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Abstract This paper initiates a study of the fully dynamic
all-pairs shortest paths problem (APSP) in the MPC model,
with each machine having O(nα) memory. Here, n denotes
the number of vertices in the graph and α represents a con-
stant within the range (0, 1). We mainly focus on the directed
weighted graphs. The update operation is inserting or deleting
a node and edges incident to that node. We design the first ran-
domized parallel dynamic APSP algorithm with a worst-case
update round of O(n

2
3−
α
6 log n/α) and a total memory usage of

O(n3−α/2). Prior to our work, the fastest static algorithm for
computing the shortest paths in the MPC model required O(n)
rounds [Hajiaghayi et al., arXiv ’19]. Additionally, directly
parallelizing the sequential dynamic APSP algorithm in the
MPC model resulted in Õ(n2+2/3) update rounds [Abraham
et al., SODA ’17], where Õ(·) suppresses a polylogarithmic
factor. By contrast, the parallel dynamic algorithm presented
in this paper requires fewer rounds to update the shortest paths
or distances in the dynamic APSP problem.
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1 Introduction

In recent years, the Massively Parallel Computation (MPC)
model has gained significant attention. Numerous distributed
and parallel graph algorithms for the MPC model have been
proposed [1–4]. However, most of these algorithms are de-
signed for static graphs.

In fact, the graphs in the real world are constantly chang-
ing.Typically, the size of the real-time changes in these graphs
is smaller and more localized. Employing static graph al-
gorithms to recompute the entire graph upon each change
can lead to resource inefficiency and unnecessary time over-
head. To address this issue, dynamic graph algorithms have
been designed to deal with graph changes more efficiently [5].
These algorithms can maintain a given property of a dynamic
graph, answer queries quickly, and process update operations
faster than recomputing. For instance, for the dynamic all-
pairs shortest paths problem, it maintains the shortest path
or distance between each pair of nodes in a graph. Over the
years, many dynamic graph algorithms have been proposed,
with most of them showing advantages over the corresponding
static algorithms [6–13].

However, most studies on dynamic graph algorithms are
limited to the single machine model. Moreover, a few parallel
dynamic graph algorithms in the MPC model [14–16] have
been proposed and shown superiority over their parallel static
counterparts. For example, the round complexity for dynamic



2 Front. Comput. Sci., 2024, 0(0): 1–20

Table 1 Comparing Our Parallel Fully Dynamic APSP Algorithm with the Existing Works

Rounds Memory CC EW Query Type

Karczmarz et al. [20] O(d), (d ∈ [1, n]) Õ(n3) Õ(n3) Real Distances Deterministic
Cao et.al [21] O(n3/2+o(1)) Õ(n3) Õ(n3) Integer Distances/Paths Randomized

AEV of Hajiaghayi et al. [22] O(n/α) O(n3−α/2) O(n3 log n) Real Distances/Paths Deterministic
ADP of Abraham et al. [7] Õ(n2+2/3) O(nα)∗ Õ(n2+2/3) Real Distances/Paths Randomized

This work O(n
2
3 −
α
6 log n/α) O(n3−α/2) O(n3 log n) Real Distances/Paths Randomized

Remark: (1) AEV: an extended version; ADP: a direct parallelization; CC:computation complexity; EW: edge weight (2) the round complexity of a
direct parallelization of [7] in the MPC model is derived from Lemma 7.1 of [16]; (3) ∗ means that the total memory required is the sum of memory of
O(1) machines.

maximal matching in the MPC model is only O(1) under
single edge update, while the related static algorithm requires
O(
√

log n) rounds [16].
The All-pairs shortest paths (APSP) problem is a funda-

mental graph problem with numerous applications, such as
road and transportation networks [17]. Over the years, the
static version of this problem has been extensively studied in
various models, including sequential, parallel, and distributed
models, such as the PRAM model [18], the BSP model [19],
and the MPC model [3].

1.1 Our Contributions

Despite all these mentioned above, to the best of our knowl-
edge, there are no existing dynamic all-pairs shortest paths
algorithms working in the MPC model. It will be very signifi-
cant and interesting to study the dynamic APSP problem in the
MPC model. We aim to design a parallel dynamic algorithm
that is faster than all the existing static parallel APSP algo-
rithms. At a high-level, our algorithm can be seen as a parallel
variant of the sequential dynamic APSP algorithm proposed
by Abraham et al. [7], which will be detailed in Section 1.2.
The main result is as follows:

Theorem 1. Given a directed weighted graph G = (V, E) with
n = |V | nodes and no negative cycles, in the MPC model where
each processor has O(nα) memory, there is a fully dynamic
randomized APSP algorithm with O(n

2
3−
α
6 log n/α) worst-case

update rounds and O(n3−α/2) total memory, with high probabil-
ity.1) Here, α ∈ (0, 1) is a constant. The round complexity to
query the shortest path between two nodes is O(n1−2α) rounds.

We now compare our algorithm with the two most relevant
results, as outlined in Table 1. Up to now, the sole exact APSP
algorithm for the MPC model was proposed by Hajiaghayi
et al. [22]. This algorithm computes the distance matrix of a

1)An event happens “with high probability” if it occurs with probability at
least 1 − 1/nc, where c ≥ 1 is a constant.

weighted graph on semiring (+,min) using the path-doubling
strategy, requiring only O(log n) rounds. However, it cannot
provide the shortest paths between pairs of nodes, as the path-
doubling strategy only shows changes in a portion of the
distance between nodes rather than all changes. If we were to
extend the approach presented in [22] to compute the shortest
paths, the round complexity would increase to O(n).

