

Joint-Communication Optimal Matrix Multiplication with
Asymmetric Memories

Lin Zhu (朱　琳), Member, CCF, Qiang-Sheng Hua* (华强胜), Member, CCF, IEEE
and Hai Jin (金　海), Fellow, CCF, IEEE, Life Member, ACM

National Engineering Research Center for Big Data Technology and System, Huazhong University of Science and Technology
Wuhan 430074, China

Services Computing Technology and System Laboratory, Huazhong University of Science and Technology, Wuhan 430074,
China

Cluster and Grid Computing Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China

E-mail: linzhu@hust.edu.cn; qshua@hust.edu.cn; hjin@hust.edu.cn

Received June 12, 2023; accepted January 5, 2024.

Abstract Emerging hardware like non-volatile memory (NVM) and high-speed network interface cards are promising

to improve the performance of matrix multiplication. However, a critical challenge in achieving high performance is the

tradeoff between horizontal communication (data movement between processors) and vertical communication (data move-

ment across memory hierarchies). In this paper, we provide an analysis in the distributed memory parallel model with ad-

ditional consideration for communication between main memory and cache. We measure joint communication as the sum

of the horizontal bandwidth and vertical bandwidth cost, and study the joint-communication cost of square matrix multi-

plication in the read-write symmetric setting (such as DRAM) and asymmetric setting (such as NVM). Specifically, we

identify that in the symmetric setting, a joint-communication optimal algorithm can be directly obtained by combining the

horizontally optimal and vertically optimal algorithms. We also identify that in the asymmetric setting, horizontal and

vertical communications cannot be optimal at the same time, which means that there is a tradeoff between the two com-

munications. In this case, we first present a joint-communication lower bound, and then we propose Joint-Communication

Optimal Matrix Multiplication Algorithm (JOMMA), a parallel matrix multiplication algorithm whose joint-communica-

tion complexity meets the lower bound. The key idea behind JOMMA is to derive optimal matrix dimensions that each

processor locally performs, which leads to determining the processor grid and an optimal schedule.

Keywords distributed algorithm, matrix multiplication, read-write asymmetric memory, vertical communication, hori-

zontal communication

1 Introduction

Matrix multiplication is one of the most funda-

mental problems in numerical linear algebra, scientif-

ic computing, and high-performance computing. The

increasing demands in large-scale data storage and

fast processing invoke the unique question of how to

design efficient parallel matrix multiplication, where

the communication cost quickly becomes the bottle-

neck.

Fortunately, emerging networking and storage

technologies, such as InfiniBand and non-volatile

memory (NVM), bring a new opportunity to achieve

this goal: NVM can provide data persistence while

achieving comparable performance and higher densi-

ty than dynamic random access memory (DRAM).

Despite these useful properties, one characteristic of

NVM technologies is that writing to memory is more

Regular Paper

The work was supported in part by National Key Research and Development Program of China under Grant No.
2022ZD0115301, and the National Natural Science Foundation of China under Grant Nos. 61972447 and 61832006.

*Corresponding Author

Zhu L, Hua QS, Jin H. Joint-communication optimal matrix multiplication with asymmetric memories. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY, 40(3): 1−20, May 2025. DOI: 10.1007/s11390-023-3489-y, CSTR: 32374.

14.s11390-025-0000-0

©Institute of Computing Technology, Chinese Academy of Sciences 2025

https://doi.org/10.1007/s11390-023-3489-y
https://doi.org/10.1007/s11390-023-3489-y
https://doi.org/10.1007/s11390-023-3489-y
https://doi.org/10.1007/s11390-023-3489-y
https://doi.org/10.1007/s11390-023-3489-y
https://doi.org/10.1007/s11390-023-3489-y
https://doi.org/10.1007/s11390-023-3489-y
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0
https://cstr.cn/32374.14.s11390-025-0000-0

expensive than reading from it in terms of both time

and energy. Additionally, the latest released 50 GB/s

InfiniBand network① delivers sub-microsecond laten-

cy and extremely high message rates. This work fo-

cuses on improving the performance of parallel ma-

trix multiplication with the help of such new devices.

n n

P

n3

n3/P

Parallel algorithm execution time is traditionally

divided into three components: computation (in-cache

floating-point operations), vertical communication

(cache-main memory data transfer), and horizontal

communication (inter-processor data exchange)[1–3].

When tackling an -by- conventional matrix multi-

plication problem across processors, the total num-

ber of floating-point operations is . Load-balanced

parallel algorithms evenly distribute floating-

point operations to each processor. Since the number

of floating-point operations per processor is fixed, we

aim to minimize both vertical and horizontal commu-

nication to lower parallel algorithm execution time.

Many of the existing parallel matrix multiplica-

tion algorithms perform reasonably well in reducing

horizontal communication. SUMMA[4] is a widely used

algorithm for parallel matrix multiplication, and

asymptotically minimizes horizontal communication if

assuming no extra memory. The asymptotic horizon-

tal communication lower bounds[5–7] and the memory-

independent communication lower bounds[8] with

tight constants have been obtained for square matrix

multiplication, suggesting that known 2D and 3D[9]

algorithms only optimize horizontal communication in

certain memory ranges. By efficiently exploiting the

available memory, the 2.5D algorithm[10] interpolates

between those two results. CA3DMM[11] is a rectangu-

lar matrix multiplication parallel algorithm that is de-

signed using a top-down approach and has near-opti-

mal horizontal communication. Horizontal communi-

cation, however, is not the only parameter that mat-

ters; vertical communication can often be the commu-

nication bottleneck, especially in the distributed sys-

tems with NVM and InfiniBand network[12–14].

We consider a distributed memory parallel model

as described in Section 3, where each processor has a

two-level memory hierarchy. In addition to quantify-

ing horizontal communication, we augment the dis-

tributed memory model with additional read band-

width cost (data movement from main memory to

cache) and write the bandwidth cost (data move-

ment from cache to main memory) for vertical com-

munication. Furthermore, when main memory is read-

write symmetric (such as DRAM), read and write

costs are considered equal[15, 16]. When main memory

is read-write asymmetric (such as non-volatile memo-

ry NVM), since writing is more expensive than read-

ing, the write cost is typically greater than the read

cost. The joint-communication cost is measured as the

sum of the vertical communication cost and the hori-

zontal communication cost, and we call an algorithm

“joint-communication optimal” if it can asymptotical-

ly attain the joint-communication lower bound. Simi-

larly, “horizontally optimal” and “vertically optimal”
refer to asymptotically minimizing horizontal commu-

nication and vertical communication, respectively.

To minimize the joint-communication cost, a nat-

ural idea is trying to simultaneously optimize horizon-

tal and vertical communication. We observe that this

goal can be achieved in the read-write symmetric set-

ting, by independently employing the horizontally op-

timal (such as 2.5D) and vertically optimal algo-

rithms. However, when considering more expensive

writes in the read-write asymmetric setting, a verti-

cally optimal algorithm entails the write cost reach-

ing its lower bound, and it can be tricky to simultane-

ously optimize horizontal and vertical communication.

Can we asymptotically reduce the joint-communica-

tion complexity by exploiting the vertical-horizontal

tradeoff ? Can they match the best counterparts in

the asymmetric setting? These remain to be open

problems in the study of joint-communication cost al-

gorithms[15, 17].

In this paper, we provide answers to these ques-

tions. We are primarily interested in the read-write

asymmetric setting and derive lower bounds for a va-

riety of different cases (cf. Subsection 5.3). We also

present JOMMA (Joint-Communication Optimal Ma-

trix Multiplication Algorithm): an algorithm that

takes a new approach to multiply two square matri-

ces. JOMMA is joint-communication optimal for all

combinations of parameters. The key idea is to de-

rive optimal matrix dimensions of the subproblem

that each processor locally processes, and thus find

the processor grid and an optimal schedule. This idea

comes from our observation that different subprob-

lem matrix dimensions executed by each processor re-

sult in different horizontal and vertical communica-

tions. We use the following two methods as examples

and compare the number of words read, the number

of words written, the number of words transferred

horizontally, and the main memory requirements in

Table 1.

2 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

①https://docs.nvidia.com/networking/display/ConnectX7VPI/Introduction, May 2025.

https://docs.nvidia.com/networking/display/ConnectX7VPI/Introduction

n n

AB = C P

A′B′ = C ′

A′, B′, C ′ (n/P 1/3)× (n/P 1/3)

A, B, C

A′

B′

O(n2/P 2/3)

A′B′ = C ′

C ′ n2/P 2/3 O(n3/(PS1/2))

O(n2/P 2/3)

S

|A′|+ |B′|+ |C ′| =
3n2/P 2/3 Ω(n2/P 2/3)

Method 1. When using the well-known 3D algo-

rithm to solve an -by- square matrix multiplica-

tion on processors, each processor locally

computes one subproblem , where

 are submatrices of

, respectively. To compute the subproblem,

each processor needs to access the submatrices

and from other processors, which results in

 horizontal communication. In the local

calculation of , the cache reads data from

main memory to perform the calculation and writes

the result back to main memory. Since the size of the

output matrix is , reads

and writes are required to execute each

subproblem using Algorithm 1 (is the cache size)[6].

Note that the size of input and output matrices can-

not exceed the main memory size per processor, hence

the main memory size is at least

, i.e., .

Algorithm 1. VOMM

A ∈ Rd1×d2 B ∈ Rd2×d3Require: ;

C = AB ∈ Rd1×d3Ensure:

b =
√

S/3 � A B, C b× b1: divide , and into blocks of size

i = 1 d1/b2: for to do

j = 1 d3/b3: 　for to do

Cij b× b4: 　　Initialize in cache as a zero matrix

k = 1 d2/b5: 　　for to do

Aik Bkj
6: 　　　Load , into cache

Cij = Cij +AikBkj
7: 　　　

8: 　　end for

Cij
9: 　　Store block in main memory

10: 　end for
11: end for

A′B′ = C ′ A′

(n/P 1/2)× n B′ n× (n/P 1/2)

C ′ (n/P 1/2)× (n/P 1/2)

A′ B′

C ′

O(n2/P 1/2)

O(n3/(PS1/2))

O(n2/P)

|A′|+ |B′|+ |C ′| = 2n2/P 1/2 + n2/P Ω(n2/P 1/2)

Method 2. Considering the subproblem executed

by each processor is , where is an

 submatrix, is an sub-

matrix, and is an submatrix.

Then and are accessed by each processor and

 is written to main memory, hence this approach

requires horizontal communication,

 reads (by using Algorithm 1), and

 writes. The main memory size is at least

, i.e., .

From Table 1, we can see that, compared with

Method 1, Method 2 has lower vertical communica-

Ω(n2/P 2/3)

tion at the cost of higher horizontal communication,

which exhibits the horizontal-vertical tradeoff. On a

parallel machine where writes are expensive, to mini-

mize the joint-communication cost, we can reduce

vertical writes in the first place. Conversely, if hori-

zontal transfers are expensive, we reduce inter-proces-

sor communication in the first place. In addition, the

limitation imposed by the main memory size on ma-

trix dimensions increases the complexity of algorithm

design. For example, Method 1 is only applicable

when the main memory size is . In this pa-

per, we investigate how to asymptotically minimize

the sum of horizontal and vertical costs for all combi-

nations of parameters.

