
Zhu L, Hua QS, Jin H. Joint-Communication Optimal Matrix Multiplication with Asymmetric Memories. Journal of
computer science and technology: Instruction for authors. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
33(1): 1–23 November 2023. DOI:...]

Joint-Communication Optimal Matrix Multiplication with
Asymmetric Memories

Lin Zhu (朱 琳), Member, CCF, Qiang-Sheng Hua∗ (华强胜), Member, CCF, IEEE, and
Hai Jin (金 海), Fellow, CCF, IEEE, Life Member, ACM

National Engineering Research Center for Big Data Technology and System, Huazhong University of Science and
Technology Wuhan 430074, China
Services Computing Technology and System Laboratory, Huazhong University of Science and Technology, Wuhan 430074
China
Cluster and Grid Computing Lab, Huazhong University of Science and Technology, Wuhan 430074, China

E-mail: linzhu@hust.edu.cn; qshua@hust.edu.cn; hjin@hust.edu.cn

Received ..., 2023 [Month Day, Year]; accepted October ..., ... [Month Day, Year].

Abstract Emerging hardware like non-volatile memory (NVM) and high-speed network interface cards are
promising to improve the performance of matrix multiplication. However, a critical challenge in achieving high per-
formance is in accounting for the tradeoff between horizontal communication (data movement between processors)
and vertical communication (data movement across memory hierarchies).

In this paper, we provide an analysis in the distributed memory parallel model with additional consideration for
communication between main memory and cache. We measure joint-communication as the sum of the horizontal
bandwidth cost and vertical bandwidth cost, and study the joint-communication cost of square matrix multiplication
in the read-write symmetric setting (such as DRAM) and asymmetric setting (such as NVM). Specifically, we
identify that in the symmetric setting, a joint-communication optimal algorithm can be directly obtained by
combining the horizontally optimal and vertically optimal algorithms. We also identify that in the asymmetric
setting, horizontal and vertical communications cannot be optimal at the same time, which means that there is a
tradeoff between the two communications. In this case, we first present a joint-communication lower bound, then
we propose JOMMA, a parallel matrix multiplication algorithm whose joint-communication complexity meets the
lower bound. The key idea behind JOMMA is to derive optimal matrix dimensions that each processor locally
performs, which leads to determining the processor grid and an optimal schedule.

Keywords distributed algorithms, matrix multiplication, read-write asymmetric memory, vertical communication, hori-
zontal communication

1 Introduction

Matrix multiplication is one of the most fundamen-

tal problems in numerical linear algebra, scientific com-

puting, and high-performance computing. The increas-

ing demands in large-scale data storage and fast pro-

cessing invoke the unique question of how to design

efficient parallel matrix multiplication, where commu-

nication cost quickly becomes the bottleneck.

Fortunately, emerging networking and storage tech-

nologies, such as InfiniBand and non-volatile memory

(NVM), bring a new opportunity to achieve this goal:

Regular Paper
The work was supported in part by National Key Research and Development Program of China under Grant No. 2022ZD0115301,

and National Natural Science Foundation of China under Grant Nos. 61972447 and 61832006.
∗Corresponding Author
©Institute of Computing Technology, Chinese Academy of Sciences 2023

2 J. Comput. Sci. & Technol., November 2023, Vol., No.

NVM can provide data persistence while achieving com-

parable performance and higher density than dynamic

random access memory (DRAM). Despite these useful

properties, one characteristic of the NVM technologies

is that writing to memory is more expensive than read-

ing from it both in terms of time and energy. Ad-

ditionally, the latest released 50 GB/s InfiniBand net-

work 1⃝ delivers sub-microsecond latency and extremely

high message rates. This work focuses on improving the

performance of parallel matrix multiplication with the

help of such new devices.

Parallel algorithm execution time is traditionally

divided into three components: computation (in-

cache floating-point operations), vertical communica-

tion (cache-main memory data transfer), and horizon-

tal communication (inter-processor data exchange)[1–3].

When tackling an n-by-n conventional matrix multipli-

cation problem across P processors, the total number of

floating-point operations is n3. Load-balanced parallel

algorithms evenly distribute n3/P floating-point oper-

ations to each processor. Since the number of floating-

point operations per processor is fixed, we aim to min-

imize both vertical and horizontal communication to

lower the parallel algorithm execution time.

Many of the existing parallel matrix multiplication

algorithms perform reasonably well in reducing horizon-

tal communication. SUMMA[4] is a widely used algo-

rithm for parallel matrix multiplication, and asymptot-

ically minimizes horizontal communication if assuming

no extra memory. The asymptotic horizontal communi-

cation lower bounds[5–7] and the memory-independent

communication lower bounds[8] with tight constants

have been obtained for square matrix multiplication,

suggesting that known 2D and 3D[9] algorithms only

optimize horizontal communication in certain memory

ranges. By efficiently exploiting the available memory,

the 2.5D algorithm[10] interpolates between those two

results. CA3DMM[11] is a rectangular matrix multipli-

cation parallel algorithm that is designed with a top-

down approach and has near-optimal horizontal com-

munication. Horizontal communication, however, is

not the only parameter that matters; vertical commu-

nication can often be the communication bottleneck,

especially in the distributed system with NVM and In-

finiBand network[12–14].

We consider a distributed memory parallel model

as described in Section 3, where each processor has

a two-level memory hierarchy. In addition to quanti-

fying the horizontal communication, we augment the

distributed memory model with an additional read

bandwidth cost (data movement from main memory

to cache) and write bandwidth cost (data movement

from cache to main memory) for vertical communica-

tion. Furthermore, when main memory is read-write

symmetric (such as DRAM), read and write costs are

considered equal[15, 16]. When main memory is read-

write asymmetric (such as non-volatile memory NVM),

since writing is more expensive than reading, the write

cost is typically greater than the read cost. The joint-

communication cost is measured as the sum of the verti-

cal communication cost and horizontal communication

cost, and we call an algorithm “joint-communication

optimal” if it can asymptotically attain the joint com-

munication lower bound. Similarly, “horizontally op-

timal” and “vertically optimal” refer to asymptoti-

cally minimizing horizontal communication and vertical

communication, respectively.

To minimize the joint-communication cost, a natu-

ral idea is trying to simultaneously optimize horizontal

and vertical communication. We observe that this goal

can be achieved in the read-write symmetric setting,

by independently employing the horizontally optimal

1⃝https://docs.nvidia.com/networking/display/ConnectX7VPI/Introduction, Dec 2023.

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 3

(such as 2.5D) and vertically optimal algorithms. How-

ever, when considering the more expensive writes in the

read-write asymmetric setting, a vertically optimal al-

gorithm entails the write cost reaching its lower bound,

and it can be tricky to simultaneously optimize hori-

zontal and vertical communication. Can we asymptot-

ically improve the joint-communication complexity by

exploiting the vertical-horizontal tradeoff? Can they

match the best counterpart in the asymmetric setting?

These remain to be open problems in the study of joint-

communication cost algorithms[15, 17].

In this paper, we provide the answers to these

questions. We are primarily interested in the read-

write asymmetric setting and derive lower bounds for

a variety of different cases (cf. Subsection 5.3). We

also present JOMMA (Joint-Communication Optimal

Matrix Multiplication Algorithm): an algorithm that

takes a new approach to multiply two square matrices.

JOMMA is joint-communication optimal for all combi-

nations of parameters. The key idea is to derive optimal

matrix dimensions of the subproblem that each proces-

sor locally processes, and thus find the processor grid

and an optimal schedule. This idea comes from our ob-

servation that different subproblem matrix dimensions

executed by each processor result in different horizon-

tal and vertical communications. We use the following

two methods as examples and compare the number of

words read, the number of words written, the number of

words transferred horizontally, and the main memory

requirement in Table 1.

Method 1. When using the well-known 3D algo-

rithm to solve an n-by-n square matrix multiplication

AB = C on P processors, each processor locally com-

putes one subproblem A′B′ = C ′, where A′,B′,C ′

are (n/P 1/3) × (n/P 1/3) submatrices of A,B,C. To

compute the subproblem, each processor needs to ac-

cess the submatrices A′ and B′ from other proces-

sors, which results in O(n2/P 2/3) horizontal commu-

nication. In the local calculation of A′B′ = C ′, the

cache reads data from main memory to perform the

calculation and writes the result back to main mem-

ory. Since the size of the output matrix C ′ is n2/P 2/3,

O(n3/(PS1/2)) reads and O(n2/P 2/3) writes are re-

quired to execute each subproblem using Algorithm 1

(S is the cache size). Note that the size of the input

and output matrices cannot exceed the main memory

size per processor, hence the main memory size is at

least |A′|+ |B′|+ |C ′| = 3n2/P 2/3, i.e., Ω(n2/P 2/3).

Method 2. Considering the subproblem executed

by each processor is A′B′ = C ′, where A′ is an

(n/P 1/2) × n submatrix, B′ is an n × (n/P 1/2) sub-

matrix, and C ′ is an (n/P 1/2) × (n/P 1/2) subma-

trix. Then A′ and B′ are accessed by each proces-

sor and C ′ is written to main memory, hence this

approach requires O(n2/P 1/2) horizontal communica-

tion, O(n3/(PS1/2)) reads (by using Algorithm 1), and

O(n2/P) writes. The main memory size is at least

|A′|+ |B′|+ |C ′| = 2n2/P 1/2+n2/P , i.e., Ω(n2/P 1/2).

From Table 1, we can see that, compared with

Method 1, Method 2 has a lower vertical communica-

tion at the cost of a higher horizontal communication,

which exhibits the horizontal-vertical tradeoff. On a

parallel machine where writes are expensive, to mini-

mize the joint communication cost, we can reduce ver-

tical writes in the first place. Conversely, if horizontal

transfers are expensive, we reduce inter-processor com-

munication in the first place. In addition, the limitation

imposed by main memory size on matrix dimensions in-

creases the complexity of algorithm design. For exam-

ple, Method 1 is only applicable when the main memory

size is Ω(n2/P 2/3). In this paper, we investigate how

to asymptotically minimize the sum of horizontal and

vertical costs for all combinations of parameters.

Contributions. Our main contribution is a new al-

4 J. Comput. Sci. & Technol., November 2023, Vol., No.

Table 1. Comparison of Word Movement Between Method 1 and Method 2

No. Matrix Dimension Horizontal I/O Vertical Reads Vertical Writes Main Memory Size
1 n/P 1/3, n/P 1/3, n/P 1/3 O(n2/P 2/3) O(n3/(PS1/2)) O(n2/P 2/3) Ω(n2/P 2/3)

2 n/P 1/2, n, n/P 1/2 O(n2/P 1/2) O(n3/(PS1/2)) O(n2/P) Ω(n2/P 1/2)

gorithm called Joint-communication Optimal Matrix

Multiplication Algorithm, or JOMMA, which mini-

mizes the joint communication complexity by trading

off horizontal and vertical communications. We also

prove the first joint communication lower bound for

classical matrix multiplication under the asymmetric

memory model in various situations, which indicates

that JOMMA is asymptotically joint-communication

optimal.

