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Abstract    Emerging hardware like non-volatile memory (NVM) and high-speed network interface cards are promising

to improve the performance of matrix multiplication. However, a critical challenge in achieving high performance is the

tradeoff between horizontal communication (data movement between processors) and vertical communication (data move-

ment across memory hierarchies). In this paper, we provide an analysis in the distributed memory parallel model with ad-

ditional consideration for communication between main memory and cache. We measure joint communication as the sum

of the horizontal bandwidth and vertical bandwidth cost, and study the joint-communication cost of square matrix multi-

plication in the read-write symmetric setting (such as DRAM) and asymmetric setting (such as NVM). Specifically, we

identify that in the symmetric setting, a joint-communication optimal algorithm can be directly obtained by combining the

horizontally optimal and vertically optimal algorithms. We also identify that in the asymmetric setting, horizontal and

vertical communications cannot be optimal at the same time, which means that there is a tradeoff between the two com-

munications. In this case, we first present a joint-communication lower bound, and then we propose Joint-Communication

Optimal Matrix Multiplication Algorithm (JOMMA), a parallel matrix multiplication algorithm whose joint-communica-

tion complexity meets the lower bound. The key idea behind JOMMA is to derive optimal matrix dimensions that each

processor locally performs, which leads to determining the processor grid and an optimal schedule.

Keywords    distributed algorithm, matrix multiplication, read-write asymmetric memory, vertical communication, hori-

zontal communication

 
 

1    Introduction

Matrix  multiplication  is  one  of  the  most  funda-

mental problems in numerical linear algebra, scientif-

ic  computing,  and  high-performance  computing.  The

increasing  demands  in  large-scale  data  storage  and

fast  processing invoke the unique question of  how to

design  efficient  parallel  matrix  multiplication,  where

the  communication  cost  quickly  becomes  the  bottle-

neck.

Fortunately,  emerging  networking  and  storage

technologies,  such  as  InfiniBand  and  non-volatile

memory (NVM), bring a new opportunity to achieve

this  goal:  NVM  can  provide  data  persistence  while

achieving  comparable  performance  and  higher  densi-

ty  than  dynamic  random  access  memory  (DRAM).

Despite  these  useful  properties,  one  characteristic  of

NVM technologies is that writing to memory is more
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expensive than reading from it in terms of both time

and energy. Additionally, the latest released 50 GB/s

InfiniBand  network① delivers  sub-microsecond  laten-

cy  and  extremely  high  message  rates.  This  work  fo-

cuses  on  improving  the  performance  of  parallel  ma-

trix multiplication with the help of such new devices.

n n

P

n3

n3/P

Parallel  algorithm  execution  time  is  traditionally

divided into three components: computation (in-cache

floating-point  operations),  vertical  communication

(cache-main  memory  data  transfer),  and  horizontal

communication  (inter-processor  data  exchange)[1–3].

When tackling an -by-  conventional matrix multi-

plication problem across  processors, the total num-

ber  of  floating-point  operations  is .  Load-balanced

parallel  algorithms  evenly  distribute  floating-

point operations to each processor. Since the number

of floating-point operations per processor is fixed, we

aim to minimize both vertical and horizontal commu-

nication  to  lower  parallel  algorithm  execution  time.

Many  of  the  existing  parallel  matrix  multiplica-

tion  algorithms  perform  reasonably  well  in  reducing

horizontal communication. SUMMA[4] is a widely used

algorithm  for  parallel  matrix  multiplication,  and

asymptotically minimizes horizontal communication if

assuming no extra memory.  The asymptotic  horizon-

tal communication lower bounds[5–7] and the memory-

independent  communication  lower  bounds[8] with

tight constants have been obtained for square matrix

multiplication,  suggesting  that  known  2D  and  3D[9]

algorithms only optimize horizontal communication in

certain  memory  ranges.  By  efficiently  exploiting  the

available  memory,  the  2.5D  algorithm[10] interpolates

between those two results. CA3DMM[11] is a rectangu-

lar matrix multiplication parallel algorithm that is de-

signed using a top-down approach and has near-opti-

mal  horizontal  communication.  Horizontal  communi-

cation, however, is not the only parameter that mat-

ters; vertical communication can often be the commu-

nication  bottleneck,  especially  in  the  distributed  sys-

tems with NVM and InfiniBand network[12–14].

We consider a distributed memory parallel  model

as described in Section 3, where each processor has a

two-level  memory hierarchy.  In addition to  quantify-

ing  horizontal  communication,  we  augment  the  dis-

tributed  memory  model  with  additional  read  band-

width  cost  (data  movement  from  main  memory  to

cache)  and  write  the  bandwidth  cost  (data  move-

ment  from cache  to  main  memory)  for  vertical  com-

munication. Furthermore, when main memory is read-

write  symmetric  (such  as  DRAM),  read  and  write

costs  are  considered equal[15, 16].  When main memory

is read-write asymmetric (such as non-volatile memo-

ry NVM), since writing is more expensive than read-

ing,  the  write  cost  is  typically  greater  than  the  read

cost. The joint-communication cost is measured as the

sum of the vertical communication cost and the hori-

zontal communication cost, and we call an algorithm

“joint-communication optimal” if it can asymptotical-

ly attain the joint-communication lower bound. Simi-

larly, “horizontally  optimal” and “vertically  optimal”
refer to asymptotically minimizing horizontal commu-

nication and vertical communication, respectively.

To minimize the joint-communication cost, a nat-

ural idea is trying to simultaneously optimize horizon-

tal and vertical communication. We observe that this

goal can be achieved in the read-write symmetric set-

ting, by independently employing the horizontally op-

timal  (such  as  2.5D)  and  vertically  optimal  algo-

rithms.  However,  when  considering  more  expensive

writes  in  the  read-write  asymmetric  setting,  a  verti-

cally  optimal  algorithm  entails  the  write  cost  reach-

ing its lower bound, and it can be tricky to simultane-

ously optimize horizontal and vertical communication.

Can  we  asymptotically  reduce  the  joint-communica-

tion  complexity  by  exploiting  the  vertical-horizontal

tradeoff ?  Can  they  match  the  best  counterparts  in

the  asymmetric  setting?  These  remain  to  be  open

problems in the study of joint-communication cost al-

gorithms[15, 17].

In  this  paper,  we  provide  answers  to  these  ques-

tions.  We  are  primarily  interested  in  the  read-write

asymmetric setting and derive lower bounds for a va-

riety  of  different  cases  (cf. Subsection 5.3).  We  also

present JOMMA (Joint-Communication Optimal Ma-

trix  Multiplication  Algorithm):  an  algorithm  that

takes  a  new approach  to  multiply  two square  matri-

ces.  JOMMA  is  joint-communication  optimal  for  all

combinations  of  parameters.  The  key  idea  is  to  de-

rive  optimal  matrix  dimensions  of  the  subproblem

that  each  processor  locally  processes,  and  thus  find

the processor grid and an optimal schedule. This idea

comes  from  our  observation  that  different  subprob-

lem matrix dimensions executed by each processor re-

sult  in  different  horizontal  and  vertical  communica-

tions. We use the following two methods as examples

and compare  the  number  of  words  read,  the  number

of  words  written,  the  number  of  words  transferred

horizontally,  and  the  main  memory  requirements  in

Table 1.
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n n

AB = C P

A′B′ = C ′

A′, B′, C ′ (n/P 1/3)× (n/P 1/3)

A, B, C

A′

B′

O(n2/P 2/3)

A′B′ = C ′

C ′ n2/P 2/3 O(n3/(PS1/2))

O(n2/P 2/3)

S

|A′|+ |B′|+ |C ′| =
3n2/P 2/3 Ω(n2/P 2/3)

Method 1.  When  using  the  well-known  3D  algo-

rithm  to  solve  an -by-  square  matrix  multiplica-

tion  on  processors, each processor locally

computes  one  subproblem ,  where

 are  submatrices  of

,  respectively.  To  compute  the  subproblem,

each  processor  needs  to  access  the  submatrices 

and  from  other  processors,  which  results  in

 horizontal  communication.  In  the  local

calculation  of ,  the  cache  reads  data  from

main  memory  to  perform  the  calculation  and  writes

the result back to main memory. Since the size of the

output  matrix  is ,  reads

and  writes  are  required  to  execute  each

subproblem using Algorithm 1 (  is the cache size)[6].

Note that the size of input and output matrices can-

not exceed the main memory size per processor, hence

the main memory size is  at least 

, i.e., .

Algorithm 1. VOMM

A ∈ Rd1×d2 B ∈ Rd2×d3Require: ; 

C = AB ∈ Rd1×d3Ensure: 

b =
√

S/3 � A B, C b× b1:     divide ,  and  into blocks of size 

i = 1 d1/b2: for  to  do

j = 1 d3/b3: 　for  to  do

Cij b× b4: 　　Initialize  in cache as a  zero matrix

k = 1 d2/b5: 　　for  to  do

Aik Bkj
6: 　　　Load ,  into cache

Cij = Cij +AikBkj
7: 　　　

8: 　　end for

Cij
9: 　　Store block  in main memory

10: 　end for
11: end for

A′B′ = C ′ A′

(n/P 1/2)× n B′ n× (n/P 1/2)

C ′ (n/P 1/2)× (n/P 1/2)

A′ B′

C ′

O(n2/P 1/2)

O(n3/(PS1/2))

O(n2/P )

|A′|+ |B′|+ |C ′| = 2n2/P 1/2 + n2/P Ω(n2/P 1/2)

Method 2.  Considering  the  subproblem  executed

by  each  processor  is ,  where  is  an

 submatrix,  is  an  sub-

matrix,  and  is  an  submatrix.

Then  and  are accessed by each processor and

 is  written  to  main  memory,  hence  this  approach

requires  horizontal  communication,

 reads  (by  using Algorithm 1),  and

 writes.  The  main  memory  size  is  at  least

, i.e., .

From Table 1,  we  can  see  that,  compared  with

Method  1,  Method  2  has  lower  vertical  communica-

Ω(n2/P 2/3)

tion  at  the  cost  of  higher  horizontal  communication,

which  exhibits  the  horizontal-vertical  tradeoff.  On  a

parallel machine where writes are expensive, to mini-

mize  the  joint-communication  cost,  we  can  reduce

vertical  writes  in  the  first  place.  Conversely,  if  hori-

zontal transfers are expensive, we reduce inter-proces-

sor communication in the first place. In addition, the

limitation imposed by the main memory size  on ma-

trix dimensions increases the complexity of algorithm

design.  For  example,  Method  1  is  only  applicable

when the main memory size is . In this pa-

per,  we  investigate  how  to  asymptotically  minimize

the sum of horizontal and vertical costs for all combi-

nations of parameters.