Contributions. Our main contribution is a new al-

gorithm called Joint-Communication Optimal Matrix

Multiplication Algorithm, or JOMMA, which mini-

mizes the joint-communication complexity by trading

off horizontal and vertical communications. We also

prove the first joint-communication lower bound for

classical matrix multiplication under the asymmetric

memory model in various situations, which indicates

that JOMMA is asymptotically joint-communication

optimal.
Paper Organization. We first introduce related

work in Section 2 and present the system model in
Section 3. Next, in Section 4, we demonstrate the si-
multaneous achievements of horizontal optimality and
vertical optimality for symmetric memory. However,
in Section 5, we prove that achieving horizontal and
vertical optimality simultaneously is not possible and
provide the corresponding joint-communication lower
bounds. To optimize the joint communication, we de-
rive optimal matrix dimensions that each processor
locally performs in Section 6 and propose the JOM-
MA algorithm in Section 7. In Section 8, we compare
the performance of JOMMA with state-of-the-art al-
gorithms. Finally, we conclude our paper in Section 9.

2 Related Work

The most related work on this topic is that of

Carson et al.[17] which shows that it is impossible to

attain lower bounds on both interprocessor communi-

cation and writes to local memory. Based on asym-

metric memories, Carson et al.[17] also gave a horizon-

Table 1. Comparison of Word Movement Between Method 1 and Method 2

No. Matrix Dimension Horizontal I/O Vertical Read Vertical Write Main Memory Size

1 n/P 1/3, n/P 1/3, n/P 1/3 O(n2/P 2/3) O(n3/(PS1/2)) O(n2/P 2/3) Ω(n2/P 2/3)

2 n/P 1/2, n, n/P 1/2 O(n2/P 1/2) O(n3/(PS1/2)) O(n2/P) Ω(n2/P 1/2)

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 3

tally optimal algorithm (2.5DMML3ooL2) and a

write-optimal algorithm (SUMMAL3ooL2). However,

two issues remain to be solved. The first is whether

there is a general lower bound that shows how these

two communications tradeoff against one another,

and the second is whether there is an algorithm that

can exhibit the tradeoff and asymptotically attains

the lower bound. In the read-write symmetric setting,

to solve the symmetric eigenvalue problem, Solomonik

et al.[1] proposed a matrix multiplication subroutine

by naturally combining horizontally[18] and

vertically[19] optimal algorithms. It can be found that

this subroutine is joint-communication optimal in the

read-write symmetric setting, while it is not optimal

in the case of asymmetric memories. Solomonik et al.[2]

derived the tradeoffs among synchronization, band-

width, and computational cost, while the authors did

not consider data movement between levels of the

memory hierarchy.

There is also some work focusing on minimizing

the vertical communication of sequential matrix mul-

tiplication algorithms under asymmetric memories.

Carson et al.[17] proposed the “write-avoiding” con-

cept, which minimizes writes without increasing

reads. Gu[16] proposed the “write-efficiency” concept

for cache-oblivious matrix multiplication, which can

reduce the write cost by increasing the reading cost.

In our work, we do not merely consider the sequen-

tial cost. Instead, we focus on minimizing the joint-

cost by studying the tradeoff between writing and

horizontal communication.

3 Theoretical Cost Model

P

S

M

r

r

We model communication of the distributed mem-

ory parallel system[20, 21] as follows. We assume that

the system has processors, which are connected via

a fully-connected network. As shown in Fig.1(a) and

Fig.1(b), each processor has a two-level memory hier-

archy, i.e., a small cache of size , and a large main

memory of size (symmetric memory DRAM or

asymmetric memory NVM). A single processor can

only send/receive a message to/from one processor at

a time. The data movement in this parallel model can

be divided into two categories: vertical data move-

ment across memory hierarchies, or horizontal data

movement between processors. For vertical data

movement, we define to be the cost of moving a

word between cache and DRAM. In addition, we de-

fine to be the cost of reading a word from NVM to

ω (ω > r)

β

ω

β

cache and to be the cost of writing a word

from cache to NVM. For horizontal data movement,

we define to be the cost of moving a word between

processors (Fig.1(c)). Note that may be greater

than . For example, the write bandwidth of NVM

for the existing architecture PilotDB is from 0.2 GB/s

to 1.5 GB/s[22], while the network bandwidth of the

latest InfiniBand architecture is 50 GB/s. We summa-

rize all the notations and their definitions in Table 2.

Br Bw Bh

Q

r(Br +Bw) + βBh

rBr + ωBw + βBh

P

M ⩾ 3n2/P

We denote the number of words read, written,

and transferred horizontally as , , and , re-

spectively. We measure the joint-communication cost

 in terms of the bandwidth (the number of words)

along the critical path as defined in [23]. Specifically,

we call the symmetric memory parallel model SPM

and define to be the joint-commu-

nication cost in the SPM. We call the asymmetric

memory parallel model APM and define

 to be the joint-communication cost

in the APM. Our model is similar to those in [15, 17],

while [1] takes into account not only communication

but also computation, and [24, 25] only considers hor-

izontal communication. Throughout the paper, we re-

quire that the data layout of the input matrices and

the output matrix are evenly distributed across the

main memory of processors for load balancing

().

There are five well-known collective communica-

tion operations[26, 27] used extensively in our algo-

rithm.

DRAM

(a)

CPU
Cache

NVM NVM

CPU
Cache

NVM

CPU
Cache

NVM

(c)

Send/Receive Cost:

NVM

(b)

Read Cost:

CPU
Cache

Cache

CPU

Read Cost: Write Cost: Write Cost:

Cache

CPU

Fig.1. Memory models for sequential and parallel algorithms.
(a) Symmetric memory model for sequential algorithms. (b)
Asymmetric memory model for sequential algorithms. (c) Dis-
tributed asymmetric memory model for parallel algorithms.

4 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

• (Π(A), Π(X), i, P:jk)

P:jk Π(A) Pijk

Π(X)

 Gather : all processors in

 contribute local arrays to processor as

the local array .

• (Π(A), Π(X), k, Pij:)

Pijk Π(A)

Pij: Π(X)

 Broadcast : root proces-

sor distributes the local array to every

processor in as the local array .

• (Π(A), Π(X), P:jk)

Π(A) P:jk

Pijk

Π(X)

 Allgather : the local arrays

 contributed by each processor in are gath-

ered, and the result is broadcast to all processors

as .

• (Π(A), Π(X), j, Pi:k)

Pi:k Π(A)

Pijk

Π(X)

 Reduce : all processors in

 contribute local arrays to an element-wise

reduction onto root processor as the local array

.

• (Π(B), s, Px, P:jk) Pijk

Π(B) Pi′jk

i′ = (i+ s) mod Px

 Shift : each processor

sends local array to via point-to-point

communication, where .

n

P

The costs of these operations can be obtained by a

binomial tree or butterfly schedule[27, 28]. We summa-

rize the costs in Table 3, where words of data are

being communicated among processors.

4 Joint-Communication in SPM

In the symmetric memory parallel model, by inde-

pendently employing some well-known horizontally

and vertically optimal matrix multiplication algo-

rithms, we give asymptotically tight joint-communica-

tion upper and lower bounds in this section.

AB = C P A

B C n× n

Ω(n3/(PM 1/2) + n2/P 2/3)

Lemma 1[18]. For a parallel square matrix multipli-
cation solved on processors, where ,

, and are matrices, at least
 words need to be moved be-

tween processors.

M = Θ(n2/P) M = Ω(n2/P 2/3)

AB = C

A′B′ = C ′

P A′ d1 × d2

B′ d2 × d3 C ′ d1 × d3

n n

P 3/2

d1 = d2 = d3 = n/P 1/2 P 1/2

Many algorithms, such as 2D[4], 2.5D[10], 3D[9], and

CARMA[18], can asymptotically attain the horizontal

lower bound. 2.5D and CARMA are horizontally opti-

mal for any memory size, while 2D and 3D are opti-

mal for and respec-

tively. To compute in parallel, these algo-

rithms usually decompose the initial problem into

multiple subproblems that are executed in

parallel on processors, where is a ma-

trix, is a matrix, and is a ma-

trix. For example, 2D decomposes the -by- matrix

multiplication problem into square matrix multi-

plication subproblems with matrix dimensions

, and each processor solves

subproblems.

A′B′ = C ′

A′ ∈ Rd1×d2 B′ ∈ Rd2×d3 C ′ ∈ Rd1×d3

To sequentially solve a matrix multiplication sub-

problem on a single processor, where

, , , at least

Table 2. Notations and Their Definitions

Type Symbol Definition

Matrix n Matrix dimension of the initial matrix multiplication problem

d1, d2, d3 Matrix dimensions of subproblem solved on a processor

A,B Input matrices

C = AB Output matrix

Configuration P Number of processors

M (M ⩾ 3n2/P)Size of main memory

S Size of cache

r Cost of moving a word between cache and DRAM

Cost of reading a word from NVM to cache

ω Cost of writing a word from cache to NVM

β Cost of moving a word between processors

Cost Br Number of words moved from main memory to cache

Bw Number of words moved from cache to main memory

Bh Number of words moved between processors

Q Joint-communication cost

Schedule Px, Py , Pz Dimensions of the processor grid

Pijk Per processor index

Pij: {Pij1, Pij2, . . . , PijPz}Processor group

Π(A), Π(B) A BLocal submatrices of and on a processor

Table 3. Bandwidth Costs of Communication Operations

Operation Cost

TGather(n, P) βn

TBroadcast(n, P) 2βn

TReduce(n, P) 2βn

TAllgather(n, P) βn

TShift(n, P) βn

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 5

Ω(d1d2d3/S
1/2)

2
√
3d1d2d3/S

1/2

d1d3

 words need to be moved between

cache and main memory[29]. The well-known Vertical-

ly Optimal Matrix Multiplication algorithm VOMM is

described in Algorithm 1[6]. The number of words read

is and the number of words written is

.

AB = C P

A B C n× n

Ω(n3/(PS1/2))

Proposition 1. For a parallel square matrix multi-
plication performed on processors, where

, , and are matrices, there exists a pro-
cessor such that the word transfer between cache and
memory is at least .

AB = C P

|V |
Ω(|V |/S1/2)

Br +Bw = Ω(|V |/S1/2)

AB = C n3 A, B, C ∈ Rn×n

n3/P

Br +Bw = Ω(n3/(PS1/2))

Proof. For a parallel matrix multiplication

 solved on processors, suppose a proces-

sor performs arithmetic operations, then at least

 words need to be moved between cache

and main memory[6], i.e., .

Note that the total number of arithmetic operations

to compute is , where .

According to the pigeonhole principle, at least one

processor performs at least arithmetic opera-

tions. Thus, for such a processor, we have

. □
Since the horizontal/vertical costs of an algo-

rithm cannot be asymptotically lower than the hori-

zontal/vertical cost lower bounds, a trivial joint-com-

munication cost lower bound can be obtained by com-

bining the horizontal and the vertical cost lower

bounds. In other words, an algorithm is joint-commu-

nication optimal if it achieves both the horizontal and

the vertical cost lower bounds. As the following Lem-

ma 2 shows, this kind of algorithm can be directly ob-

tained by combining the horizontally optimal algo-

rithm and the sequential VOMM algorithm.

Lemma 2. In the SPM, a joint-communication op-
timal algorithm can be obtained by combining the par-
allel 2.5D algorithm and the sequential VOMM algo-
rithm.