Paper Organization. We first introduce related work

in Section 2 and present the system model in Section

3. Next, in Section 4, we demonstrate the simultane-

ous achievement of horizontal optimality and vertical

optimality for symmetric memory. However, in Section

5, we prove that achieving horizontal and vertical op-

timality simultaneously is not possible and provide the

corresponding joint-communication lower bounds. To

optimize the joint communication, we derive optimal

matrix dimensions that each processor locally performs

in Section 6 and propose the JOMMA algorithm in Sec-

tion 7. In Section 8, we compare the performance of

JOMMA with state-of-the-art algorithms. Finally, we

conclude our paper in Section 9.

2 Related Work

The most related work on this topic is that of Car-

son et al.[17] which shows that it is impossible to at-

tain lower bounds both on interprocessor communica-

tion and on writes to local memory. Based on asym-

metric memories, Carson et al.[17] also gave the hori-

zontally optimal algorithm (2.5DMML3ooL2) and the

write-optimal algorithm (SUMMAL3ooL2). However,

two issues remain to be solved. The first is whether

there is a general lower bound that shows how these

two communications tradeoff against one another, and

the second is whether there is an algorithm that can ex-

hibit the tradeoff and asymptotically attains the lower

bound. In the read-write symmetric setting, to solve

the symmetric eigenvalue problem, Solomonik et al.[1]

proposed a matrix multiplication subroutine by nat-

urally combining the horizontally[18] and vertically[19]

optimal algorithms. It can be found that this subrou-

tine is joint-communication optimal in the read-write

symmetric setting, while it is not optimal in the case

of asymmetric memories. Solomonik et al.[20] derived

the tradeoffs between synchronization, bandwidth, and

computational cost, while the authors did not consider

data movement between levels of the memory hierar-

chy.

There is also some work focusing on minimizing the

vertical communication of sequential matrix multipli-

cation algorithms under asymmetric memories. Carson

et al.[17] proposed the “write-avoiding” concept, which

minimizes writes without increasing reads. Gu[16] pro-

posed the “write-efficiency” concept for cache-oblivious

matrix multiplication, which can reduce the write cost

by increasing the reading. In our work, we do not

merely consider the sequential cost. Instead, we focus

on minimizing the joint cost by studying the tradeoff

between writing and horizontal communication.

3 Theoretical Cost Model

We model communication of the distributed mem-

ory parallel system[21, 22] as follows. We assume the sys-

tem has P processors, which are connected via a fully-

connected network. As shown in Fig.1(a) and Fig.1(b),

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 5

each processor has a two-level memory hierarchy, i.e., a

small cache of size S, and a large main memory of size

M (symmetric memory DRAM or asymmetric mem-

ory NVM). A single processor can only send/receive a

message to/from one processor at a time. The data

movement in this parallel model can be divided into

two categories: vertical data movement across memory

hierarchy, or horizontal data movement between pro-

cessors. For vertical data movement, we define r to be

the cost of moving a word between cache and DRAM.

In addition, we define r to be the cost of reading a

word from NVM to cache and ω (ω > r) to be the cost

of writing a word from cache to NVM. For horizontal

data movement, we define β to be the cost of moving a

word between processors (Fig.1(c)). Note that ω may

be greater than β. For example, the write bandwidth of

NVM for the existing architecture PilotDB is from 0.2

GB/s to 1.5 GB/s[23], while the network bandwidth of

the latest InfiniBand architecture is 50 GB/s. We sum-

marize all the notations and their definitions in Table

2.

DRAM

(a)

CPU
Cache

NVM NVM

CPU
Cache

NVM

CPU
Cache

NVM

(c)

Send/Receive Cost:

NVM

(b)

Read Cost:

CPU
Cache

Cache
CPU

Write Cost:Read Cost: Write Cost:

Cache
CPU

Fig.1. Memory models for sequential and parallel algorithms.
(a) Symmetric memory model for sequential algorithms. (b)
Asymmetric memory model for sequential algorithms. (c) Dis-
tributed asymmetric memory model for parallel algorithms.

We denote the number of words read, written, and

transferred horizontally as Br, Bw, and Bh, respec-

tively. We measure the joint communication cost Q

in terms of the bandwidth (the number of words) along

the critical path as defined in [24]. Specifically, we call

the symmetric memory parallel model SPM and de-

fine r(Br + Bw) + βBh to be the joint communication

cost in SPM. We call the asymmetric memory parallel

model APM and define rBr + ωBw + βBh to be the

joint communication cost in APM. Our model is sim-

ilar to [15, 17], while [1] takes into account not only

communication but also computation, and [25, 26] only

considers horizontal communication. Throughout the

paper, we require that the data layout of the input ma-

trices and output matrix are evenly distributed among

the main memory of P processors for load balancing

(M ≥ 3n2/P).

There are five well-known collective communication

operations[27, 28] used heavily in our algorithm.

• Gather(Π(A),Π(X), i, P:jk): all processors in

P:jk contribute local arrays Π(A) to processor Pijk as

local array Π(X).

• Broadcast(Π(A),Π(X), k, Pij:): root processor

Pijk distributes local array Π(A) to every processor

in Pij: as local array Π(X).

• Allgather(Π(A),Π(X), P:jk): the local arrays

Π(A) contributed by each processor in P:jk are gath-

ered, and the result is broadcast to all processors Pijk

as Π(X).

• Reduce(Π(A),Π(X), j, Pi:k): all processors in

Pi:k contribute local arrays Π(A) to an element-wise

reduction onto root processor Pijk as local array Π(X).

• Shift(Π(B), s, Px, P:jk): each processor Pijk sends

local array Π(B) to Pi′jk via point-to-point communi-

cation, where i′ = (i+ s) mod Px.

The costs of these operations can be obtained by a

binomial tree or butterfly schedule[28, 29]. We summa-

rize the costs in Table 3, where n words of data are

being communicated across P processors.

6 J. Comput. Sci. & Technol., November 2023, Vol., No.

Table 2. Notations and Their Definitions

Type Symbol Definition

Matrix

n Matrix dimension of the initial matrix multiplication problem
d1, d2, d3 Matrix dimensions of subproblem solved on a processor
A,B Input matrices
C = AB Output matrix

Configurations

P Number of processors
M Size of main memory (M ≥ 3n2/P)

S Size of cache

r
Cost of moving a word between cache and DRAM
Cost of reading a word from NVM to cache

ω Cost of writing a word from cache to NVM
β Cost of moving a word between processors

Cost

Br Number of words moved from main memory to cache
Bw Number of words moved from cache to main memory
Bh Number of words moved between processors
Q Joint communication cost

Schedules

Px, Py , Pz Dimensions of the processor grid
Pijk Per processor index
Pij: Processor group {Pij1, Pij2, ..., PijPz}
Π(A),Π(B) Local submatrices of A and B on a processor

Table 3. Bandwidth Costs of Communication Operations

TGather(n, P) TBroadcast(n, P) TReduce(n, P) TAllgather(n, P) TShift(n, P)

βn 2βn 2βn βn βn

4 Joint-Communication in the SPM

In the symmetric memory parallel model, by inde-

pendently employing some well-known horizontally and

vertically optimal matrix multiplication algorithms, we

give asymptotically tight joint-communication upper

and lower bounds in this section.

Lemma 1[18]. For a parallel square matrix multi-

plication AB = C solved on P processors, where A,

B, and C are n×n matrices, at least Ω(n3/(PM1/2)+

n2/P 2/3) words need to be moved between processors.

Many algorithms can asymptotically attain the hor-

izontal lower bound, such as 2D[4], 2.5D[10], 3D[9], and

CARMA[18] algorithms. The 2.5D and CARMA are

horizontally optimal for any memory size, while 2D and

3D are optimal for M = Θ(n2/P) and M = Ω(n2/P 2/3)

respectively. To compute AB = C in parallel, these

algorithms usually decompose the initial problem into

multiple subproblems A′B′ = C ′ that are executed in

parallel on P processors, where A′ is a d1 × d2 matrix,

B′ is a d2× d3 matrix, and C ′ is a d1× d3 matrix. For

example, 2D decomposes the n-by-n matrix multipli-

cation problem into P 3/2 square matrix multiplication

subproblems with matrix dimensions d1 = d2 = d3 =

n/P 1/2, and each processor solves P 1/2 subproblems.

To sequentially solve a matrix multiplication sub-

problem A′B′ = C ′ on a single processor, where

A′ ∈ Rd1×d2 , B′ ∈ Rd2×d3 , C ′ ∈ Rd1×d3 , at least

Ω(d1d2d3/S
1/2) words need to be moved between cache

and main memory[30]. The well-known Vertically Op-

timal Matrix Multiplication algorithm VOMM is de-

scribed in Algorithm 1. The number of words read is

2
√
3d1d2d3/S

1/2 and the number of words written is

d1d3.

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 7

Algorithm 1 VOMM
Require: A ∈ Rd1×d2 ; B ∈ Rd2×d3

Ensure: C = AB ∈ Rd1×d3

1: b =
√

S
3 ▷ divide A, B, and C into blocks of

size b× b
2: for i = 1 to d1/b do
3: for j = 1 to d3/b do
4: Initialize Cij in cache as a b× b zero matrix
5: for k = 1 to d2/b do
6: Load Aik, Bkj into cache
7: Cij = Cij +AikBkj

8: end for
9: Store block Cij in main memory

10: end for
11: end for

Proposition 1. For a parallel square matrix mul-

tiplication AB = C performed on P processors, where

A, B, and C are n × n matrices, there exists a pro-

cessor such that the word transfer between cache and

memory is at least Ω(n3/(PS1/2)).

Proof. For a parallel matrix multiplication AB =

C solved on P processors, suppose a processor performs

|V | arithmetic operations, then at least Ω(|V |/S1/2)

words need to be moved between cache and main mem-

ory[6], i.e., Br+Bw = Ω(|V |/S1/2). Note that the total

number of arithmetic operations to compute AB = C

is n3, where A,B,C ∈ Rn×n. According to the pigeon-

hole principle, at least one processor performs at least

n3/P arithmetic operations. Thus, for such a processor,

we have Br +Bw = Ω(n3/(PS1/2)).

Since the horizontal/vertical costs of an algorithm

cannot be asymptotically lower than the horizon-

tal/vertical lower bounds, a trivial joint communication

lower bound can be obtained by combining the horizon-

tal and vertical lower bounds. In other words, an algo-

rithm is joint-communication optimal if it achieves both

the horizontal and vertical cost lower bounds. As the

following Lemma 2 shows, this kind of algorithm can

be directly obtained by combining the horizontally op-

timal algorithm and the sequential VOMM algorithm.

Lemma 2. In the SPM, a joint communication op-

timal algorithm can be obtained by combining the paral-

lel 2.5D algorithm and the sequential VOMM algorithm.

Proof. From the analysis in [10], to solve

An×nBn×n = Cn×n in parallel on P processors,

the 2.5D algorithm decomposes it into P 3/2/c3/2

subproblems with problem size n
√
c/
√
P , where

c = min(P 1/3,
√
PM/n). Each processor handles

P 3/2/(Pc3/2) subproblems and applies the sequential

VOMM algorithm to solve each subproblem. Accord-

ing to the analysis in Section 4, the number of words

read and written when using VOMM to solve each

subproblem is O((n
√
c/
√
P)3/S1/2). Therefore, for

each processor, the total number of words read and

written is (P 3/2/(Pc3/2)) × O((n
√
c/
√
P)3/S1/2), i.e.,

O(n3/(P
√
S)). From Proposition 1, this vertical com-

munication asymptotically reaches the vertical lower

bound. Additionally, as the 2.5D algorithm is hori-

zontally optimal, it attains the horizontal communica-

tion’s lower bound. As a result, the proposed algorithm

achieves joint-communication optimality by satisfying

both horizontal and vertical cost lower bounds.