The other work is a trivial parallel algorithm that directly
parallelizes the sequential dynamic APSP algorithm of [7] in
the MPC model, using the reduction method in [16]. However,
the resulting algorithm would require Õ(n2+2/3) rounds, with
O(1) machines involved in each round. Furthermore, the
total memory to store the data structures required in [7] is still
Õ(n3). Overall, it is unrealistic and inefficient to cost Õ(n2+2/3)
rounds to update the dynamic APSP in the MPC model.

In Table 1, the computation complexity of our parallel algo-
rithm is much higher than the parallel version of the algorithm
in [7]. This is because we made a trade-off between compu-
tation complexity and rounds complexity when parallelizing
the algorithm in [7]. In the MPC model, the communication
overhead between processors is much more expensive than
CPU computation, so we think this trade-off is reasonable.

It is important to note the tight connection between algo-
rithms in the MPC model and the PRAM model. The round
complexity of an algorithm in the MPC model is equivalent to
the depth of that in the PRAM model [23]. There are several
PRAM algorithms for the shortest paths problem. The most re-
lated one is a parallel APSP algorithm with Õ(d) depth (where
d ∈ {1, · · · , n}) proposed by Karczmarz and Sankowski [20].
Although the round complexity of this algorithm in the MPC
model can be as low as O(poly(log)), it cannot return the path
between any two nodes. This is because they used the repeated
squaring algorithm (also referred to as the path-doubling strat-
egy in [22], as mentioned earlier). Other relevant PRAM
algorithms focus on the exact SSSP problem [21, 24]. They
all require O(n1/2+o(1)) depth and are limited to graphs with
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integer weights. Extending these parallel SSSP algorithms to
solve the APSP problem in the MPC model would cause a
round complexity of O(n3/2+o(1)). By comparison, our parallel
dynamic APSP algorithm is more efficient in terms of the
round complexity.

Our contributions can be summarized as follows:
1. We propose the first parallel fully dynamic APSP algo-

rithm in the MPC model (See details in Section 4).
2. Compared with the existing fastest MPC algorithm, the

parallel algorithm proposed in this paper reduces the
round complexity by a factor of O(n

1
3+
α
6 / log n), where

α ∈ (0, 1).

1.2 Technique Overview

To better understand our algorithm, we will briefly introduce
Abraham et al.’s algorithm, which utilized a standard strat-
egy from [9, 10] to design a fully dynamic APSP algorithm
with worst-case update time. The algorithm consists of three
components: the preprocessing procedure, the decremental
procedure and the incremental procedure.

The preprocessing procedure is used to process the current
graph and obtain an efficient data structure. In [7], the shortest
paths between nodes were divided into ⌈log n⌉ hierarchies due
to the fact that the number of edges on a path can be at most n.

In each hierarchy, a congestion value of zero is initially
assigned to each node in the graph. The congestion value
of a node is defined as the number of shortest paths with at
most 2i edges that contain the node in the i-th hierarchy (i ∈
{1, 2, · · · , ⌈log n⌉}). Then, a sampling strategy introduced in
[25] is employed to select a subset of nodes, forming an initial
hitting set. This hitting set consists of crucial vertices used to
compute the shortest path trees rooted at these nodes. These
trees, in turn, are utilized to calculate the shortest distances or
paths between any pair of nodes. In the i-th hierarchy, they
first computed the shortest paths with at most 2i edges from
and to a node u in the sampled set with the Bellman-Ford
algorithm according to the congestion value size of nodes.

Utilizing these shortest paths, the congestion value for each
node of the graph and the distances between at most n2 pairs
of nodes that pass through the node u were computed. Nodes
with large congestion values, not originally in the sampled set,
were added to the sampled set as the final hitting set at the
end of each hierarchy, after the computation of shortest paths
for all sampled nodes. After iterating over all hierarchies,
⌈log n⌉ hitting sets and the corresponding distances and paths
between nodes that pass through vertices of the hitting sets

were obtained. Storing these distances may require up to
O(n3 log n) memory.

Then by working on the obtained data structures, the decre-
mental procedure and the incremental procedure deal with
node deletions and node insertions, respectively. The decre-
mental procedure in [7] only needs to deal with affected nodes
whose shortest paths are destroyed when nodes and their inci-
dent edges are deleted. This can be done by using the shortest
paths with roots in the hitting set obtained during the prepro-
cessing procedure above. For each affected node, a new graph
with related edges is constructed, and Dijkstra’s algorithm is
used to compute the shortest paths from and to this node. Fi-
nally, the new distances between nodes are compared with the
remaining distances to obtain the shortest distances between
any two nodes.

For the insertion of nodes, a modified Floyd-Warshall algo-
rithm is used to compute the distance matrix. Ultimately, using
the method proposed in [26], Abraham et al. [7] obtained a
fully dynamic APSP algorithm with a worst-case update time
of O(n2+2/3 log4/3 n).

Unfortunately, employing this algorithm directly in the
MPC model would result in a round complexity of Õ(n2+2/3),
which is too high and unrealistic (refer to Table 1). The main
challenges are as follows:

1. The preprocessing procedure presented in [7] requires
O(n3 log n) memory to store the distances between all
vertices, which is too large. Reducing the memory and
round complexities while still storing these distances is
a significant challenge.

2. For the decremental procedure in [7], constructing a
new graph for every affected node in each hierarchy and
still using Dijkstra’s algorithm would result in a high
round complexity.

3. In [7], there is a tight connection of the computation and
comparison of shortest distances between the prepro-
cessing procedure and the decremental algorithm. If we
reduce the total memory needed for the preprocessing
algorithm, it may pose new challenges to design the
decremental procedure.