An×nBn×n = Cn×n P

P 3/2/c3/2

n
√
c/
√
P

c = min(P 1/3,
√
PM/n)

P 3/2/(Pc3/2)

O((n
√
c/
√
P)3/S1/2)

(P 3/2/(Pc3/2))×O((n
√
c/
√
P)3/S1/2)

O(n3/(P
√
S))

Proof. From the analysis in [10], to solve

 in parallel on processors, the

2.5D algorithm decomposes it into subprob-

lems with problem size , where

. Each processor handles

 subproblems and applies the sequential

VOMM algorithm to solve each subproblem. Accord-

ing to the analysis in Section 4, the number of words

read and written when using VOMM to solve each

subproblem is . Therefore, for

each processor, the total number of words read and

written is , i.e.,

. From Proposition 1, this vertical com-

munication asymptotically reaches the vertical cost

lower bound. Additionally, as the 2.5D algorithm is

horizontally optimal, it attains the horizontal commu-

nication’s cost lower bound. As a result, the proposed

algorithm achieves joint-communication optimality by

satisfying both horizontal and vertical cost lower

bounds. □

r

Bw = O(Br)

rBr + rBw

For the read-write symmetric memory model,

since the costs of writing and reading are both ,

 can achieve the asymptotic optimal ver-

tical cost (). However, when writing is

much more expensive than reading, only less writing

meets the vertical optimum. Therefore, the joint-com-

munication optimal algorithm under the symmetric

memory model may not be optimal for asymmetric

memories.

5 Joint-Cost Lower Bound in APM

In this section, we discuss the joint-communica-

tion cost lower bound in the asymmetric memory

model. We first give a lower bound of the vertical

cost (Lemma 3). Then we show that the horizontal

and the vertical optimalities cannot be achieved si-

multaneously (Lemma 5), which indicates that the

trivial cost lower bound by naturally combining the

horizontal cost lower bound and the vertical cost low-

er bound is not tight. Finally, we derive tighter joint-

communication cost lower bounds (Theorem 1 and

Theorem 2).

5.1 Vertical Cost Lower Bound

Ω(n3r/(PS1/2) + n2ω/P)

Lemma 3. In the APM, the vertical communica-
tion cost lower bound for square matrix multiplica-
tion is .

Br +Bw =

Ω(n3/(PS1/2))

rBr + ωBw

ω > r rBr + ωBw >

r(Br +Bw) = Ω(n3r/(PS1/2))

n2

P

n2/P Bw ⩾ n2/P

rBr + ωBw ⩾ max(n3r/(PS1/2),

n2ω/P) Ω(n3r/(PS1/2) + n2ω/P)

Proof. From Proposition 1, we have

. As presented in Section 3, in the

APM, the vertical cost is defined as . As

, the vertical cost follows that

. Since the output ma-

trix, of size , is eventually evenly distributed among

 processors, the minimum number of words written

per processor is , which implies .

Therefore, we have

, i.e., . □

5.2 Vertically Optimal Cannot be

Horizontally Optimal

This conclusion is based on the inequality pro-

6 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

n n

n3

V
n× n× n A B C

(i, j, k)

AikBkj

V ⊂ V
V

A B

V C

V

posed by Loomis and Whitney[30], which describes the

surface-to-volume relationship. For -by- matrix

multiplication, there are arithmetic operations,

which may be arranged into a cube of size

 with the matrices , , and as its

faces. The point at location in the cube cor-

responds to the scalar multiplication . Let

 denote the arithmetic operations performed by

a processor, then the projections of onto three faces

correspond to the input entries of and that are

necessary to perform and the output entries of

which are updated. The Loomis-Whitney inequality

relates the volume of to its projections.

V ⊂ R3

(x, y, z)

Vx

V y × z

(y, z) x

(x, y, z) ∈ V Vy Vz

| · | |V | ⩽√
|Vx| × |Vy| × |Vz|

Lemma 4[30]. Let be a finite set of lattice
points and each point with integer coordi-
nate. Let be the orthogonal projection of vector
space onto the plane, defined as the set of all
points for which there exists an such that

. The definitions of and are simi-
lar. Let denote the cardinality of a set, then

.
Lemma 5. In the APM, a vertically optimal algo-

rithm cannot be horizontally optimal.

An×nBn×n = Cn×n P

M = Ω(n2/P)

Bw = Θ(n2/P)

n3/P |V | ⩾ n3/P

C Vz

|Vz| ⩽ Bw O(n2/P)

|Vx||Vy| ⩾ |V |2/|Vz| max{|Vx|, |Vy|} = Ω(n2/

P 1/2)

Ω(n2/P 1/2) A B

n2/P A B

Ω(n2/P 1/2)

Ω(n2/P 1/2)

Ω(n3/(PM 1/2)+n2/P 2/3) M=Ω(n2/P)

Proof. To solve the matrix multiplication

 on a distributed system with

processors, each processor must have a main memory

size of at least to evenly store the ini-

tial input matrices. Given a vertically optimal algo-

rithm, according to Lemma 3, we have

for this algorithm. Moreover, by the pigeonhole prin-

ciple, there exists a processor that performs at least

 arithmetic operations, i.e., . For this

processor, since each entry of in is updated and

must be written to NVM at least once, we get

, i.e., . From Lemma 4, we have

 and hence

, which means that the processor must access at

least entries of or . Since each pro-

cessor initially has entries of and , there

are at least entries that need to be ac-

cessed by other processors. That is, the horizontal

word transfer is at least , which is asymp-

totically higher than the horizontal word transfer cost

lower bound ().

Therefore, a vertically optimal algorithm cannot be

horizontally optimal. □
Note that Theorem 3 in [17] gives a similar con-

clusion that a horizontally optimal algorithm cannot

be vertically optimal.

5.3 Joint-Cost Lower Bound

Ω(n3/(PM 1/2) + n2/P 2/3)

By Lemma 1, the number of words moved hori-

zontally is at least . Accord-

ingly, the horizontal cost lower bound can be divided

into two scenarios depending on the main memory

size.

• M = Ω(n2/P 2/3) n3/(PM 1/2) =

O(n2/P 2/3) Bh Ω(n2/P 2/3)

 When , we have

 and hence is at least .

• M = O(n2/P 2/3) n3/(PM 1/2) =

Ω(n2/P 2/3) Bh Ω(n3/(PM 1/2))

 When , we have

 and hence is at least .

Similarly, we divide the joint-cost lower bound in-

to two scenarios for discussion depending on the main

memory size.

• M = Ω(n2/P 1/2 When), we call it “enough mem-

ory scenario” and discuss this case in Subsection 5.3.1.

• M = O(n2/P 1/2 When), we call it “limited mem-

ory scenario” and discuss this case in Subsection 5.3.2.

Subsection 6.2 explains why this category is chosen.

5.3.1 Joint-Cost Lower Bound with Enough

Memory

M = Ω(n2/P 1/2

Ω(n2/P 2/3)

Ω((n2β/P 2/3)+

(n3r/PS1/2) + (n2ω/P))

In enough memory scenario ()), by

Lemma 1, the number of words transferred horizon-

tally is at least . From Lemma 3, the triv-

ial joint-cost lower bound (the sum of the horizontal

and vertical lower bounds) is

. However, as discussed above,

this lower bound is loose for asymmetric memories. A

tighter lower bound is proven in Theorem 1.

Q

An×nBn×n = Cn×n

2ω/β ⩽ 1 Q

Ω((n2β/P 2/3) + (n3r/PS1/2))

1 < 2ω/β < P 1/2 Q

Ω((n2β2/3ω1/3/P 2/3) + (n3r/PS1/2)) 2ω/β ⩾ P 1/2

Q Ω((n3r/PS1/2)+

(n2ω/P))

Theorem 1. Let be the joint-communication
cost for solving in the APM with
enough memory. When , has a lower
bound of . For the range

, the lower bound of is
. If ,

then has a cost lower bound of
.

M = Ω(n2/

P 1/2)

2ω/β

2ω/β

d

d1 d2/d d3

d

d = 2ω/β d ⩽ 1

Proof. In the enough memory scenario (

), we categorize the cost lower bound into three

cases according to the value of . The value of

 is chosen based on the divide-and-conquer

BFS/DFS approach[18]. Briefly, during the recursive

decomposition of the initial problem, we trade off the

horizontal and vertical costs by setting a parameter

and split the largest of , , (subproblem size)

in half at each recursion. By calculation, a joint-cost

function concerning can be obtained, which is mini-

mized at . Considering that is the hor-

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 7

d ⩾ P 1/2

2ω/β 1 P 1/2

izontal optimal scenario and is the vertical

optimal scenario, we discuss the following three cases

based on the size of and , . Interested

readers can refer to [18] for more details of the above

approach.

1) 2ω/β ⩽ 1 2ω/β ⩽ 1

Ω((n2β/P 2/3) + (n3r/PS1/2))

Ω((n2β/P 2/3) + (n3r/PS1/2) + (n2ω/P))

 . In this case, by , we de-

rive the lower bound di-

rectly from the trivial joint-cost lower bound of

.

2) 1 < 2ω/β < P 1/2

|V | ⩾ n3/P

Bw = cn2/P

c > 0

Bw = cn2/P

Ω((rn3/PS1/2) + (ωcn2/P))

Vz

|Vz| ⩽ Bw = cn2/P

|Vx| × |Vy| ⩾ |V |2/|Vz|
max{|Vx|, |Vy|} ⩾ n2/(cP)1/2

n2/(cP)1/2 A

B

c

 . By the pigeonhole principle,

there exists a processor performing at least

 arithmetic operations, which holds for

any parallel matrix multiplication algorithm. With-

out loss of generality, we assume that, for this proces-

sor, the number of words written is ,

where . Subsequently, based on Lemma 3 and

, we ascertain that the vertical cost is

bounded by . Additionally,

for this processor, as each output entry of gets up-

dated and must be written to NVM at least once, we

deduce . Leveraging Lemma 4, we

infer that and thus

, which means that this

processor needs to get at least entries of

or . Subsequently, we delineate two cases, contin-

gent upon the value of .

0 < c < P

n2/P A B

n2/(cP)1/2 − n2/P

Ω(n2/(cP)1/2) Bh = Ω(n2/(cP)1/2)

a) . Since each processor initially owns

 entries of and , for this processor, the

number of entries that need to be accessed by other

processors is at least , i.e.,

. Therefore, , and

the joint-communication cost is

Q = Ω

(
n2β

(cP)1/2
) +

n3r

PS1/2
+

cn2ω

P

)
.

Q c

c∗ = argminQ = P 1/3β2/3/(2ω)2/3

It can be found that is a function on . By deriva-

tion, this function is minimized when

. Therefore,

Q = Ω

(
n2β2/3ω1/3

P 2/3
+

n3r

PS1/2

)
.

c ⩾ P c ⩾ P 2ω/β > 1b) . From , , and the trivial

joint-cost lower bound

Q = Ω

(
n2β

P 2/3
+

n3r

PS1/2
+

cn2ω

P

)
,

cn2ω/P ⩾ n2ω > n2β/2 ⩾ n2β/2P 2/3

Q = Ω((n3r/PS1/2) + n2ω)

we have . There-

fore, .

Q 2ω/β > 1

n2β2/3ω1/3/P 2/3 = O(n2ω/P 2/3) = O(n2ω)

Q = Ω((n2β2/3ω1/3/P 2/3) + (n3r/PS1/2))

Any matrix multiplication algorithm falls into ei-

ther case a or case b. Thus, we determine the joint-

cost lower bound by selecting the minimum value of

 in case a and case b. Since , we have

. Therefore,

.

2ω/β ⩾ P 1/2 2ω/β ⩾ P 1/2

Ω((n3r/PS1/2) + (n2ω/P))

Ω((n2β/P 2/3) + (n3r/PS1/2) + (n2ω/P))

3) . In this case, by , the

lower bound of can be de-

rived directly from the trivial joint-cost lower bound

of . □
In the enough memory scenario, the joint-commu-

nication costs of the horizontally optimal (2.5DMML3-

ooL2) and the vertically optimal (SUMMAL3ooL2)

algorithms are given in Table 4, which shows that

neither algorithm can attain the joint-cost lower

bound in general.