For the read-write symmetric memory model, since

the costs of writing and reading are both r, Bw =

O(Br) can achieve the asymptotic optimal vertical cost

(rBr + rBw). However, when writing is much more ex-

pensive than reading, only less writing meets the verti-

cal optimum. Therefore, the joint-communication op-

timal algorithm under the symmetric memory model

may not be optimal for asymmetric memories.

5 Joint Cost Lower Bound in the APM

In this section, we discuss the joint communication

cost lower bound in the asymmetric memory model. We

8 J. Comput. Sci. & Technol., November 2023, Vol., No.

first give a lower bound of the vertical cost (Lemma

3). Then we show that the horizontal and vertical op-

timalities cannot be achieved simultaneously (Lemma

5), which indicates that the trivial lower bound by nat-

urally combining the horizontal lower bound and the

vertical lower bound is not tight. Finally, we derive

tighter joint communication lower bounds (Theorem 1

and Theorem 2).

5.1 Vertical Cost Lower Bound

Lemma 3. In the APM, the vertical communi-

cation lower bound for square matrix multiplication is

Ω(n3r/(PS1/2) + n2ω/P).

Proof. From Proposition 1, we have Br + Bw =

Ω(n3/(PS1/2)). As presented in Section 3, in the

APM, the vertical cost is defined as rBr + ωBw. As

ω > r, it follows that rBr + ωBw > r(Br + Bw) =

Ω(n3r/(PS1/2)). Since the output matrix, of size n2,

is eventually evenly distributed among P processors,

the minimum number of words written per processor

is n2/P , which implies Bw ≥ n2/P . Therefore, we

have rBr + ωBw ≥ max(n3r/(PS1/2), n2ω/P), i.e.,

Ω(n3r/(PS1/2) + n2ω/P).

5.2 Vertically Optimal Cannot be Horizontally
Optimal

This conclusion is based on the inequality pro-

posed by Loomis and Whitney[31], which describes the

surface-to-volume relationship. For n-by-n matrix mul-

tiplication, there are n3 arithmetic operations, which

may be arranged into a cube V of size n × n × n with

the matrices A, B, and C as its faces. The point at

location (i, j, k) in the cube corresponds to the scalar

multiplication AikBkj . Let V ⊂ V denote the arith-

metic operations performed by a processor, then the

projections of V onto three faces correspond to the in-

put entries of A and B that are necessary to perform

V and the output entries of C which are updated. The

Loomis-Whitney inequality relates the volume of V to

its projections.

Lemma 4[31]. Let V ⊂ R3 be a finite set of lattice

points and each point (x, y, z) with integer coordinate.

Let Vx be the orthogonal projection of vector space V

onto the y×z plane, defined as the set of all points (y, z)

for which there exists an x such that (x, y, z) ∈ V . The

definition of Vy and Vz is similar. Let | · | denote the

cardinality of a set, then |V | ≤
√
|Vx| × |Vy| × |Vz|.

Lemma 5. In the APM, a vertically optimal algo-

rithm cannot be horizontally optimal.

Proof. To solve the matrix multiplication

An×nBn×n = Cn×n on a distributed system with P

processors, each processor must have a main memory

size of at least M = Ω(n2/P) to evenly store the initial

input matrices. Given a vertically optimal algorithm,

according to Lemma 3, we have Bw = Θ(n2/P) for this

algorithm. Moreover, by the pigeonhole principle, there

exists a processor that performs at least n3/P arith-

metic operations, i.e., |V | ≥ n3/P . For this processor,

since each entry of C in Vz is updated and must be

written to NVM at least once, we get |Vz| ≤ Bw, i.e.,

O(n2/P). From Lemma 4, we have |Vx||Vy| ≥ |V |2/|Vz|

and hence max{|Vx|, |Vy|} = Ω(n2/P 1/2), which means

that the processor must access at least Ω(n2/P 1/2)

entries of A or B. Since each processor initially

has n2/P entries of A and B, there are at least

Ω(n2/P 1/2) entries that need to be accessed from

other processors. That is, the horizontal word trans-

fer is at least Ω(n2/P 1/2), which is asymptotically

higher than the horizontal word transfer lower bound

Ω(n3/(PM1/2)+n2/P 2/3) (M = Ω(n2/P)). Therefore,

a vertically optimal algorithm cannot be horizontally

optimal.

Note that Theorem 3 in [17] gives a similar conclu-

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 9

sion that a horizontally optimal algorithm cannot be

vertically optimal.

5.3 Joint Cost Lower Bound

By Lemma 1, the number of words moved horizon-

tally is at least Ω(n3/(PM1/2) + n2/P 2/3). Accord-

ingly, the horizontal lower bound can be divided into

two scenarios depending on the main memory size.

• When M = Ω(n2/P 2/3), we have n3/(PM1/2) =

O(n2/P 2/3) and hence Bh is at least Ω(n2/P 2/3).

• When M = O(n2/P 2/3), we have n3/(PM1/2) =

Ω(n2/P 2/3) and hence Bh is at least Ω(n3/(PM1/2)).

Similarly, we divide the joint cost lower bound into

two scenarios for discussion depending on the main

memory size.

•When M = Ω(n2/P 1/2), we call “enough memory

scenario” and discuss this case in Subsection 5.3.1.

•When M = O(n2/P 1/2), we call “limited memory

scenario” and discuss this case in Subsection 5.3.2.

Subsection 6.2 explains why this category is chosen.

5.3.1 Joint Cost Lower Bound with Enough Memory

In enough memory scenario (M = Ω(n2/P 1/2)), by

Lemma 1, the number of words transferred horizon-

tally is at least Ω(n2/P 2/3). From Lemma 3, the trivial

joint-cost lower bound (sum of the horizontal and ver-

tical lower bounds) is Ω(n2β
P 2/3 +

n3r
PS1/2 +

n2ω
P). However,

as discussed above, this lower bound is loose for asym-

metric memories. A tighter lower bound is proven in

Theorem 1.

Theorem 1. Let Q be the joint communication

cost for solving An×nBn×n = Cn×n in the APM with

enough memory. When 2ω/β ≤ 1, Q has a lower bound

of Ω(n2β
P 2/3 +

n3r
PS1/2). For the range 1 < 2ω/β < P 1/2, the

lower bound of Q is Ω(n
2β2/3ω1/3

P 2/3 + n3r
PS1/2). If 2ω/β ≥

P 1/2, then Q has a lower bound of Ω(n3r
PS1/2 + n2ω

P).

Proof. In the enough memory scenario (M =

Ω(n2/P 1/2)), we categorize the lower bound into three

cases according to the value of 2ω/β. The value of 2ω/β

is chosen based on the divide-and-conquer BFS/DFS

approach[18]. Briefly, during the recursive decomposi-

tion of the initial problem, we trade off the horizontal

and vertical costs by setting a parameter d and split

the largest of d1, d2/d, d3 (subproblem size) in half at

each recursion. By calculation, a joint cost function

concerning d can be obtained, which is minimized at

d = 2ω/β. Considering that d ≤ 1 is the horizontal

optimal scenario and d ≥ P 1/2 is the vertical optimal

scenario, we discuss the following three cases based on

the size of 2ω/β and 1, P 1/2. The interested readers

can refer to [18] for more details of the above approach.

1) 2ω/β ≤ 1. In this case, by 2ω/β ≤ 1, we derive

the Ω(n2β
P 2/3 +

n3r
PS1/2) lower bound directly from the

trivial joint-cost lower bound of Ω(n2β
P 2/3 +

n3r
PS1/2 +

n2ω
P).

2) 1 < 2ω/β < P 1/2. By the pigeonhole principle,

there exists a processor performing at least |V | ≥

n3/P arithmetic operations, which holds for any

parallel matrix multiplication algorithm. With-

out loss of generality, we assume that, for this

processor, the number of words written is Bw =

cn2/P , where c > 0. Subsequently, based on

Lemma 3 and Bw = cn2/P , we ascertain that the

vertical cost is bounded by Ω(rn3

PS1/2 +
ωcn2

P). Ad-

ditionally, for this processor, as each output entry

of Vz gets updated and must be written to NVM

at least once, we deduce |Vz| ≤ Bw = cn2/P .

Leveraging Lemma 4, we infer that |Vx| × |Vy| ≥

|V |2/|Vz| and thus max{|Vx|, |Vy|} ≥ n2/(cP)1/2,

which means that this processor needs to get at

least n2/(cP)1/2 entries of A or B. Subsequently,

we delineate two cases, contingent upon the value

of c.

10 J. Comput. Sci. & Technol., November 2023, Vol., No.

a) 0 < c < P . Since each processor initially

owns n2/P entries of A and B, for this

processor, the number of entries that need

to be accessed from other processors is at

least n2/(cP)1/2−n2/P , i.e., Ω(n2/(cP)1/2).

Therefore, Bh = Ω(n2/(cP)1/2), and the

joint communication cost is Q = Ω(n2β
(cP)1/2

+

n3r
PS1/2 + cn2ω

P). It can be found that Q is a

function on c. By derivation, this function is

minimized when c∗ = arg minQ = P 1/3β2/3

(2ω)2/3
.

Therefore, Q = Ω(n
2β2/3ω1/3

P 2/3 + n3r
PS1/2).

b) c ≥ P . From c ≥ P , 2ω/β > 1, and

the trivial joint cost lower bound Q =

Ω(n2β
P 2/3 + n3r

PS1/2 + cn2ω
P), we have cn2ω/P ≥

n2ω > n2β/2 ≥ n2β/2P 2/3. Therefore,

Q = Ω(n3r
PS1/2 + n2ω).

Any matrix multiplication algorithm falls into ei-

ther case a or case b. Thus, we determine the joint

cost lower bound by selecting the minimum value

of Q in case a and case b. Since 2ω/β > 1, we

have n2β2/3ω1/3

P 2/3 = O(n2ω
P 2/3) = O(n2ω). Therefore,

Q = Ω(n
2β2/3ω1/3

P 2/3 + n3r
PS1/2).

3) 2ω/β ≥ P 1/2. In this case, by 2ω/β ≥ P 1/2, the

lower bound of Ω(n3r
PS1/2 +

n2ω
P) can be derived di-

rectly from the trivial joint cost lower bound of

Ω(n2β
P 2/3 + n3r

PS1/2 + n2ω
P).

In the enough memory scenario, the joint

communication costs of the horizontally optimal

(2.5DMML3ooL2) and vertically optimal (SUM-

MAL3ooL2) algorithms are given in Table 4, which

shows that neither algorithm can attain the joint cost

lower bound in general.

5.3.2 Joint Cost Lower Bound with Limited Memory

Note that any matrix multiplication algorithm that

can be executed in the limited memory scenario can also

be executed in the enough memory scenario. Therefore,

the joint cost lower bound in the enough memory sce-

nario also holds in the limited memory scenario. How-

ever, this lower bound might not be tight in the lim-

ited memory scenario, thus more refined analyses are

needed. We give a tight joint cost lower bound in the

limited memory scenario in Theorem 2.

