates. Results for all tested graph algorithms
are conducted based on twitter-2010.

Fig. 2. An illustrative example of CC for elaborating our observation that
a few out-of-visibility critical information is pretty helpful in facilitating the
judgment of vertex convergence.

592 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

Predictive Judgment. (Section 4) For many graph algorithms,
it is observed that their inactive vertices can be already con-
verged with a high possibility if they are not re-activated in
the last few rounds of iterations. For instance, our experi-
ment in Section 4.1 shows that vertex for PageRank-Delta
has over 99.2 percent possibility to be converged once it has
not been activated during last two iterations. According to
the vertex activation history, this also motivates us to
develop a predictive approach to judge the vertex conver-
gence with speculative decision.

We note that both vertex convergence judgment app-
roaches have their respective benefits. No one can have an
absolute win for all graph algorithms. Therefore, a hybrid
solution between boundary-cut and predictive judgment is
potentially beneficial (Section 5).

3 BOUNDARY-CUT JUDGMENT

This section elaborates the boundary-cut judgment, the key
idea behind which lies on finding an appropriate boundary
threshold for every graph algorithm. The vertices that sat-
isfy the threshold condition can be considered converged.
This approach is simple yet effective in quickly judging the
vertex convergence for many graph algorithms.

3.1 Problem Statement

Table 1 depicts the core policies of vertex update for BFS,
CC, and SSSP. All of them follow a relaxation-based fashion
in the sense that vertices hold an upper bound value and
will replace it once it gets a better one, with the monotoni-
cally-changing feature for vertex update. For this type of
graph algorithms, when a vertex can be updated, at least
two cases have to be considered:

Case 1. Suppose two vertices are connected directly. We
define the condition when vertex u can update v as Cd

Cdðu; vÞ ¼ ððu; vÞ 2 EÞ ^ ðupdateðu; vÞ ¼ validÞ: (1)

Cd describes the requirement of u updating v by follow-
ing two conditions: 1) u and v are associated, and 2) v can
gather a better value from u (as depicted in Table 1).

Case 2. Suppose vertex u and v are not connected directly
in graph. We define the condition when u can update v as
Cc. Assume there are a finite set of vertices ci 2 V where
i ¼ f0; 1; . . . ; kg

Ccðu; vÞ ¼ Cdðu; c0Þ ^ Cdðc0; c1Þ ^ � � � ^ Cdðck; vÞ: (2)

Cc implies u can update v via a chain of valid Cd conditions.
u first updates its neighbors that then update their neigh-
bors, and repeat this procedure until v can be reached.

Note that the sufficient condition for a vertex v being con-
verged is that no vertices u can be found to meet the

condition Cc. Our goal is to find those converged vertices as
will be discussed in Section 3.2.

3.2 Calculating Boundary Threshold

By above Equation (2), all vertices that are not converged
can be defined as follow:

S ¼ fvjv 2 V;9u 2 Frontier; Ccðu; vÞ ¼ TRUEg: (3)

Equation (3) indicates all vertices that should be computed
in the next iterations. All these vertices must be updated
through a path from current set of vertices in Frontier. How-
ever, in practice it is hard to check whether a vertex is con-
verged since it is non-trivial to check the existence of these
paths, which is closely related to the graph topology.

We present a relaxed version that is insensitive to
the graph topology. For facilitating the description, we
define the relationship that the value of vertex u can induce
the successful update of vertex v as valueðvÞ � valueðuÞ.
The main idea of relaxed solution is to simply use the mon-
otonic features of vertex values without traversing the
dependency relationship of graph topology. For example, in
CC only those vertices with smaller labels have potential to
update the oneswith bigger labels, but not the converse. This
inherent relationship � is insensitive to the graph topology,
and deduces a relaxed definition of Equation (3) as follow:

S0 ¼ fvjv 2 V; 9u 2 Frontier; valueðvÞ � valueðuÞg: (4)

Note that � has a transitive relation. This property allows
to check only once with optimal value in Frontier to update
the concerned vertices, regardless of whether concerned
vertices can be updated by the one(s) in Frontier. As a
result, the next key question is to find an appropriate thres
that can isolate the potential vertices as follow:

thres ¼ fvalueðuÞju 2 Frontier;

8v 2 Frontier; valueðvÞ � valueðuÞg: (5)

On the contrary, vertices that its value will never be suc-
cessfully updated can be defined as below:

S0 ¼ fvjv 2 V; valueðvÞ � thresg: (6)

Equation (6) can be used to separate all vertices into a
definitely converged set and potentially unconverged set.
Table 2 shows the threshold and convergence condition of
BFS, CC, and SSSP, all of which basically have the similar
threshold calculation. Note that the threshold computed
from Table 2 is optimal (rather than set empirically) in each
iteration, because a larger threshold may occur the incorrect

TABLE 1
Update Policies for Several Common Graph Algorithms

update(u, v)

BFS value[v] = MIN{value[u]+1, value[v]}
CC value[v] = MIN{value[u], value[v]}
SSSP value[v] = MIN{value[u]+weight(u, v), value[v]}

TABLE 2
Threshold and Convergence Condition for

Different Graph Algorithms

Threshold Condition

BFS MIN{value
[u�ju 2 Frontier}

value[v] <¼ thres + 1

CC MIN{value
[u�ju 2 Frontier}

value[v] <¼ thres

SSSP MIN{value
[u�ju 2 Frontier}

value[v] <¼ thres +Weightmin

ZHENG ET AL.: EFFICIENT GRAPH PROCESSINGWITH INVALID UPDATE FILTRATION 593

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

results while a smaller threshold can not ensure the maxi-
mum degree of invalid updates being exploited. By con-
trast, our threshold used can promise both.

It is easy to understand that threshold-based method can
offer the benefits for real-world graph applications. BFS has
the unique feature of traversing vertices level by level, and
only needs to find one in-coming edge associated with a
vertex in frontier, which is easy. SSSP is relatively harder
since value updated depends on the propagation path.
However, our threshold can still work effectively and effi-
ciently by finding a shortest path to satisfy the convergence
condition as shown in Table 2.