5.3.2 Joint-Cost Lower Bound with Limited

Memory

Note that any matrix multiplication algorithm

that can be executed in the limited memory scenario

can also be executed in the enough memory scenario.

Therefore, the joint-cost lower bound in the enough

memory scenario also holds in the limited memory

scenario. However, this lower bound might not be

tight in the limited memory scenario, and thus more

refined analyses are needed. We give a tight joint-cost

lower bound in the limited memory scenario in Theo-

rem 2.

Q

An×nBn×n = Cn×n

ω/β ⩽ 1 Q

Theorem 2. Let be the joint-communication
cost for solving in the APM with
limited memory. When , is lower-bounded
by

Table 4. Joint-Communication Complexity with Enough Memory

Method 2ω/β ⩽ 1 1 < 2ω/β < P 1/2 2ω/β ⩾ P 1/2

Lower bound (here) Ω(n2β

P2/3 + n3r
PS1/2) Ω(n

2β2/3ω1/3

P2/3 + n3r
PS1/2) Ω(n

2ω
P

+ n3r
PS1/2)

2.5DMML3ooL2[17] Θ(n2β

P2/3 + n3r
PS1/2) O(n2ω

P2/3 + n3r
PS1/2) O(n2ω

P2/3 + n3r
PS1/2)

SUMMAL3ooL2[17] O(
(r+β)n3

PS1/2) O(
(r+β)n3

PS1/2) O(n
2ω
P

+
(r+β)n3

PS1/2)

JOMMA (here) Θ(n2β

P2/3 + n3r
PS1/2) Θ(n

2β2/3ω1/3

P2/3 + n3r
PS1/2) Θ(n

2ω
P

+ n3r
PS1/2)

8 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

Ω

(
β

(
n3

PM 1/2
+

n2

P 2/3
) +

n3r

PS1/2

))
.

1 < ω/β < n2/M Q Ω((n3

(βω)1/2/PM 1/2) + (n3r/PS1/2)) ω/β ⩾ n2/M

Q Ω((n2ω/P)+(n3r/PS1/2))

For , has a lower bound of
. When ,

 exhibits a lower bound of .
M = O(n2/

P 1/2)

ω/β

Proof. In the limited memory scenario (

), we classify the lower bound into three cate-

gories based on the value of , following a method-

ology similar to that presented in Theorem 1.

1) ω/β ⩽ 1 ω/β ⩽ 1

Ω(β((n3/PM 1/2) + (n2/P 2/3)) + (n3r/PS1/2))

 . In this case, by , the

 lower

bound can be derived directly from the trivial joint-

cost lower bound of

Ω

(
β(

n3

PM 1/2
+

n2

P 2/3
) +

n3r

PS1/2
+

ωn2

P

)
.

2) 1 < ω/β < n2/M

A′B′ = C ′

d1, d2 d3

AB = C n3

d1d2d3

n3/(Pd1d2d3)

d1d2d3 = O(n3/P)

Ω(1)

A′ B′

n3/Pd1d2d3 ×min{d1d2, d2d3}
d1 ⩽ d3

d1d2 ⩽ d2d3

Ω(n3β/(Pd3))

d1, d2 d3 Ω(d1d2d3r/S
1/2 + d1d3ω)

n3/(Pd1d2d3) Ω(n3r/(PS1/2)+

n3ω/(Pd2))

 . Assume that the subprob-

lem performed by each processor is , where

 and are the matrix dimensions of the sub-

problem. Since the total number of arithmetic opera-

tions to solve is and the number of oper-

ations to solve each subproblem is , each pro-

cessor performs subproblems. We as-

sume to guarantee each processor

performs subproblems. Considering the comput-

ing of each subproblem, each processor needs to ac-

cess at least one of or from other processors.

Hence the total number of words moved horizontally

is at least . Without

loss of generality, we assume that , then

, and the horizontal cost is at least

. Recall that the vertical cost of sequen-

tially solving a subproblem with matrix dimensions

, and is , and the to-

tal vertical cost for each processor to sequentially

solve subproblems is at least

. Therefore,

Q = Ω

(
n3β

Pd3

+
n3ω

Pd2

+
n3r

PS1/2

)
.

d2d3 ⩽ MFrom the mean inequality and , we get

n3β

Pd3

+
n3ω

Pd2

⩾ n3(βω)1/2

P (d2d3)1/2
⩾ n3(βω)1/2

PM 1/2
.

Q = Ω((n3(βω)1/2/PM 1/2) + (n3r/PS1/2))Therefore, .

3) ω/β ⩾ n2/M ω/β ⩾ n2/M

M = O(n2/P 1/2) Ω(n2ω/P + n3r/(PS1/2))

Ω((n2β/P 2/3) + (n3r/PS1/2)+

(n2ω/P))

 . In this case, by and

, the lower

bound can be directly obtained from the trivial joint-

cost lower bound

. □
In the limited memory scenario, the joint costs of

the horizontally optimal and the vertically optimal al-

gorithms are given in Table 5, which shows that nei-

ther algorithm can attain the joint-cost lower bound

in general.

6 Memory and Dimensions Analysis

M =

Ω(n2/P 1/2) M = O(n2/P 1/2)

n n

A′B′ = C ′

d1, d2, d3

In this section, we introduce why we set

 as enough memory and

as limited memory. In addition, as mentioned earlier,

assuming that -by- matrix multiplication is decom-

posed into multiple subproblems with di-

mensions on a parallel machine, then these

dimensions demonstrate the vertical-horizontal trade-

off (cf. Table 1). We use linear programming to solve

the optimal solution of the three dimensions. These

optimal solutions can minimize the joint communica-

tion and, therefore, guide the tunable grid and the

scheduling of our algorithm.

6.1 Joint-Cost Function

To propose algorithms with low joint communica-

tion, we introduce conditions conducive to reducing

joint-communication costs. Subsequently, we analyze

the horizontal and the vertical communication costs

of algorithms meeting the following conditions, pro-

viding their joint-communication cost function.

d1 ⩽ n d2 ⩽ n d3 ⩽ n1) , , .

d1d2d3 = O(n3/P)

Ω(1)

2) to ensure that each processor

computes subproblems.

max{d1d2, d2d3, d1d3} = O(M)3) to ensure that the

Table 5. Joint-Communication Complexity with Limited Memory

Method ω/β ⩽ 1 1 < ω/β < n2/M ω/β ⩾ n2/M

Lower bound (here) Ω(n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2) Ω(

n3(βω)1/2

PM1/2 + n3r
PS1/2) Ω(n

2ω
P

+ n3r
PS1/2)

2.5DMML3ooL2[17] Θ(n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2) O(n3ω

PM1/2 + n2ω
P2/3 + n3r

PS1/2) O(n3ω
PM1/2 + n2ω

P2/3 + n3r
PS1/2)

SUMMAL3ooL2[17] O(
(r+β)n3

PS1/2) O(n
2ω
P

+
(r+β)n3

PS1/2) O(n
2ω
P

+
(r+β)n3

PS1/2)

JOMMA (here) Θ(n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2) Θ(

n3(βω)1/2

PM1/2 + n3r
PS1/2) Θ(n

2ω
P

+ n3r
PS1/2)

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 9

sizes of input and output do not exceed the size of the

main memory.

d2 ⩾ d1 = d34) to reduce the number of words writ-

ten since writes are more expensive than reads.

5) Computation is load-balanced.

Lemma 6. The joint-communication cost of the al-
gorithm satisfying the above conditions is

O

(
n3r

PS1/2
+

n3

P

(
β

d1

+
β

d2

+
ω

d2

))
.

Proof. We first analyze the horizontal and the

vertical cost of such algorithms and then give the

joint-communication cost.

n3

d1d2d3

n3/(d1d2d3)

n3/(Pd1d2d3)

A′B′ = C ′

A′ B′ C ′

β(d1d2 + d2d3 + d1d3)

n3/(Pd1d2d3)

n3β(d1d2 + d2d3 + d1d3)/

(Pd1d2d3)

Horizontal Cost. Based on the total arithmetic op-

erations () and the number of arithmetic opera-

tions per subproblem (), we determine that

there are subproblems. To maintain load

balance, each processor handles sub-

problems (). To compute a subproblem,

processors must engage in data exchange, involving at

most all elements of matrices , , and . Hence,

the horizontal cost of solving a subproblem does not

exceed , and the total horizontal

cost of each processor, addressing sub-

problems, remains below

.

n3/(Pd1d2d3)

O(d1d2d3r/S
1/2 + d1d3ω)

O(n3r/(PS1/2)+

n3ω/(Pd2))

Vertical Cost. Processors utilize the sequential

VOMM algorithm for localized subproblem resolution.

Each processor handles subproblems,

with each subproblem incurring a vertical cost of

 (cf. Section 4). As a result,

the total vertical cost amounts to

.

d1 = d3By (condition 4), the joint-communication

cost is

Q = O

(
n3β (d1d2 + d2d3 + d1d3)

Pd1d2d3

+
n3r

PS1/2
+

n3ω

Pd2

)
= O

(
n3r

PS1/2
+

n3

P

(
β

d1

+
β

d2

+
ω

d2

))
. 2

6.2 Memory Analysis

M = Ω(cn2/P)

O(
√

P/c3)

Generally, the larger the main memory, the larger

the matrix dimensions of each subproblem, and the

fewer the number of subproblems that each processor

needs to execute. For example, considering the 2.5D

algorithm, assuming that the main memory size per

processor is , the number of subprob-

lems performed by each processor is ,

c ⩽ P 1/3where .

Θ(1)

Ω(1)

Definition 1. The scenario where each processor
executes only subproblems is defined as the
enough memory scenario. Conversely, the scenario
where each processor executes subproblems is de-
fined as the limited memory scenario.

M =

Ω(n2/P 1/2)

Lemma 7. In the enough memory scenario, the
memory size of each processor is at least

.
n

AB = C d1, d2, d3

AB = C

n3/(Pd1d2d3) =

Θ(1) d1d2d3 = Θ(n3/P)

Proof. Let be the size of the matrix multiplica-

tion and the dimensions of the

subproblem obtained by dividing . In the

enough memory scenario, since the number of sub-

problems executed by each processor is

, we conclude that .

d2 ⩽ n 1 d2 ⩾ d1 = d3

4 d1d2d3 = Θ(n3/P) d1d3 = Ω(n2/P)

d1d3 = O(n2/P 2/3) d1 d3

Ω(n/P 1/2) O(n/P 1/3)

By (condition), (condition

), and , we have

and . Consequently, both and

range from at least to at most .

d1d2d3 = Θ(n3/P) d1 = d3 = Ω(n/P 1/2)

max{d1d2, d2d3, d1d3} = O(M)

M = Ω(max{d1d2, d2d3, d1d3}) = Ω(max{d1d2, d
2
1}) =

Ω(max{n3/(Pd1), d
2
1}) = Ω(n2/P 1/2).

By , , and

 (condition 3), we have

 □

6.3 Matrix Dimensions Optimization

P S M r ω β

n

(β/d1) + (β/d2) + (ω/d2)

Given the machine parameters , , , , , ,

and problem size , by Lemma 6, the joint-communi-

cation cost is asymptotically minimal if and only if

 is asymptotically minimal.

Therefore, the optimization problem of minimizing

the joint-communication cost is formulated as follows:

min
β

d1

+
β

d2

+
ω

d2

subject to :
(1)

 conditions 1, 2, 3, 4, 5 (cf. Subsection 6.1).

d1 d2 d3Next, we analyze how the values of , , and

can minimize the joint-communication cost for the

enough memory scenario and the limited memory sce-

nario.