Theorem 2. Let Q be the joint communication cost

for solving An×nBn×n = Cn×n in the APM with lim-

ited memory. When ω/β ≤ 1, Q is lower-bounded by

Ω(β(n3

PM1/2 +
n2

P 2/3)+
n3r

PS1/2). For 1 < ω/β < n2/M , Q

has a lower bound of Ω(n
3(βω)1/2

PM1/2 + n3r
PS1/2). When ω/β ≥

n2/M , Q exhibits a lower bound of Ω(n2ω
P + n3r

PS1/2).

Proof. In the limited memory scenario (M =

O(n2/P 1/2)), we classify the lower bound into three cat-

egories based on the value of ω/β, following a method-

ology similar to that presented in Theorem 1.

1) ω/β ≤ 1. In this case, by ω/β ≤ 1, the

Ω(β(n3

PM1/2 + n2

P 2/3) +
n3r

PS1/2) lower bound can be

derived directly from the trivial joint-cost lower

bound of Ω(β(n3

PM1/2 + n2

P 2/3) +
n3r

PS1/2 + ωn2

P).

2) 1 < ω/β < n2/M . Assume that the subprob-

lem performed by each processor is A′B′ = C ′,

where d1, d2 and d3 are the matrix dimensions of

the subproblem. Since the total number of arith-

metic operations to solve AB = C is n3 and the

number of operations to solve each subproblem

is d1d2d3, each processor performs n3/(Pd1d2d3)

subproblems. We assume d1d2d3 = O(n3/P) to

guarantee each processor performs Ω(1) subprob-

lems. Considering the computing of each sub-

problem, each processor needs to access at least

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 11

Table 4. Joint Communication Complexity under Enough Memories

Method 2ω/β ≤ 1 1 < 2ω/β < P 1/2 2ω/β ≥ P 1/2

Lower Bound [here] Ω(n2β

P2/3 + n3r
PS1/2) Ω(n

2β2/3ω1/3

P2/3 + n3r
PS1/2) Ω(n

2ω
P

+ n3r
PS1/2)

2.5DMML3ooL2 [17] Θ(n2β

P2/3 + n3r
PS1/2) O(n2ω

P2/3 + n3r
PS1/2) O(n2ω

P2/3 + n3r
PS1/2)

SUMMAL3ooL2 [17] O(
(r+β)n3

PS1/2) O(
(r+β)n3

PS1/2) O(n
2ω
P

+
(r+β)n3

PS1/2)

JOMMA [here] Θ(n2β

P2/3 + n3r
PS1/2) Θ(n

2β2/3ω1/3

P2/3 + n3r
PS1/2) Θ(n

2ω
P

+ n3r
PS1/2)

one of A′ or B′ from other processors, hence

the total number of words moved horizontally

is at least n3

Pd1d2d3
× min{d1d2, d2d3}. Without

loss of generality, we assume that d1 ≤ d3, then

d1d2 ≤ d2d3, and the horizontal cost is at least

Ω(n3β/(Pd3)). Recall that the vertical cost of

sequentially solving a subproblem with matrix

dimensions d1, d2, and d3 is Ω(d1d2d3r/S
1/2 +

d1d3ω), the total vertical cost for each proces-

sor to sequentially solve n3/(Pd1d2d3) subprob-

lems is at least Ω(n3r/(PS1/2) + n3ω/(Pd2)).

Therefore, Q = Ω(n
3β

Pd3
+ n3ω

Pd2
+ n3r

PS1/2). From

the mean inequality and d2d3 ≤ M , we get
n3β
Pd3

+ n3ω
Pd2
≥ n3(βω)1/2

P (d2d3)1/2
≥ n3(βω)1/2

PM1/2 . Therefore,

Q = Ω(n
3(βω)1/2

PM1/2 + n3r
PS1/2).

3) ω/β ≥ n2/M . In this case, by ω/β ≥ n2/M and

M = O(n2/P 1/2), the Ω(n2ω/P + n3r/(PS1/2))

lower bound can be directly obtained from the

trivial joint-cost lower bound Ω(n2β
P 2/3 + n3r

PS1/2 +

n2ω
P).

In the limited memory scenario, the joint costs of

the horizontally optimal and vertically optimal algo-

rithms are given in Table 5, which shows that neither

algorithm can attain the joint cost lower bound in gen-

eral.

6 Memory and Dimensions Analysis

In this section, we introduce why we set M =

Ω(n2/P 1/2) as enough memory and M = O(n2/P 1/2)

as limited memory. In addition, as mentioned earlier,

assuming that n-by-n matrix multiplication is decom-

posed into multiple subproblems A′B′ = C ′ with di-

mensions d1, d2, d3 on a parallel machine, then these

dimensions demonstrate the vertical-horizontal trade-

off (cf. Table 1). We use linear programming to solve

the optimal solution of the three dimensions. These op-

timal solutions can minimize the joint communication

and, therefore, guide the tunable grid and scheduling

of our algorithm.

6.1 Joint Cost Function

To propose algorithms with low joint-

communication, we introduce conditions conducive to

reducing joint communication costs. Subsequently,

we analyze the horizontal and vertical communication

costs of algorithms meeting the following conditions,

providing their joint-communication cost function.

1) d1 ≤ n, d2 ≤ n, d3 ≤ n.

2) d1d2d3 = O(n3/P) to ensure that each processor

computes Ω(1) subproblems.

3) max{d1d2, d2d3, d1d3} = O(M) to ensure that

the sizes of input and output do not exceed the size of

the main memory.

4) d2 ≥ d1 = d3 to reduce the number of words

written since writes are more expensive than reads.

5) Computation is load-balanced.

Lemma 6. The joint communication cost of the

algorithm satisfying the above conditions is O(n3r
PS1/2 +

n3

P (β
d1

+ β
d2

+ ω
d2
)).

12 J. Comput. Sci. & Technol., November 2023, Vol., No.

Table 5. Joint Communication Complexity under Limited Memories

Method ω/β ≤ 1 1 < ω/β < n2/M ω/β ≥ n2/M

Lower Bound [here] Ω(n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2) Ω(

n3(βω)1/2

PM1/2 + n3r
PS1/2) Ω(n

2ω
P

+ n3r
PS1/2)

2.5DMML3ooL2 [17] Θ(n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2) O(n3ω

PM1/2 + n2ω
P2/3 + n3r

PS1/2) O(n3ω
PM1/2 + n2ω

P2/3 + n3r
PS1/2)

SUMMAL3ooL2 [17] O(
(r+β)n3

PS1/2) O(n
2ω
P

+
(r+β)n3

PS1/2) O(n
2ω
P

+
(r+β)n3

PS1/2)

JOMMA [here] Θ(n3β

PM1/2 + n2β

P2/3 + n3r
PS1/2) Θ(

n3(βω)1/2

PM1/2 + n3r
PS1/2) Θ(n

2ω
P

+ n3r
PS1/2)

Proof. We first analyze the horizontal and vertical

cost of such algorithms and then give the joint commu-

nication cost.

Horizontal Cost. Based on the total arithmetic

operations (n3) and the number of arithmetic opera-

tions per subproblem (d1d2d3), we determine that there

are n3/(d1d2d3) subproblems. To maintain load bal-

ance, each processor handles n3/(Pd1d2d3) subprob-

lems (A′B′ = C ′). To compute a subproblem, proces-

sors must engage in data exchange, involving at most

all elements of matrices A′, B′, and C ′. Hence, the hor-

izontal cost for solving a subproblem does not exceed

β(d1d2 + d2d3 + d1d3), and the total horizontal cost for

each processor, addressing n3/(Pd1d2d3) subproblems,

remains below n3β(d1d2 + d2d3 + d1d3)/(Pd1d2d3).

Vertical Cost. Processors utilize the sequential

VOMM algorithm for localized subproblem resolu-

tion. Each processor handles n3/(Pd1d2d3) subprob-

lems, with each subproblem incurring a vertical cost of

O(d1d2d3r/S
1/2 + d1d3ω) (cf. Section 4). As a result,

the total vertical cost amounts to O(n3r/(PS1/2) +

n3ω/(Pd2)).

By d1 = d3 (Condition 4), the joint communication

cost is

Q = O(
n3β(d1d2 + d2d3 + d1d3)

Pd1d2d3
+

n3r

PS1/2
+

n3ω

Pd2
)

= O(
n3r

PS1/2
+

n3

P
(
β

d1
+

β

d2
+

ω

d2
)).

6.2 Memory Analysis

Generally, the larger the main memory, the larger

the matrix dimensions of each subproblem, and the

fewer the number of subproblems that each processor

needs to execute. For example, consider the 2.5D al-

gorithm, assuming that the main memory size per pro-

cessor is M = Ω(cn2/P), then the number of subprob-

lems performed by each processor is O(
√

P/c3), where

c ≤ P 1/3.

Definition 1. The scenario where each processor

executes only Θ(1) subproblems is defined as enough

memory scenario. Conversely, the scenario where each

processor executes Ω(1) subproblems is defined as the

limited memory scenario.

Lemma 7. In the enough memory scenario,

the memory size of each processor is at least M =

Ω(n2/P 1/2).

Proof. Let n be the size of the matrix multiplication

AB = C and d1, d2, d3 the dimensions of the subprob-

lem obtained by dividing AB = C. In enough memory

scenario, since the number of subproblems executed by

each processor is n3/(Pd1d2d3) = Θ(1), we conclude

that d1d2d3 = Θ(n3/P).

By d2 ≤ n (Condition 1), d2 ≥ d1 = d3 (Condition

4), and d1d2d3 = Θ(n3/P), we have d1d3 = Ω(n2/P)

and d1d3 = O(n2/P 2/3). Consequently, both of d1 and

d3 range from at least Ω(n/P 1/2) to at most O(n/P 1/3).

By d1d2d3 = Θ(n3/P), d1 = d3 = Ω(n/P 1/2), and

max{d1d2, d2d3, d1d3} = O(M) (Condition 3), we have

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 13

M = Ω(max{d1d2, d2d3, d1d3}) = Ω(max{d1d2, d21}) =

Ω(max{n3/(Pd1), d
2
1}) = Ω(n2/P 1/2).

6.3 Matrix Dimensions Optimization

Given the machine parameters P , S, M , r, ω, β, and

problem size n, by Lemma 6, the joint communication

cost is asymptotically minimal if and only if β
d1
+ β

d2
+ ω

d2

is asymptotically minimal. Therefore, the optimization

problem of minimizing the joint communication cost is

formulated as follows:

minimize β

d1
+

β

d2
+

ω

d2

subject to:

Conditions 1,2, 3, 4, 5 (cf. Subsection 6.1).

(1)

Next, we analyze how the values of d1, d2, and d3

can minimize the joint communication cost for enough

memory scenario and limited memory scenario.