4. The incremental procedure in [7] uses the modified
Floyd-Warshall algorithm with two-layer loops to up-
date the node insertions one by one. However, in the
MPC model, a direct implementation of this algorithm
would result in an unacceptable increase in round com-
plexity.
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To address the first challenge, we remove the computation
of distances between nodes during the preprocessing proce-
dure and only store the shortest path trees. This reduces the
round complexity required to compute the distances between
vertices, and the memory required to store the trees is only
Õ(n2) since these trees can be used to calculate these distances.

In tackling the second challenge, we only concentrate on
the nodes in the hitting set associated with the affected nodes.
We replace the Dijkstra algorithm with the restricted Bellman-
Ford algorithm proposed in [4]. Due to resource contention,
the restricted Bellman-Ford algorithm (refer to Algorithm 1)
can only compute the shortest path tree of a single node at a
time, potentially resulting in a significant round complexity.
Subsequently, we introduce an algebraic method to reduce the
round complexity and update the distances and shortest paths
between nodes accurately.

This algebraic method combines the blocked Floyd-Warshall
algorithm [18] and the sampling strategy of [7, 25], using the
short-hop distances obtained by the restricted Bellman-Ford
algorithm to compute the long-hop distances between nodes.
The short-hop (or long-hop) distance means that the number
of edges on the shortest path of any two nodes is small (or
large).

The third challenge arises from removing the calculation of
distances between nodes during the preprocessing procedure,
which increases the round complexity when performing this
step in the decremental procedure. To address this problem,
we utilize matrix multiplication on a semiring to calculate the
distances between nodes within each hierarchy and compare
them between these hierarchies.

Finally, in addressing the fourth challenge, we combine the
blocked Floyd-Warshall algorithm [18] with an MPC algo-
rithm of matrix multiplication on a semiring. This approach
reduces the round complexity when computing both the short-
est distances and paths (see details in Section 4.3).

1.3 Related Work

Dynamic graph algorithms can be categorized into two types:
fully dynamic algorithms and partially dynamic algorithms.
Fully dynamic algorithms can handle both edge and node
deletions and insertions, while partially dynamic algorithms
can only handle one of these operations. This paper focuses
on fully dynamic all-pairs shortest path (APSP) algorithms.
Interested readers can refer to [8, 11, 12, 27–31] for studies on
partially dynamic APSP algorithms.

Throup [10] improved the local paths method in [8] and

proposed the first fully dynamic APSP algorithm for directed
weighted graphs, which supports node deletions and inser-
tions with a worst-case update time of Õ(n2.75). This bound
was broken by Abraham et al. [7] who designed a simpler
randomized algorithm with Õ(n2+2/3) worst-case update time.
Subsequently, Gutenberg et al. [9] presented a determinis-
tic data structure that improved the result of [10] to Õ(n2.71)
worst-case update time. Chechik et al. [32] later designed a
faster preprocessing algorithm than that of Abraham et al. [7]
and Gutenberg et al. [9] to compute the shortest paths be-
tween nodes and they obtained a deterministic algorithm with
Õ(n2+41/61) worst-case update time. More recently, Mao [33]
introduced a randomized algorithm with Õ(n2.5) worst-case
update time which almost met a natural Ω(n2+1/2) barrier.

These studies above all utilized a technique introduced
in [26] to transform a decremental algorithm (i.e., ones that
can only deal with node/edge deletions) into a fully dynamic
algorithm. We also employ this technique in our algorithm
(See details in Section 4). Among these studies, the random-
ized algorithm proposed by Abraham et al. [7] is the simplest
one and has the minimum sequential dependency. The prepro-
cessing algorithms designed in [10] and [7] were both based
on the work of [8], which caused a running time larger than
O(n3) and needed large memory to store the possible shortest
paths between all nodes. The works presented in [9] and [33]
used a similar framework for the decremental algorithm, but
there is a strict sequential dependency in computing the con-
gestion value for nodes between different iterations. This
increases the hardness of parallelizing these serial algorithms.
Therefore, we attempt to parallelize the sequential dynamic
algorithm of [7].

The works on the dynamic APSP problem in the parallel
and distributed setting are few and not relevant enough to the
one studied in this paper, interested readers can refer [34, 35]
for details.

1.4 Organization

In Section 2, we introduce the MPC model, the problem def-
inition, and some necessary and useful techniques. Some
assumptions about the storage of nodes and edges of a given
graph and a list of known subroutines are provided in Section
3. In Section 4, we present a detailed description and analysis
of our parallel fully dynamic APSP algorithm. Finally, the
conclusion of the paper is given in Section 5.
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2 Preliminaries

2.1 The MPC Model and Complexity Measurements

The MPC model can be traced back to the MapReduce model
proposed by Karloff et al. [36], and gradually grows into the
theoretical computation model [23, 37]. There are three key
parameters for the MPC model: the size of input data N, the
number of required processors P, and the memory size S for
each processor. The relationship between these parameters is
P · S = Θ̃(N). In this paper, we consider the MPC model with
strongly sublinear memory, which means S = Õ(nα), where
α ∈ (0, 1) and n is the number of nodes in a given graph.

In the MPC model, the computation is executed in syn-
chronous rounds. At the beginning of each round, the input
data are distributed among P processors. In each round, each
processor performs local computation and has no commu-
nication with other processors. At the end of each round,
processors communicate with each other to obtain the data re-
quired for the next round , with the size of the message sent or
received limited to at most S words in each round. Pair-wise
connectivity is used for communication between processors.

The MPC model’s complexity measurements include the
round and memory complexities. The primary objective is
reducing the round complexity of the MPC algorithms.