Contributions. Our main contribution is a new al-

gorithm called  Joint-Communication  Optimal  Matrix

Multiplication  Algorithm,  or  JOMMA,  which  mini-

mizes the joint-communication complexity by trading

off  horizontal  and  vertical  communications.  We  also

prove  the  first  joint-communication  lower  bound  for

classical  matrix  multiplication  under  the  asymmetric

memory  model  in  various  situations,  which  indicates

that  JOMMA  is  asymptotically  joint-communication

optimal.
Paper  Organization. We  first  introduce  related

work  in Section 2 and  present  the  system  model  in
Section 3.  Next,  in Section 4,  we demonstrate  the  si-
multaneous achievements of horizontal optimality and
vertical  optimality  for  symmetric  memory.  However,
in Section 5,  we  prove  that  achieving  horizontal  and
vertical optimality simultaneously is not possible and
provide  the  corresponding  joint-communication  lower
bounds. To optimize the joint communication, we de-
rive  optimal  matrix  dimensions  that  each  processor
locally  performs  in Section 6 and  propose  the  JOM-
MA algorithm in Section 7. In Section 8, we compare
the  performance  of  JOMMA with  state-of-the-art  al-
gorithms. Finally, we conclude our paper in Section 9. 

2    Related Work

The  most  related  work  on  this  topic  is  that  of

Carson et  al.[17] which  shows  that  it  is  impossible  to

attain lower bounds on both interprocessor communi-

cation  and  writes  to  local  memory.  Based  on  asym-

metric memories, Carson et al.[17] also gave a horizon-

 

Table  1.    Comparison of Word Movement Between Method 1 and Method 2

No. Matrix Dimension Horizontal I/O Vertical Read Vertical Write Main Memory Size

1 n/P 1/3, n/P 1/3, n/P 1/3 O(n2/P 2/3) O(n3/(PS1/2)) O(n2/P 2/3) Ω(n2/P 2/3)

2 n/P 1/2, n, n/P 1/2 O(n2/P 1/2) O(n3/(PS1/2)) O(n2/P ) Ω(n2/P 1/2)

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 3



tally  optimal  algorithm  (2.5DMML3ooL2)  and  a

write-optimal  algorithm  (SUMMAL3ooL2).  However,

two  issues  remain  to  be  solved.  The  first  is  whether

there is a general lower bound that shows how these

two  communications  tradeoff  against  one  another,

and the second is whether there is an algorithm that

can  exhibit  the  tradeoff  and  asymptotically  attains

the lower bound. In the read-write symmetric setting,

to solve the symmetric eigenvalue problem, Solomonik

et  al.[1] proposed  a  matrix  multiplication  subroutine

by  naturally  combining  horizontally[18] and

vertically[19] optimal algorithms. It can be found that

this subroutine is joint-communication optimal in the

read-write  symmetric  setting,  while  it  is  not  optimal

in the case of asymmetric memories. Solomonik et al.[2]

derived  the  tradeoffs  among  synchronization,  band-

width, and computational cost, while the authors did

not  consider  data  movement  between  levels  of  the

memory hierarchy.

There  is  also  some  work  focusing  on  minimizing

the vertical communication of sequential matrix mul-

tiplication  algorithms  under  asymmetric  memories.

Carson et  al.[17] proposed  the “write-avoiding” con-

cept,  which  minimizes  writes  without  increasing

reads.  Gu[16] proposed  the “write-efficiency” concept

for  cache-oblivious  matrix  multiplication,  which  can

reduce  the  write  cost  by  increasing  the  reading  cost.

In  our  work,  we  do  not  merely  consider  the  sequen-

tial  cost.  Instead,  we  focus  on  minimizing  the  joint-

cost  by  studying  the  tradeoff  between  writing  and

horizontal communication. 

3    Theoretical Cost Model

P

S

M

r

r

We model communication of the distributed mem-

ory  parallel  system[20, 21] as  follows.  We  assume  that

the system has  processors, which are connected via

a  fully-connected network.  As shown in Fig.1(a)  and

Fig.1(b), each processor has a two-level memory hier-

archy, i.e., a small cache of size , and a large main

memory  of  size  (symmetric  memory  DRAM  or

asymmetric  memory  NVM).  A  single  processor  can

only send/receive a message to/from one processor at

a time. The data movement in this parallel model can

be  divided  into  two  categories:  vertical  data  move-

ment  across  memory  hierarchies,  or  horizontal  data

movement  between  processors.  For  vertical  data

movement,  we  define  to  be  the  cost  of  moving  a

word between cache and DRAM. In addition, we de-

fine  to be the cost of reading a word from NVM to

ω (ω > r)

β

ω

β

cache and   to be the cost of writing a word

from cache  to  NVM. For  horizontal  data  movement,

we define  to be the cost of moving a word between

processors  (Fig.1(c)).  Note  that  may  be  greater

than .  For  example,  the  write  bandwidth  of  NVM

for the existing architecture PilotDB is from 0.2 GB/s

to  1.5  GB/s[22],  while  the  network  bandwidth  of  the

latest InfiniBand architecture is 50 GB/s. We summa-

rize all the notations and their definitions in Table 2.

Br Bw Bh

Q

r(Br +Bw) + βBh

rBr + ωBw + βBh

P

M ⩾ 3n2/P

We  denote  the  number  of  words  read,  written,

and  transferred  horizontally  as , ,  and ,  re-

spectively. We measure the joint-communication cost

 in terms of  the bandwidth (the number of  words)

along the critical path as defined in [23]. Specifically,

we  call  the  symmetric  memory  parallel  model  SPM

and define  to be the joint-commu-

nication  cost  in  the  SPM.  We  call  the  asymmetric

memory  parallel  model  APM  and  define

 to be the joint-communication cost

in the APM. Our model is similar to those in [15, 17],

while  [1]  takes  into  account  not  only  communication

but also computation, and [24, 25] only considers hor-

izontal communication. Throughout the paper, we re-

quire that the data layout of  the input matrices and

the  output  matrix  are  evenly  distributed  across  the

main  memory  of  processors  for  load  balancing

( ).

There  are  five  well-known  collective  communica-

tion  operations[26, 27] used  extensively  in  our  algo-

rithm.

 

DRAM

(a) 

CPU
Cache

NVM NVM

CPU
Cache

NVM

CPU
Cache

NVM

(c)  

Send/Receive Cost: 

NVM

(b) 

Read Cost:

CPU
Cache

Cache

CPU

Read Cost: Write Cost: Write Cost:

Cache

CPU

   

Fig.1.   Memory  models  for  sequential  and  parallel  algorithms.
(a)  Symmetric  memory  model  for  sequential  algorithms.  (b)
Asymmetric  memory  model  for  sequential  algorithms.  (c)  Dis-
tributed asymmetric memory model for parallel algorithms.
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• (Π(A), Π(X), i, P:jk)

P:jk Π(A) Pijk

Π(X)

 Gather :  all  processors  in

 contribute local arrays  to processor  as

the local array .

• (Π(A), Π(X), k, Pij:)

Pijk Π(A)

Pij: Π(X)

 Broadcast :  root  proces-

sor  distributes  the  local  array  to  every

processor in  as the local array .

• (Π(A), Π(X), P:jk)

Π(A) P:jk

Pijk

Π(X)

 Allgather :  the  local  arrays

 contributed by each processor in  are gath-

ered, and the result is broadcast to all processors 

as .

• (Π(A), Π(X), j, Pi:k)

Pi:k Π(A)

Pijk

Π(X)

 Reduce : all processors in

 contribute local arrays  to an element-wise

reduction  onto  root  processor  as  the  local  array

.

• (Π(B), s, Px, P:jk) Pijk

Π(B) Pi′jk

i′ = (i+ s) mod Px

 Shift :  each  processor 

sends  local  array  to  via  point-to-point

communication, where .

n

P

The costs of these operations can be obtained by a

binomial tree or butterfly schedule[27, 28].  We summa-

rize  the costs  in Table 3,  where  words of  data are

being communicated among  processors.
 

4    Joint-Communication in SPM

In the symmetric memory parallel model, by inde-

pendently  employing  some  well-known  horizontally

and  vertically  optimal  matrix  multiplication  algo-

rithms, we give asymptotically tight joint-communica-

tion upper and lower bounds in this section.

AB = C P A

B C n× n

Ω(n3/(PM 1/2) + n2/P 2/3)

Lemma 1[18]. For a parallel square matrix multipli-
cation  solved  on  processors,  where ,

,  and  are  matrices,  at  least
 words need to be moved be-

tween processors.

M = Θ(n2/P ) M = Ω(n2/P 2/3)

AB = C

A′B′ = C ′

P A′ d1 × d2

B′ d2 × d3 C ′ d1 × d3

n n

P 3/2

d1 = d2 = d3 = n/P 1/2 P 1/2

Many algorithms, such as 2D[4], 2.5D[10], 3D[9], and

CARMA[18],  can  asymptotically  attain  the  horizontal

lower bound. 2.5D and CARMA are horizontally opti-

mal for any memory size, while 2D and 3D are opti-

mal  for  and  respec-

tively.  To  compute  in  parallel,  these  algo-

rithms  usually  decompose  the  initial  problem  into

multiple subproblems  that are executed in

parallel  on  processors,  where  is  a  ma-

trix,  is a  matrix, and  is a  ma-

trix. For example, 2D decomposes the -by-  matrix

multiplication problem into  square matrix multi-

plication  subproblems  with  matrix  dimensions

, and each processor solves 

subproblems.

A′B′ = C ′

A′ ∈ Rd1×d2 B′ ∈ Rd2×d3 C ′ ∈ Rd1×d3

To sequentially solve a matrix multiplication sub-

problem  on  a  single  processor,  where

, , ,  at  least

 

Table  2.    Notations and Their Definitions

Type Symbol Definition

Matrix n Matrix dimension of the initial matrix multiplication problem

d1, d2, d3 Matrix dimensions of subproblem solved on a processor

A,B Input matrices

C = AB Output matrix

Configuration P Number of processors

M (M ⩾ 3n2/P )Size of main memory 

S Size of cache

r Cost of moving a word between cache and DRAM

Cost of reading a word from NVM to cache

ω Cost of writing a word from cache to NVM

β Cost of moving a word between processors

Cost Br Number of words moved from main memory to cache

Bw Number of words moved from cache to main memory

Bh Number of words moved between processors

Q Joint-communication cost

Schedule Px, Py , Pz Dimensions of the processor grid

Pijk Per processor index

Pij: {Pij1, Pij2, . . . , PijPz}Processor group 

Π(A), Π(B) A BLocal submatrices of  and  on a processor

 

Table  3.    Bandwidth Costs of Communication Operations

Operation Cost

TGather(n, P ) βn

TBroadcast(n, P ) 2βn

TReduce(n, P ) 2βn

TAllgather(n, P ) βn

TShift(n, P ) βn

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 5



Ω(d1d2d3/S
1/2)

2
√
3d1d2d3/S

1/2

d1d3

 words  need  to  be  moved  between

cache and main memory[29]. The well-known Vertical-

ly Optimal Matrix Multiplication algorithm VOMM is

described in Algorithm 1[6]. The number of words read

is  and the number of words written is

.