Lemma 8. In the enough memory scenario, if

2ω/β ≤ 1, (1) attains its minimum when d1 =

d2 = d3 = Θ(n/P 1/3). For 1 ≤ 2ω/β ≤ P 1/2,

(1) is minimized when d1 = d3 = Θ((n3β
2Pω)

1/3) and

d2 = Θ((4n
3ω2

Pβ2)1/3). If 2ω/β ≥ P 1/2, then (1) is mini-

mized when d1 = d3 = Θ(n/P 1/2) and d2 = Θ(n).

Proof. Recall that d1d2d3 = Θ(n3/P) in the enough

memory scenario and d1 = d3 (Condition 4), we have

d2 = Θ(n3/(Pd1
2)). Therefore,

O(
β

d1
+

β

d2
+

ω

d2
) = O(

β

d1
+

Pβd1
2

n3
+

Pωd1
2

n3
). (2)

Parallel to the lower bound proof in Theorem 1, we

classify the upper bound into three cases based on the

value of 2ω/β.

1) 2ω/β ≤ 1. In this case, (2) is O(β/d1 +

Pβd1
2/n3), which is a function of d1. By deriva-

tion, this function is minimized when d1 =

Θ(n/P 1/3). Therefore, from d1d2d3 = Θ(n3/P)

(in enough scenario) and d1 = d3 (Condition

4), (1) is minimized when d1 = d2 = d3 =

Θ(n/P 1/3).

2) 2ω/β > 1. In this case, (2) is O(β/d1 +

Pωd1
2/n3), which is a function of d1. By deriva-

tion, this function is minimized when d1 =

Θ((n3β
2Pω)

1/3). However, given d1 = d3, d2 ≤ n,

and d1d2d3 = Θ(n3/P), d1 is constrained to the

range of Ω(n/P 1/2). If (n3β
2Pω)

1/3 > n/P 1/2, (1)

minimizes at d1 = Θ((n3β
2Pω)

1/3); otherwise, it

minimizes at d1 = Θ(n/P 1/2).

a) 1 < 2ω/β < P 1/2. In this case, we have

(n3β
2Pω)

1/3 > n/P 1/2. Thus (1) is minimized

when d1 = d3 = Θ((n3β
2Pω)

1/3) and d2 =

Θ((4n
3ω2

Pβ2)1/3).

b) 2ω/β ≥ P 1/2. In this case, we have

(n3β
2Pω)

1/3 ≤ n/P 1/2. Thus (1) is minimized

when d1 = d3 = Θ(n/P 1/2) and d2 = Θ(n).

Lemma 9. In the limited memory scenario, if

ω/β ≤ 1, (1) attains its minimum when d1 = d2 =

d3 = Θ(min(n/P 1/3,M1/2)). For 1 ≤ ω/β ≤ P 1/2,

(1) is minimized when d1 = d3 = Θ(
√
Mβ/ω) and

d2 = Θ(
√
Mω/β). If ω/β ≥ P 1/2, then (1) achieves

its minimum value when d1 = d3 = Θ(M/n) and

d2 = Θ(n).

Proof. In alignment with the lower bound proof pre-

sented in Theorem 2, we similarly categorize the upper

bound into three cases based on the value of ω/β.

1) ω/β ≤ 1. In this case, O(β/d1 + β/d2 + ω/d2) =

O(β/d1 + β/d2). As d1d2 = O(M) (Condi-

tion 3), applying the Arithmetic-Geometric Mean

inequality, we ascertain that O(β/d1 + β/d2)

achieves its minimum when d1d2 = Θ(M). Sub-

stituting d1 = Θ(M/d2), we find that O(β/d1 +

14 J. Comput. Sci. & Technol., November 2023, Vol., No.

β/d2) = O(βd2/M + β/d2), a function of d2.

Upon differentiation, this function reaches its

minimum when d2 = Θ(M1/2). However, for the

case of M = Ω(n2/P 2/3), we have d1 = d2 = d3 =

Θ(M1/2) = Ω(n/P 1/3). This results in d1d2d3 =

Ω(n3/P), indicating that Condition 2 is not sat-

isfied. In this case, given d1d2d3 = O(n3/P) and

d1 = d3, the expression O(β/d1 + β/d2) attains

its minimum when d21d2 = Θ(n3/P). By sub-

stituting d2 = Θ(n3/Pd21), we have O(β/d1 +

β/d2) = O(β/d1 + βPd21/n
3), which reaches its

minimum when d1 = Θ(n/P 1/3). Hence, (1)

achieves its minimum when d1 = d2 = d3 =

Θ(min{n/P 1/3,M1/2}).

2) ω/β > 1. In this case, O(β/d1 + β/d2 + ω/d2) =

O(β/d1 + ω/d2). Given d1d2 = O(M) accord-

ing to Condition 3, employing the Arithmetic-

Geometric Mean inequality reveals that O(β/d1+

ω/d2) attains its minimum when d1d2 = Θ(M).

By substituting d1 = Θ(M/d2), we find that

O(β/d1 + ω/d2) = O(βd2/M + ω/d2), a function

of d2. Upon differentiation, this function reaches

its minimum when d2 = Θ(
√
Mω/β). However,

d2 is bounded by d2 ≤ n. Hence, if
√

Mω/β < n,

(1) minimizes with d2 = Θ(
√

Mω/β); otherwise,

(1) minimizes with d2 = Θ(n).

a) 1 < ω/β < n2/M . In this case, we have√
Mω/β < n. Thus (1) is minimized

when d2 = Θ(
√
Mω/β) and d1 = d3 =

Θ(
√

Mβ/ω) (d1 = d3 = Θ(M/d2)).

b) ω/β ≥ n2/M . In this case, we have√
Mω/β ≥ n. Thus (1) is minimized when

d2 = Θ(n) and d1 = d3 = Θ(M/n) (d1 =

d3 = Θ(M/d2)).

7 Joint-Communication Optimal Algorithm

Algorithm 2 is a brief description of the Joint-

communication Optimal Matrix Multiplication Algo-

rithm (JOMMA). See Algorithm 3 and Algorithm 4 for

more details.

Algorithm 2 JOMMA
Require: A,B, P,M, S, r, ω, β
Ensure: C = AB

1: if enough memory then
2: Call EM-JOMMA
3: end if
4: if limited memory then
5: Call LM-JOMMA
6: end if

7.1 Enough Memory

In the scenario with enough memory, we employ

EM-JOMMA (cf. Algorithm 3) to solve matrix multi-

plication.

7.1.1 Data Layout

The P processors are arranged in a Px × Py × Pz

cubic grid, where PxPyPz = P and Pijk is the pro-

cessor at coordinate (i, j, k) (i = {1, 2, ..., Px}, j =

{1, 2, ..., Py}, k = {1, 2, ..., Pz}). Initially, the n × n

input matrix A is evenly distributed to the 2D slice

P:1: (i ∈ {1, 2, ..., Px}, j = 1, and k ∈ {1, 2, ..., Pz}),

and each processor Pi1k owns an (n/Px)× (n/Pz) block

A(i, k) as a local matrix Π(A) (cf. Fig.2(a)). Simi-

larly, the n × n input matrix B is evenly distributed

to the 2D slice P1::, and each processor P1jk owns an

(n/Pz)× (n/Py) block B(k, j) as a local matrix Π(B)

(cf. Fig.2(b)). The output matrix C can be divided into

Px×Py blocks, and the algorithm terminates when each

processor Pij1 on the 2D slice P::1 has finished comput-

ing C(i, j) =
∑Pz

k=1 A(i, k)B(k, j) (cf. Fig.2(c)).

Note that although the above input matrices are

initially load-imbalanced, we can easily rearrange them

for load-balancing. For example, let the block A(i, k)

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 15

Broadcast

Broadcast
Reduction

(a) (b) (c)

Fig.2. Two broadcast operations and a reduction operation. (a) processor Pi1k broadcasts Π(A) along Pi:k. (b) processor P1jk

broadcasts Π(B) along P:jk. (c) a reduction along Pij: onto root Pij1 sums each Cijk.

owned by Pi1k be scattered over the Py processors in

Pi:k. Similarly, let the block B(k, j) owned by P1jk

be scattered over the Px processors in P:jk. These two

scatter operations do not affect the asymptotic joint-

communication cost.

7.1.2 Scheduling

From the above data layout, the dimensions of the

subproblem solved by each processor are d1 = n/Px,

d2 = n/Pz, and d3 = n/Py. Therefore, we set the val-

ues of Px, Py, and Pz according to Lemma 8, thus being

able to asymptotically minimize the joint communica-

tion cost (lines 1—9 in Algorithm 3). For example,

when 2ω/β ≤ 1, we set Px = Py = Pz = P 1/3 such that

d1 = d2 = d3 = n/P 1/3.

After determining the parameters of the tunable

processor grid, the EM-JOMMA algorithm has three

steps.

Step 1. The EM-JOMMA algorithm per-

forms two broadcast operations, that is, Broad-

cast(Π(A),Π(X), 1, Pi:k) (cf. line 10 in Algorithm 3

and Fig.2(a)) and Broadcast(Π(B),Π(Y), 1, P:jk) (cf.

line 11 in Algorithm 3 and Fig.2(b)), so that each pro-

cessor Pijk accesses A(i, k) as Π(X) and B(k, j) as

Π(Y).

Step 2. Each processor Pijk calls the VOMM algo-

rithm to compute Π(Z) = Cijk = A(i, k)B(k, j) (cf.

line 12 in Algorithm 3).

Step 3. The EM-JOMMA algorithm performs the

reduction operation, Reduce(Π(Z),Π(C), 1, Pij:) (cf.

line 13 in Algorithm 3 and Fig.2(c)), so that the proces-

sor Pij1 can compute Π(C) = C(i, j) =
∑Pz

k=1 Cijk.

Algorithm 3 EM-JOMMA
Require: A is divided into Px×Pz matrix blocks, and

Pi1k has A(i, k) as Π(A); B is divided into Pz×Py

matrix blocks, and P1jk owns B(k, j) as Π(B)
Ensure: C = AB ∈ Rn×n

1: if 2ω
β ≤ 1 then

2: Px = Py = Pz = P
1
3

3: end if
4: if 1 < 2ω

β < P 1/2 then
5: Px = Py = (2ωP

β)
1
3 , Pz = (Pβ2

4ω2)
1
3

6: end if
7: if 2ω

β ≥ P 1/2 then
8: Px = Py = P 1/2, Pz = 1
9: end if

10: Broadcast(Π(A),Π(X), 1, Pi:k)
11: Broadcast(Π(B),Π(Y), 1, P:jk)
12: Π(Z)← VOMM(Π(X),Π(Y))
13: Reduce(Π(Z),Π(C), 1, Pij:)

7.1.3 Joint Communication Cost of EM-JOMMA

We denote by TVOMM(d1, d2, d3) the vertical com-

munication cost of computing AB = C using VOMM,

where A is a d1 × d2 matrix, B is a d2 × d3 matrix

and C is a d1 × d3 matrix, then TVOMM(d1, d2, d3) =

2
√
3d1d2d3r/S

1/2 + ωd1d3 (See Algorithm 1).

Below we show that in the APM with enough mem-

16 J. Comput. Sci. & Technol., November 2023, Vol., No.

ory, for any value of ω and β, EM-JOMMA is joint-

communication optimal.