2ω/β ⩽ 1

d1 = d2 = d3 = Θ(n/P 1/3) 1 ⩽ 2ω/β ⩽ P 1/2

d1 = d3 = Θ((n3β/2Pω)1/3)

d2 = Θ((4n3ω2/Pβ2)1/3) 2ω/β ⩾ P 1/2

d1 = d3 = Θ(n/P 1/2) d2 = Θ(n)

Lemma 8. In the enough memory scenario, if
, (1) attains its minimum when

. For , (1)

is minimized when and
. If , then (1) is

minimized when and .
d1d2d3 = Θ(n3/P)

d1 = d3

d2 = Θ(n3/(Pd1
2))

Proof. Recalling that in the

enough memory scenario and (condition 4),

we have . Therefore,

10 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

O

(
β

d1

+
β

d2

+
ω

d2

)
= O

(
β

d1

+
Pβd1

2

n3
+

Pωd1
2

n3

)
.

(2)

2ω/β

Parallel to the lower bound proof in Theorem 1,

we classify the upper bound into three cases based on

the value of .

1) 2ω/β ⩽ 1 O(β/d1 + Pβd1
2/n3)

d1

d1 = Θ(n/P 1/3)

d1d2d3 = Θ(n3/P)

d1 = d3 d1 =

d2 = d3 = Θ(n/P 1/3)

 . In this case, (2) is ,

which is a function of . By derivation, this function

is minimized when . Therefore, from

 (in the enough memory scenario)

and (condition 4), (1) is minimized when

.

2) 2ω/β > 1 O(β/d1 + Pωd1
2/

n3) d1

d1 = Θ((n3β/2Pω)1/3)

d1 = d3 d2 ⩽ n d1d2d3 = Θ(n3/P)

d1 Ω(n/P 1/2)

(n3β/(2Pω))1/3 > n/P 1/2

d1 = Θ((n3β/(2Pω))1/3)

d1 = Θ(n/P 1/2)

 . In this case, (2) is

, which is a function of . By derivation, this

function is minimized when .

However, given , , and ,

 is constrained to the range of . If

, (1) minimizes at

; otherwise, it minimizes at

.

1 < 2ω/β < P 1/2

(n3β/(2Pω))1/3 > n/P 1/2

d1 = d3 = Θ((n3β/(2Pω))1/3) d2 = Θ((4n3ω2/

(Pβ2))1/3)

a) . In this case, we have

. Thus (1) is minimized when

 and

.

2ω/β ⩾ P 1/2 (n3β/(2Pω))1/3

⩽n/P 1/2 d1 = d3 =

Θ(n/P 1/2) d2 = Θ(n)

b) . In this case, we have

. Thus (1) is minimized when

 and . □

ω/β ⩽ 1 d1 = d2 = d3 =

Θ(min(n/P 1/3,M 1/2)) 1 ⩽ ω/β ⩽ P 1/2

d1 = d3 = Θ(
√

Mβ/ω) d2 =

Θ(
√

Mω/β) ω/β ⩾ P 1/2

d1 = d3 = Θ(M/n) d2 = Θ(n)

Lemma 9. In the limited memory scenario, if
, (1) attains its minimum when

. For , (1) is
minimized when and

. If , then (1) achieves its mi-
nimum value when and .

ω/β

Proof. In alignment with the lower bound proof

presented in Theorem 2, we similarly categorize the

upper bound into three cases based on the value of

.

ω/β ⩽ 1 O(β/d1 + β/d2 + ω/d2) =

O(β/d1 + β/d2) d1d2 = O(M)

O(β/d1 + β/d2)

d1d2 = Θ(M) d1 = Θ(M/d2)

O(β/d1 + β/d2) = O(βd2/M + β/d2)

d2

d2 = Θ(M 1/2)

M = Ω(n2/P 2/3) d1 = d2 = d3 = Θ(M 1/2) =

Ω(n/P 1/3) d1d2d3 = Ω(n3/P)

d1d2d3 = O(n3/P) d1 = d3

1) . In this case,

. As (condition 3), ap-

plying the Arithmetic-Geometric Mean inequality, we

ascertain that achieves its minimum

when . Substituting , we

find that , a func-

tion of . Upon differentiation, this function reaches

its minimum when . However, for the case

of , we have

. This results in , indicat-

ing that condition 2 is not satisfied. In this case, giv-

en and , the expression

O(β/d1 + β/d2) d2
1d2 =

Θ(n3/P) d2 = Θ(n3/Pd2
1)

O(β/d1 + β/d2) = O(β/d1 + βPd2
1/n

3)

d1 = Θ(n/P 1/3)

d1 = d2 = d3 = Θ(min{n/P 1/3,

M 1/2})

 attains its minimum when

. By substituting , we have

, which reaches

its minimum when . Hence, (1) achi-

eves its minimum when

.

ω/β > 1 O(β/d1 + β/d2 + ω/d2) =

O(β/d1 + ω/d2) d1d2 = O(M)

O(β/d1 + ω/d2)

d1d2 = Θ(M)

d1 = Θ(M/d2) O(β/d1 + ω/d2) =

O(βd2/M + ω/d2) d2

d2 = Θ(
√

Mω/β) d2 d2 ⩽ n√
Mω/β < n d2 =

Θ(
√

Mω/β) d2 = Θ(n)

2) . In this case,

. Given according to

condition 3, employing the Arithmetic-Geometric

Mean inequality reveals that attains

its minimum when . By substituting

, we find that

, a function of . Upon differentia-

tion, this function reaches its minimum when

. However, is bounded by .

Hence, if , (1) minimizes at

; otherwise, (1) minimizes at .

1 < ω/β < n2/M
√

Mω/β <

n d2 =Θ(
√

Mω/β)

d1 = d3 = Θ(
√

Mβ/ω) d1 = d3 = Θ(M/d2)

a) . In this case, we have

. Thus (1) is minimized when and

 ().

ω/β ⩾ n2/M
√

Mω/β ⩾
n d2 = Θ(n) d1 =

d3 = Θ(M/n) d1 = d3 = Θ(M/d2)

b) . In this case, we have

. Thus (1) is minimized when and

 (). □

7 Joint-Communication Optimal Algorithm

Algorithm 2 is a brief description of the Joint-

Communication Optimal Matrix Multiplication Algo-

rithm (JOMMA). See Algorithm 3 and Algorithm 4

for more details.

Algorithm 2. JOMMA

A, B, P, M, S, r, ω, βRequire:

C = ABEnsure:
1: if enough memory then

2: 　Call EM-JOMMA
3: end if
4: if limited memory then

5: 　Call LM-JOMMA
6: end if

7.1 Enough Memory

In the enough memory scenario, we employ EM-

JOMMA (cf. Algorithm 3) to solve matrix multiplica-

tion.

7.1.1 Data Layout

P Px × Py × Pz

PxPyPz = P Pijk

 processors are arranged in a cu-

bic grid, where and is the processor

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 11

(i, j, k) i = {1, 2, . . . , Px}, j = {1,
2, . . . , Py}, k = {1, 2, . . . , Pz} n× n

A

P:1: i ∈ {1, 2, . . . , Px} j = 1 k ∈ {1, 2, . . . , Pz}
Pi1k (n/Px)× (n/Pz)

A(i, k) Π(A)

n× n B

P1:: P1jk

(n/Pz)× (n/Py) B(k, j)

Π(B) C

Px × Py

Pij1

P::1 C(i, j) =∑Pz

k=1
A(i, k)B(k, j)

at coordinate (

). Initially, the

input matrix is evenly distributed to the 2D slice

 (, , and),

and each processor owns an

block as its local matrix (cf. Fig.2(a)).

Similarly, the input matrix is evenly dis-

tributed to the 2D slice , and each processor

owns an block as its local

matrix (cf. Fig.2(b)). The output matrix

can be divided into blocks, and the algo-

rithm terminates when each processor on the

2D slice has finished computing

 (cf. Fig.2(c)).

A(i, k) Pi1k Py

Pi:k B(k, j)

P1jk Px P:jk

Note that although the above input matrices are

initially load-imbalanced, we can easily rearrange

them for load-balancing. For example, let the block

 owned by be scattered over the pro-

cessors in . Similarly, let the block owned

by be scattered over the processors in .

These two scatter operations do not affect the asymp-

totic joint-communication cost.

7.1.2 Scheduling

d1 = n/Px d2 = n/Pz d3 = n/Py

Px Py Pz

2ω/β ⩽ 1 Px = Py = Pz =

P 1/3 d1 = d2 = d3 = n/P 1/3

From the above data layout, the dimensions of

the subproblem solved by each processor are

, , and . Therefore, we

set the values of , , and according to Lemma

8, thus being able to asymptotically minimize the

joint-communication cost (lines 1–9 in Algorithm 3).

For example, when , we set

 such that .

After determining the parameters of the tunable pro-

cessor grid, the EM-JOMMA algorithm has three

steps.

Algorithm 3. EM-JOMMA

A Px × Pz Pi1k

A(i, k) Π(A) B Pz × Py

P1jk B(k, j) Π(B)

Require: is divided into matrix blocks, and has
 as ; is divided into matrix

 blocks, and owns as

C = AB ∈ Rn×nEnsure:

((2ω)/β) ⩽ 11: if then

Px = Py = Pz = P
1
32: 　

3: end if

1 < ((2ω)/β) < P 1/24: if then

Px = Py = ((2ωP)/β)
1
3 , Pz = ((Pβ2)/(4ω2))

1
35: 　

6: end if

((2ω)/β) ⩾ P 1/27: if then

Px = Py = P 1/2, Pz = 18: 　

9: end if

(Π(A),Π(X), 1, Pi:k)10: Broadcast

(Π(B),Π(Y), 1, P:jk)11: Broadcast

Π(Z)← (Π(X),Π(Y))12: VOMM

(Π(Z),Π(C), 1, Pij:)13: Reduce

(Π(A), Π(X), 1,

Pi:k)

(Π(B), Π(Y), 1, P:jk)

Pijk

A(i, k) Π(X) B(k, j) Π(Y)

Step 1. The EM-JOMMA algorithm performs two

broadcast operations, Broadcast
 (cf. line 10 in Algorithm 3 and Fig.2(a)) and

Broadcast (cf. line 11 in Algo-

rithm 3 and Fig.2(b)), so that each processor ac-

cesses as and as .

Pijk

Π(Z) = Cijk = A(i, k)B(k, j)

Step 2. Each processor calls the VOMM algo-

rithm to compute (cf.

line 12 in Algorithm 3).

(Π(Z),Π(C), 1, Pij:)

Pij1 Π(C) = C(i, j) =
∑Pz

k=1
Cijk

Step 3. The EM-JOMMA algorithm performs the

reduction operation, Reduce (cf.

line 13 in Algorithm 3 and Fig.2(c)), so that the pro-

cessor can compute .

7.1.3 Joint-Communication Cost of EM-JOMMA

TVOMM(d1, d2, d3)

AB = C

A d1 × d2 B d2 × d3

By we denote the vertical com-

munication cost of computing using

VOMM, where is a matrix, is a

Broadcast

Broadcast

Reduction

(a) (b) (c)

Pi1k Π(A) Pi:k P1jk

Π(B) P:jk Pij: Pij1 Cijk

Fig.2. Two broadcast operations and a reduction operation. (a) Processor broadcasts along . (b) Processor
broadcasts along . (c) A reduction along onto root sums each .

12 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

C d1 × d3

TVOMM(d1, d2, d3) = 2
√
3d1d2d3r/S

1/2 + ωd1d3

matrix and is a matrix, then

 (See Al-

gorithm 1).