Boundary-cut method can filter invalid processing for:
1) not only all edges of a vertex that has been already con-
verged, and 2) but also the remaining edges of a vertex that
is being processed to be converged. Case 1) is easy to under-
stand. Case 2) is similar to break-early functionality in BFS
where the vertex convergence can be easily judged by
whether this vertex have been traversed [8], [12]. In the
high-level design, the threshold used in our boundary-cut
method also splits the vertices into the converged (i.e., vis-
ited) vertices and unconverged (i.e., unvisited) ones. The
break-early functionality (useful for BFS only) can be under-
stood as a special version of our boundary-cut method,
which can be useful for not only BFS but also many other
graph algorithms such as CC and SSSP.

3.3 Case Study: Connected Component

Algorithm 1 shows the modified CC by enabling boundary-
cut judgment with the following differences compared to
the plain CC. Before each iteration, a threshold label will be
computed through FrontierScan (Lines 5-9), which aims to
gather the minimal label from Frontier. We parallelize the
gather procedure with parallel reduction. Once Threslabel is
obtained, vertex program can judge the vertex convergence
based on the comparison result of vertex label on ThresLabel
via Converged (Line 2). Once a vertex has converged, its
rest edges can be omitted as well.

Compared with the plain workflow of CC, the refined
one only modifies to add a threshold label computation
phase, which is easy to parallelize with sequential mem-
ory accesses. The threshold label for CC can be effec-
tively used to filter converged vertices, because largest
connected component often contains most vertices and
edges [27]. All the vertices with the minimal label can
be judged as converged, significantly reducing the total
number of invalid updates.

Algorithm 1. CC with Boundary-Cut Judgment

1 Procedure Converged(ID, ThresLabel)
2 return ID.Label � ThresLabel
3
4 Procedure FrontierScan(Frontier)
5 ThresLabel þ1
6 /*Find minimal Label in Frontier*/
7 for v 2 Frontier do
8 ThresLabel Min(v.Label, ThresLabel)
9 return ThresLabel
10
11 Procedure Compute(G)
12 Frontier V
13 V.Label {0, 1, 2, 3, . . . , n-1} /*Label initialization*/
14 while Frontier 6¼ ; do
15 if j Frontier.V j + jFrontier.Ej > CriticalPoint then
16 ThresLabel FrontierScan(Frontier)
17 Pull_Model(G, Frontier, Threslabel)
18 else
19 Push_Model(G, Frontier)

4 PREDICTIVE JUDGMENT

In this section, we present an alternative approach to specu-
latively predict the convergence of vertex according to a his-
tory of update information.

4.1 Empirical Rule

We define Mg to represent the longest number of consecu-
tive invalid vertex updates for a vertex during pull iteration.
For example, Mg ¼ 2 indicates that vertex has suffered two
consecutive invalid updates before it is converged. Note
that a number of vertices in SSSP may be never updated
since they are isolated from the source vertex. We hence
assign their Mg with NoTIN. For each vertex, we observe
that its convergence obeys the following rule:

F ðkÞ ¼ PfMg <¼ kg; (7)

which indicates the convergence possibility of a vertex if
it has consecutively suffered from invalid updates in the
last k iterations. Fig. 4 shows the convergence possibility
over Mg. All results are obtained from an offline trace
analysis. We can find that vertices in a variety of graph
algorithms have a very high (> 95:3%) possibility of
convergence once they have not been reactivated in the
last two iterations.

4.2 Rule-Guided Speculation

Guided by the aforementioned rule, following branch pre-
diction ideology [28], we propose a Finite State Machine
(FSM) to schedule the vertex convergence by following
Mg ¼ 2. Fig. 5 shows the state transition diagram of FSM,
which has six states below.

� Initial: This state indicates that the vertex is either ini-
tialized, or have suffered a valid update.

� Pending: This state indicates that the vertex has an
invalid update from the Initial state. It will turn
into Sleep state immediately if it has an invalid

Fig. 4. Convergence possibility over Mg for different graph algorithms.
NOTINmeans vertex will not be processed during the whole processing.

594 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

update once more. Otherwise, it will return back to
Initial.

� Sleep-0: This state indicates that the vertex has at least
two invalid updates. Vertices at the Sleep-0 state
will not be scheduled in the next iteration.

� Sleep-1: This state is automatically transferred from
Sleep-0 through one iteration. Vertices at the
Sleep-1 state will not be scheduled in the next
iteration.

� Recheck: This state is automatically transferred from
Sleep-1 through one iteration. Vertices will be
scheduled to recheck if they have been converged.
Recheck state is designed for reducing negative
effect of false prediction.

� Sleep-n: This state is transferred from Recheck with
an invalid attempt. Vertices will not be scheduled,
and turn into Sleep-0 in the next iteration.

The FSM works as follows. All vertices are first labeled
with Initial state, which will be changed based on the
state transition diagram. All vertices with Sleep-prefixed
states will not be scheduled. A vertex can trap into the
Sleep-prefixed state with the premise that Mg consecutive
invalid updates must suffer. Pending state is the very
intermediate state to represent this. Therefore, if more con-
secutive invalid updates with larger Mg involved, extra
pending state in FSM needs to be added between Initial

state and Sleep state.

4.3 Handling False Speculation

For the correctness, we next discuss how we can justify the
false speculation, which has two basic cases: 1) A few con-
verged vertices are falsely judged as unconverged; 2) A few
unconverged vertices are falsely judged as converged. Con-
sider that the first case does not affect the final result. We
focus on addressing the second case.

In practice, for these false unconverged vertices, we con-
servatively invoke one extra all-pull iteration before the nor-
mal model switching. Specifically, when the number of
active vertices and edges is less than the critical point for
model switch, we will restore an all-pull model to identify
those mis-predicted vertices. All active vertices can be then
held in Frontier to advance push execution. We note that the
graph algorithms that involve no more than two pull itera-
tions do not need to invoke one all-pull iteration.