AB = C P

A B C n× n

Ω(n3/(PS1/2))

Proposition 1. For a parallel square matrix multi-
plication  performed on  processors, where

, , and  are  matrices, there exists a pro-
cessor such that the word transfer between cache and
memory is at least .

AB = C P

|V |
Ω(|V |/S1/2)

Br +Bw = Ω(|V |/S1/2)

AB = C n3 A, B, C ∈ Rn×n

n3/P

Br +Bw = Ω(n3/(PS1/2))

Proof. For  a  parallel  matrix  multiplication

 solved  on  processors,  suppose  a  proces-

sor  performs  arithmetic  operations,  then  at  least

 words  need  to  be  moved  between  cache

and  main  memory[6],  i.e., .

Note  that  the  total  number  of  arithmetic  operations

to  compute  is ,  where .

According  to  the  pigeonhole  principle,  at  least  one

processor  performs  at  least  arithmetic  opera-

tions.  Thus,  for  such  a  processor,  we  have

. □
Since  the  horizontal/vertical  costs  of  an  algo-

rithm cannot  be  asymptotically  lower  than  the  hori-

zontal/vertical cost lower bounds, a trivial joint-com-

munication cost lower bound can be obtained by com-

bining  the  horizontal  and  the  vertical  cost  lower

bounds. In other words, an algorithm is joint-commu-

nication optimal if it achieves both the horizontal and

the vertical cost lower bounds. As the following Lem-

ma 2 shows, this kind of algorithm can be directly ob-

tained  by  combining  the  horizontally  optimal  algo-

rithm and the sequential VOMM algorithm.

Lemma 2. In the SPM, a joint-communication op-
timal algorithm can be obtained by combining the par-
allel  2.5D  algorithm  and  the  sequential  VOMM algo-
rithm.

An×nBn×n = Cn×n P

P 3/2/c3/2

n
√
c/
√
P

c = min(P 1/3,
√
PM/n)

P 3/2/(Pc3/2)

O((n
√
c/
√
P )3/S1/2)

(P 3/2/(Pc3/2))×O((n
√
c/
√
P )3/S1/2)

O(n3/(P
√
S))

Proof. From  the  analysis  in  [10],  to  solve

 in  parallel  on  processors,  the

2.5D algorithm decomposes it into  subprob-

lems  with  problem  size ,  where

.  Each  processor  handles

 subproblems  and  applies  the  sequential

VOMM algorithm to solve each subproblem. Accord-

ing to the analysis in Section 4, the number of words

read  and  written  when  using  VOMM  to  solve  each

subproblem  is .  Therefore,  for

each  processor,  the  total  number  of  words  read  and

written  is ,  i.e.,

. From Proposition 1, this vertical com-

munication  asymptotically  reaches  the  vertical  cost

lower  bound.  Additionally,  as  the  2.5D  algorithm  is

horizontally optimal, it attains the horizontal commu-

nication’s cost lower bound. As a result, the proposed

algorithm achieves joint-communication optimality by

satisfying  both  horizontal  and  vertical  cost  lower

bounds. □

r

Bw = O(Br)

rBr + rBw

For  the  read-write  symmetric  memory  model,

since  the  costs  of  writing  and  reading  are  both ,

 can achieve the asymptotic optimal ver-

tical  cost  ( ).  However,  when  writing  is

much more  expensive  than reading,  only  less  writing

meets the vertical optimum. Therefore, the joint-com-

munication  optimal  algorithm  under  the  symmetric

memory  model  may  not  be  optimal  for  asymmetric

memories. 

5    Joint-Cost Lower Bound in APM

In  this  section,  we  discuss  the  joint-communica-

tion  cost  lower  bound  in  the  asymmetric  memory

model.  We  first  give  a  lower  bound  of  the  vertical

cost  (Lemma  3).  Then  we  show  that  the  horizontal

and  the  vertical  optimalities  cannot  be  achieved  si-

multaneously  (Lemma  5),  which  indicates  that  the

trivial  cost  lower  bound  by  naturally  combining  the

horizontal cost lower bound and the vertical cost low-

er bound is not tight. Finally, we derive tighter joint-

communication  cost  lower  bounds  (Theorem  1  and

Theorem 2). 

5.1    Vertical Cost Lower Bound

Ω(n3r/(PS1/2) + n2ω/P )

Lemma  3. In  the  APM,  the  vertical  communica-
tion  cost  lower  bound  for  square  matrix  multiplica-
tion is .

Br +Bw =

Ω(n3/(PS1/2))

rBr + ωBw

ω > r rBr + ωBw >

r(Br +Bw) = Ω(n3r/(PS1/2))

n2

P

n2/P Bw ⩾ n2/P

rBr + ωBw ⩾ max(n3r/(PS1/2),

n2ω/P ) Ω(n3r/(PS1/2) + n2ω/P )

Proof. From  Proposition  1,  we  have 

.  As  presented  in Section 3,  in  the

APM,  the  vertical  cost  is  defined  as .  As

,  the  vertical  cost  follows  that 

.  Since  the  output  ma-

trix, of size , is eventually evenly distributed among

 processors, the minimum number of words written

per  processor  is ,  which  implies .

Therefore,  we  have 

, i.e., . □ 

5.2    Vertically Optimal Cannot be

Horizontally Optimal

This  conclusion  is  based  on  the  inequality  pro-
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n n

n3

V
n× n× n A B C

(i, j, k)

AikBkj

V ⊂ V
V

A B

V C

V

posed by Loomis and Whitney[30], which describes the

surface-to-volume  relationship.  For -by-  matrix

multiplication,  there  are  arithmetic  operations,

which  may  be  arranged  into  a  cube  of  size

 with  the  matrices , ,  and  as  its

faces. The point at location  in the cube cor-

responds  to  the  scalar  multiplication .  Let

 denote the arithmetic operations performed by

a processor, then the projections of  onto three faces

correspond to the input entries of  and  that are

necessary to perform  and the output entries  of 

which  are  updated.  The  Loomis-Whitney  inequality

relates the volume of  to its projections.

V ⊂ R3

(x, y, z)

Vx

V y × z

(y, z) x

(x, y, z) ∈ V Vy Vz

| · | |V | ⩽√
|Vx| × |Vy| × |Vz|

Lemma 4[30]. Let  be a finite set of lattice
points  and  each  point  with  integer  coordi-
nate.  Let  be  the  orthogonal  projection  of  vector
space  onto the  plane, defined as the set of all
points  for  which  there  exists  an  such  that

. The definitions of  and  are simi-
lar. Let  denote the cardinality of a set, then 

.
Lemma 5. In the APM, a vertically  optimal  algo-

rithm cannot be horizontally optimal.

An×nBn×n = Cn×n P

M = Ω(n2/P )

Bw = Θ(n2/P )

n3/P |V | ⩾ n3/P

C Vz

|Vz| ⩽ Bw O(n2/P )

|Vx||Vy| ⩾ |V |2/|Vz| max{|Vx|, |Vy|} = Ω(n2/

P 1/2)

Ω(n2/P 1/2) A B

n2/P A B

Ω(n2/P 1/2)

Ω(n2/P 1/2)

Ω(n3/(PM 1/2)+n2/P 2/3) M=Ω(n2/P )

Proof. To  solve  the  matrix  multiplication

 on  a  distributed  system  with 

processors, each processor must have a main memory

size of at least  to evenly store the ini-

tial  input  matrices.  Given  a  vertically  optimal  algo-

rithm, according to Lemma 3, we have 

for this algorithm. Moreover, by the pigeonhole prin-

ciple,  there  exists  a  processor  that  performs  at  least

 arithmetic operations, i.e., . For this

processor, since each entry of  in  is updated and

must  be  written  to  NVM  at  least  once,  we  get

,  i.e., .  From  Lemma  4,  we  have

 and hence 

, which means that the processor must access at

least  entries  of  or .  Since  each  pro-

cessor  initially  has  entries  of  and ,  there

are  at  least  entries  that  need  to  be  ac-

cessed  by  other  processors.  That  is,  the  horizontal

word transfer is at least , which is asymp-

totically higher than the horizontal word transfer cost

lower bound  ( ).

Therefore,  a  vertically  optimal  algorithm  cannot  be

horizontally optimal. □
Note  that  Theorem 3  in  [17]  gives  a  similar  con-

clusion  that  a  horizontally  optimal  algorithm cannot

be vertically optimal. 

5.3    Joint-Cost Lower Bound

Ω(n3/(PM 1/2) + n2/P 2/3)

By  Lemma  1,  the  number  of  words  moved  hori-

zontally is at least . Accord-

ingly, the horizontal cost lower bound can be divided

into  two  scenarios  depending  on  the  main  memory

size.

• M = Ω(n2/P 2/3) n3/(PM 1/2) =

O(n2/P 2/3) Bh Ω(n2/P 2/3)

 When ,  we have 

 and hence  is at least .

• M = O(n2/P 2/3) n3/(PM 1/2) =

Ω(n2/P 2/3) Bh Ω(n3/(PM 1/2))

 When , we have 

 and hence  is at least .

Similarly, we divide the joint-cost lower bound in-

to two scenarios for discussion depending on the main

memory size.

• M = Ω(n2/P 1/2 When ), we call it “enough mem-

ory scenario” and discuss this case in Subsection 5.3.1.

• M = O(n2/P 1/2 When ), we call it “limited mem-

ory scenario” and discuss this case in Subsection 5.3.2.

Subsection 6.2 explains why this category is chosen. 

5.3.1    Joint-Cost  Lower  Bound  with  Enough

Memory

M = Ω(n2/P 1/2

Ω(n2/P 2/3)

Ω((n2β/P 2/3)+

(n3r/PS1/2) + (n2ω/P ))

In enough memory scenario ( )), by

Lemma  1,  the  number  of  words  transferred  horizon-

tally is at least . From Lemma 3, the triv-

ial  joint-cost lower bound (the sum of  the horizontal

and  vertical  lower  bounds)  is 

. However, as discussed above,

this lower bound is loose for asymmetric memories. A

tighter lower bound is proven in Theorem 1.

Q

An×nBn×n = Cn×n

2ω/β ⩽ 1 Q

Ω((n2β/P 2/3) + (n3r/PS1/2))

1 < 2ω/β < P 1/2 Q

Ω((n2β2/3ω1/3/P 2/3) + (n3r/PS1/2)) 2ω/β ⩾ P 1/2

Q Ω((n3r/PS1/2)+

(n2ω/P ))

Theorem  1. Let  be  the  joint-communication
cost  for  solving  in  the  APM with
enough  memory.  When ,  has  a  lower
bound of .  For  the  range

,  the  lower  bound  of  is
.  If ,

then  has  a  cost  lower  bound  of 
.