Considering Algorithm 3, we find |Π(A)| =

|Π(X)| = n2/(PxPZ), |Π(B)| = |Π(Y)| =

n2/(PyPz), and |Π(Z)| = |Π(C)| = n2/(PxPz). Re-

ferring to Table 3, the joint-communication cost func-

tion of the EM-JOMMA algorithm is

Q = TBroadcast(
n2

PxPz
, Py) + TBroadcast(

n2

PyPz
, Px)+

TVOMM(
n

Px
,
n

Pz
,
n

Py
) + TReduce(

n2

PxPy
, Pz). (3)

Substituting the provided values of Px, Py, and Pz

from EM-JOMMA into (3), we derive the joint commu-

nication cost as follows, which asymptotically matches

the lower bound established in Theorem 1.

• 2ω
β ≤ 1. Q = O(n2β

P 2/3 + n3r
PS1/2).

• 1 < 2ω
β < P 1/2. Q = O(n3r

PS1/2 + n2ω1/3β2/3

P 2/3).

• 2ω
β ≥ P 1/2. Q = O(n3r

PS1/2 + n2ω
P).

7.2 Limited Memory

In the limited memory scenario, we present LM-

JOMMA (cf. Algorithm 4) to solve matrix multipli-

cation.

7.2.1 Data Layout

The P processors are arranged in a cubic grid

Px × Py × Pz, PxPyPz = P . Initially, the n × n in-

put matrix A is divided into Px × Py blocks, and the

n × n matrix B is divided into Py × Px blocks. Let

these blocks be evenly distributed on the 2D slice P::1.

Specifically, the processor Pij1 owns an (n/Px)×(n/Py)

block A(i, j) and an (n/Py)×(n/Px) block B(j, i) (cf.

Fig.3(a)). In addition, the output matrix C can be di-

vided into Px × Px blocks, where the size of each block

is (n/Px)× (n/Px).

7.2.2 Scheduling

From the above data layout, the dimensions of

the subproblem solved by each processor are d1 =

n/Px, d2 = n/Py, and d3 = n/Px. Therefore, we set the

values of Px, Py, and Pz according to Lemma 9, thus

being able to asymptotically minimize the joint commu-

nication cost (lines 1—9 in Algorithm 4). For example,

when ω/β ≥ n2/M , we set Px = n2/M , Py = 1, and

Pz = P/(PxPy) = PM/n2 such that d1 = d3 = M/n

and d2 = n.

Algorithm 4 LM-JOMMA
Require: A and B are evenly distributed on the 2D

slice P::1; processor Pij1 has A(i, j) as Π(A) and
B(j, i) as Π(B); Π(C) = ∅

Ensure: C = AB ∈ Rn×n

1: if ω
β ≤ 1 then

2: c = min(P 1
3 ,

√
PM
n), Px = Py =

√
P
c , Pz = c

3: end if
4: if 1 < ω

β < n2

M then

5: Px = nω
1
2

M
1
2 β

1
2
, Py = nβ

1
2

M
1
2 ω

1
2
, Pz = PM

n2

6: end if
7: if ω

β ≥
n2

M then
8: Px = n2

M , Py = 1, Pz = PM
n2

9: end if
10: Broadcast(Π(A),Π(X), 1, Pij:)
11: Broadcast(Π(B),Π(Y), 1, Pij:)
12: Shift(Π(Y), (k − 1)⌈Px

Pz
⌉, Py, P:jk)

13: for m = 1 to ⌈Px

Pz
⌉ do

14: Shift(Π(Y), 1, Px, P:jk)
15: Π(Z)← VOMM(Π(X),Π(Y))
16: j′ = m mod Py

17: Reduce(Π(Z),Π(U), j′, Pi:k)
18: Π(C) = {Π(C),Π(U)}
19: end for

Before introducing scheduling, we give the following

Lemmas 10 and 11, which are used to design Algorithm

4. Lemma 10 details the computation of AB = C on a

2D slice P::1, while Lemma 11 outlines the computation

of AB = C on the cubic processor grid assuming each

2D slice contains a copy of input matrices A and B.

Lemma 10. When matrices A and B are evenly

distributed on the 2D slice P::1, computing C = AB on

P::1 can be accomplished using a sequence of iterative

Px shift operations, denoted as Shift(Π(B), 1, Px, P:jk).

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 17

Broa
dc

ast

Shift on B Reduction

Shift

Reduction

(a) (b) (c)

Fig.3. Broadcast, shift, and reduction operations. (a) A and B are initially evenly distributed on P::1 and the broadcast operations
of lines 10 and 11 in Algorithm 4. (b) the data layout after performing one shift operation Shift(Π(B), 1, Px, P:jk) on (a). (c) the
reduction operation of line 17 in Algorithm 4 when m = 2.

Proof. Initially, each processor row Pi:1 on the 2D

slice P::1 owns A(i, :) and B(:, i) (cf. Fig.3(a)),

enabling the computation of the block C(i, i) =∑Py

j=1 A(i, j)B(j, i). Through a circular shift oper-

ation Shift(Π(B), 1, Px, P:jk) (cf. Fig.3(b)), the pro-

cessor row Pi:1 accesses B(:, i′) and can compute the

block C(i, i′) =
∑Py

j=1 A(i, j)B(j, i′), where i′ =

(i− 1) mod Px. As there are Px processor rows within

the 2D slice P::1 and C is partitioned into (Px)
2 blocks,

the computation of C can be achieved through iterative

execution of Px shift operations.

Lemma 11. When A and B are replicated on

every 2D slice P::k for all k ∈ {1, 2, ..., Pz}, then the

computation of C = AB on the cubic processor grid

can be achieved by initially performing a shift operation

Shift(Π(B), (k−1)⌈Px

Pz
⌉, Px, P:jk), followed by ⌈Px

Pz
⌉ ad-

ditional shift operations Shift(Π(B), 1, Px, P:jk).

Proof. According to Lemma 10, we can calculate C

on the 2D slice P::1 through the execution of Px shift

operations, that is, Shift(Π(B), 1, Px, P:jk). After each

shift operation, a computational task follows, where

each processor within the 2D slice P::k computes a ma-

trix multiplication subproblem (as depicted in Figs.3(a)

and 3(b)). If each 2D slice on the cubic grid has a

copy of A and B, Px computational tasks can be dis-

tributed to these Pz 2D slices for parallel execution.

Hence, the computation of C on the cubic processor

grid can be accomplished by performing ⌈Px

Pz
⌉ shift op-

erations. More precisely, the required shift operations

on the 2D slice P::k correspond to those performed on

the 2D slice P::1 from the ((k − 1)⌈Px

Pz
⌉ + 1)-th to the

(k⌈Px

Pz
⌉ + 1)-th. Hence, an initial shift operation, de-

noted as Shift(Π(B), (k− 1)⌈Px

Pz
⌉, Px, P:jk), is required

on every 2D slice P::k, for all k ∈ {1, 2, ..., Pz}, before

executing the ⌈Px

Pz
⌉ subsequent shift operations.

The above Lemma 11 leads to the LM-JOMMA al-

gorithm, which has the following four steps.

Step 1. The LM-JOMMA algorithm performs two

operations, Broadcast(Π(A),Π(X), 1, Pij:) and Broad-

cast(Π(B),Π(Y), 1, Pij:) (cf. lines 10 and 11 in Algo-

rithm 4 and Fig.3(a)), so that A and B are replicated

on each 2D slice P::k, ∀k ∈ {1, 2, ..., Pz}.

Step 2. From Lemma 11, all processors perform an

initial shift operation Shift(Π(B), (k−1)⌈Px

Pz
⌉, Px, P:jk)

(cf. line 12 in Algorithm 4) such that each 2D slice P::k

can perform the appropriate computations.

Step 3. All processors iteratively perform ⌈Px

Pz
⌉ shift

operation on B (cf. lines 13—15 in Algorithm 4 and

18 J. Comput. Sci. & Technol., November 2023, Vol., No.

Fig.3(b)) such that C can be computed completely.

Step 4. After each circular shift (line 16 in Algo-

rithm 4) and local computations (line 17 in Algorithm

4) are performed, the computation result needs to be

summed for each processor row Pi:k. For the m-th shift

operation (m = {1, 2, ..., ⌈Px

Pz
⌉}), we specify Pij′k as

the root processor of processor row Pi:k, where j′ = m

mod Py (cf. line 16 in Algorithm 4). Then, the LM-

JOMMA algorithm performs a reduction operation (cf.

line 17 in Algorithm 4 and Fig.3(c)) such that the root

processor can sum the local results of this processor row.

7.2.3 Joint Communication Cost of LM-JOMMA

Below we prove that in the APM with limited mem-

ory, for any value of ω and β, LM-JOMMA is joint-

communication optimal.

Considering Algorithm 4, we find |Π(A)| =

|Π(X)| = n2/(PxPy), |Π(B)| = |Π(Y)| =

n2/(PxPy), and |Π(Z)| = |Π(U)| = |Π(C)| = n2/P 2
x .

Referring to Table 3, the joint-communication cost

function of the LM-JOMMA algorithm is

Q = 2TBroadcast(
n2

PxPy
, Pz) + TShift(

n2

PxPy
)+

⌈Px

Pz
⌉TVOMM(

n

Px
,
n

Py
,
n

Px
) + ⌈Px

Pz
⌉TShift(

n2

PxPy
)+

⌈Px

Pz
⌉TReduce(

n2

Px
2 , Py). (4)

By substituting the provided values of Px, Py, and

Pz from LM-JOMMA into (4), we obtain the joint

communication cost as follows, which asymptotically

matches the lower bound established in Theorem 2.

• ω
β ≤ 1. Q = O(β(n3

PM1/2 + n2

P 2/3) +
n3r

PS1/2).

• 1 < ω
β < n2

M . Q = O(n3r
PS1/2 + n3ω

1
2 β

1
2

PM
1
2

).

• ω
β ≥

n2

M . Q = O(n3r
PS1/2 + n2ω

P).

8 Evaluation

In this section, we conduct a detailed evaluation

of the communication costs associated with JOMMA,

2.5DL3ooL2, SUMMAL3ooL2, and 2.5D-COWE[16]

(cache-oblivious write efficient algorithm), utilizing nu-

merical analysis simulation results rather than actual

implementations on distributed systems. Below we pro-

vide a brief overview of 2.5DL3ooL2, SUMMAL3ooL2,

and 2.5D-COWE.

2.5DL3ooL2 combines the 2.5D and VOMM ap-

proaches, offering an asymptotically optimal horizon-

tal cost for n-by-n matrix multiplication. In enough

memory scenario, it follows the scheduling pattern of

Algorithm 3 when ω/β ≤ 1, and in limited memory

scenario, it adheres to the scheduling pattern of Algo-

rithm 4 when 2ω/β ≤ 1. This uniformity arises from

JOMMA’s ability to asymptotically minimize horizon-

tal costs when horizontal word transfers incur signifi-

cant expenses, as demonstrated in Tables 4 and 5.