2.2 Problem Definitions

In this paper, we consider directed weighted graphs G =
(V, E,W) without negative cycles, where V denotes the set of
nodes, E is the set of edges, and W : E → R is a weighted
function. |V | = n and |E| = m are the number of nodes and
edges in the graph G, respectively. The weight of edge (u, v)
(u, v ∈ V) is denoted by w(u, v). We focus on dense graphs
where m = Θ(n2). In the following, we give some definitions
about the problem studied in this paper.

Definition 1. (Parallel Fully Dynamic All Pairs Shortest Paths
Problem) In the MPC model with the memory of each pro-
cessor as Õ(nα), given a directed weighted graph above, the
update operations are deleting or inserting nodes and their
incident edges. The parallel fully dynamic all pairs shortest
paths problem is to maintain the shortest distances and paths
between nodes of a graph in the MPC model.

Definition 2. Given a directed weighted graph above, D ⊆ V
is a subset of nodes, G(V\D) is a subgraph of G with edges
whose nodes are both in V\D. G(V ∪ D) is the extended

Fig. 1 The left figure is a directed weighted graph with 9 nodes and 16
edges. The right figure shows the ≤ 3-hop paths between node 0 and node 7
and the shortest ≤ 3-hop path between node 0 and node 7.

graph that contains both nodes in V and D, along with their
corresponding edges.

Definition 3. Given the directed weighted graph G = (V, E,W)
above, s, t ∈ V are two different nodes, the path between s and
t is defined by π(s, t) = s(= v0)→ v1 → · · · → vk−1 → t(= vk).
The length of π(s, t) is the sum of its edges’ weights, namely
|π(s, t)| =

∑k−1
i=0 w(vi, vi+1). Additionally, the shortest dis-

tance between nodes s and t is denoted as d(s, t), where
d(s, t) = minr

i=1{|πi(s, t)|} and r is the number of reachable
paths between s and t.

Definition 4. Given the directed weighted graph G = (V, E,W)
above, s, t ∈ V are two different nodes, the ≤ h hop path is
defined as a path with at most h edges. The shortest ≤ h hop
path between s and t (whose length is noted by dh(s, t)) is the
path with the shortest distance among all ≤ h hop paths from
s to t.

To better understand the definition of the ≤ h-hop path,
we can refer to Fig.1 above. It is worth noting that d(s, t)
and dh(s, t) denote the shortest distances in graph G, while
dG(V\D)(s, t) and dh

G(V\D)(s, t) represent the shortest distances
in subgraph G(V\D).

2.3 Some Necessary and Useful Techniques

Next, we will introduce several techniques. Firstly, we will
present the random sampling strategy, which plays a funda-
mental role in our parallel preprocessing procedure. This tech-
nique was originally introduced by Ullman and Yannakakis [25]
and has later been widely used in designing efficient random-
ized algorithms for dynamic shortest paths problems [7, 11].

Lemma 1. ( [25]) G = (V, E) is a digraph with n nodes and
1 ≤ k ≤ n. Let RS denote a random sampling subset of nodes
obtained by selecting each node independently, with probabil-
ity min{1, c ln n

k } where c is a constant. Then for arbitrary path
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π with at most k edges in graph G, at least one of the nodes
on path π belongs to RS w.h.p..

Secondly, we propose a variant of the standard method [7,
9, 10, 26], which can transfer a decremental algorithm into a
fully dynamic algorithm, as mentioned in Section 1:

Lemma 2. For the dynamic APSP problem in the MPC model
with P processors and S words of memory per processor, the
following holds: if there exists a preprocessing algorithm for
the original graph G = (V, E) that costs Rpre rounds to obtain
a decremental data structure that can support any sequence
of 2∆ deletions of nodes in Rdel rounds, and an incremental
algorithm can handle any sequence of ∆ node insertions by
updating the distance matrix and paths obtained by the decre-
mental algorithm within Rins rounds, then we can achieve a
fully dynamic APSP algorithm that supports each node update
in O(Rpre/∆ + Rdel + Rins) worst-case update rounds for the
MPC model.

Proof. As shown, the decremental algorithm can handle a
batch of 2∆ deletions after the preprocessing algorithm. To
obtain the fully dynamic algorithm, we can maintain two
copies of these algorithms in parallel (which includes the
preprocessing algorithm, the decremental algorithm, and the
incremental algorithm). At each interval of ∆ updates, we use
one copy to query the result and the other one to preprocess
the current graph. This means that for every ∆ update, the
preprocessing algorithm takes Rpre/∆ rounds to process the
current graph, which supports at most ∆ deletions for the
decremental algorithm. After this copy is ready to query
the results, it is ∆ updates behind. Since the decremental
algorithm can handle 2∆ deletions, we only need to add at
most ∆ deletions in the previous ∆ updates to that of the
current ∆. Then we can use this copy to execute the query
operations and use the other copy to process the graph again.

To convert the decremental algorithm into a fully dynamic
algorithm, we still have to execute an incremental algorithm
that can handle ∆ insertions in Rins rounds. This incremental
algorithm only needs to update the distance matrix and paths
obtained by the decremental algorithm. Therefore, we only
have to maintain this decremental data structure. □

We observe that the incremental algorithm mentioned in
Lemma 2 only requires updating the distance matrix. How-
ever, we need to update the shortest paths between nodes; we
will design an incremental algorithm in the MPC model that

can update both the distance matrix and the shortest paths
simultaneously in Section 4.3.

Finally, we introduce a useful algebraic result for matrix
multiplication on semirings in the MapReduce model with
strongly sublinear memory through the following lemma:

Lemma 3. ( [22] ) In the MapReduce model with memory
of each processor as O(nα), where 0 ≤ α ≤ 2, the following
results hold:

• The multiplication of any two n × n matrices A and B
over semiring (min,+) can be computed in 1 + ⌈(1 −
α/2)/α⌉ rounds with O(n3(1−α/2)) processors.