M = Ω(n2/

P 1/2)

2ω/β

2ω/β

d

d1 d2/d d3

d

d = 2ω/β d ⩽ 1

Proof. In the enough memory scenario (

), we categorize the cost lower bound into three

cases  according  to  the  value  of .  The  value  of

 is  chosen  based  on  the  divide-and-conquer

BFS/DFS  approach[18].  Briefly,  during  the  recursive

decomposition of the initial problem, we trade off the

horizontal and vertical costs by setting a parameter 

and split the largest of , ,  (subproblem size)

in half  at each recursion.  By calculation,  a joint-cost

function concerning  can be obtained, which is mini-

mized at . Considering that  is the hor-
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d ⩾ P 1/2

2ω/β 1 P 1/2

izontal  optimal  scenario  and  is  the  vertical

optimal scenario, we discuss the following three cases

based  on  the  size  of  and , .  Interested

readers can refer to [18] for more details of the above

approach.

1) 2ω/β ⩽ 1 2ω/β ⩽ 1

Ω((n2β/P 2/3) + (n3r/PS1/2))

Ω((n2β/P 2/3) + (n3r/PS1/2) + (n2ω/P ))

 .  In  this  case,  by ,  we  de-

rive the  lower bound di-

rectly  from  the  trivial  joint-cost  lower  bound  of

.

2) 1 < 2ω/β < P 1/2

|V | ⩾ n3/P

Bw = cn2/P

c > 0

Bw = cn2/P

Ω((rn3/PS1/2) + (ωcn2/P ))

Vz

|Vz| ⩽ Bw = cn2/P

|Vx| × |Vy| ⩾ |V |2/|Vz|
max{|Vx|, |Vy|} ⩾ n2/(cP )1/2

n2/(cP )1/2 A

B

c

 .  By  the  pigeonhole  principle,

there  exists  a  processor  performing  at  least

 arithmetic  operations,  which  holds  for

any  parallel  matrix  multiplication  algorithm.  With-

out loss of generality, we assume that, for this proces-

sor,  the  number  of  words  written  is ,

where .  Subsequently,  based  on  Lemma  3  and

,  we  ascertain  that  the  vertical  cost  is

bounded by . Additionally,

for this processor, as each output entry of  gets up-

dated and must be written to NVM at least once, we

deduce .  Leveraging  Lemma  4,  we

infer  that  and  thus

,  which  means  that  this

processor needs to get at least  entries of 

or .  Subsequently,  we  delineate  two  cases,  contin-

gent upon the value of .

0 < c < P

n2/P A B

n2/(cP )1/2 − n2/P

Ω(n2/(cP )1/2) Bh = Ω(n2/(cP )1/2)

a) .  Since  each  processor  initially  owns

 entries  of  and ,  for  this  processor,  the

number  of  entries  that  need  to  be  accessed  by  other

processors  is  at  least ,  i.e.,

.  Therefore, ,  and

the joint-communication cost is
 

Q = Ω

(
n2β

(cP )1/2
) +

n3r

PS1/2
+

cn2ω

P

)
.

Q c

c∗ = argminQ = P 1/3β2/3/(2ω)2/3

It can be found that  is a function on . By deriva-

tion,  this  function  is  minimized  when

. Therefore,
 

Q = Ω

(
n2β2/3ω1/3

P 2/3
+

n3r

PS1/2

)
.

c ⩾ P c ⩾ P 2ω/β > 1b) .  From , ,  and the trivial

joint-cost lower bound
 

Q = Ω

(
n2β

P 2/3
+

n3r

PS1/2
+

cn2ω

P

)
,

cn2ω/P ⩾ n2ω > n2β/2 ⩾ n2β/2P 2/3

Q = Ω((n3r/PS1/2) + n2ω)

we  have .  There-

fore, .

Q 2ω/β > 1

n2β2/3ω1/3/P 2/3 = O(n2ω/P 2/3) = O(n2ω)

Q = Ω((n2β2/3ω1/3/P 2/3) + (n3r/PS1/2))

Any matrix multiplication algorithm falls  into ei-

ther  case  a  or  case  b.  Thus,  we  determine  the  joint-

cost  lower  bound by selecting  the  minimum value  of

 in  case  a  and  case  b.  Since ,  we  have

.  Therefore,

.

2ω/β ⩾ P 1/2 2ω/β ⩾ P 1/2

Ω((n3r/PS1/2) + (n2ω/P ))

Ω((n2β/P 2/3) + (n3r/PS1/2) + (n2ω/P ))

3) . In this case, by , the

lower bound of  can be de-

rived directly  from the  trivial  joint-cost  lower  bound

of . □
In the enough memory scenario, the joint-commu-

nication costs of the horizontally optimal (2.5DMML3-

ooL2)  and  the  vertically  optimal  (SUMMAL3ooL2)

algorithms  are  given  in Table 4,  which  shows  that

neither  algorithm  can  attain  the  joint-cost  lower

bound in general. 

5.3.2    Joint-Cost  Lower  Bound  with  Limited

Memory

Note  that  any  matrix  multiplication  algorithm

that can be executed in the limited memory scenario

can also be executed in the enough memory scenario.

Therefore,  the  joint-cost  lower  bound  in  the  enough

memory  scenario  also  holds  in  the  limited  memory

scenario.  However,  this  lower  bound  might  not  be

tight in the limited memory scenario,  and thus more

refined analyses are needed. We give a tight joint-cost

lower bound in the limited memory scenario in Theo-

rem 2.

Q

An×nBn×n = Cn×n

ω/β ⩽ 1 Q

Theorem  2. Let  be  the  joint-communication
cost  for  solving  in  the  APM with
limited  memory.  When ,  is  lower-bounded
by

 

Table  4.    Joint-Communication Complexity with Enough Memory

Method 2ω/β ⩽ 1 1 < 2ω/β < P 1/2 2ω/β ⩾ P 1/2

Lower bound (here) Ω( n2β

P2/3 + n3r
PS1/2 ) Ω(n

2β2/3ω1/3

P2/3 + n3r
PS1/2 ) Ω(n

2ω
P

+ n3r
PS1/2 )

2.5DMML3ooL2[17] Θ( n2β

P2/3 + n3r
PS1/2 ) O( n2ω

P2/3 + n3r
PS1/2 ) O( n2ω

P2/3 + n3r
PS1/2 )

SUMMAL3ooL2[17] O(
(r+β)n3

PS1/2 ) O(
(r+β)n3

PS1/2 ) O(n
2ω
P

+
(r+β)n3

PS1/2 )

JOMMA (here) Θ( n2β

P2/3 + n3r
PS1/2 ) Θ(n

2β2/3ω1/3

P2/3 + n3r
PS1/2 ) Θ(n

2ω
P

+ n3r
PS1/2 )
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Ω

(
β

(
n3

PM 1/2
+

n2

P 2/3
) +

n3r

PS1/2

))
.

1 < ω/β < n2/M Q Ω((n3

(βω)1/2/PM 1/2) + (n3r/PS1/2)) ω/β ⩾ n2/M

Q Ω((n2ω/P )+(n3r/PS1/2))

For ,  has a lower bound of 
.  When ,

 exhibits a lower bound of .
M = O(n2/

P 1/2)

ω/β

Proof. In the limited memory scenario (

),  we  classify  the  lower  bound  into  three  cate-

gories based on the value of , following a method-

ology similar to that presented in Theorem 1.

1) ω/β ⩽ 1 ω/β ⩽ 1

Ω(β((n3/PM 1/2) + (n2/P 2/3)) + (n3r/PS1/2))

 .  In  this  case,  by ,  the

 lower

bound  can  be  derived  directly  from the  trivial  joint-

cost lower bound of
 

Ω

(
β(

n3

PM 1/2
+

n2

P 2/3
) +

n3r

PS1/2
+

ωn2

P

)
.

2) 1 < ω/β < n2/M

A′B′ = C ′

d1, d2 d3

AB = C n3

d1d2d3

n3/(Pd1d2d3)

d1d2d3 = O(n3/P )

Ω(1)

A′ B′

n3/Pd1d2d3 ×min{d1d2, d2d3}
d1 ⩽ d3

d1d2 ⩽ d2d3

Ω(n3β/(Pd3))

d1, d2 d3 Ω(d1d2d3r/S
1/2 + d1d3ω)

n3/(Pd1d2d3) Ω(n3r/(PS1/2)+

n3ω/(Pd2))

 .  Assume  that  the  subprob-

lem performed by each processor is , where

 and  are  the  matrix  dimensions  of  the  sub-

problem. Since the total number of arithmetic opera-

tions to solve  is  and the number of oper-

ations  to  solve  each  subproblem  is ,  each  pro-

cessor  performs  subproblems.  We  as-

sume  to  guarantee  each  processor

performs  subproblems. Considering the comput-

ing  of  each  subproblem,  each  processor  needs  to  ac-

cess  at  least  one  of  or  from other  processors.

Hence the total number of words moved horizontally

is  at  least .  Without

loss  of  generality,  we  assume  that ,  then

,  and  the  horizontal  cost  is  at  least

. Recall that the vertical cost of sequen-

tially  solving  a  subproblem  with  matrix  dimensions

, and  is ,  and the to-

tal  vertical  cost  for  each  processor  to  sequentially

solve  subproblems is at least 

. Therefore,
 

Q = Ω

(
n3β

Pd3

+
n3ω

Pd2

+
n3r

PS1/2

)
.

d2d3 ⩽ MFrom the mean inequality and , we get

 

n3β

Pd3

+
n3ω

Pd2

⩾ n3(βω)1/2

P (d2d3)1/2
⩾ n3(βω)1/2

PM 1/2
.

Q = Ω((n3(βω)1/2/PM 1/2) + (n3r/PS1/2))Therefore, .

3) ω/β ⩾ n2/M ω/β ⩾ n2/M

M = O(n2/P 1/2) Ω(n2ω/P + n3r/(PS1/2))

Ω((n2β/P 2/3) + (n3r/PS1/2)+

(n2ω/P ))

 . In this case, by  and

,  the  lower

bound can be directly obtained from the trivial joint-

cost  lower  bound 

. □
In the limited memory scenario, the joint costs of

the horizontally optimal and the vertically optimal al-

gorithms are given in Table 5, which shows that nei-

ther  algorithm can  attain  the  joint-cost  lower  bound

in general. 