SUMMAL3ooL2 is a SUMMA algorithm variant,

preserving the initial data layout of SUMMA. That is,

P processors are arranged in a P 1/2 × P 1/2 grid and

each processor owns local matrices Π(A) and Π(B)

with size (n/P 1/2)× (n/P 1/2). For SUMMA, there are

P 1/2 rounds. Each processor participates in two broad-

cast operations on Π(A) and Π(B) in each round and

then performs local matrix multiplication Π(A)·Π(B)

(cf. Fig.4). For SUMMAL3ooL2, to minimize writes,

each processor participates in two broadcast operations

on submatrices of Π(A) and Π(B) in each round, and

the size of each submatrix is (S/3)1/2 × (S/3)1/2. In

this way, the problem size matches the cache size S, and

the outputs not fully computed during the round can be

stored in the cache until fully computed, and then writ-

ten to main memory. Since each processor computes a

matrix multiplication of size d1 = d2 = d3 = (S/3)1/2

per round, the number of arithmetic operations per-

formed per round is P (S/3)3/2. Hence the number of

rounds is n3

P (S/3)3/2
.

2.5D-COWE combines 2.5D, known for horizontal

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 19

Initial Layout Round 1 Round 2 Round 3

Fig.4. The initial data layout on nine processors for SUMMA and the local data of each processor after executing broadcast operations
in each round.

Table 6. Exact Costs for Enough Memories

Method Allgather Broadcast Reduce VOMM/COWE

2.5DL3ooL2 n2β
PxPz

+ n2β
PyPz

0 2n2β
PxPy

n2ω
PxPy

+ 2
√
3n3r

PS1/2

SUMMAL3ooL2 0 4
√
3n3β

PS1/2 0 n2ω
P

+ 2
√
3n3r

PS1/2

2.5D-COWE n2β
PxPz

+ n2β
PyPz

0 2n2β
PxPy

3
√
3n3r2/3ω1/3

PS1/2

JOMMA n2β
PxPz

+ n2β
PyPz

0 2n2β
PxPy

n2ω
PxPy

+ 2
√
3n3r

PS1/2

Table 7. Exact Costs for Limited Memories

Method Allgather Broadcast Reduce Shift VOMM/COWE

2.5DL3ooL2 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

n2ω
PxPz

+ 2
√

3n3r
PS1/2

SUMMAL3ooL2 0 4
√
3n3β

PS1/2 0 0 n2ω
P

+ 2
√
3n3r

PS1/2

2.5D-COWE 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

3
√
3n3r2/3ω1/3

PS1/2

JOMMA 2n2β
PxPy

0 2n2β
PxPz

n2β
PxPy

+ n2β
PyPz

n2ω
PxPz

+ 2
√

3n3r
PS1/2

optimization, with COWE[16], a cache-oblivious (cache

size is unknown) divide-and-conquer algorithm that is

vertically optimal in the sequential and asymmetric set-

ting. To sequentially solve A′B′ = C ′ on a single pro-

cessor, with matrices A′ ∈ Rd1×d2 , B′ ∈ Rd2×d3 , and

C ′ ∈ Rd1×d3 , COWE recursively divides the largest of

the three dimensions: d1, d2r2/3/ω2/3, d3, into halves,

resulting in two subproblems. The recursion terminates

when the subproblem size matches the cache capacity.

While COWE offers applicability to scenarios with un-

known cache sizes, it incurs a higher vertical cost com-

pared with VOMM.

Although there are other existing algorithms such

as ScaLAPACK[32], CARMA[18], and COSMA[33], we

do not use them as baselines since these algorithms are

used to handle rectangular matrix multiplication and

do not perform better than 2.5D for square matrix mul-

tiplication[33].

From the previous algorithm description, we analyze

the exact costs of these four algorithms and summarize

the costs of operations used in the four algorithms in

Tables 6 and 7. It should be noted that due to the

balanced initial data layout, an additional gather op-

eration is required before the broadcast operation for

JOMMA, i.e., an allgather operation.

Given the parameters P,M, S, r, ω, β, and problem

size n, we compare the performance of these four al-

gorithms by evaluating 18 groups of configurations.

These configurations cover all the scenarios discussed

in this paper. In realistic situations, the write band-

width of NVM is from 0.20 GB/s to 2.20 GB/s,

and the read bandwidth is from 0.63 GB/s to 6.80

20 J. Comput. Sci. & Technol., November 2023, Vol., No.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. The exact horizontal and vertical costs of 2.5DL3ooL2, JOMMA, SUMMAL3ooL2, and 2.5D-COWE for different machine
parameters. For a given problem size n in each figure, the four bars from left to right represent the costs of 2.5DL3ooL2, JOMMA,
SUMMAL3ooL2, and 2.5D-COWE, respectively. Each bar’s bottom and top parts represent the horizontal and vertical costs, respec-
tively. (a) Enough memory and 2ω/β ≤ 1. (b) Enough memory and 1 < 2ω/β ≤ P 1/2. (c) Enough memory and 2ω/β ≥ P 1/2. (d)
Limited memory and ω/β ≤ 1. (e) Limited memory and 1 < ω/β < n2/M . (f) Limited memory and ω/β ≥ n2/M .

GB/s[23, 34]. The data throughput of the InfiniBand architecture NVIDIA Quantum-2 is from 25GB/s to

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 21

50GB/s. Therefore, in our simulation, we take the value

of ω/β from the set {0.5, 1, 2, 8, 16}. In addition, the

values of other parameters meet the following restric-

tions: 1) n2/P 1/2 < M < n2 for enough memory; 2)

n2/P < M < n2/P 1/2 for limited memory; and 3)

S ≤ n2/P .

Fig.5 illustrates our simulation results. It can be

found that in all tested scenarios, the horizontal costs

of 2.5DL3ooL2 and 2.5D-COWE are equal and both

are the lowest, while SUMMAL3ooL2 has the lowest

vertical cost and JOMMA has the lowest joint cost.

Additionally, 2.5DL3ooL2 outperforms 2.5D-COWE in

vertical cost reduction, attributed to VOMM’s reduced

write demands despite its cache-aware nature (requir-

ing knowledge of cache size). In nearly all examined

scenarios, SUMMAL3ooL2 demonstrates notably infe-

rior performance due to its utilization of an irrational

horizontal scheduling strategy to achieve vertical opti-

mality. The analysis from Tables 6 and 7 reveals that

the horizontal cost of SUMMAL3ooL2 contains a fac-

tor n3, whereas that of the other algorithms contains a

factor n2.

In Fig.5, for small ω/β values (Figs.5(a) and

5(d)), JOMMA and 2.5DL3ooL2 achieve the lowest

joint costs, resulting in a 3× speedup compared to

SUMMAL3ooL2. This underperformance of SUM-

MAL3ooL2 is attributed to its excessive horizontal

communication. Moreover, the horizontal cost typi-

cally surpasses the vertical cost, especially when enough

memory is available. When ω/β is large (Figs.5(c) and

5(f)), JOMMA and SUMMAL3ooL2 exhibit equal and

lowest vertical communication costs. Since writing is

overly expensive, SUMMAL3ooL2 may achieve a lower

joint cost than 2.5DL3ooL2 and 2.5D-COWE. In this

scenario, JOMMA demonstrates approximately 3×,

2.1×, and 1.3× performance improvements compared

with SUMMAL3ooL2, 2.5D-COWE, and 2.5DL3ooL2,

respectively. The horizontal cost for JOMMA, 2.5D-

COWE, and 2.5DL3ooL2 significantly increase, nearly

by a factor of k2, as the problem size scales up by a

factor of k. This increase is primarily attributed to the

presence of a factor of n2 in the horizontal cost function

(Tables 6 and 7). When ω/β assumes a moderate value

(Figs.5(b) and 5(e)), SUMMAL3ooL2 and 2.5D-COWE

exhibit suboptimal performance attributed primarily to

excessive horizontal or vertical communication. In this

scenario, JOMMA exhibits a performance advantage

over the second-best approach (2.5DL3ooL2), achiev-

ing a 1.3x speedup. This speedup is expected to in-

crease with larger datasets and processor sizes. For in-

stance, in enough memory scenario with 2ω/β ≥
√
P ,

JOMMA’s write count is reduced by a factor of P 1/3

compared with 2.5DL3ooL2.

9 Conclusion

Motivated by the observation that the horizontal

and vertical lower bounds cannot be simultaneously

attained for asymmetric memories, in this paper, we

investigated how to optimize joint communication by

balancing horizontal communication and writing. We

proved the first joint communication lower bound for

classical matrix multiplication, and proposed a joint-

communication optimal algorithm that matches the

lower bound.

For n-by-n matrix multiplication, there is no trade-

off between communication and computation due to

load balancing and a fixed total number of arithmetic

operations. However, such a tradeoff may exist for

other problems such as sparse iterative solvers[35]. In

addition, for asymmetric memories, we leave the dis-

cussion of rectangular matrix multiplication as one of

future work. It will be interesting to extend our work

to graph computing and other linear algebra problems.

Finally, implementing JOMMA in real distributed sys-

22 J. Comput. Sci. & Technol., November 2023, Vol., No.

tems equipped with asymmetric memories to see the

gains of JOMMA over the horizontally optimal ones

will be another interesting future work.

References

[1] Solomonik E, Ballard G, Demmel J, Hoefler T. A
communication-avoiding parallel algorithm for the symmet-
ric eigenvalue problem. In Proc. the 29th ACM Symposium
on Parallelism in Algorithms and Architectures, Jul. 2017,
pp. 111-121. DOI: 10.1145/3087556.3087561.

[2] Solomonik E, Carson E C, Knight N, Demmel J. Trade-
offs between synchronization, communication, and com-
putation in parallel linear algebra computations. In Proc.
the 26th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, Jun. 2014, pp. 307-318. DOI:
10.1145/2897188.

[3] Ma L, Solomonik E. Efficient parallel CP decomposition
with pairwise perturbation and multi-sweep dimension tree.
In Proc. the 35th IEEE International Symposium on Par-
allel and Distributed Processing, May. 2021, pp. 412-421.
DOI: 10.1109/IPDPS49936.2021.00049.

[4] Geijn R A, Watts J. SUMMA: scalable universal matrix
multiplication algorithm. Concurr. Pract. Exp, 1997, 9(4):
255-274.

[5] Ballard G, Demmel J, Holtz O, Lipshitz B, Schwartz O.
Brief announcement: strong scaling of matrix multiplica-
tion algorithms and memory-independent communication
lower bounds. In Proc. the 24th ACM Symposium on Par-
allelism in Algorithms and Architectures, Jun. 2012, pp.
77-79. DOI: 10.1145/2312005.2312021.

[6] Ballard G, Demmel J, Holtz O, Schwartz O. Minimizing
communication in numerical linear algebra. SIAM J. Matrix
Anal. Appl, 2011, 32(3): 866-901. DOI: 10.1137/090769156.

[7] Irony D, Toledo S, Tiskin A. Communication lower bounds
for distributed-memory matrix multiplication. J. Paral-
lel Distributed Comput, 2004, 64(9): 1017-1026. DOI:
10.1016/j.jpdc.2004.03.021.

[8] Daas H A, Ballard G, Grigori L, Kumar S, Rouse K.
Brief Announcement: Tight Memory-Independent Paral-
lel Matrix Multiplication Communication Lower Bounds.
In Proc. the 34th ACM Symposium on Parallelism in Al-
gorithms and Architectures, Jul. 2022, pp. 445-448. DOI:
10.1145/3490148.3538552.