ω β

Below we show that in the APM with enough

memory, for any value of and , EM-JOMMA is

joint-communication optimal.

|Π(A)| =
|Π(X)| = n2/(PxPZ) |Π(B)| = |Π(Y)| = n2/(PyPz)

|Π(Z)| = |Π(C)| = n2/(PxPz)

Considering Algorithm 3, we find

, ,

and . Referring to Ta-

ble 3, the joint-communication cost function of the

EM-JOMMA algorithm is

Q =TBroadcast

(
n2

PxPz

, Py

)
+ TBroadcast

(
n2

PyPz

, Px

)
+

TVOMM

(
n

Px

,
n

Pz

,
n

Py

)
+ TReduce

(
n2

PxPy

, Pz

)
. (3)

Px, Py, PzSubstituting the provided values of and

from EM-JOMMA into (3), we derive the joint-com-

munication cost as follows, which asymptotically

matches the lower bound established in Theorem 1.

• 2ω/β ⩽ 1 ,

Q = O

(
n2β

P 2/3
+

n3r

PS1/2

)
.

• 1 < 2ω/β < P 1/2 ,

Q = O

(
n3r

PS1/2
+

n2ω1/3β2/3

P 2/3

)
.

• 2ω/β ⩾ P 1/2 ,

Q = O

(
n3r

PS1/2
+

n2ω

P

)
.

7.2 Limited Memory

In the limited memory scenario, we present LM-

JOMMA (cf. Algorithm 4) to solve matrix multiplica-

tion.

7.2.1 Data Layout

P

Px × Py × Pz PxPyPz = P n× n

A Px × Py

n× n B Py × Px

P::1

Pij1 (n/Px)× (n/Py)

A(i, j) (n/Py)× (n/Px) B(j, i)

C

Px × Px

 processors are arranged in a cubic grid

, . Initially, the input

matrix is divided into blocks, and the

 matrix is divided into blocks. Let

these blocks be evenly distributed on the 2D slice .

Specifically, the processor owns an

block and an block

(cf. Fig.3(a)). In addition, the output matrix can

be divided into blocks, where the size of each

(n/Px)× (n/Px)block is .

7.2.2 Scheduling

d1 = n/Px, d2 = n/Py d3 = n/Px

Px Py Pz

ω/β ⩾ n2/M Px = n2/M

Py = 1 Pz = P/(PxPy) = PM/n2

d1 = d3 = M/n d2 = n

From the above data layout, the dimensions of

the subproblem solved by each processor are

, and . Therefore, we

set the values of , , and according to Lemma

9, thus being able to asymptotically minimize the

joint-communication cost (lines 1–9 in Algorithm 4).

For example, when , we set ,

, and such that

 and .

Algorithm 4. LM-JOMMA

A B P::1

Pij1 A(i, j) Π(A) B(j, i)

Π(B) Π(C) = ∅

Require: and are evenly distributed on the 2D slice ;
 processor has as and as

 ;

C = AB ∈ Rn×nEnsure:

ω/β ⩽ 11: if then

c = min(P
1
3 ,
√
PM/n) Px = Py =

√
P/c Pz = c2: , ,

3: end if

1 < ω/β < n2/M4: if then

Px = nω
1
2/M

1
2β

1
2 , Py = nβ

1
2/M

1
2ω

1
2 , Pz = PM/n25:

6: end if

ω/β ⩾ n2/M7: if then

Px = n2/M,Py = 1, Pz = PM/n28:

9: end if

(Π(A),Π(X), 1, Pij:)10: Broadcast

(Π(B),Π(Y), 1, Pij:)11: Broadcast

(Π(Y), (k − 1)⌈Px/Pz⌉, Py, P:jk)12: Shift

m = 1 ⌈Px/Pz⌉13: for to do

(Π(Y), 1, Px, P:jk)14: Shift

Π(Z)← V OMM(Π(X),Π(Y))15:

j′ = m mod Py
16:

(Π(Z),Π(U), j′, Pi:k)17: Reduce

Π(C) = {Π(C),Π(U)}18:
19: end for

AB = C P::1

AB = C

A B

Before introducing scheduling, we give the follow-

ing Lemmas 10 and 11, which are used to design Al-

gorithm 4. Lemma 10 details the computation of

 on the 2D slice , while Lemma 11 out-

lines the computation of on the cubic pro-

cessor grid assuming each 2D slice contains a copy of

input matrices and .

A B

P::1 C = AB

P::1

Px (Π(B), 1, Px,

P:jk)

Lemma 10. When matrices and are evenly
distributed on the 2D slice , computing
on can be accomplished using a sequence of itera-
tive shift operations, denoted as Shift

.
Pi:1

P::1 A(i, :) B(:, i)

Proof. Initially, each processor row on the

2D slice owns and (cf. Fig.3(a)), en-

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 13

C(i, i) =
∑Py

j=1

A(i, j)B(j, i)

(Π(B), 1, Px, P:jk)

Pi:1 B(:, i′)
C(i, i′) =

∑Py

j=1
A(i, j)B(j, i′) i′ = (i− 1)

Px P::1

C (Px)
2

C

Px

abling the computation of the block

. Through a circular shift operation

Shift (cf. Fig.3(b)), the processor

row accesses and can compute the block

, where . As

there are processor rows within the 2D slice

and is partitioned into blocks, the computa-

tion of can be achieved through iterative execu-

tion of shift operations. □
A B

P::k k ∈ {1, 2, . . . , Pz}
C = AB

(Π(B), (k − 1)⌈Px/Pz⌉, Px, P:jk)

⌈Px/Pz⌉ (Π(B), 1, Px,

P:jk)

Lemma 11. When and are replicated on ev-
ery 2D slice for all , then the
computation of on the cubic processor grid
can be achieved by initially performing a shift opera-
tion Shift , followed by

 additional shift operations Shift
.

C P::1 Px

(Π(B), 1, Px, P:jk)

P::k

A B Px

Pz

C

⌈Px/Pz⌉
P::k

P::1

((k − 1)⌈Px/Pz⌉+ 1) (k⌈Px/Pz⌉+ 1)

(Π(B), (k − 1)⌈Px/Pz⌉, Px, P:jk)

P::k k ∈ {1, 2, . . . , Pz}
⌈Px/Pz⌉

Proof. According to Lemma 10, we can calculate

 on the 2D slice through the execution of

shift operations, Shift . After each

shift operation, a computational task follows, where

each processor within the 2D slice computes a

matrix multiplication subproblem (as depicted in

Figs.3(a) and 3(b)). If each 2D slice on the cubic grid

has a copy of and , computational tasks can

be distributed to these 2D slices for parallel execu-

tion. Hence, the computation of on the cubic pro-

cessor grid can be accomplished by performing

 shift operations. More precisely, the required

shift operations on the 2D slice correspond to

those performed on the 2D slice from the

-th to the -th.

Hence, an initial shift operation, denoted as

Shift , is required on

every 2D slice , for all , before

executing the subsequent shift operations. □

The above Lemma 11 leads to the LM-JOMMA

algorithm, which has the following four steps.

(Π(A),Π(X), 1, Pij:)

(Π(B),Π(Y), 1, Pij:)

A B

P::k ∀k ∈ {1, 2, . . . , Pz}

Step 1. The LM-JOMMA algorithm performs two

operations, Broadcast and

Broadcast (cf. lines 10 and 11 in

Algorithm 4 and Fig.3(a)), so that and are

replicated on each 2D slice , .

(Π(B), (k − 1)⌈Px/Pz⌉, Px,

P:jk)

P::k

Step 2. From Lemma 11, all processors perform an

initial shift operation Shift
 (cf. line 12 in Algorithm 4) such that each 2D

slice can perform the appropriate computations.

⌈Px/Pz⌉
B

C

Step 3. All processors iteratively perform

shift operation on (cf. lines 13–15 in Algorithm 4

and Fig.3(b)) such that can be computed com-

pletely.

Pi:k m

m = {1, 2, . . . , ⌈Px/Pz⌉}
Pij′k

Pi:k j′ = m mod Py

Step 4. After each circular shift (line 16 in Algo-

rithm 4) and local computations (line 17 in Algo-

rithm 4) are performed, the computation result needs

to be summed for each processor row . For the -

th shift operation (), we

specify as the root processor of processor row

, where (cf. line 16 in Algorithm

4). Then, the LM-JOMMA algorithm performs a re-

duction operation (cf. line 17 in Algorithm 4 and

Fig.3(c)) such that the root processor can sum the lo-

cal results of this processor row.

7.2.3 Joint-Communication Cost of LM-JOMMA

ω β

Below we prove that in the APM with limited

memory, for any value of and , LM-JOMMA is

joint-communication optimal.

|Π(A)| =
|Π(X)| = n2/(PxPy) |Π(B)| = |Π(Y)| = n2/(PxPy)

|Π(Z)| = |Π(U)| = |Π(C)| = n2/P 2
x

Considering Algorithm 4, we find

, ,

and . Referring

B
ro
ad

ca
st

Shift on B Reduction

Shift

Reduction

(a) (b) (c)

A B P::1

(Π(B), 1, Px, P:jk)
m = 2

Fig.3. Broadcast, shift, and reduction operations. (a) and are initially evenly distributed on and the broadcast operations
of lines 10 and 11 in Algorithm 4. (b) The data layout after performing one shift operation Shift on (a). (c) The
reduction operation of line 17 in Algorithm 4 when .

14 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

to Table 3, the joint-communication cost function of

the LM-JOMMA algorithm is

Q=2TBroadcast

(
n2

PxPy

, Pz

)
+TShift

(
n2

PxPy

)
+

⌈Px

Pz

⌉TVOMM

(
n

Px

,
n

Py

,
n

Px

)
+⌈Px

Pz

⌉TShift

(
n2

PxPy

)
+

⌈Px

Pz

⌉TReduce

(
n2

P 2
x

, Py

)
. (4)

Px, Py

Pz

By substituting the provided values of , and

 from LM-JOMMA into (4), we obtain the joint-

communication cost as follows, which asymptotically

matches the lower bound established in Theorem 2.

• ω/β ⩽ 1 ,

Q = O

(
β

(
n3

PM 1/2
+

n2

P 2/3

)
+

n3r

PS1/2

)
.

• 1 < ω/β < n2/M ,

Q = O

(
n3r

PS1/2
+

n3ω
1
2β

1
2

PM
1
2

)
.

• ω/β ⩾ n2/M ,

Q = O

(
n3r

PS1/2
+

n2ω

P

)
.

8 Evaluation

In this section, we conduct a detailed evaluation

of the communication costs associated with JOMMA,

2.5DL3ooL2, SUMMAL3ooL2, and 2.5D-COWE[16]

(Cache-Oblivious Write Efficient Algorithm), utiliz-

ing numerical analysis simulation results rather than

actual implementations on distributed systems. Be-

low we provide a brief overview of 2.5DL3ooL2, SUM-

MAL3ooL2, and 2.5D-COWE.

n n

2.5DL3ooL2 combines the 2.5D and VOMM ap-

proaches, offering an asymptotically optimal horizon-

tal cost for -by- matrix multiplication. In the

ω/β ⩽ 1

2ω/β ⩽ 1

enough memory scenario, it follows the scheduling

pattern of Algorithm 3 when , and in the lim-

ited memory scenario, it adheres to the scheduling

pattern of Algorithm 4 when . This unifor-

mity arises from JOMMA’s ability to asymptotically

minimize horizontal costs when horizontal word trans-

fers incur significant expenses, as demonstrated in Ta-

bles 4 and 5.