Correctness Semantics. We informally show that our pre-
dictive judgment can behave as an asynchronous schedul-
ing. In asynchronous scheduling model, active vertices will
be held in a set and scheduled independently. As widely-
studied in prior studies [22], [29], [30], it is proved that a
wide variety of graph analytics applications can be ensured

to be converged as long as all of its required vertices can
been processed, no matter when and how they are sched-
uled during the whole graph processing. In our predictive
judgment, all mis-predicted vertices will be definitely
scheduled in the all-pull iteration in a way that the mis-pre-
diction just defers the schedule order of these vertices. In
this sense, our predictive judgment can be understood as a
certain form of asynchronous model, which has been
already proved to ensure the correctness of graph analytics
applications with vertex-level consistency [22], [29], [30].

Algorithm 2. SSSP with Predictive Judgment

1 Procedure Converged(ID, Std)
2 flag Whether vertex ID is scheduled based on Std
3 return flag
4
5 Procedure FrontierScan(G, Frontier, Std)
6 /* shift state according to the update result */
7 for v 2 V do
8 if v 2 Frontier then
9 v.State Std.Initial
10 else
11 v.State Next status in Std
15
13 Procedure Compute(G)
14 Std Input state transition diagram
15 V: Distance {+1, +1; . . . ;þ1}
16 V: State {I, I, ..., I} /* State initialization */
17 vSrc.Distance 0
18 Frontier += vSrc
19 while Frontier 6¼ ; do
20 if jFrontier.V j + jFrontier.Ej > CriticalPoint then
21 Pull_Model(G, Std, Frontier)
22 FrontierScan(G, Frontier)
23 else
24 if Last more than two iterations are in predictive

mode then
25 /* All pull to re-identify active vertices */
26 AllPull_Model(G, Frontier)
27 else
28 Push_Model(G,Frontier)

4.4 Case Study: Single-Source Shortest Path

Algorithm 2 describes the modified SSSP by enabling predic-
tive judgment. We define a structure Std for state transition
diagram (Line 14). In the beginning, all vertices will be set to
Initial state (Line 16). In each iteration, FrontierScan will
be invoked to evaluate whether and how to shift the state
according to the state transition diagram (Lines 7-11). Verti-
ces with Sleep-prefixed states will not be scheduled (Lines
2-3). For the correctness, an all-pull iteration will be restored
to find active vertices (Line 24).

Compared with the plain SSSP, the refined one modifies
to add a status structure for each vertex and perform the
scheduling according to a history of information in the last
few iterations. All memory accesses in FrontierScan are
sequential. For each vertex, we only need 3 bits (to represent
six states), which are pretty lightweight in contrast to the
whole graph storage. We particularly note that our FSM
with Mg ¼ 2 can be also extended to represent different
graph algorithms with differentMg.

Fig. 5. Finite state machine withMg ¼ 2.

ZHENG ET AL.: EFFICIENT GRAPH PROCESSINGWITH INVALID UPDATE FILTRATION 595

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

5 PUT IT ALL TOGETHER

Table 3 shows the details of our invalid filtration approaches
and their applicability scope. It can be seen that boundary-cut
approach works for graph algorithms where iterative values
of vertices are monotonically changing such that a threshold
can be obtained tomake a clear distinction. In contrast, predic-
tive approach has the requirement that vertex convergence is
predictable in accordancewith their update histories.

Hybrid Judgment.Note that many graph algorithms are not
only monotonic but also predictable. We present a hybrid
solution to combine both boundary-cut and predictive
approaches for taking their respective advantages. Towards a
hybrid design, we have two conditions of judging the conver-
gence towards a vertex. Both conditions have their appropri-
ate timing for convergence judgment on an applicable vertex.
No one can be always better for all vertices.

Actually, both conditions can co-judge the vertex conver-
gence without applicability conflicts in practice. We propose
a cost-efficient hybrid method to apply two conditions inde-
pendently. In this case, a vertex can be aggressively consid-
ered converged once it satisfies either of these two
conditions. Specifically, we simply use an OR operation in
the judgment condition in Converged function. This condi-
tion is relatively relaxed, and hence, more converged verti-
ces will benefit from it. In hybrid method, predictive
judgment gets involved from the 3rd iteration (since Mg ¼ 2
in this paper). In other word, no misjudgment occurs in the
first two pull iterations, enabling that those vertices judged
as converged by boundary-cut method can be no longer
processed in the all-pull iteration, further reducing a wealth
of vertex rescheduling overhead in the all-pull iteration.

Discussion. We note that there still involve a very few
graph algorithms that fit into neither of our approaches. For
instance, PageRank needs to update all vertices in all itera-
tions without involving invalid updates. Triangle Counting
(TC) can be finished within only one iteration [9]. Despite
these, the practicability of our work is still not limited since
little runtime overhead is involved in our designs, as will be
discussed in Section 6.5.

6 EVALUATION

In this section, we evaluate the efficiency and effectiveness
of our work for a wide variety of widely-used graph algo-
rithms on both real-world and synthetic graph datasets.

6.1 Experimental Setup

We have integrated our approaches into three state-of-art
hybrid graph processing frameworks, including Ligra [9],

Gemini [23], and Polymer [10]. We change nothing for graph
preprocessing, and use the build-in setting of each graph
system for their pull-push mode switching by default. The
statistical processing time in our tests only embraces the
execution time. Note that we use the state transition diagram
(as described in Fig. 5) for our predictive judgment.

Graph Algorithms. We benchmark a wide variety of well-
known graph algorithms as shown in Table 3, covering dif-
ferent categories and complexities:

� Connected Components (CC), aiming at finding a maxi-
mal number of subgraphs where any two vertices
can be connected via a chain of paths.

� Single-source Shortest Path (SSSP), aiming at finding a
path of a given vertex to every vertex such that the
sum of the weights of their constituent edges is
minimized.

� PageRank-Delta (PR-D), aiming at getting the relative
importance of factors named PR value in the given
graph.