6    Memory and Dimensions Analysis

M =

Ω(n2/P 1/2) M = O(n2/P 1/2)

n n

A′B′ = C ′

d1, d2, d3

In  this  section,  we  introduce  why  we  set 

 as  enough  memory  and 

as limited memory. In addition, as mentioned earlier,

assuming that -by-  matrix multiplication is decom-

posed into  multiple  subproblems  with  di-

mensions  on  a  parallel  machine,  then  these

dimensions demonstrate the vertical-horizontal trade-

off (cf. Table 1). We use linear programming to solve

the  optimal  solution  of  the  three  dimensions.  These

optimal solutions can minimize the joint communica-

tion  and,  therefore,  guide  the  tunable  grid  and  the

scheduling of our algorithm. 

6.1    Joint-Cost Function

To propose algorithms with low joint communica-

tion,  we  introduce  conditions  conducive  to  reducing

joint-communication  costs.  Subsequently,  we  analyze

the  horizontal  and  the  vertical  communication  costs

of  algorithms  meeting  the  following  conditions,  pro-

viding their joint-communication cost function.

d1 ⩽ n d2 ⩽ n d3 ⩽ n1) , , .

d1d2d3 = O(n3/P )

Ω(1)

2)  to ensure that each processor

computes  subproblems.

max{d1d2, d2d3, d1d3} = O(M)3)  to ensure that the
 

Table  5.    Joint-Communication Complexity with Limited Memory

Method ω/β ⩽ 1 1 < ω/β < n2/M ω/β ⩾ n2/M

Lower bound (here) Ω( n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2 ) Ω(

n3(βω)1/2

PM1/2 + n3r
PS1/2 ) Ω(n

2ω
P

+ n3r
PS1/2 )

2.5DMML3ooL2[17] Θ( n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2 ) O( n3ω

PM1/2 + n2ω
P2/3 + n3r

PS1/2 ) O( n3ω
PM1/2 + n2ω

P2/3 + n3r
PS1/2 )

SUMMAL3ooL2[17] O(
(r+β)n3

PS1/2 ) O(n
2ω
P

+
(r+β)n3

PS1/2 ) O(n
2ω
P

+
(r+β)n3

PS1/2 )

JOMMA (here) Θ( n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2 ) Θ(

n3(βω)1/2

PM1/2 + n3r
PS1/2 ) Θ(n

2ω
P

+ n3r
PS1/2 )
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sizes of input and output do not exceed the size of the

main memory.

d2 ⩾ d1 = d34)  to reduce the number of words writ-

ten since writes are more expensive than reads.

5) Computation is load-balanced.

Lemma 6. The joint-communication cost of the al-
gorithm satisfying the above conditions is
 

O

(
n3r

PS1/2
+

n3

P

(
β

d1

+
β

d2

+
ω

d2

))
.

Proof. We  first  analyze  the  horizontal  and  the

vertical  cost  of  such  algorithms  and  then  give  the

joint-communication cost.

n3

d1d2d3

n3/(d1d2d3)

n3/(Pd1d2d3)

A′B′ = C ′

A′ B′ C ′

β(d1d2 + d2d3 + d1d3)

n3/(Pd1d2d3)

n3β(d1d2 + d2d3 + d1d3)/

(Pd1d2d3)

Horizontal Cost. Based on the total arithmetic op-

erations  ( )  and  the  number  of  arithmetic  opera-

tions  per  subproblem  ( ),  we  determine  that

there are  subproblems.  To maintain load

balance,  each  processor  handles  sub-

problems  ( ).  To  compute  a  subproblem,

processors must engage in data exchange, involving at

most all elements of matrices , , and . Hence,

the  horizontal  cost  of  solving  a  subproblem does  not

exceed , and the total horizontal

cost  of  each  processor,  addressing  sub-

problems,  remains  below 

.

n3/(Pd1d2d3)

O(d1d2d3r/S
1/2 + d1d3ω)

O(n3r/(PS1/2)+

n3ω/(Pd2))

Vertical  Cost. Processors  utilize  the  sequential

VOMM algorithm for localized subproblem resolution.

Each  processor  handles  subproblems,

with  each  subproblem  incurring  a  vertical  cost  of

 (cf. Section 4).  As  a  result,

the  total  vertical  cost  amounts  to 

.

d1 = d3By  (condition 4), the joint-communication

cost is
 

Q = O

(
n3β (d1d2 + d2d3 + d1d3)

Pd1d2d3

+
n3r

PS1/2
+

n3ω

Pd2

)
= O

(
n3r

PS1/2
+

n3

P

(
β

d1

+
β

d2

+
ω

d2

))
. 2

 

6.2    Memory Analysis

M = Ω(cn2/P )

O(
√

P/c3)

Generally, the larger the main memory, the larger

the  matrix  dimensions  of  each  subproblem,  and  the

fewer the number of subproblems that each processor

needs  to  execute.  For  example,  considering  the  2.5D

algorithm,  assuming  that  the  main  memory  size  per

processor  is ,  the  number  of  subprob-

lems  performed  by  each  processor  is ,

c ⩽ P 1/3where .

Θ(1)

Ω(1)

Definition  1. The  scenario  where  each  processor
executes  only  subproblems  is  defined  as  the
enough  memory  scenario.  Conversely,  the  scenario
where each processor executes  subproblems is de-
fined as the limited memory scenario.

M =

Ω(n2/P 1/2)

Lemma  7. In  the  enough  memory  scenario,  the
memory  size  of  each  processor  is  at  least 

.
n

AB = C d1, d2, d3

AB = C

n3/(Pd1d2d3) =

Θ(1) d1d2d3 = Θ(n3/P )

Proof. Let  be the size of the matrix multiplica-

tion  and  the  dimensions  of  the

subproblem  obtained  by  dividing .  In  the

enough  memory  scenario,  since  the  number  of  sub-

problems executed by each processor is 

, we conclude that .

d2 ⩽ n 1 d2 ⩾ d1 = d3

4 d1d2d3 = Θ(n3/P ) d1d3 = Ω(n2/P )

d1d3 = O(n2/P 2/3) d1 d3

Ω(n/P 1/2) O(n/P 1/3)

By  (condition ),  (condition

),  and ,  we  have 

and . Consequently, both  and 

range from at least  to at most .

d1d2d3 = Θ(n3/P ) d1 = d3 = Ω(n/P 1/2)

max{d1d2, d2d3, d1d3} = O(M)

M = Ω(max{d1d2, d2d3, d1d3}) = Ω(max{d1d2, d
2
1}) =

Ω(max{n3/(Pd1), d
2
1}) = Ω(n2/P 1/2).

By , ,  and

 (condition  3),  we  have

 □ 

6.3    Matrix Dimensions Optimization

P S M r ω β

n

(β/d1) + (β/d2) + (ω/d2)

Given the machine parameters , , , , , ,

and problem size , by Lemma 6, the joint-communi-

cation  cost  is  asymptotically  minimal  if  and  only  if

 is  asymptotically  minimal.

Therefore,  the  optimization  problem  of  minimizing

the joint-communication cost is formulated as follows:
 

min
β

d1

+
β

d2

+
ω

d2

subject to :
(1)

      conditions 1, 2, 3, 4, 5 (cf. Subsection 6.1).

d1 d2 d3Next, we analyze how the values of , , and 

can  minimize  the  joint-communication  cost  for  the

enough memory scenario and the limited memory sce-

nario.

2ω/β ⩽ 1

d1 = d2 = d3 = Θ(n/P 1/3) 1 ⩽ 2ω/β ⩽ P 1/2

d1 = d3 = Θ((n3β/2Pω)1/3)

d2 = Θ((4n3ω2/Pβ2)1/3) 2ω/β ⩾ P 1/2

d1 = d3 = Θ(n/P 1/2) d2 = Θ(n)

Lemma  8. In  the  enough  memory  scenario,  if
, (1) attains  its  minimum  when

.  For , (1)

is  minimized  when  and
.  If ,  then (1) is

minimized when  and .
d1d2d3 = Θ(n3/P )

d1 = d3

d2 = Θ(n3/(Pd1
2))

Proof. Recalling  that  in  the

enough  memory  scenario  and  (condition  4),

we have . Therefore,
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O

(
β

d1

+
β

d2

+
ω

d2

)
= O

(
β

d1

+
Pβd1

2

n3
+

Pωd1
2

n3

)
.

(2)

2ω/β

Parallel  to  the  lower  bound  proof  in  Theorem  1,

we classify the upper bound into three cases based on

the value of .

1) 2ω/β ⩽ 1 O(β/d1 + Pβd1
2/n3)

d1

d1 = Θ(n/P 1/3)

d1d2d3 = Θ(n3/P )

d1 = d3 d1 =

d2 = d3 = Θ(n/P 1/3)

 . In this case, (2) is ,

which is a function of . By derivation, this function

is  minimized  when .  Therefore,  from

 (in  the  enough  memory  scenario)

and  (condition 4), (1) is minimized when 

.

2) 2ω/β > 1 O(β/d1 + Pωd1
2/

n3) d1

d1 = Θ((n3β/2Pω)1/3)

d1 = d3 d2 ⩽ n d1d2d3 = Θ(n3/P )

d1 Ω(n/P 1/2)

(n3β/(2Pω))1/3 > n/P 1/2

d1 = Θ((n3β/(2Pω))1/3)

d1 = Θ(n/P 1/2)

 . In this case, (2) is 

,  which  is  a  function  of .  By  derivation,  this

function  is  minimized  when .

However, given , , and ,

 is  constrained  to  the  range  of .  If

,  (1)  minimizes  at

;  otherwise,  it  minimizes  at

.

1 < 2ω/β < P 1/2

(n3β/(2Pω))1/3 > n/P 1/2

d1 = d3 = Θ((n3β/(2Pω))1/3) d2 = Θ((4n3ω2/

(Pβ2))1/3)

a) .  In  this  case,  we  have

. Thus (1) is minimized when

 and 

.

2ω/β ⩾ P 1/2 (n3β/(2Pω))1/3

⩽n/P 1/2 d1 = d3 =

Θ(n/P 1/2) d2 = Θ(n)

b) . In this case, we have 

.  Thus  (1)  is  minimized  when 

 and . □

ω/β ⩽ 1 d1 = d2 = d3 =

Θ(min(n/P 1/3,M 1/2)) 1 ⩽ ω/β ⩽ P 1/2

d1 = d3 = Θ(
√

Mβ/ω) d2 =

Θ(
√

Mω/β) ω/β ⩾ P 1/2

d1 = d3 = Θ(M/n) d2 = Θ(n)

Lemma  9. In  the  limited  memory  scenario,  if
, (1) attains its minimum when 

.  For , (1) is
minimized  when  and 

. If , then (1) achieves its mi-
nimum value when  and .

ω/β

Proof. In  alignment  with  the  lower  bound  proof

presented  in  Theorem  2,  we  similarly  categorize  the

upper  bound  into  three  cases  based  on  the  value  of

.