• When the parameter z ≥ α, the multiplication of a ma-
trix A with size n × nz and a matrix B with size nz × n
over semiring (min,+) can be computed in O(1) rounds
with O(n2+z− 3α

2 ) processors.

3 Some Assumptions and Basic Subroutines

Before presenting our parallel fully dynamic APSP algorithm
in detail, we specify certain assumptions regarding the storage
of nodes and edges in the MPC model. Additionally, we
introduce several known subroutines that can facilitate the
design of our fully dynamic APSP algorithm in the MPC
model.

3.1 Some Assumptions

In the MPC model, we assume that there are P processors,
which are identified by the IDs P1, P2, . . . , PP. We assume that
the IDs of processors are numbered in ascending order, i.e.,
P1 has the smallest ID, and PP has the largest ID. The nodes
of a directed weighted graph G = (V, E,W) are numbered
sequentially as 1, 2, . . . , n. For each node v ∈ V , we use
Nin(v) and Nout(v) to denote the sets of incoming and outgoing
edges, respectively. Edges in Nin(v) (or Nout(v)) are sorted
by the ID of their endpoints, except node v. For example, if
(u1, v), (u2, v), (u3, v) ∈ Nin(v), then the order of these edges in
Nin(v) is determined by the IDs of the nodes u1, u2, and u3.

We use Pnodes to denote the set of processors (the num-
ber of which is O(n1−2α)) that store the nodes of G and the
information associated with each node v ∈ V . Nodes with
smaller IDs are stored in processors with smaller IDs. The
information for each node v ∈ V is represented by a tuple
(iv, P(v), Pin(v), Pout(v)), which includes the ID of the node,
the ID of the processor that stores it, and the ID ranges of the
processors that store the edges in Nin(v) and Nout(v). We use a
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continuous set of processors to store the edges incident to each
node v, so Pin(v) includes the ID of the first processor that
stores the first edge of Nin(v) and the ID of the last processor
that stores the last edge of Nin(v). The same goes for Pout(v).
In Section 4.1, we will describe the other information about
nodes stored in the set Pnodes.

Furthermore, the information about each edge in E in-
cludes the IDs of the nodes it connects, the ID of the pro-
cessor that stores it, and its weight. Each edge is stored on
two processors since it connects two nodes. For example, if
(u, v) ∈ Nin(v), then the information of edge (u, v) can be repre-
sented by a tuple ((u, v), Pin(v, (u, v)), iu, iv, P(v), P(u), ω(u, v)).
If (u, v) ∈ Nout(u), then the tuple for the information of edge
(u, v) is ((u, v), Pout(u, (u, v)), iv, iu, P(u), P(v), ω(u, v)). Here,
Pin(v, (u, v)) and Pout(u, (u, v)) indicate the ID of the proces-
sor that stores the edge (u, v) in the sets Nin(v) and Nout(u),
respectively.

3.2 The Basic Subroutines

Now, we present a list of useful subroutines for further design-
ing our fully dynamic APSP algorithm in the MPC model.

The Sorting (M, a, b) Algorithm [23]: Given a set M of
n comparable values, the aim is to sort these values among
processors with the IDs from a to b that store these values.
Also, the processor with a smaller ID stores smaller values.
The sorting algorithm (M, a, b, n) can be performed in O(1/α)
rounds in the MPC model with S = Õ(nα).

The Find Minimum(M, a, b) Algorithm or the Find Maxi-
mum(M, a, b) Algorithm [4]: Given a set M of n comparable
values which are stored in a continuous set of processors with
IDs ranging from a to b. The goal of these two algorithms is to
find the minimum and maximum values, respectively, which
can be performed in O(1/α) rounds in the MPC model with
S = Õ(nα).

Broadcast(x, a, b, c) [4]: Broadcasts a message x from the
processor with ID a to a continuous set of n processors of
the ID range(b, c). Broadcast(x, a, b, c) can be performed in
O(1/α) rounds in the MPC model with S = Õ(nα).

Finally, we highlight the restricted Bellman-Ford algorithm
in the MPC model, designed in [4], which is an essential
component for our parallel preprocessing and decremental
procedures. We have modified this algorithm to output the
tree rooted at source s while maintaining the same round
complexity.

Lemma 4. ( [4]) G = (V, E) is a digraph with source node

s ∈ V , in the MPC model with S = Õ(nα), the restricted
Bellman-Ford algorithm (Algorithm 1) can compute distances
dh(s, v) of the shortest ≤ h hop paths from s to all v ∈ V in
O(h/α) rounds.

4 Fully Dynamic APSP Algorithm in the MPC
model

In Section 1.2, we provide a brief overview of the fully dy-
namic APSP algorithm proposed in [7]. We then analyze
the challenges of parallelizing this sequential algorithm in
the MPC model and present our strategies for overcoming
these challenges. In this section, we will provide a detailed
description of our parallel fully dynamic APSP algorithm,
including the design of the algorithm and complexity analy-
sis. Specifically, the supporting subroutines and the parallel
preprocessing algorithm will be presented in Section 4.1. In
Section 4.2, we will design the supporting subroutines and the
parallel decremental algorithm for the deletion of nodes and
edges incident to these nodes. Finally, the parallel incremental
algorithm will be presented in Section 4.3 for the insertion of
nodes and their incident edges.