� Maximal Independent Set (MIS), aiming at finding a
maximal set of independent vertices from a given
graph.

� Graph Coloring (GC), aiming at coloring the graph
with a least number of colors while ensuring that no
two adjacent vertices are of the same color.

� Breath-First Search (BFS), aiming at traversing the
graph hop by hop to search the depth to all vertices
from a root.

Note that Gemini does not provide PR-D, MIS, and GC.
Ligra and Polymer do not provide GC. We implement the
GC with the greedy algorithm [16]. We also complement to
implement other absent graph algorithms for each system.

Graph Datasets. We benchmark all graph algorithms with
a variety of graph collections, including: 1) six real-world
graphs (coming from Stanford Large Network Dataset Col-
lection1 and Laboratory for Web Algorithmics2), and 2) two
synthetic graphs (generated by the RMAT tool [31]). Table 4
depicts the details of graph datasets.

Platform. All experiments for are performed on a machine
equipped with 2�Intel 14-core Xeon E5-2680 v4@2.40 GHz,
256 GB main memory, and 1 TB hard disk. We also deploy a

TABLE 3
Characteristics of Different Filtration Approaches

Approach Algorithm Features Typical Algorithms

Boundary-cut monotonic BFS, CC, SSSP,
Reachability

Predictive predictable BFS, CC, SSSP,
PR-D, MIS, GC

Hybrid monotonic & predictable BFS, CC, SSSP
N/A always-active, non-recursive PageRank, TC

TABLE 4
Graph Datasets

Dataset jV j jEj Avg. Degree

enwiki-2013 4.2M 101.4M 24.1
soc-Livejournal 4.8M 69.0M 14.2
road 23.9M 58.3M 2.4
webbase 118.1M 1019.9M 8.6
twitter 61.6M 1468.4M 23.8
friendster 124.8M 1806.1M 14.5
rmat27 134.2M 2147.4M 16
rmat28 268.4M 4294.9M 16
rmat24-E(k)* 16.8M 224 � k k

�We make k = 8� i (where 0 < i < 9) to generate graphs with different
average degrees.

1. http://snap.stanford.edu/data
2. http://law.di.unimi.it/datasets.php

596 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data

distributed setting on a 4-node cluster. Each node is con-
nected via a 1 Gb Ethernet. All graph algorithms are run-
ning with 28 threads on each machine.

6.2 Overall Performance

We evaluate the overall performance for three state-of-the-
art graph systems with or without Boundary-cut (-B), Pre-
dictive (-P) judgment, and Hybrid approach -H, respec-
tively. For BFS, we consider our approaches against a
standard implementation and break-early-enabled imple-
mentation (i.e., -O). Table 5 shows the results.

Boundary-Cut Judgment. (abbr. -B) For CC, Ligra with
boundary-cut judgment (i.e., Ligra-B) can provide 475.3 per-
cent performance improvement at most over Ligra. Gemini-
B is 337.6 percent faster than Gemini, and Polymer-B is
282.3 percent faster than Polymer. On average, boundary-
cut judgment can provide BFS, CC, and SSSP for Ligra by
179.8, 163.8, and 23.6 percent performance improvement,
Gemini by 173.1, 127.0, and 27.8 percent, and Ploymer by
183.8, 136.9, and 20.2 percent, respectively. Note that SSSP
has relatively lower benefits than BFS and CC because more
invalid updates are involved in BFS and CC over SSSP (as
has been witnessed in Fig. 1). On average, Boundary-cut
judgment can provide 115.1 percent performance improve-
ment on all datasets. Results also show that sparse graphs
such as webbase and road graphs (with small average
degree) have relatively-small benefits from boundary-cut
on BFS and CC due to small number of invalid updates.
This fact is also witnessed in Section 6.7. Note that bound-
ary-cut judgment can not be integrated with PageRank-
Delta, MIS, and GC because they do not meet the monotoni-
cally-changing property.

Predictive Judgment. (abbr. -P) In comparison to the bound-
ary-cut approach, predictive approach can handle more
graph algorithms such as PageRank-Delta, MIS, and GC.
Overall, Ligra-P outperforms Ligra for SSSP, PR-D, MIS, and
GC by 39.8, 37.5, 37.6, and 36.2 percent on overage, respec-
tively. Gemini-P has 43.7, 39.6, 40.1, and 40.7 percent perfor-
mance improvement on average over Gemini. Polymer-P is
32.0, 37.9, 34.9, and 37.0 percent improvement over Polymer,
respectively. On average, predictive judgment can provide
38.1 percent improvement on all datasets. Note that the bene-
fits of BFS and CC using predictive judgment can be limited,
since BFS andCC are often converged in a very few rounds of
iterationswithout sufficient history for prediction.

Hybrid Approach. Results show that boundary-cut and
predictive approaches have their respective benefits. No
one can have an absolute win. We also find that boundary-
cut judgment prefers fast-converged application such as CC
while predictive approach prefers relative long-iteration
such as SSSP for capturing sufficient history information.
Hybrid approach is more efficient than both boundary-cut
judgment and predictive judgment for most cases.

For CC and SSSP, it can be seen that the hybrid approach is
more efficient than both boundary-cut and predictive
approaches. To be specific, for CC, hybrid approach outper-
forms boundary-cut and predictive approaches by up to 80.5
and 502.6 percent performance improvement. On average,
hybrid judgment can provide 136.6 percent performance
improvement compared with the baseline version. For BFS,
hybridmethod has the almost same result with boundary-cut
method. This is because that BFS has only two pull-based iter-
ationswith no need of predictivemethod.