P P 1/2 × P 1/2

Π(A) Π(B)

(n/P 1/2)× (n/P 1/2)

P 1/2

Π(A) Π(B)

Π(A) ·Π(B)

Π(A)

Π(B)

(S/3)1/2 × (S/3)1/2

S

d1 = d2 = d3 = (S/3)1/2

P (S/3)3/2

n3/(P (S/3)3/2)

SUMMAL3ooL2 is a SUMMA algorithm variant,

preserving the initial data layout of SUMMA. That is,

 processors are arranged in a grid and

each processor owns local matrices and

with size . For SUMMA, there are

 rounds. Each processor participates in two

broadcast operations on and in each

round and then performs local matrix multiplication

 (cf. Fig.4). For SUMMAL3ooL2, to

minimize writes, each processor participates in two

broadcast operations on submatrices of and

 in each round, and the size of each submatrix

is . In this way, the problem size

matches the cache size , and the outputs not fully

computed during the round can be stored in the cache

until fully computed, and then written to main mem-

ory. Since each processor computes a matrix multipli-

cation of size per round, the

number of arithmetic operations performed per round

is . Hence the number of rounds is

.

A′B′ = C ′

A′ ∈ Rd1×d2

B′ ∈ Rd2×d3 C ′ ∈ Rd1×d3

d1

d2r
2/3/ω2/3 d3

2.5D-COWE combines 2.5D, known for horizon-

tal optimization, with COWE[16], a cache-oblivious

(cache size is unknown) divide-and-conquer algo-

rithm that is vertically optimal in the sequential and

asymmetric setting. To sequentially solve

on a single processor, with matrices ,

, and , COWE recursively di-

vides the largest one of the three dimensions: ,

, , into halves, resulting in two subprob-

lems. The recursion terminates when the subproblem

(a) (b) (c) (d)

Fig.4. Initial data layout on nine processors for SUMMA and local data of each processor after executing broadcast operations in
each round. (a) Initial layout. (b) Round 1. (c) Round 2. (d) Round 3.

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 15

size matches the cache capacity. While COWE offers

applicability to scenarios with unknown cache sizes, it

incurs a higher vertical cost compared with VOMM.

Although there are other existing algorithms such

as ScaLAPACK[31], CARMA[18], and COSMA[32], we

do not use them as the baselines since these algo-

rithms are used to handle rectangular matrix multipli-

cation and do not perform better than 2.5D for square

matrix multiplication[32].

From the previous algorithm description, we ana-

lyze the exact costs of these four algorithms and sum-

marize the costs of operations used in the four algo-

rithms in Tables 6 and 7. It should be noted that due

to the balanced initial data layout, an additional

gather operation is required before the broadcast op-

eration for JOMMA, i.e., an allgather operation.

P,M, S, r, ω, β

n

ω/β

n2/P 1/2 < M < n2

n2/P < M < n2/P 1/2

S ⩽ n2/P

Given the parameters , and the

problem size , we compare the performance of these

four algorithms by evaluating 18 groups of configura-

tions. These configurations cover all the scenarios dis-

cussed in this paper. In realistic situations, the write

bandwidth of NVM is from 0.20 GB/s to 2.20 GB/s,

and the read bandwidth is from 0.63 GB/s to 6.80

GB/s[22, 33]. The data throughput of the InfiniBand

architecture NVIDIA Quantum-2 is from 25 GB/s to

50 GB/s. Therefore, in our simulation, we take the

value of from the set {0.5, 1, 2, 8, 16}. In addi-

tion, the values of other parameters meet the follow-

ing restrictions: 1) for enough

memory; 2) for limited memory;

and 3) .

Fig.5 illustrates our simulation results. It can be

n3

n2

found that in all the tested scenarios, the horizontal

costs of 2.5DL3ooL2 and 2.5D-COWE are equal and

both are the lowest, while SUMMAL3ooL2 has the

lowest vertical cost and JOMMA has the lowest joint-

cost. Additionally, 2.5DL3ooL2 outperforms 2.5D-

COWE in vertical cost reduction, attributed to

VOMM’s reduced write demands despite its cache-

aware nature (requiring knowledge of cache size). In

nearly all examined scenarios, SUMMAL3ooL2

demonstrates notably inferior performance due to its

utilization of an irrational horizontal scheduling strat-

egy to achieve vertical optimality. The analysis in Ta-

bles 6 and 7 reveals that the horizontal cost of SUM-

MAL3ooL2 contains a factor , whereas that of the

other algorithms contains a factor .

ω/β

×

ω/β

k2

In Fig.5, for small values (Figs.5(a) and

5(d)), JOMMA and 2.5DL3ooL2 achieve the lowest

joint costs, resulting in a 3 speedup compared with

SUMMAL3ooL2. This underperformance of SUM-

MAL3ooL2 is attributed to its excessive horizontal

communication. Moreover, the horizontal cost typical-

ly surpasses the vertical cost, especially when enough

memory is available. When is large (Figs.5(c)

and 5(f)), JOMMA and SUMMAL3ooL2 exhibit equal

and the lowest vertical communication costs. Since

writing is overly expensive, SUMMAL3ooL2 may

achieve a lower joint cost than 2.5DL3ooL2 and 2.5D-

COWE. In this scenario, JOMMA demonstrates ap-

proximately 3x, 2.1x, and 1.3x performance improve-

ments compared with SUMMAL3ooL2, 2.5D-COWE,

and 2.5DL3ooL2, respectively. The horizontal costs of

JOMMA, 2.5D-COWE, and 2.5DL3ooL2 significantly

increase, nearly by a factor of , as the problem size

Table 6. Exact Costs with Enough Memory

Method Allgather Broadcast Reduce VOMM/COWE

2.5DL3ooL2 n2β
PxPz

+ n2β
PyPz

0
2n2β
PxPy

n2ω
PxPy

+ 2
√

3n3r
PS1/2

SUMMAL3ooL2 0 4
√

3n3β

PS1/2 0 n2ω
P

+ 2
√
3n3r

PS1/2

2.5D-COWE n2β
PxPz

+ n2β
PyPz

0
2n2β
PxPy

3
√

3n3r2/3ω1/3

PS1/2

JOMMA n2β
PxPz

+ n2β
PyPz

0
2n2β
PxPy

n2ω
PxPy

+ 2
√

3n3r
PS1/2

Table 7. Exact Costs with Limited Memory

Method Allgather Broadcast Reduce Shift VOMM/COWE

2.5DL3ooL2 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

n2ω
PxPz

+ 2
√

3n3r
PS1/2

SUMMAL3ooL2 0 4
√

3n3β

PS1/2 0 0 n2ω
P

+ 2
√
3n3r

PS1/2

2.5D-COWE 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

3
√

3n3r2/3ω1/3

PS1/2

JOMMA 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

n2ω
PxPz

+ 2
√

3n3r
PS1/2

16 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

(b)(a)

(c) (d)

(e) (f)

512 724 1 024 512 724 1 024

512 724 1 024
724 1 024 1 448

750 1 024 1 448
724 1 024 1 448

n

P = 26, S = 212, r = 1 2ω/β ⩽ 1 M = 218, ω = 2, β = 4

1 < 2ω/β ⩽ P 1/2 M = 218, ω = 4, β = 2 2ω/β ⩾ P 1/2 M = 218, ω = 16, β = 2
ω/β ⩽ 1 M = 216, ω = 2, β = 2 1 < ω/β < n2/M M = 216, ω = 16, β = 2
ω/β ⩾ n2/M M = 216, ω = 32, β = 2

Fig.5. Exact horizontal and vertical costs of 2.5DL3ooL2, JOMMA, SUMMAL3ooL2, and 2.5D-COWE with different machine pa-
rameters. For a given problem size in each figure, the four bars from left to right represent the costs of 2.5DL3ooL2, JOMMA,
SUMMAL3ooL2, and 2.5D-COWE, respectively. Each bar’s bottom and top parts represent the horizontal and vertical costs, respec-
tively. (a) Enough memory and . . (b) Enough memory and

 . (c) Enough memory and . . (d) Limited memory
and . . (e) Limited memory and . . (f) Limited memory
and . .

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 17

k

n2

ω/β

2ω/β ⩾
√
P

P 1/3

scales up by a factor of . This increase is primarily

attributed to the presence of a factor of in the hor-

izontal cost function (Tables 6 and 7). When as-

sumes a moderate value (Figs.5(b) and 5(e)), SUM-

MAL3ooL2 and 2.5D-COWE exhibit suboptimal per-

formance attributed primarily to excessive horizontal

or vertical communication. In this scenario, JOMMA

exhibits a performance advantage over the second-

best approach (2.5DL3ooL2), achieving a 1.3x

speedup. This speedup is expected to increase with

larger datasets and processor sizes. For instance, in

the enough memory scenario with , JOM-

MA’s write count is reduced by a factor of com-

pared with 2.5DL3ooL2.

9 Conclusions

Motivated by the observation that the horizontal

and vertical lower bounds cannot be simultaneously

attained for asymmetric memories, in this paper, we

investigated how to optimize joint-communication by

balancing horizontal communication and writing. We

proved the first joint-communication lower bound for

classical matrix multiplication, and proposed a joint-

communication optimal algorithm that matches the

lower bound.

n nFor -by- matrix multiplication, there is no

tradeoff between communication and computation

due to load balancing and a fixed total number of

arithmetic operations. However, such a tradeoff may

exist for other problems such as sparse iterative

solvers[34]. In addition, for asymmetric memories, we

leave the discussion of rectangular matrix multiplica-

tion as our future work. It will be interesting to ex-

tend our work to graph computing and other linear

algebra problems. Finally, implementing JOMMA in

real distributed systems equipped with asymmetric

memories to see the gains of JOMMA over the hori-

zontally optimal ones will also be interesting future

work.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Solomonik E, Ballard G, Demmel J, Hoefler T. A commu-

nication-avoiding parallel algorithm for the symmetric

eigenvalue problem. In Proc. the 29th ACM Symposium

on Parallelism in Algorithms and Architectures, Jul. 2017,

pp.111–121. DOI: 10.1145/3087556.3087561.

[1]

 Solomonik E, Carson E, Knight N, Demmel J. Tradeoffs[2]

between synchronization, communication, and computa-

tion in parallel linear algebra computations. In Proc. the

26th ACM Symposium on Parallelism in Algorithms and

Architectures, Jun. 2014, pp.307–318. DOI: 10.1145/

2612669.2612671.

 Ma L, Solomonik E. Efficient parallel CP decomposition

with pairwise perturbation and multi-sweep dimension

tree. In Proc. the 35th IEEE International Parallel and

Distributed Processing Symposium, May 2021,

pp.412–421. DOI: 10.1109/IPDPS49936.2021.00049.

[3]

 Van De Geijn R A, Watts J. SUMMA: Scalable universal

matrix multiplication algorithm. Concurrency: Practice

and Experience, 1997, 9(4): 255–274. DOI: 10.1002/(SICI)

1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2.

[4]

 Ballard G, Demmel J, Holtz O, Lipshitz B, Schwartz O.

Brief announcement: Strong scaling of matrix multiplica-

tion algorithms and memory-independent communication

lower bounds. In Proc. the 24th Annual ACM Sympo-

sium on Parallelism in Algorithms and Architectures, Jun.

2012, pp.77–79. DOI: 10.1145/2312005.2312021.

[5]

 Ballard G, Demmel J, Holtz O, Schwartz O. Minimizing

communication in numerical linear algebra. SIAM Jour-

nal on Matrix Analysis and Applications, 2011, 32(3):

866–901. DOI: 10.1137/090769156.