4.1 The Parallel Preprocessing Procedure

We retain the structure for solving the shortest paths trees
in the preprocessing algorithm presented in [7], except for
calculating the distances between nodes. In Section 1.2, we
describe how the computation of shortest paths trees is divided
into ⌈log n⌉ iterations. Although the iterations are independent
of each other, it is unrealistic to perform these logn iterations
simultaneously due to resource contention between processors.
Thus, our main task is to parallelize the computation within
each iteration of the preprocessing algorithm in the MPC
model to reduce the round complexity.

To achieve this, we designed subroutines that can paral-
lelize some important steps in Section 4.1.1. These subrou-
tines consist of several tasks: random sampling of nodes,
initializing node congestion values, identifying nodes with
the largest congestion values, and computing node congestion
values using the obtained shortest path trees. Additionally, we
designed a subroutine in the MPC model for constructing a
new graph for nodes with the largest congestion values.

We provide the details of our parallel preprocessing proce-
dure in Section 4.1.2 with the designed subroutines. In Section
4.1.3, we analyze the round complexity of these subroutines
and the preprocessing algorithm in the MPC model.
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Algorithm 1 Restricted Bellman-Ford (G, s, h,MPC(nα))
Input: A directed graph G = (V, E,W) (|V | = n, |E| = m) distributed among processors P1, P2, · · · , PP and a source s.
Output: A ≤ h hop restricted distances to all nodes v ∈ V from source s and a tree rooted at s.
1: for i = 1 to h do
2: for v ∈ V do
3: Compute d(s, v) = minu∈Nin(v){d(s, u) + w(u, v)} and set v.π = u (u is the parent of node v)
4: Broadcast d(s, v) to processors (a continuous processors set Pout(v)) that store the outgoing edges of vertex v
5: ▷ Broadcast(x, a, b, c) in Section 3.2
6: end for
7: end for

4.1.1 A Set of Supporting Subroutines

Before presenting the preprocessing procedure, we first pro-
vide a set of supporting subroutines that are crucial compo-
nents of the parallel preprocessing procedure designed in Sec-
tion 4.1.2.

NodesRandomSample(M, hi, a, b): Given a set M of |M|
nodes from a continuous set of processors with the ID rang-
ing from a to b (where nodes with smaller IDs are stored in
processors with smaller IDs), it returns a sample node set by
setting k = hi = 2i in Lemma 1 (1 ≤ i ≤ ⌈log n⌉) during the
i-th iteration. The selected nodes are marked as iC , which
form the hitting set in the i-th iteration.

The subroutine NodesRandomSample(M, hi, a, b) is used
to obtain the initial hitting set, as discussed earlier in Section
1.2. The following subroutines all involve an important con-
cept: the congestion value of a node. Therefore, we restate the
definition of the congestion value of a node, and we provide a
simple example in Fig. 2 for better understanding.

Fig. 2 (a) shows a tree denoted as T1 with a root node of
1. Fig. 2 (b) illustrates the congestion values of nodes 2 and
5 in tree T1. To calculate the congestion value of a node in
tree T1, one can simply count the number of child nodes it has
(excluding the root node 1) and add 1.

Fig. 2 (a) The tree T1; (b) The congestion values of node 2 and 5 in the tree
T1.

The congestion value of a node v is the total number of
shortest paths with at most hi = 2i hops that contain v in
the i-th iteration of the preprocessing procedure. In Fig. 2,
we show how to use a tree rooted at node 1 to compute the
congestion values of all nodes except node 1. In fact, in the
i-th iteration of the preprocessing procedure, we will obtain
several shortest path trees rooted at different nodes. There-
fore, we must compute the congestion value of a node (apart
from these root nodes) with all these shortest path trees one
by one. The reason of computing the congestion value of a
node will be illustrated after the description of the subroutine
Access(v, P(v)).

InitiaCongestValue(M, cv, i, a, b): For a given set M of
nodes among a continuous set of processors with IDs from a
to b, it initializes the congestion value cv(v) of each node v in
the set M to 0 at the beginning of the i-th iteration.

FindMaximum(M, a, b): Uses the Find Maximum (M, a, b)
algorithm in Section 3.2 to find the node v with the maximum
congestion value in the nodes set M among processors with ID
range (a, b). This node v is marked as iR in the i-th iteration.

CompCongValue(T, v, cv, a, b): First, it computes the con-
gestion values cv of nodes based on the shortest ≤ hi hop paths
tree T rooted at node v among processors with ID range (a, b).
Then, it counts the number of children nodes of a node in the
tree T to determine its congestion value. Sort the nodes in M
based on their ID size using the sorting (M, a, b) algorithm.
Finally, it sends the congestion values of nodes to proces-
sors that store the corresponding nodes and compute the new
congestion values using the received data.

Access(v, P(v)): Sets node v and the edges incident to it as
inactive, and notify the processors in the set P(v), which store
the edges incident to v, to set these edges as inactive as well.
It then uses the Broadcast(x, a, b, c) algorithm in Section 3.2
to send a message to processors whose nodes (except for node
v) are endpoints of edges incident to v. Finally, it notifies the
processors that store edges connecting to node v to set these
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Algorithm 2 The Preprocessing Procedure in MPC(nα)
Input: A directed graph G = (V, E,W).
Output: The new hitting set Ri and the shortest ≤ hi paths trees T v→

i and T←v
i for 1 ≤ i ≤ ⌈log n⌉, v ∈ Ri (T v→

i and T←v
i is out tree and in tree with at most hi

edges rooted at node v)
1: for i = 1 to ⌈log n⌉ do
2: hi ← 2i,Ri ← ∅

3: Ci ←NodesRandomSample(V, hi, Pnodes); ▷ Get a sampled node set
4: Execute InitiaCongestValue(V, cv, i, Pnodes) ▷ Initialize the congestion values for all nodes
5: while Ci\Ri , ∅ do
6: v← FindMaximum(Ci\Ri, Pnodes) ▷ Choose the sampled vertex with the largest congestion value
7: Ri ← Ri ∪ {v}
8: (T v→

i , P(T v→
i ))← Restricted Bellman-Ford (G(V\Ri), v, hi,MPC(nα)) ▷ Compute the shortest path tree from v