Note that our boundary-cut approach and hybrid
approach can provide the almost same benefit that break-

TABLE 5
Execution Time (in Seconds) of Ligra, Gemini, Polymer with or

without Using Boundary-Cut (-B), Predictive (-P),
and Hybrid (-H) Judgment

ZHENG ET AL.: EFFICIENT GRAPH PROCESSINGWITH INVALID UPDATE FILTRATION 597

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

early-enabled optimization (-O) can offer for BFS. As we
discussed in Section 3.2, the traditional break-early func-
tionality (useful for BFS only) can be understood as a special
version of the boundary-cut judgment approach. Note that
the vertices in BFS are traversed only once, which tends to
cause a very few dense iterations (which are often no more
than two). Therefore, we can see that the predictive judg-
ment is of no use (since Mg ¼ 2), further leading that hybrid
approach is degraded into a boundary-cut method.

6.3 Compared with Specialized Optimizations

Compared to the plain design, many graph algorithms have
also specialized optimizations for performance enhance-
ment. For example, disjoint-set CC [14] presents efficient
data structure called disjoint-set to efficiently merge vertices
in the same components within only one iteration. ~-step-
ping SSSP [32] prioritizes to schedule the activated vertices
that hold shorter path for fast convergence. We also com-
pare our design to these specialized designs.

Table 6 depicts the results. It can be seen that our hybrid
judgment can provide better results over the specialized
designs in most cases. To be specific, compared to the stan-
dard version of CC, disjoint-set CC is faster by -7.3%	64.7%
performance improvement while our hybrid solution can
provide 81.2%	517.3% performance improvement. In con-
trast to the plain SSSP, ~-stepping SSSP have the perfor-
mance benefits by -10.3%	33.8% while our hybrid approach
can have 47.4%	82.1% performance improvement.

Note that road with the mesh topology has an exception,
for which both CC and SSSP involve over hundreds of itera-
tions with considerable synchronization overhead that the
specialized optimizations can handle [15].

6.4 Benefit Details

We investigate the benefit details of boundary-cut and pre-
dictive approaches by investigating Ligra.

Boundary-Cut Judgment. Fig. 6 shows the number of opera-
tions on the active vertices and their associated edges over
iteration. The ideal number is obtained by an offline trace
analysis. Compared to the plain Ligra, Ligra-B can signifi-
cantly reduce the total number of operations by 57.3 percent
(for BFS), 55.8 percent (for CC), and 21.9 percent (for SSSP). In
particular, for CC, Ligra-B can offer the almost same results
as the ideal case. SSSP has the deviation in a few iterations in
contrast to ideal case for Ligra-B, because many converged
vertices with longer distance than the threshold are ignored.

Fig. 7 breaks down the benefits from enabled break-early
for other graph algorithms. We can see that enabled break-
early of boundary-cut approach can further improve the
performance of CC and SSSP by 2.34X and 1.13X at most,
respectively. Few performance benefits are obtained for road
since it involves no pull iteration for optimizations in SSSP.

Predictive Judgment. Fig. 6 depicts the number of opera-
tions for Ligra-P, which has significant difference from idea
case for CC since it involves a very few (no more four) itera-
tions for the history collection. In this case, vertices are hard
to turn into the sleep status. In contrast, SSSP, PageRank-
Delta, MIS, and GC with relatively-long iteration have bet-
ter effects after their 3rd iteration with 36.3, 38.4, 27.7, and
31.5 percent operation reduction, respectively.

Fig. 8 shows that the mis-prediction occurs at a very low
frequency by 1.2, 3.8, 0.9, 2.7, and 3.3 percent for CC, SSSP,
PR-D, MIS, and GC, respectively. All-pull iteration does
three-category jobs: 1) valid updates on active vertices that
should be originally processed in the same iteration; 2) valid
updates on the previously mis-predicted vertices; and 3)
invalid updates. The first two jobs are normal working
flows while only the last is the extra wasted work. Fig. 8 fur-
ther shows that the runtime overhead of this wasted work is
reasonably small, with 8.7, 5.2, 3.2, 7.3, and 4.7 percent for
CC, SSSP, PR-D, MIS, and GC. In particular, BFS involves
only two pull iterations, and hence, it has no mis-prediction
rate and mis-prediction overhead.

TABLE 6
Execution Time for Hybrid Approach versus

Specialized Optimizations

CC (seconds) SSSP (seconds)

Algorithms plain disjoint-set Hybrid plain ~-stepping Hybrid

soc 0.08 0.06 0.04 0.26 0.29 0.17

enwiki 0.12 0.13 0.04 0.28 0.27 0.19

road 20.91 0.57 11.6 12.13 0.60 12.13

webbase 2.85 1.73 1.21 3.26 2.54 1.88

twitter 2.53 1.60 0.41 4.17 3.12 2.29
friendster 5.22 3.61 2.88 14.57 13.57 8.29

rmat-27 7.99 5.15 2.55 25.13 22.38 14.67

rmat-28 11.89 8.32 3.75 63.72 54.62 38.76

Fig. 6. Total number of operations on vertices and its associated in-coming edges over iteration for our approaches against Ligra and ideal situation.

Fig. 7. Performance benefits from enabled break early optimization for
CC and SSSP. Results are normalized to Ligra with its plain version.

598 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

Hybrid Judgment. Fig. 6 also shows the number of opera-
tions for Ligra-H, which can reduce more invalid operations
against Ligra-B and Ligra-P with 57.4 percent, 41.7 percent
operation reduction for CC and SSSP, respectively. Hybrid
solution can use alternative (boundary-cut) approach to fil-
ter many vertices in its first few iterations without process-
ing all vertices before it formally enters into sparse stage.
This is also the very reason why hybrid solution has the
best fitting results against ideal case for both CC and SSSP.

6.5 Runtime Overhead

We also investigate the runtime overhead of our approaches.
Table 7 illustrates the execution time results for CC and SSSP.
Overall, both Ligra-B, Ligra-P and Ligra-H has incurred a
negligible part of runtime overhead against execution time.
To be specific, Ligra-B, Ligra-P, Ligra-H take 6.5, 4.7, and 9.2
percent overhead atmost respectively. On average, they takes
only 2.1, 2.5, and 3.9 percent overhead. In particular, for the
large graph such as twitter-2010, SSSP has the total execution
time by 4.17 seconds while the extra overhead for vertex con-
vergence judgment only take 0.073 seconds, which can be
considered negligible in practice.