[6]

 Irony D, Toledo S, Tiskin A. Communication lower

bounds for distributed-memory matrix multiplication.

Journal of Parallel and Distributed Computing, 2004,

64(9): 1017–1026. DOI: 10.1016/j.jpdc.2004.03.021.

[7]

 Daas H A, Ballard G, Grigori L, Kumar S, Rouse K. Brief

announcement: Tight memory-independent parallel ma-

trix multiplication communication lower bounds. In Proc.

the 34th ACM Symposium on Parallelism in Algorithms

and Architectures, Jul. 2022, pp.445–448. DOI: 10.1145/

3490148.3538552.

[8]

 Agarwal R C, Balle S M, Gustavson F G, Joshi M, Palkar

P. A three-dimensional approach to parallel matrix multi-

plication. IBM Journal of Research and Development,

1995, 39(5): 575–582. DOI: 10.1147/rd.395.0575.

[9]

 Solomonik E, Demmel J. Communication-optimal paral-

lel 2.5D matrix multiplication and LU factorization algo-

rithms. In Proc. the 17th International Euro-ParConfer-

ence on Euro-Par 2011 Parallel Processing, Aug. 29–Sept.

2, 2011, pp.90–109. DOI: 10.1007/978-3-642-23397-5_10.

[10]

 Huang H, Chow E. CA3DMM: A new algorithm based on

a unified view of parallel matrix multiplication. In Proc.

the 2022 International Conference for High Performance

Computing, Networking, Storage and Analysis, Nov. 2022.

DOI: 10.1109/SC41404.2022.00033.

[11]

 Chen Y, Lu Y, Yang F, Wang Q, Wang Y, Shu J. Flat-

Store: An efficient log-structured key-value storage en-

gine for persistent memory. In Proc. the 25th Internation-

al Conference on Architectural Support for Programming

Languages and Operating Systems, Mar. 2020,

pp.1077–1091. DOI: 10.1145/3373376.3378515.

[12]

 Wei X, Xie X, Chen R, Chen H, Zang B. Characterizing[13]

18 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

https://doi.org/10.1145/3087556.3087561
https://doi.org/10.1145/2612669.2612671
https://doi.org/10.1145/2612669.2612671
https://doi.org/10.1109/IPDPS49936.2021.00049
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1145/2312005.2312021
https://doi.org/10.1137/090769156
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1145/3490148.3538552
https://doi.org/10.1145/3490148.3538552
https://doi.org/10.1147/rd.395.0575
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1109/SC41404.2022.00033
https://doi.org/10.1145/3373376.3378515

and optimizing remote persistent memory with RDMA

and NVM. In Proc. the 2021 USENIX Annual Technical

Conference, Jul. 2021, pp.523–536.

 Taranov K, Rothenberger B, De Sensi D, Perrig A, Hoe-

fler T. NeVerMore: Exploiting RDMA mistakes in NVMe-

oF storage applications. In Proc. the 2022 ACM SIGSAC

Conference on Computer and Communications Security,

Nov. 2022, pp.2765–2778. DOI: 10.1145/3548606.3560568.

[14]

 Carson E, Demmel J, Grigori L, Knight N, Koanantakool

P, Schwartz O, Simhadri H V. Write-avoiding algorithms.

Technical Report UCB/EECS-2015-163, EECS Depart-

ment, University of California, 2015. http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html,

May 2025.

[15]

 Gu Y. Write-efficient algorithms [Ph. D. Thesis]. Carnegie

Mellon University, Pittsburgh, 2018.

[16]

 Carson E C, Demmel J, Grigori L, Knight N, Koanan-

takool P, Schwartz O, Simhadri H V. Write-avoiding al-

gorithms. In Proc. the 2016 IEEE International Parallel

and Distributed Processing Symposium, May 2016,

pp.648–658. DOI: 10.1109/IPDPS.2016.114.

[17]

 Demmel J, Eliahu D, Fox A, Kamil S, Lipshitz B,

Schwartz O, Spillinger O. Communication-optimal paral-

lel recursive rectangular matrix multiplication. In Proc.

the 27th IEEE International Symposium on Parallel and

Distributed Processing, May 2013, pp.261–272. DOI: 10.

1109/IPDPS.2013.80.

[18]

 Frigo M, Leiserson C E, Prokop H, Ramachandran S.

Cacheoblivious algorithms. In Proc. the 40th Annual

Symposium on Foundations of Computer Science, Oct.

1999, pp.285–298. DOI: 10.1109/SFFCS.1999.814600.

[19]

 Ballard G, Demmel J, Holtz O, Lipshitz B, Schwartz O.

Communication-optimal parallel algorithm for Strassen’s

matrix multiplication. In Proc. the 24th Annual ACM

Symposium on Parallelism in Algorithms and Architec-

tures, Jun. 2012, pp.193–204. DOI: 10.1145/2312005.

2312044.

[20]

 Ballard G, Buluç A, Demmel J, Grigori L, Lipshitz B,

Schwartz O, Toledo S. Communication optimal parallel

multiplication of sparse random matrices. In Proc. the

25th Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures, Jul. 2013, pp.222–231. DOI: 10.

1145/2486159.2486196.

[21]

 Ruan C, Zhang Y, Bi C, Ma X, Chen H, Li F, Yang X, Li

C, Aboulnaga A, Xu Y. Persistent memory disaggrega-

tion for cloud-native relational databases. In Proc. the

28th ACM International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, Mar. 2023, pp.498–512. DOI: 10.1145/3582016.

3582055.

[22]

 Yang C Q, Miller B P. Critical path analysis for the exe-

cution of parallel and distributed programs. In Proc. the

8th International Conference on Distributed, Jun. 1988,

pp.366–373. DOI: 10.1109/DCS.1988.12538.

[23]

 Hua Q S, Qian L, Yu D, Shi X, Jin H. A nearly optimal[24]

distributed algorithm for computing the weighted girth.

Science China Information Sciences, 2021, 64(11): 212101.

DOI: 10.1007/s11432-020-2931-x.

 Jia L, Hua Q S, Fan H, Wang Q, Jin H. Efficient dis-

tributed algorithms for holistic aggregation functions on

random regular graphs. Science China Information Sci-

ences, 2022, 65(5): 152101. DOI: 10.1007/s11432-020-

2996-2.

[25]

 Chan E, Heimlich M, Purkayastha A, van De Geijn R.

Collective communication: Theory, practice, and experi-

ence. Concurrency and Computation: Practice and Expe-

rience, 2007, 19(13): 1749–1783. DOI: 10.1002/cpe.1206.

[26]

 Thakur R, Rabenseifner R, Gropp W. Optimization of

collective communication operations in MPICH. The In-

ternational Journal of High Performance Computing Ap-

plications, 2005, 19(1): 49–66. DOI: 10.1177/

1094342005051521.

[27]

 Hutter E, Solomonik E. Communication-avoiding

CholeskyQR2 for rectangular matrices. In Proc. the 2019

IEEE International Parallel and Distributed Processing

Symposium, May 2019, pp.89–100. DOI: 10.1109/IPDPS.

2019.00020.

[28]

 Hong J W, Kung H T. I/O complexity: The red-blue peb-

ble game. In Proc. the 13th Annual ACM Symposium on

Theory of Computing, May 1981, pp.326–333. DOI: 10.

1145/800076.802486.

[29]

 Loomis L H, Whitney H. An inequality related to the

isoperimetric inequality. Bulletin of the American Mathe-

matical Society, 1949, 55(10): 961–962. DOI: 10.1090/

S0002-9904-1949-09320-5.

[30]

 Choi J, Dongarra J J, Pozo R, Walker D W. ScaLA-

PACK: A scalable linear algebra library for distributed

memory concurrent computers. In Proc. the 4th Sympo-

sium on the Frontiers of Massively Parallel Computation,

Oct. 1992, pp.120–127. DOI: 10.1109/FMPC.1992.234898.

[31]

 Kwasniewski G, Kabić M, Besta M, VandeVondele J,

Solcà R, Hoefler T. Red-blue pebbling revisited: Near op-

timal parallel matrix-matrix multiplication. In Proc. the

2019 International Conference for High Performance Com-

puting, Networking, Storage and Analysis, Nov. 2019, Ar-

ticle No. 24. DOI: 10.1145/3295500.3356181.

[32]

 Song Y, Kim W H, Monga S K, Min C, Eom Y I. Prism:

Optimizing key-value store for modern heterogeneous

storage devices. In Proc. the 28th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, Mar. 2023,

pp.588–602. DOI: 10.1145/3575693.3575722.

[33]

 Demmel J, Hoemmen M, Mohiyuddin M, Yelick K.

Avoiding communication in sparse matrix computations.

In Proc. the 2008 IEEE International Symposium on Par-

allel and Distributed Processing, Apr. 2008. DOI: 10.

1109/IPDPS.2008.4536305.

[34]

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories 19

https://doi.org/10.1145/3548606.3560568
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
https://doi.org/10.1109/IPDPS.2016.114
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/2312005.2312044
https://doi.org/10.1145/2312005.2312044
https://doi.org/10.1145/2486159.2486196
https://doi.org/10.1145/2486159.2486196
https://doi.org/10.1145/3582016.3582055
https://doi.org/10.1145/3582016.3582055
https://doi.org/10.1109/DCS.1988.12538
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1109/IPDPS.2019.00020
https://doi.org/10.1109/IPDPS.2019.00020
https://doi.org/10.1145/800076.802486
https://doi.org/10.1145/800076.802486
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1109/FMPC.1992.234898
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3575693.3575722
https://doi.org/10.1109/IPDPS.2008.4536305
https://doi.org/10.1109/IPDPS.2008.4536305

Lin Zhu is currently pursuing his

Ph.D. degree in computer science from

Huazhong University of Science and

Technology, Wuhan. His research in-

terests include parallel algorithms and

distributed computing.

Qiang-Sheng Hua received his B.S.

and M.S. degrees in computer science

from Central South University,

Changsha, in 2001 and 2004, respec-

tively, and his Ph.D. degree in com-

puter science from The University of

Hong Kong, Hong Kong, in 2009. He

is currently a professor with Huazhong University of Sci-

ence and Technology, Wuhan. He is interested in the al-

gorithmic aspects of parallel and distributed computing.

Hai Jin is a Chair Professor of

Computer Science and Engineering at

Huazhong University of Science and

Technology, Wuhan. Jin received his

Ph.D. degree in computer engineering

from Huazhong University of Science

and Technology, Wuhan, in 1994. His

research interests include computer architecture, virtual-

ization technology, distributed computing, big data pro-

cessing, network storage, and network security.

20 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

	1 Introduction
	2 Related Work
	3 Theoretical Cost Model
	4 Joint-Communication in SPM
	5 Joint Cost Lower Bound in APM
	5.1 Vertical Cost Lower Bound
	5.2 Vertically Optimal Cannot be Horizontally Optimal
	5.3 Joint Cost Lower Bound
	5.3.1 Joint-Cost Lower Bound with Enough Memory
	5.3.2 Joint Cost Lower Bound with Limited Memory

	6 Memory and Dimensions Analysis
	6.1 Joint Cost Function
	6.2 Memory Analysis
	6.3 Matrix Dimensions Optimization

	7 Joint-Communication Optimal Algorithm
	7.1 Enough Memory
	7.1.1 Data Layout
	7.1.2 Scheduling
	7.1.3 Joint-Communication Cost of EM-JOMMA

	7.2 Limited Memory
	7.2.1 Data Layout
	7.2.2 Scheduling
	7.2.3 Joint Communication Cost of LM-JOMMA

	8 Evaluation
	9 Conclusion
	Conflict of Interest
	References