9: (T v←
i , P(T v←

i ))← Restricted Bellman-Ford (
←−
G(V\Ri), v, hi,MPC(nα)) ▷ Compute the shortest path tree to v

10: Execute CompCongValue(T v→
i , v, cv, P(T v→

i )) ▷ Compute the congestion value for each node
11: Execute CompCongValue(T v←

i , v, cv, P(T v←
i )) ▷ Compute the congestion value for each node

12: Access(v, P(v)) ▷Make the edges incident to node v inactive
13: if V\(Ci ∪ Ri) , ∅ then
14: v← FindMaximum(V\(Ci ∪ Ri), Pnodes) ▷ Choose the non-sampled node with the biggest congestion value
15: Ri ← Ri ∪ {v}
16: (T v→

i , P(T v→
i ))← Restricted Bellman-Ford (G(V\Ri), v, hi,MPC(nα))

17: (T v←
i , P(T v←

i ))← Restricted Bellman-Ford (
←−
G(V\Ri), v, hi,MPC(nα))

18: Execute CompCongValue(T v→
i , v, cv, P(T v→

i ))
19: Execute CompCongValue(T v←

i , v, cv, P(T v←
i ))

20: Access(v, P(v))
21: end if
22: end while
23: end for

edges as inactive.

The subroutine Access(v, P(v)) is used to deactivate the
edges incident to node v, which prevents the restricted Bellman-
Ford algorithm executed from another node u from visiting
these edges. This greedy strategy limits the maximum conges-
tion value of each node and minimizes the impact of updates,
which is the significance of setting a congestion value for each
node.

4.1.2 The Preprocessing Procedure in the MPC Model

In Section 4.1.1, it is necessary to assign labels to the randomly
sampled nodes and set a congestion value for each node, in
addition to the information outlined in Section 3.

In the following, we will describe how to mark the conges-
tion value cv(v) for a given node v, as well as the sampling
process results for each node in V . As the preprocessing pro-
cedure runs independently between iterations, and cv(v) is
initialized to 0 at the beginning of each iteration, the symbol
cv(v) can be utilized to represent the congestion value of node
v for ⌈log n⌉ iterations. However, we require ⌈log n⌉ markings
(as outlined in NodesRandomSample(M, hi, a, b)) for the ran-
dom sampling of each node. This is because these markings

will be used to obtain the final hitting set. The total memory
required for storing the nodes in set V is Õ(n), and we can
simply utilize O(n1−2α) processors to store the information for
all nodes.

Algorithm 2 presents the pseudo-code for our parallel pre-
processing algorithm. At each iteration, we consider the short-
est paths with at most hi = 2i edges and set an empty node set
Ri which is used to get the final hitting set. Firstly, we execute
NodesRandomSample(V, hi, Pnodes) among the processors set
Pnodes to obtain a sample node set Ci. These sampled nodes
are marked as iC in the i-th iteration. The nodes in the sam-
pled node set Ci form the initial hitting set. Subsequently,
we initialize the congestion values cv for all nodes in V with
InitialCongestValue(V, cv, i, Pnodes).

Next, we construct the new hitting set Ri for each iteration
and compute the shortest path trees from and to nodes in Ri.
We start by selecting the node v in the sampled node set Ci with
the largest congestion value by executing FindMaximum(Ci\Ri,

Pnodes) (refer to line 5 in Algorithm 2). We then add this sam-
pled node v to Ri and compute the ≤ hi hop shortest path
trees T v→

i and T v←
i from and to node v using the Restricted

Bellman-Ford(G(V\Ri), v, hi, MPC(nα)) algorithm (refer to
Algorithm 1) and the Restricted Bellman-Ford(

←−
G(V\Ri), v, hi,
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MPC(nα)) algorithm (refer to Algorithm 1), respectively. This
process is from line 7 to line 9 in Algorithm 2. Here,

←−
G =

(V,
←−
E ) denotes the reverse graph of G. The resulting tree data

structures T v→
i and T v←

i are then stored in a continuous set
P(T v→

i ) and P(T v←
i ) of processors.

After that, we execute the two subroutines ComputeCongV-
alue(T v←

i , v, cv, P(T v←
i )) and ComputeCongValue(T v→

i , v, cv,
P(T v→

i )) to compute the congestion values for all nodes except
those in Ri using the shortest path trees computed above (refer
to line 10 - line 11 in Algorithm 2). Here, P(T v→

i ) (or P(T v←
i ))

is a continuous set of processors that stores tree T v→
i (or T v←

i ).
Finally, we deactivate the sampled node v and its incident
edges using the subroutine Access(v, P(v)) (refer to line 12
in Algorithm 2). This operation can restrict the size of the
congestion value of a node and reduce the influence caused by
the deletion and insertion of nodes.

As mentioned above, the new hitting set Ri comprises both
the sampled and non-sampled nodes. Similar to selecting
the sampled nodes, we select the non-sampled node with the
largest congestion value and add it to Ri (refer to line 14 - line
15 in Algorithm 2). The subsequent steps for the non-sampled
node are the same as those for the sampled node (refer to line
16 - line 20 in Algorithm 2).