Reasons are easy to understand. The extra overhead for
boundary-cut judgment lies in reducing the minimal label in
the Frontier vertices, while that for predictive judgment is to
scan the vertices and shift the states of FSM. Operations
responsible for these part of overhead has: 1) not only few
numbers compared to all operations in each iteration, and
2) but also sequential memory accesses compared to the ran-
dom accesses of original graph iterations.

6.6 Distributed Deployment

We also characterizee the performance of our approaches in a
distributed four-node cluster. In the distributed settings,

Gemini adopts a signal-slot abstraction to extend the push-
pull mode. However, both signal and slot operations may be
unnecessary for the invalid updates, which lead to both use-
less computation and prohibitive network communication.
Interestingly, our approaches are efficient in improving the
distributed communication overhead significantly by using
the local vertex information only without remotely accessing
the neighbors information. Thus, as shown in Fig. 9, we can
see that up to 126.3 percent (CC on twitter), 53 percent (SSSP
on rmat28), and 132.4 percent (CC on twitter) speedup can be
achieved for Gemini-B, Gemini-P, and Gemini-H, respec-
tively, with 51.2, 24.7, and 72.4 percent benefit on average.

6.7 Sensitivity Study

We also characterize the performance variation of our
approaches with different degrees and weights.

Average Degrees. Fig. 10 illustrates the comparative results.
Overall, Ligra-H has the best effect. To be specific, for CC,
Ligra-B and Ligra-H shows better efficiency against Ligra
and Ligra-P as the average edges are changing. This is
because more edges and vertices for CC enable that many
edges can be skipped. For SSSP, all of them have the similar
sensitivity. They have the increasing execution time nearly
linear to graph size since the computation complexity is line-
arly related to the total number of edges.

Edge Weights. Table 8 depicts the results for SSSP. Overall,
Ligra-B is efficient in handling the graphs with small edge
weights. For example, it can achieve 448 percent performance
improvement formaximum edgeweightwith 1. The underly-
ing cause is that smaller edge weight means that vertices are
easier to get converged and further skipped. Conversely,
Ligra-P is efficient in handling the graphs with large edge
weights. The reason is that vertices with larger edge weight
need more iterations for the potential vertex convergence.
Ligra-H outperforms both in most cases, but the benefits also

Fig. 8. Mis-prediction ratio (among all vertex convergence checkings)
and runtime overhead ratio (relative to the overall execution time) in the
all-pull iteration on twitter graph.

TABLE 7
Overhead of Our Approaches

CC (seconds) SSSP (seconds)

Ligra OHD-B OHD-P OHD-H Ligra OHD-B OHD-P OHD-H

soc 0.08 0.002 0.002 0.004 0.26 0.003 0.004 0.006

enwiki 0.12 0.002 0.003 0.004 0.28 0.002 0.005 0.006

road 20.91 1.363 0.841 1.942 12.13 - - -

webbase 2.85 0.027 0.043 0.053 3.26 0.061 0.068 0.091

twitter 2.53 0.014 0.037 0.047 4.17 0.043 0.044 0.073

friendster 5.22 0.036 0.067 0.092 14.57 0.113 0.146 0.217

rmat-27 7.99 0.073 0.083 0.132 25.13 0.163 0.217 0.325

rmat-28 11.89 0.113 0.142 0.217 63.72 0.314 0.453 0.637

OHD Represents the Extra Overhead of Convergence Judgment. ”-” Indicates
That SSSP Does Not Trap Into Pull Model With No Invalid Operation Over-
head Involved Thereby.

Fig. 9. Performance normalization on a 4-node cluster.

Fig. 10. Performance characterization of our approaches on RMAT24
with varying average degrees from 8 to 64.

ZHENG ET AL.: EFFICIENT GRAPH PROCESSINGWITH INVALID UPDATE FILTRATION 599

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

degrade as the maximum weight is increasing because less
edges can be filtered.

6.8 Discussion on Generalizability

Our predictive and boundary-cut methods have the gener-
alizability in the real world. 1) Predictive judgment: As dis-
cussed, predictive judgment can be understood as a special
form of asynchronous execution, which has been widely-
used to drive the graph processing correctly. Thus, predic-
tive judgment can extensively handle a wide variety of real-
world graph algorithms that can be scheduled asynchro-
nously. 2) Boundary-cut judgment: Although we only show
the monotonicity of BFS, CC, and SSSP in this paper, all of
them are the common graph applications that can be inte-
grated as a core component for many complex graph appli-
cations. For example, as a basic traversal procedure, BFS
can be used to represent many other graph traversal algo-
rithms, such as Betweenness Centrality and Closeness Cen-
trality [12]. Also, CC is a subroutine for many graph mining
algorithms such as graph clustering [30]. Further, SSSP is
widely used for the path navigation and social network
analysis. We believe that these derivative algorithms can
cover a broad category of important graph applications.

7 RELATED WORK

Graph Processing with Hybrid Push-Pull Model. Hybrid model
is often efficient to handle natural graphs [12], [33]. Ligra [9]
presents a hybrid push-pull representation to improve the
performance of general graph algorithms. Polymer [10]
extends push-pull model with NUMA-aware optimization.
Gemini [23] deploys the push-pull model in the distributed
environment by using a signal-slot abstraction. These earlier
studies deploy push-pull model in different situations, but
their efficiency still suffers due to invalid operations, which
are exactly addressed in this work.

Pull-Extended Optimizations. Pure pull conservatively scat-
ters all the information from its neighboring vertices, leading
to potentially unnecessary computations [9], [10], [23], [26].
Garaph [11] presents a notify-pull model to label all vertices
connected to the frontier vertices. Only those labeled (rather
than all) vertices can be scheduled. Notify-pull is efficient for
the casewhere the scale of active vertices is small. Also, verti-
ces with notify-pull is still needed to be scheduled even if it
has been converged. Grazelle [34] parallelizes the edge
scheduling of each vertex via a scheduler-aware interface to
reduce the global synchronization overhead. Our work can
be cooperatively-combined with these progressive efforts to
make pull efficient in a new level.