ω/β ⩽ 1 O(β/d1 + β/d2 + ω/d2) =

O(β/d1 + β/d2) d1d2 = O(M)

O(β/d1 + β/d2)

d1d2 = Θ(M) d1 = Θ(M/d2)

O(β/d1 + β/d2) = O(βd2/M + β/d2)

d2

d2 = Θ(M 1/2)

M = Ω(n2/P 2/3) d1 = d2 = d3 = Θ(M 1/2) =

Ω(n/P 1/3) d1d2d3 = Ω(n3/P )

d1d2d3 = O(n3/P ) d1 = d3

1) . In this case, 

.  As  (condition  3),  ap-

plying the Arithmetic-Geometric Mean inequality, we

ascertain  that  achieves  its  minimum

when .  Substituting ,  we

find that , a func-

tion of . Upon differentiation, this function reaches

its minimum when . However, for the case

of , we have 

. This results in , indicat-

ing that condition 2 is not satisfied. In this case, giv-

en  and ,  the  expression

O(β/d1 + β/d2) d2
1d2 =

Θ(n3/P ) d2 = Θ(n3/Pd2
1)

O(β/d1 + β/d2) = O(β/d1 + βPd2
1/n

3)

d1 = Θ(n/P 1/3)

d1 = d2 = d3 = Θ(min{n/P 1/3,

M 1/2})

 attains  its  minimum  when 

.  By  substituting ,  we  have

,  which  reaches

its  minimum  when .  Hence,  (1)  achi-

eves its minimum when 

.

ω/β > 1 O(β/d1 + β/d2 + ω/d2) =

O(β/d1 + ω/d2) d1d2 = O(M)

O(β/d1 + ω/d2)

d1d2 = Θ(M)

d1 = Θ(M/d2) O(β/d1 + ω/d2) =

O(βd2/M + ω/d2) d2

d2 = Θ(
√

Mω/β) d2 d2 ⩽ n√
Mω/β < n d2 =

Θ(
√

Mω/β) d2 = Θ(n)

2) . In this case, 

.  Given  according  to

condition  3,  employing  the  Arithmetic-Geometric

Mean  inequality  reveals  that  attains

its  minimum  when .  By  substituting

,  we  find  that 

, a function of . Upon differentia-

tion,  this  function  reaches  its  minimum  when

. However,  is bounded by .

Hence,  if ,  (1)  minimizes  at 

; otherwise, (1) minimizes at .

1 < ω/β < n2/M
√

Mω/β <

n d2 =Θ(
√

Mω/β)

d1 = d3 = Θ(
√

Mβ/ω) d1 = d3 = Θ(M/d2)

a) . In this case, we have 

. Thus (1) is minimized when  and

 ( ).

ω/β ⩾ n2/M
√

Mω/β ⩾
n d2 = Θ(n) d1 =

d3 = Θ(M/n) d1 = d3 = Θ(M/d2)

b) . In this case, we have 

.  Thus  (1)  is  minimized  when  and 

 ( ). □ 

7    Joint-Communication Optimal Algorithm

Algorithm 2 is  a  brief  description  of  the  Joint-

Communication Optimal  Matrix Multiplication Algo-

rithm  (JOMMA).  See Algorithm 3 and Algorithm 4

for more details.

Algorithm 2. JOMMA

A, B, P, M, S, r, ω, βRequire: 

C = ABEnsure: 
1: if enough memory then

2: 　Call EM-JOMMA
3: end if
4: if limited memory then

5: 　Call LM-JOMMA
6: end if
 

7.1    Enough Memory

In  the  enough  memory  scenario,  we  employ  EM-

JOMMA (cf. Algorithm 3) to solve matrix multiplica-

tion. 

7.1.1    Data Layout

P Px × Py × Pz

PxPyPz = P Pijk

 processors  are  arranged  in  a  cu-

bic grid, where  and  is the processor

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 11



(i, j, k) i = {1, 2, . . . , Px}, j = {1,
2, . . . , Py}, k = {1, 2, . . . , Pz} n× n

A

P:1: i ∈ {1, 2, . . . , Px} j = 1 k ∈ {1, 2, . . . , Pz}
Pi1k (n/Px)× (n/Pz)

A(i, k) Π(A)

n× n B

P1:: P1jk

(n/Pz)× (n/Py) B(k, j)

Π(B) C

Px × Py

Pij1

P::1 C(i, j) =∑Pz

k=1
A(i, k)B(k, j)

at  coordinate  (

).  Initially,  the 

input  matrix  is  evenly  distributed to  the  2D slice

 ( , , and ),

and  each  processor  owns  an 

block  as its local matrix  (cf. Fig.2(a)).

Similarly,  the  input  matrix  is  evenly  dis-

tributed to the 2D slice , and each processor 

owns  an  block  as  its  local

matrix  (cf. Fig.2(b)).  The  output  matrix 

can  be  divided  into  blocks,  and  the  algo-

rithm  terminates  when  each  processor  on  the

2D  slice  has  finished  computing 

 (cf. Fig.2(c)).

A(i, k) Pi1k Py

Pi:k B(k, j)

P1jk Px P:jk

Note  that  although  the  above  input  matrices  are

initially  load-imbalanced,  we  can  easily  rearrange

them  for  load-balancing.  For  example,  let  the  block

 owned by  be scattered over the  pro-

cessors in . Similarly, let the block  owned

by  be  scattered  over  the  processors  in .

These two scatter operations do not affect the asymp-

totic joint-communication cost. 

7.1.2    Scheduling

d1 = n/Px d2 = n/Pz d3 = n/Py

Px Py Pz

2ω/β ⩽ 1 Px = Py = Pz =

P 1/3 d1 = d2 = d3 = n/P 1/3

From  the  above  data  layout,  the  dimensions  of

the  subproblem  solved  by  each  processor  are

, ,  and .  Therefore,  we

set the values of , , and  according to Lemma

8,  thus  being  able  to  asymptotically  minimize  the

joint-communication  cost  (lines  1–9  in Algorithm 3).

For example, when , we set 

 such that .

After determining the parameters of the tunable pro-

cessor  grid,  the  EM-JOMMA  algorithm  has  three

steps.

Algorithm 3. EM-JOMMA

A Px × Pz Pi1k

A(i, k) Π(A) B Pz × Py

P1jk B(k, j) Π(B)

Require:  is divided into  matrix blocks, and  has
   as ;  is  divided  into  matrix

  blocks, and  owns  as 

C = AB ∈ Rn×nEnsure: 

((2ω)/β) ⩽ 11:   if  then

Px = Py = Pz = P
1
32: 　 

3:   end if

1 < ((2ω)/β) < P 1/24:   if  then

Px = Py = ((2ωP )/β)
1
3 , Pz = ((Pβ2)/(4ω2))

1
35: 　 

6:   end if

((2ω)/β) ⩾ P 1/27:   if  then

Px = Py = P 1/2, Pz = 18: 　 

9:   end if

(Π(A),Π(X), 1, Pi:k)10: Broadcast

(Π(B),Π(Y ), 1, P:jk)11: Broadcast

Π(Z)← (Π(X),Π(Y ))12:  VOMM

(Π(Z),Π(C), 1, Pij:)13: Reduce

(Π(A), Π(X), 1,

Pi:k)

(Π(B), Π(Y ), 1, P:jk)

Pijk

A(i, k) Π(X) B(k, j) Π(Y )

Step 1. The EM-JOMMA algorithm performs two

broadcast  operations, Broadcast
 (cf.  line  10  in Algorithm 3 and Fig.2(a))  and

Broadcast  (cf. line 11 in Algo-

rithm 3 and Fig.2(b)), so that each processor  ac-

cesses  as  and  as .

Pijk

Π(Z) = Cijk = A(i, k)B(k, j)

Step 2. Each processor  calls the VOMM algo-

rithm to compute  (cf.

line 12 in Algorithm 3).

(Π(Z),Π(C), 1, Pij:)

Pij1 Π(C) = C(i, j) =
∑Pz

k=1
Cijk

Step 3.  The EM-JOMMA algorithm performs the

reduction  operation, Reduce  (cf.

line 13 in Algorithm 3 and Fig.2(c)), so that the pro-

cessor  can compute .
 

7.1.3    Joint-Communication Cost of EM-JOMMA

TVOMM(d1, d2, d3)

AB = C

A d1 × d2 B d2 × d3

By  we denote  the  vertical  com-

munication  cost  of  computing  using

VOMM, where  is a  matrix,  is a 
 

Broadcast

Broadcast

Reduction

(a) (b) (c)

Pi1k Π(A) Pi:k P1jk

Π(B) P:jk Pij: Pij1 Cijk

Fig.2.   Two broadcast operations and a reduction operation.  (a) Processor  broadcasts  along .  (b) Processor 
broadcasts  along . (c) A reduction along  onto root  sums each .
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C d1 × d3

TVOMM(d1, d2, d3) = 2
√
3d1d2d3r/S

1/2 + ωd1d3

matrix  and  is  a  matrix,  then

 (See Al-

gorithm 1).

ω β

Below  we  show  that  in  the  APM  with  enough

memory,  for  any  value  of  and ,  EM-JOMMA is

joint-communication optimal.

|Π(A)| =
|Π(X)| = n2/(PxPZ) |Π(B)| = |Π(Y )| = n2/(PyPz)

|Π(Z)| = |Π(C)| = n2/(PxPz)

Considering Algorithm 3,  we  find 

, ,

and .  Referring  to Ta-

ble 3,  the  joint-communication  cost  function  of  the

EM-JOMMA algorithm is
 

Q =TBroadcast

(
n2

PxPz

, Py

)
+ TBroadcast

(
n2

PyPz

, Px

)
+

TVOMM

(
n

Px

,
n

Pz

,
n

Py

)
+ TReduce

(
n2

PxPy

, Pz

)
. (3)

Px, Py, PzSubstituting the provided values of  and 

from EM-JOMMA into (3),  we derive the joint-com-

munication  cost  as  follows,  which  asymptotically

matches the lower bound established in Theorem 1.

• 2ω/β ⩽ 1 ,
 

Q = O

(
n2β

P 2/3
+

n3r

PS1/2

)
.

• 1 < 2ω/β < P 1/2 ,
 

Q = O

(
n3r

PS1/2
+

n2ω1/3β2/3

P 2/3

)
.

• 2ω/β ⩾ P 1/2 ,
 

Q = O

(
n3r

PS1/2
+

n2ω

P

)
.

 

7.2    Limited Memory

In  the  limited  memory  scenario,  we  present  LM-

JOMMA (cf. Algorithm 4) to solve matrix multiplica-

tion. 

7.2.1    Data Layout

P

Px × Py × Pz PxPyPz = P n× n

A Px × Py

n× n B Py × Px

P::1

Pij1 (n/Px)× (n/Py)

A(i, j) (n/Py)× (n/Px) B(j, i)

C

Px × Px

 processors  are  arranged  in  a  cubic  grid

, .  Initially,  the  input

matrix  is  divided  into  blocks,  and  the

 matrix  is  divided  into  blocks.  Let

these blocks be evenly distributed on the 2D slice .