[9] Agarwal R C, Balle S M, Gustavson F G, Joshi M V, Palkar
P V. A three-dimensional approach to parallel matrix mul-
tiplication. IBM J. Res. Dev, 1995, 39(5): 575-582. DOI:
10.1147/rd.395.0575.

[10] Solomonik E, Demmel J. Communication-optimal parallel
2.5d matrix multiplication and LU factorization algorithms.
In Proc. the Euro-Par 2011 Parallel Processing - 17th In-
ternational Conference, Sep. 2011, pp. 90-109.

[11] Huang H, Chow E. CA3DMM: A New Algorithm Based on
a Unified View of Parallel Matrix Multiplication. In Proc.
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, Nov. 2022, pp. 1-15.
DOI: 10.1109/SC41404.2022.00033.

[12] Chen Y, Lu Y, Yang F, Wang Q, Wang Y, Shu J. Flat-
store: An efficient log-structured key-value storage engine
for persistent memory. In Proc. the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Mar. 2020, pp.
1077-1091. DOI: 10.1145/3373376.3378515.

[13] Wei, X, Xie, X, Chen, R, Chen, H, Zang, B. Characterizing
and Optimizing Remote Persistent Memory with RDMA
and NVM. In Proc. the 2021 USENIX Annual Technical
Conference, Jul. 2021, pp. 523-536.

[14] Taranov, K, Rothenberger, B, De Sensi, D, Perrig, A, Hoe-
fler, T. NeVerMore: Exploiting RDMA Mistakes in NVMe-
oF Storage Applications. In Proc. the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
Nov. 2022, pp. 2765-2778. DOI: 10.1145/3548606.3560568.

[15] Carson E, Demmel J, Grigori L, Knight N, Koanan-
takool P, Schwartz O, Simhadri H V. Write-avoiding
algorithms. Technical Report UCB/EECS-2015-163, EECS
Department, University of California, Berkeley, 2015.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-163.html, Nov. 2023.

[16] Gu Y. Write-efficient Algorithms [Ph.D. Thesis]. Carnegie
Mellon University, Pittsburgh, 2018.

[17] Carson E C, Demmel J, Grigori L, Knight N, Koanantakool
P, Schwartz O, Simhadri H V. Write-avoiding algorithms.
In Proc. the 2016 IEEE International Parallel and Dis-
tributed Processing Symposium, May. 2016, pp. 648-658.
DOI: 10.1109/IPDPS.2016.114.

[18] Demmel J, Eliahu D, Fox A, Kamil S, Lipshitz B,
Schwartz O, Spillinger O. Communication-optimal paral-
lel recursive rectangular matrix multiplication. In Proc.
the 27th IEEE International Symposium on Parallel and
Distributed Processing, May. 2013, pp. 261-272. DOI:
10.1109/IPDPS.2013.80.

[19] Frigo M, Leiserson C E, Prokop H, Ramachandran S. Cache-
oblivious algorithms. In Proc. the 40th Annual Symposium
on Foundations of Computer Science, Oct. 1999, pp. 285-
298. DOI: 10.1109/SFFCS.1999.814600.

[20] Solomonik E, Carson E C, Knight N, Demmel J. Trade-
offs between synchronization, communication, and com-
putation in parallel linear algebra computations. In Proc.
the 26th ACM Symposium on Parallelism in Algo-
rithms and Architectures, Jun. 2014, pp. 307-318. DOI:
10.1145/2612669.2612671.

[21] Ballard G, Demmel J, Holtz O, Lipshitz B, Schwartz O.
Communication-optimal parallel algorithm for strassen’s
matrix multiplication. In Proc. the 24th ACM Symposium
on Parallelism in Algorithms and Architectures, Jun. 2012,
pp. 193-204. DOI: 10.1145/2312005.2312044.

https://doi.org/10.1145/3087556.3087561
https://doi.org/10.1145/2897188
https://doi.org/10.1145/2897188
https://doi.org/10.1109/IPDPS49936.2021.00049
https://doi.org/10.1145/2312005.2312021
https://doi.org/10.1137/090769156
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1145/3490148.3538552
https://doi.org/10.1145/3490148.3538552
https://doi.org/10.1147/rd.395.0575
https://doi.org/10.1147/rd.395.0575
https://doi.org/10.1109/SC41404.2022.00033
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3548606.3560568
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
https://doi.org/10.1109/IPDPS.2016.114
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/2612669.2612671
https://doi.org/10.1145/2612669.2612671
https://doi.org/10.1145/2312005.2312044

Lin Zhu et al.: Joint-Communication Optimal Matrix Multiplication 23

[22] Ballard G, Buluç A, Demmel J, Grigori L, Lipshitz B,
Schwartz O, Toledo S. Communication optimal paral-
lel multiplication of sparse random matrices. In Proc.
the 25th ACM Symposium on Parallelism in Algo-
rithms and Architectures, Jul. 2013, pp. 222-231. DOI:
10.1145/2486159.2486196.

[23] Ruan C, Zhang Y, Bi C, Ma X, Chen H, Li F, Yang X,
Li C, Aboulnaga A, Xu Y. Persistent memory disaggrega-
tion for cloud-native relational databases. In Proc. the 28th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Mar.
2023, pp. 498-512. DOI: 10.1145/3582016.3582055.

[24] Yang C, Miller B P. Critical path analysis for the ex-
ecution of parallel and distributed programs. In Proc.
the 2019 IEEE International Parallel and Distributed
Processing Symposium, Jun. 1988, pp. 366-373. DOI:
10.1109/DCS.1988.12538.

[25] Hua Q, Qian L, Yu D, Shi X, Jin H. A nearly optimal dis-
tributed algorithm for computing the weighted girth. Sci.
China Inf. Sci, 2021, 64: 1-15. DOI: 10.1007/s11432-020-
2931-x.

[26] Jia L, Hua Q, Fan H, Wang Q, Jin H. Efficient distributed
algorithms for holistic aggregation functions on random reg-
ular graphs. Sci. China Inf. Sci, 2022, 65(5): 1-19. DOI:
10.1007/s11432-020-2996-2.

[27] Chan E, Heimlich M, Purkayastha A, Van De Geijn R. Col-
lective communication: theory, practice, and experience.
Concurrency and Computation: Practice and Experience,
2007, 19(13): 1749-1783.

[28] Thakur R, Rabenseifner R, Gropp W. Optimization of col-
lective communication operations in mpich. The Interna-
tional Journal of High Performance Computing Applica-
tions, 2005, 19(1): 49-66. DOI: 10.1177/1094342005051521.

[29] Hutter E, Solomonik E. Communication-avoiding cholesky-
QR2 for rectangular matrices. In Proc. the 8th International
Conference on Distributed Computing Systems, May 2019,
pp. 89-100. DOI: 10.1109/IPDPS.2019.00020.

[30] Hong J, Kung H T. I/O complexity: The red-blue peb-
ble game. In Proc. the 13th Annual ACM Symposium
on Theory of Computing, May 1981, pp. 326-333. DOI:
10.1145/800076.802486.

[31] Loomis L H, Whitney H. An inequality related to the
isoperimetric inequality. Bulletin of the American Math-
ematical Society, 1949, 55(10): 961-962.

[32] Choi J, Dongarra J J, Pozo R, Walker D W. Scalapack: A
scalable linear algebra library for distributed memory con-
current computers. In Proc. the Fourth Symposium on the
Frontiers of Massively Parallel Computation, Oct. 1992,
pp. 120-121. DOI: 10.1109/FMPC.1992.234898.

[33] Kwasniewski G, Kabic M, Besta M, VandeVondele J, Solc‘a
R, Hoefler T. Red-blue pebbling revisited: near optimal
parallel matrix-matrix multiplication. In Proc. the Interna-
tional Conference for High Performance Computing, Nov.
2019, pp. 24:1-24:22. DOI: 10.1145/3295500.3356181.

[34] Song Y, Kim W, Monga S K, Min C, Eom Y I. Prism:
Optimizing key-value store for modern heterogeneous stor-
age devices. In Proc. the 28th ACM International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, Mar. 2023, pp. 588-602.
DOI: 10.1145/3575693.3575722.

[35] Demmel J, Hoemmen M, Mohiyuddin M, Yelick K A.
Avoiding communication in sparse matrix computations. In
Proc. the 22nd IEEE International Symposium on Paral-
lel and Distributed Processing, Apr. 2008, pp. 1-12. DOI:
10.1109/IPDPS.2008.4536305.

Lin Zhu is currently pur-
suing his Ph.D. degree in com-
puter science from Huazhong
University of Science and Tech-
nology, Wuhan. His research
interests include parallel algo-
rithms and distributed comput-
ing.

Qiang-Sheng Hua received his
B.S. and M.S. degrees in computer
science from Central South Uni-
versity, Changsha, in 2001 and
2004, respectively, and the Ph.D.
degree in computer science from
The University of Hong Kong, Hong

Kong, in 2009. He is currently a professor with the
Huazhong University of Science and Technology, Wuhan.
He is interested in the algorithmic aspects of parallel and
distributed computing.

Hai jin is a chair professor of
computer science and engineering at
Huazhong University of Science and
Technology, Wuhan. Jin received his
Ph.D. degree in computer engineering
from Huazhong University of Science
and Technology, Wuhan, in 1994. In
1996, he was awarded a German Aca-

demic Exchange Service Fellowship to visit the Technical
University of Chemnitz, Straβe der Nationen. Jin worked
at The University of Hong Kong, Hong Kong, between
1998 and 2000, and as a visiting scholar at the University
of Southern California, Los Angeles, between 1999 and
2000. He was awarded Excellent Youth Award from the
National Science Foundation of China in 2001. Jin is a
CCF Fellow, IEEE Fellow, and a life member of ACM. He
has co-authored 22 books and published over 900 research
papers. His research interests include computer architec-
ture, virtualization technology, distributed computing,
big data processing, network storage, and network security.

https://doi.org/10.1145/2486159.2486196
https://doi.org/10.1145/2486159.2486196
https://doi.org/10.1145/3582016.3582055
https://doi.org/10.1109/DCS.1988.12538
https://doi.org/10.1109/DCS.1988.12538
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2931-x
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1007/s11432-020-2996-2
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1109/IPDPS.2019.00020
https://dl.acm.org/doi/10.1145/800076.802486
https://dl.acm.org/doi/10.1145/800076.802486
https://doi.org/10.1109/FMPC.1992.234898
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3575693.3575722
https://doi.org/10.1109/IPDPS.2008.4536305
https://doi.org/10.1109/IPDPS.2008.4536305

	Introduction
	Related Work
	Theoretical Cost Model
	Joint-Communication in the SPM
	Joint Cost Lower Bound in the APM
	Vertical Cost Lower Bound
	Vertically Optimal Cannot be Horizontally Optimal
	Joint Cost Lower Bound
	 Joint Cost Lower Bound with Enough Memory
	 Joint Cost Lower Bound with Limited Memory

	Memory and Dimensions Analysis
	Joint Cost Function
	Memory Analysis
	Matrix Dimensions Optimization

	Joint-Communication Optimal Algorithm
	Enough Memory
	Data Layout
	Scheduling
	Joint Communication Cost of EM-JOMMA

	Limited Memory
	Data Layout
	Scheduling
	Joint Communication Cost of LM-JOMMA

	Evaluation
	Conclusion