Redundant Computation Reduction. There are also many
attempts to reduce the redundant computation [35], [36].
Beamer et al. [8] propose an improved BFS with break-early
optimization. A few studies prioritize to schedule certain ver-
tices or edges to reduce computations, such as delta-stepping
SSSP [32], [37]. Much effort has also been put into scheduling
graph partitions based on graph components [35] or graph
abstraction [38] to improve the efficiency of information prop-
agation. Compared to these algorithm-by-algorithm special-
ized algorithms, we can not only reduce the redundant
updates but also preserve the general applicability for more
graph algorithms.

8 CONCLUSION

Existing graph-parallel processing systems essentially rely
on pull computation model to expose high parallelism. This
paper focuses on addressing the invalid updates of pull
model for further performance enhancement. We have the
insight that the invalid updates can be easily identified by
additionally using a fraction of critical information. We
therefore present two novel filtration approaches, bound-
ary-cut and predictive judgments to exploit these critical
information. We also combine these two judgments together
to further reduce invalid updates. Our experimental results
on a wide variety of graph algorithms show that boundary-
cut, predictive, and hybrid judgment can improve the per-
formance by 115.1, 38.1, and 136.6 percent on average.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful comments and valuable feedback. This work is
supported by the National Key Research and Development
Program of China under Grant No. 2018YFB1003502,
National Natural Science Foundation of China under Grant
No.61825202, 61832006, and 61702201.

REFERENCES

[1] Z. Li and Z. Ding, “Distributed optimization on unbalanced
graphs via continuous-time methods,” Sci. China Inf. Sci., vol. 61,
no. 12, pp. 129 204:1–129 204:3, 2018.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. 36th ACM Int. Conf. Manage. Data,
2010, pp. 135–146.

[3] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Community structure in large networks: Natural cluster sizes and
the absence of large well-defined clusters,” Internet Math., vol. 6,
no. 1, pp. 29–123, 2009.

[4] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang,
“ForeGraph: Exploring large-scale graph processing on multi-
FPGA architecture,” in Proc. 17th ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2017, pp. 217–226.

[5] H. Jin, P. Yao, X. Liao, L. Zheng, and X. Li, “Towards dataflow-
based graph accelerator,” in Proc. 37th Int. Conf. Distrib. Comput.
Syst., 2017, pp. 1981–1992.

[6] H. Jin, P. Yao, and X. Liao, “Towards dataflow based graph proc-
essing,” Sci. China Inf. Sci., vol. 60, no. 12, pp. 126 102:1–126 102:3,
2017.

[7] P. Yao, L. Zheng, X. Liao, H. Jin, and B. He, “An efficient graph
accelerator with parallel data conflict management,” in Proc. 27th
Int. Conf. Parallel Archit. Compilation, 2018, pp. 8:1–8:12.

[8] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” Sci. Program., vol. 21, no. 3–4, pp. 137–148, 2013.

[9] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. 18th ACM SIGPLAN
Symp. Principles Practice Parallel Program., 2013, pp. 135–146.

TABLE 8
Execution Time (in Seconds) of Our Filtration Approaches on
Twitter-2010 with the MaximumWeight Ranging from 1 to 127

Ligra Ligra-B " perf. Ligra-P " perf. Ligra-H " perf.
twitter-1 2.14 0.39 448% 2.17 -1% 0.42 410%

twitter-3 2.72 0.59 361% 2.57 6% 0.56 386%

twitter-7 2.94 0.81 262% 2.72 9% 0.68 332%

twitter-15 3.65 1.80 103% 3.11 17% 1.21 201%

twitter-31 3.82 2.57 49% 2.89 32% 1.67 129%
twitter-63 4.17 3.36 24% 2.67 56% 2.29 82%

twitter-127 4.95 4.13 20% 3.09 63% 2.87 72%

600 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

[10] K. Zhang, R. Chen, and H. Chen, “NUMA-aware graph-struc-
tured analytics,” in Proc. 20th ACM SIGPLAN Symp. Principles
Practice Parallel Program., 2015, pp. 183–193.

[11] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
GPU-accelerated graph processing on a single machine with
balanced replication,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp. 195–207.

[12] H. Liu and H. H. Huang, “Enterprise: Breadth-first graph traversal
onGPUs,” in Proc. 27th Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2015, pp. 1–12.

[13] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and
Y. Sabharwal, “Scalable single source shortest path algorithms
for massively parallel systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 7, pp. 2031–2045, Jul. 2017.

[14] P. Erdds and A. Renyi, “On random graphs I,” Publicationes Math-
ematicae Debrecen, vol. 6, pp. 290–297, 1959.

[15] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infra-
structure for graph analytics,” in Proc. 24th ACM Symp. Operating
Syst. Principles, 2013, pp. 456–471.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2012, pp. 17–30.

[17] J. C. Chen, “Dijkstra’s shortest path algorithm,” J. Formalized
Math., vol. 15, no. 9, pp. 237–247, 2003.

[18] G. Wang, W. Xie, A. J. Demers, and J. Gehrke, “Asynchronous
large-scale graph processing made easy,” in Proc. 6th Biennial
Conf. Innovative Data Syst. Res., 2013, pp. 3–6.

[19] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale dis-
tributed graph processing,” ACM Comput. Surveys, vol. 48, no. 2,
pp. 1–25, 2015.

[20] S. Dolev, Y. Elovici, and R. Puzis, “Routing betweenness central-
ity,” J. ACM, vol. 57, no. 4, pp. 1–27, 2010.

[21] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in
weighted networks: Generalizing degree and shortest paths,”
Social Netw., vol. 32, no. 3, pp. 245–251, 2010.

[22] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud,” Proc. VLDB
Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[23] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in Proc. 12th USE-
NIX Symp. Operating Syst. Des. Implementation, 2016, pp. 301–316.