Specifically, the processor  owns an 

block  and  an  block 

(cf. Fig.3(a)).  In  addition,  the  output  matrix  can

be divided into  blocks, where the size of each

(n/Px)× (n/Px)block is . 

7.2.2    Scheduling

d1 = n/Px, d2 = n/Py d3 = n/Px

Px Py Pz

ω/β ⩾ n2/M Px = n2/M

Py = 1 Pz = P/(PxPy) = PM/n2

d1 = d3 = M/n d2 = n

From  the  above  data  layout,  the  dimensions  of

the  subproblem  solved  by  each  processor  are

,  and .  Therefore,  we

set the values of , , and  according to Lemma

9,  thus  being  able  to  asymptotically  minimize  the

joint-communication  cost  (lines  1–9  in Algorithm 4).

For example, when , we set ,

,  and  such  that

 and .

Algorithm 4. LM-JOMMA

A B P::1

Pij1 A(i, j) Π(A) B(j, i)

Π(B) Π(C) = ∅

Require:  and  are evenly distributed on the 2D slice ;
  processor  has  as  and  as

  ; 

C = AB ∈ Rn×nEnsure: 

ω/β ⩽ 11:   if  then

c = min(P
1
3 ,
√
PM/n) Px = Py =

√
P/c Pz = c2:   , , 

3:   end if

1 < ω/β < n2/M4:   if  then

Px = nω
1
2/M

1
2β

1
2 , Py = nβ

1
2/M

1
2ω

1
2 , Pz = PM/n25:  

6:   end if

ω/β ⩾ n2/M7:   if  then

Px = n2/M,Py = 1, Pz = PM/n28:  

9:   end if

(Π(A),Π(X), 1, Pij:)10: Broadcast

(Π(B),Π(Y ), 1, Pij:)11: Broadcast

(Π(Y ), (k − 1)⌈Px/Pz⌉, Py, P:jk)12: Shift

m = 1 ⌈Px/Pz⌉13: for  to  do

(Π(Y ), 1, Px, P:jk)14:   Shift

Π(Z)← V OMM(Π(X),Π(Y ))15:    

j′ = m mod Py
16:  

(Π(Z),Π(U), j′, Pi:k)17:   Reduce

Π(C) = {Π(C),Π(U)}18:  
19: end for

AB = C P::1

AB = C

A B

Before introducing scheduling, we give the follow-

ing Lemmas 10 and 11, which are used to design Al-

gorithm 4.  Lemma  10  details  the  computation  of

 on  the  2D slice ,  while  Lemma 11  out-

lines  the  computation  of  on  the  cubic  pro-

cessor grid assuming each 2D slice contains a copy of

input matrices  and .

A B

P::1 C = AB

P::1

Px (Π(B), 1, Px,

P:jk)

Lemma  10. When  matrices  and  are  evenly
distributed  on  the  2D  slice ,  computing 
on  can be accomplished using a sequence of itera-
tive  shift operations, denoted as Shift

.
Pi:1

P::1 A(i, :) B(:, i)

Proof. Initially,  each  processor  row  on  the

2D slice  owns  and  (cf. Fig.3(a)), en-
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C(i, i) =
∑Py

j=1

A(i, j)B(j, i)

(Π(B), 1, Px, P:jk)

Pi:1 B(:, i′)
C(i, i′) =

∑Py

j=1
A(i, j)B(j, i′) i′ = (i− 1)

Px P::1

C (Px)
2

C

Px

abling  the  computation  of  the  block 

.  Through  a  circular  shift  operation

Shift  (cf. Fig.3(b)),  the  processor

row  accesses  and  can  compute  the  block

,  where .  As

there  are  processor  rows  within  the  2D  slice 

and  is partitioned into  blocks, the computa-

tion  of  can  be  achieved  through  iterative  execu-

tion of  shift operations. □
A B

P::k k ∈ {1, 2, . . . , Pz}
C = AB

(Π(B), (k − 1)⌈Px/Pz⌉, Px, P:jk)

⌈Px/Pz⌉ (Π(B), 1, Px,

P:jk)

Lemma 11. When  and  are replicated on ev-
ery  2D slice  for  all ,  then  the
computation of  on the cubic  processor  grid
can be achieved by initially  performing a shift  opera-
tion  Shift ,  followed  by

 additional shift  operations Shift
.

C P::1 Px

(Π(B), 1, Px, P:jk)

P::k

A B Px

Pz

C

⌈Px/Pz⌉
P::k

P::1

((k − 1)⌈Px/Pz⌉+ 1) (k⌈Px/Pz⌉+ 1)

(Π(B), (k − 1)⌈Px/Pz⌉, Px, P:jk)

P::k k ∈ {1, 2, . . . , Pz}
⌈Px/Pz⌉

Proof. According  to  Lemma 10,  we  can  calculate

 on  the  2D  slice  through  the  execution  of 

shift  operations, Shift .  After  each

shift  operation,  a  computational  task  follows,  where

each  processor  within  the  2D  slice  computes  a

matrix  multiplication  subproblem  (as  depicted  in

Figs.3(a) and 3(b)). If each 2D slice on the cubic grid

has a copy of  and ,  computational tasks can

be distributed to these  2D slices for parallel execu-

tion. Hence, the computation of  on the cubic pro-

cessor  grid  can  be  accomplished  by  performing

 shift operations. More precisely, the required

shift  operations  on  the  2D  slice  correspond  to

those  performed  on  the  2D  slice  from  the

-th  to  the -th.

Hence,  an  initial  shift  operation,  denoted  as

Shift ,  is  required  on

every 2D slice ,  for  all ,  before

executing the  subsequent shift operations. □

The  above  Lemma  11  leads  to  the  LM-JOMMA

algorithm, which has the following four steps.

(Π(A),Π(X), 1, Pij:)

(Π(B),Π(Y ), 1, Pij:)

A B

P::k ∀k ∈ {1, 2, . . . , Pz}

Step 1. The LM-JOMMA algorithm performs two

operations, Broadcast  and

Broadcast  (cf. lines 10 and 11 in

Algorithm 4 and Fig.3(a)),  so  that  and  are

replicated on each 2D slice , .

(Π(B), (k − 1)⌈Px/Pz⌉, Px,

P:jk)

P::k

Step 2. From Lemma 11, all processors perform an

initial  shift  operation Shift
 (cf.  line  12  in Algorithm 4)  such  that  each  2D

slice  can perform the appropriate computations.

⌈Px/Pz⌉
B

C

Step 3. All processors iteratively perform 

shift  operation  on  (cf.  lines  13–15  in Algorithm 4

and Fig.3(b))  such  that  can  be  computed  com-

pletely.

Pi:k m

m = {1, 2, . . . , ⌈Px/Pz⌉}
Pij′k

Pi:k j′ = m mod Py

Step 4.  After  each circular  shift  (line  16  in Algo-

rithm 4)  and  local  computations  (line  17  in Algo-

rithm 4) are performed, the computation result needs

to be summed for each processor row . For the -

th  shift  operation  ( ),  we

specify  as  the  root  processor  of  processor  row

,  where  (cf.  line  16  in Algorithm

4).  Then,  the  LM-JOMMA algorithm performs  a  re-

duction  operation  (cf.  line  17  in Algorithm 4 and

Fig.3(c)) such that the root processor can sum the lo-

cal results of this processor row. 

7.2.3    Joint-Communication Cost of LM-JOMMA

ω β

Below  we  prove  that  in  the  APM  with  limited

memory,  for  any  value  of  and ,  LM-JOMMA is

joint-communication optimal.

|Π(A)| =
|Π(X)| = n2/(PxPy) |Π(B)| = |Π(Y )| = n2/(PxPy)

|Π(Z)| = |Π(U)| = |Π(C)| = n2/P 2
x

Considering Algorithm 4,  we  find 

, ,

and .  Referring

 

B
ro
ad

ca
st

Shift on B Reduction

Shift

Reduction

(a) (b) (c) 

A B P::1

(Π(B), 1, Px, P:jk)
m = 2

Fig.3.  Broadcast, shift, and reduction operations. (a)  and  are initially evenly distributed on  and the broadcast operations
of lines 10 and 11 in Algorithm 4. (b) The data layout after performing one shift operation Shift  on (a). (c) The
reduction operation of line 17 in Algorithm 4 when .
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to Table 3,  the  joint-communication  cost  function  of

the LM-JOMMA algorithm is
 

Q=2TBroadcast

(
n2

PxPy

, Pz

)
+TShift

(
n2

PxPy

)
+

⌈Px

Pz

⌉TVOMM

(
n

Px

,
n

Py

,
n

Px

)
+⌈Px

Pz

⌉TShift

(
n2

PxPy

)
+

⌈Px

Pz

⌉TReduce

(
n2

P 2
x

, Py

)
. (4)

Px, Py

Pz

By substituting the provided values of , and

 from  LM-JOMMA  into  (4),  we  obtain  the  joint-

communication  cost  as  follows,  which  asymptotically

matches the lower bound established in Theorem 2.

• ω/β ⩽ 1 ,
 

Q = O

(
β

(
n3

PM 1/2
+

n2

P 2/3

)
+

n3r

PS1/2

)
.

• 1 < ω/β < n2/M ,
 

Q = O

(
n3r

PS1/2
+

n3ω
1
2β

1
2

PM
1
2

)
.

• ω/β ⩾ n2/M ,
 

Q = O

(
n3r

PS1/2
+

n2ω

P

)
.

 

8    Evaluation

In  this  section,  we  conduct  a  detailed  evaluation

of the communication costs associated with JOMMA,

2.5DL3ooL2,  SUMMAL3ooL2,  and  2.5D-COWE[16]

(Cache-Oblivious  Write  Efficient  Algorithm),  utiliz-

ing  numerical  analysis  simulation  results  rather  than

actual  implementations  on  distributed  systems.  Be-

low we provide a brief overview of 2.5DL3ooL2, SUM-

MAL3ooL2, and 2.5D-COWE.

n n

2.5DL3ooL2  combines  the  2.5D  and  VOMM  ap-

proaches,  offering an asymptotically optimal horizon-

tal  cost  for -by-  matrix  multiplication.  In  the

ω/β ⩽ 1

2ω/β ⩽ 1

enough  memory  scenario,  it  follows  the  scheduling

pattern of Algorithm 3 when , and in the lim-

ited  memory  scenario,  it  adheres  to  the  scheduling

pattern  of Algorithm 4 when .  This  unifor-

mity  arises  from JOMMA’s  ability  to  asymptotically

minimize horizontal costs when horizontal word trans-

fers incur significant expenses, as demonstrated in Ta-

bles 4 and 5.