[24] L. Zheng, X. Liao, and H. Jin, “Efficient and scalable graph parallel
processing with symbolic execution,” ACM Trans. Archit. Code
Optimization, vol. 15, no. 1, pp. 188–199, 2018.

[25] X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph
processing on a single machine using 2-level hierarchical parti-
tioning,” in Proc. USENIX Annu. Tech. Conf., 2015, pp. 375–386.

[26] J. Malicevic, B. Lepers, and W. Zwaenepoel, “Everything you
always wanted to know about multicore graph processing
but were afraid to ask,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp. 631–643.

[27] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Wiener, “Graph structure in the web,”
Comput. Netw., vol. 33, no. 1–6, pp. 309–320, 2000.

[28] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[29] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “SYNC or ASYNC:
Time to fuse for distributed graph-parallel computation,” in Proc.
20th ACM SIGPLAN Symp. Principles Practice Parallel Program., 2015,
pp. 194–204.

[30] Z. Ai, M. Zhang, and Y. Wu, “Squeezing out all the value of loaded
data: An out-of-core graph processing system with reduced disk
I/O,” inProc. USENIXAnnu. Tech. Conf., 2017, pp. 125–137.

[31] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive
model for graph mining,” in Proc. 4th SIAM Int. Conf. Data Mining,
2004, pp. 442–446.

[32] U. Meyer and P. Sanders, “~-stepping: A parallelizable shortest
path algorithm,” J. Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[33] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler,
“To push or to pull: On reducing communication and synchroni-
zation in graph computations,” in Proc. 26th Int. Symp. High-
Perform. Parallel Distrib. Comput., 2017, pp. 93–104.

[34] S. Grossman, H. Litz, and C. Kozyrakis, “Making pull-based
graph processing performant,” in Proc. 23rd ACM SIGPLAN Symp.
Principles Practice Parallel Program., 2018, pp. 246–260.

[35] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee, “Fast itera-
tive graph computation: A path centric approach,” in Proc. 26th
Int. Conf. High Perform. Comput. Netw. Storage Anal., 2014, pp. 401–
412.

[36] A. Kusum, K. Vora, R. Gupta, and I. Neamtiu, “Efficient
processing of large graphs via input reduction,” in Proc. 25th
ACM Int. Symp. High-Perform. Parallel Distrib. Comput., 2016,
pp. 245–257.

[37] J. Zhang and J. Li, “Degree-aware hybrid graph traversal on
FPGA-HMC platform,” in Proc. 18th ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2018, pp. 229–238.

[38] M. Zhang, Y. Wu, Y. Zhuo, X. Qian, C. Huan, and K. Chen,
“Wonderland: A novel abstraction-based out-of-core graph proc-
essing system,” in Proc. 23rd Int. Conf. Archit. Support Program.
Languages Operating Syst., 2018, pp. 608–621.

Long Zheng received the PhD degree from the
Huazhong University of Science and Technology
(HUST), in 2016. He is now a postdoc with the
School of Computer Science and Technology,
Huazhong University of Science and Technology,
in China. His current research interests include
program analysis, runtime systems, and configu-
rable computer architecture with a particular
focus on graph processing. He is a member of
the IEEE.

Xianliang Li is currently working toward the mas-
ter’s degree in the School of Computer Science
and Technology, Huazhong University of Science
and Technology (HUST), China. His current
research interests focus on data mining and graph
processing.

Xi Ge is currently working toward the master’s
degree in the School of Computer Science and
Technology, Huazhong University of Science and
Technology (HUST), China. His current research
interests focus on deep learning and graph
processing.

Xiaofei Liao received the PhD degree in computer
science and engineering from the Huazhong Uni-
versity of Science and Technology (HUST), China,
in 2005. He is now the vice dean with the School of
Computer Science and Technology, HUST. He
has served as a reviewer for many conferences
and journal papers. His research interests include
the areas of system software, P2P system, cluster
computing, and streaming services. He is a mem-
ber of the IEEE.

Zhiyuan Shao received the PhD degree in com-
puter science and engineering from the Huazhong
University of Science and Technology (HUST),
China, in 2005. He is now an associate professor
with the School of Computer Science and Engi-
neering, HUST. He has served as a reviewer for
many conferences and journal papers. His
research interests include the areas of operating
systems, virtualization technology for computing
system, and big-data processing. He is a member
of the IEEE.

ZHENG ET AL.: EFFICIENT GRAPH PROCESSINGWITH INVALID UPDATE FILTRATION 601

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

Hai Jin received the PhD degree in computer engi-
neering from the Huazhong University of Science
and Technology (HUST), in 1994. He is a Cheung
Kung Scholars chair professor of computer science
and engineering atHuazhongUniversity of Science
and Technology (HUST), China. In 1996, he was
awarded a German Academic Exchange Service
fellowship to visit the Technical University of Chem-
nitz in Germany. He worked with the University of
Hong Kong between 1998 and 2000, and as a visit-
ing scholar with the University of Southern Califor-

nia between 1999 and 2000. He was awarded Excellent Youth Award from
the National Science Foundation of China in 2001. He is the chief scientist
of ChinaGrid, the largest grid computing project in China, and the chief sci-
entists of National 973 Basic Research Program Project of Virtualization
Technology of Computing System, and Cloud Security. He has co-auth-
ored 15 books and publishedmore than 600 research papers. His research
interests include computer architecture, virtualization technology, cluster
computing and cloud computing, peer-to-peer computing, network storage,
and network security. He is a fellow of the IEEEand amember of the ACM.

Qiang-Sheng Hua received the BEng and MEng
degrees from the School of Information Science
and Engineering, Central South University, China,
in 2001 and 2004, respectively, and the PhD
degree from the Department of Computer Science,
University of Hong Kong, China, in 2009. He is cur-
rently an associate professor with the Huazhong
University of Science and Technology, China. He
is interested in parallel and distributed computing,
including algorithms, and implementations in real
systems. He is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

602 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 14,2023 at 12:58:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