P P 1/2 × P 1/2

Π(A) Π(B)

(n/P 1/2)× (n/P 1/2)

P 1/2

Π(A) Π(B)

Π(A) ·Π(B)

Π(A)

Π(B)

(S/3)1/2 × (S/3)1/2

S

d1 = d2 = d3 = (S/3)1/2

P (S/3)3/2

n3/(P (S/3)3/2)

SUMMAL3ooL2  is  a  SUMMA algorithm  variant,

preserving the initial data layout of SUMMA. That is,

 processors  are  arranged  in  a  grid  and

each processor owns local matrices  and 

with size . For SUMMA, there are

 rounds.  Each  processor  participates  in  two

broadcast  operations  on  and  in  each

round  and  then  performs  local  matrix  multiplication

 (cf. Fig.4).  For  SUMMAL3ooL2,  to

minimize  writes,  each  processor  participates  in  two

broadcast  operations  on  submatrices  of  and

 in each round, and the size of each submatrix

is .  In  this  way,  the  problem  size

matches  the  cache  size ,  and  the  outputs  not  fully

computed during the round can be stored in the cache

until fully computed, and then written to main mem-

ory. Since each processor computes a matrix multipli-

cation  of  size  per  round,  the

number of arithmetic operations performed per round

is .  Hence  the  number  of  rounds  is

.

A′B′ = C ′

A′ ∈ Rd1×d2

B′ ∈ Rd2×d3 C ′ ∈ Rd1×d3

d1

d2r
2/3/ω2/3 d3

2.5D-COWE  combines  2.5D,  known  for  horizon-

tal  optimization,  with  COWE[16],  a  cache-oblivious

(cache  size  is  unknown)  divide-and-conquer  algo-

rithm that is vertically optimal in the sequential and

asymmetric  setting.  To  sequentially  solve 

on  a  single  processor,  with  matrices ,

,  and ,  COWE  recursively  di-

vides  the  largest  one  of  the  three  dimensions: ,

, , into halves, resulting in two subprob-

lems. The recursion terminates when the subproblem
 

(a) (b) (c) (d)

Fig.4.  Initial data layout on nine processors for SUMMA and local data of each processor after executing broadcast operations in
each round. (a) Initial layout. (b) Round 1. (c) Round 2. (d) Round 3.
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size matches the cache capacity. While COWE offers

applicability to scenarios with unknown cache sizes, it

incurs a higher vertical cost compared with VOMM.

Although there are other existing algorithms such

as  ScaLAPACK[31],  CARMA[18],  and  COSMA[32],  we

do  not  use  them  as  the  baselines  since  these  algo-

rithms are used to handle rectangular matrix multipli-

cation and do not perform better than 2.5D for square

matrix multiplication[32].

From the previous algorithm description, we ana-

lyze the exact costs of these four algorithms and sum-

marize  the  costs  of  operations  used  in  the  four  algo-

rithms in Tables 6 and 7. It should be noted that due

to  the  balanced  initial  data  layout,  an  additional

gather operation is  required before the broadcast op-

eration for JOMMA, i.e., an allgather operation.

P,M, S, r, ω, β

n

ω/β

n2/P 1/2 < M < n2

n2/P < M < n2/P 1/2

S ⩽ n2/P

Given  the  parameters ,  and  the

problem size , we compare the performance of these

four algorithms by evaluating 18 groups of configura-

tions. These configurations cover all the scenarios dis-

cussed in this paper.  In realistic situations,  the write

bandwidth of NVM is from 0.20 GB/s to 2.20 GB/s,

and  the  read  bandwidth  is  from  0.63  GB/s  to  6.80

GB/s[22, 33].  The  data  throughput  of  the  InfiniBand

architecture NVIDIA Quantum-2 is from 25 GB/s to

50  GB/s.  Therefore,  in  our  simulation,  we  take  the

value of  from the set {0.5, 1, 2, 8, 16}. In addi-

tion, the values of other parameters meet the follow-

ing  restrictions:  1)  for  enough

memory; 2)  for limited memory;

and 3) .

Fig.5 illustrates  our  simulation  results.  It  can  be

n3

n2

found  that  in  all  the  tested  scenarios,  the  horizontal

costs  of  2.5DL3ooL2 and 2.5D-COWE are  equal  and

both  are  the  lowest,  while  SUMMAL3ooL2  has  the

lowest vertical cost and JOMMA has the lowest joint-

cost.  Additionally,  2.5DL3ooL2  outperforms  2.5D-

COWE  in  vertical  cost  reduction,  attributed  to

VOMM’s  reduced  write  demands  despite  its  cache-

aware  nature  (requiring  knowledge  of  cache  size).  In

nearly  all  examined  scenarios,  SUMMAL3ooL2

demonstrates  notably  inferior  performance  due  to  its

utilization of an irrational horizontal scheduling strat-

egy to achieve vertical optimality. The analysis in Ta-

bles 6 and 7 reveals that the horizontal cost of SUM-

MAL3ooL2 contains a factor ,  whereas that of  the

other algorithms contains a factor .

ω/β

×

ω/β

k2

In Fig.5,  for  small  values  (Figs.5(a)  and

5(d)),  JOMMA  and  2.5DL3ooL2  achieve  the  lowest

joint costs, resulting in a 3  speedup compared with

SUMMAL3ooL2.  This  underperformance  of  SUM-

MAL3ooL2  is  attributed  to  its  excessive  horizontal

communication. Moreover, the horizontal cost typical-

ly surpasses the vertical cost, especially when enough

memory  is  available.  When  is  large  (Figs.5(c)

and 5(f)), JOMMA and SUMMAL3ooL2 exhibit equal

and  the  lowest  vertical  communication  costs.  Since

writing  is  overly  expensive,  SUMMAL3ooL2  may

achieve a lower joint cost than 2.5DL3ooL2 and 2.5D-

COWE.  In  this  scenario,  JOMMA  demonstrates  ap-

proximately 3x,  2.1x,  and 1.3x performance improve-

ments  compared with  SUMMAL3ooL2,  2.5D-COWE,

and 2.5DL3ooL2, respectively. The horizontal costs of

JOMMA, 2.5D-COWE, and 2.5DL3ooL2 significantly

increase, nearly by a factor of , as the problem size
 

Table  6.    Exact Costs with Enough Memory

Method Allgather Broadcast Reduce VOMM/COWE

2.5DL3ooL2 n2β
PxPz

+ n2β
PyPz

0
2n2β
PxPy

n2ω
PxPy

+ 2
√

3n3r
PS1/2

SUMMAL3ooL2 0 4
√

3n3β

PS1/2 0 n2ω
P

+ 2
√
3n3r

PS1/2

2.5D-COWE n2β
PxPz

+ n2β
PyPz

0
2n2β
PxPy

3
√

3n3r2/3ω1/3

PS1/2

JOMMA n2β
PxPz

+ n2β
PyPz

0
2n2β
PxPy

n2ω
PxPy

+ 2
√

3n3r
PS1/2

 

Table  7.    Exact Costs with Limited Memory

Method Allgather Broadcast Reduce Shift VOMM/COWE

2.5DL3ooL2 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

n2ω
PxPz

+ 2
√

3n3r
PS1/2

SUMMAL3ooL2 0 4
√

3n3β

PS1/2 0 0 n2ω
P

+ 2
√
3n3r

PS1/2

2.5D-COWE 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

3
√

3n3r2/3ω1/3

PS1/2

JOMMA 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

n2ω
PxPz

+ 2
√

3n3r
PS1/2
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(b)(a)

(c) (d)

(e) (f)

512 724 1 024 512 724 1 024

512 724 1 024
724 1 024 1 448

750 1 024 1 448
724 1 024 1 448

n

P = 26, S = 212, r = 1 2ω/β ⩽ 1 M = 218, ω = 2, β = 4

1 < 2ω/β ⩽ P 1/2 M = 218, ω = 4, β = 2 2ω/β ⩾ P 1/2 M = 218, ω = 16, β = 2
ω/β ⩽ 1 M = 216, ω = 2, β = 2 1 < ω/β < n2/M M = 216, ω = 16, β = 2
ω/β ⩾ n2/M M = 216, ω = 32, β = 2

Fig.5.  Exact horizontal and vertical costs of 2.5DL3ooL2, JOMMA, SUMMAL3ooL2, and 2.5D-COWE with different machine pa-
rameters. For a given problem size  in each figure, the four bars from left to right represent the costs of 2.5DL3ooL2, JOMMA,
SUMMAL3ooL2, and 2.5D-COWE, respectively. Each bar’s bottom and top parts represent the horizontal and vertical costs, respec-
tively.  (a)  Enough  memory  and . .  (b)  Enough  memory  and

 .  (c)  Enough  memory  and . .  (d)  Limited  memory
and . .  (e)  Limited  memory  and . .  (f)  Limited  memory
and . .
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k

n2

ω/β

2ω/β ⩾
√
P

P 1/3

scales up by a factor of .  This increase is  primarily

attributed to the presence of a factor of  in the hor-

izontal cost function (Tables 6 and 7). When  as-

sumes  a  moderate  value  (Figs.5(b)  and 5(e)),  SUM-

MAL3ooL2 and 2.5D-COWE exhibit suboptimal per-

formance  attributed primarily  to  excessive  horizontal

or vertical communication. In this scenario,  JOMMA

exhibits  a  performance  advantage  over  the  second-

best  approach  (2.5DL3ooL2),  achieving  a  1.3x

speedup.  This  speedup  is  expected  to  increase  with

larger  datasets  and  processor  sizes.  For  instance,  in

the enough memory scenario with , JOM-

MA’s write count is reduced by a factor of  com-

pared with 2.5DL3ooL2. 

9    Conclusions

Motivated by the observation that the horizontal

and  vertical  lower  bounds  cannot  be  simultaneously

attained  for  asymmetric  memories,  in  this  paper,  we

investigated how to optimize joint-communication by

balancing horizontal  communication and writing.  We

proved the first joint-communication lower bound for

classical  matrix  multiplication,  and proposed a  joint-

communication  optimal  algorithm  that  matches  the

lower bound.

n nFor -by-  matrix  multiplication,  there  is  no

tradeoff  between  communication  and  computation

due  to  load  balancing  and  a  fixed  total  number  of

arithmetic  operations.  However,  such  a  tradeoff  may

exist  for  other  problems  such  as  sparse  iterative

solvers[34].  In  addition,  for  asymmetric  memories,  we

leave the discussion of rectangular matrix multiplica-

tion  as  our  future  work.  It  will  be  interesting  to  ex-

tend  our  work  to  graph  computing  and  other  linear

algebra  problems.  Finally,  implementing  JOMMA  in

real  distributed  systems  equipped  with  asymmetric

memories  to see the gains of  JOMMA over the hori-

zontally  optimal  ones  will  also  be  interesting  future

work. 
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