After visiting the shortest path trees for all sampled nodes,
we obtain the new hitting set Ri and the corresponding short-
est path trees at the end of each iteration. Additionally, we
store extra information for each tree, such as the node ID,
the processor ID that stores the node, the processor ID that
stores edges within the tree, and the distances from the source
v to other nodes in tree T v→

i (or T v←
i ). This information is

necessary for updating the distances and paths in the parallel
decremental algorithm presented in Section 4.2.

Compared to the sequential fully dynamic APSP algorithm
described in [7], we can reduce the total memory from Õ(n3)
of [7] to Õ(n2) in the MPC model. This is achieved by defer-
ring the computation of shortest distances and the sorting of
distances for each pair of nodes.

4.1.3 Complexity Analysis

We now analyze the round complexity of Algorithm 2 (the
preprocessing procedure). To begin, we present a lemma
regarding the round complexity of the supporting procedures
outlined in Section 4.1.1 below:

Lemma 5. (The Round Complexity of The supporting sub-
routines) For Algorithm 2 in the MPC model with strongly

sublinear memory (S = Õ(nα)), the number of rounds for
NodesRandomSample(V, hi, Pnodes) and InitiaCongestValue(V,
cv, i, Pnodes) are O(1), while the round complexity for Find-
Maximum (M, a, b), CompCongValue(T, v, cv, a, b), and Ac-
cess(v, P(v)) is O(1/α) in each iteration of each while loop.

Proof. In each iteration of Algorithm 2, the subroutines Nodes-
RandomSample(V, hi, Pnodes) and InitiaCongestValue(V, cv, i,
Pnodes) can be executed locally in a single round. We now ana-
lyze the round complexity of CompCongValue(T, v, cv, a, b)
within each while loop of Algorithm 2. As we utilize a
continuous set of processors to store the paths, it is possi-
ble to compute the congestion values of nodes in the short-
est paths locally. Sorting the nodes based on their IDs re-
quires O(1/α) rounds and sending congestion values of nodes
in the shortest paths to the processors set Pnodes only takes
one round. The Access(v, P(v)) subroutine, which is em-
ployed to make certain edges inactive, only requires O(1/α)
rounds by the Broadcast operation in Section 3.2. Addition-
ally, FindMaximum(M, a, b) can be obtained by executing
the Find Maximum(M, a, b) algorithm in Section 3.2, which
has a round complexity of O(1/α) rounds. □

Lemma 6. (The round complexity of the parallel preprocess-
ing procedure) The preprocessing procedure (Algorithm 2)
designed for a fully dynamic APSP problem in the MPC model
takes O(n log2 n/α) rounds to process a weighted digraph G
with non-negative cycles with high probability ( w.h.p.), where
n is the number of nodes in graph G.

Proof. As we can see, the subroutines NodesRandomSample(V,
hi, Pnodes) and DeleteNodes(D, Pnodes) (refer to Lemma 5) re-
quire O(1) rounds and Algorithm 2 performs ⌈log n⌉ iterations.
The round complexity of the NodesRandomSample(V, i, Pnodes)
and DeleteNodes(D, Pnodes) subroutines (refer to Lemma 5)
used in Algorithm 2 is O(log n).

In each iteration, there is a while loop in the preprocess-
ing procedure that computes the hitting set Ri and the short-
est ≤ hi hop paths trees. The size of the hitting set Ri is
|Ri| ≤ 2|Ci| = O(n log n/hi), as shown in [7], where Ci is the
set of sampled nodes (refer to Lemma 1). The supporting pro-
cedures used within this while loop are Access(v, P(v)), Com-
pCongValue(T, v, cv, a, b), FindMaximum(M, a, b), and the
Restricted Bellman-Ford algorithm. Among these subroutines,
in the i-th iteration, the last one requires O(hi/α) rounds (refer
to Lemma 4), while the others require O(1/α) rounds (refer to
Lemma 5). Thus, the while loop within each iteration requires
O(|Ri| × hi/α) = O(n log n/α) rounds.
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Since there are ⌈log n⌉ iterations in Algorithm 2 and we use
the random sampling strategy, the number of rounds required
for the preprocessing procedure to process a given graph G is
O(n log2 n/α) with high probability.

Regarding the computation complexity of Algorithm 2, the
most expensive operation is executing the restricted Bellman-
Ford algorithm for each node in the final hitting set R. In the
i-th iteration, |Ri| = O(n log n/hi), the computation complexity
required is O(|Ri|n2hi) = O(n3 log n). Therefore, the total
computation complexity for Algorithm 2 is O(n3 log2 n). □

4.2 The Parallel Decremental Procedure

As described in Section 1.2, the primary objective of the par-
allel decremental algorithm is to identify the affected nodes
whose shortest paths have been destroyed and then recompute
the shortest paths for those nodes. Next, we compute the dis-
tances by using the remaining shortest paths obtained from the
parallel preprocessing algorithm and compare them to obtain
the shortest distances and paths between the nodes.

To minimize the number of rounds required, we utilize an
algebraic method which utilizes the short-hop distances ob-
tained from the restricted Bellman-Ford algorithm to compute
the long-hop distances between nodes. We then leverage an
MPC algorithm that computes matrix multiplication on the
semiring (as explained in Lemma 3) to compute and compare
the distances between the nodes.

4.2.1 A Set of Supporting Subroutines

Similar to the preprocessing procedure described above, we
will represent some supporting subroutines for the decremental
procedure of the dynamic APSP problem below:

Delete(D, P(D)): Given a set D of nodes, P(D) represents
the set of processors that stores edges incident to nodes in
D, the goal is to remove the information of edges incident
to nodes in D. Then processors in P(D) notify the other
processors that store the corresponding edges to delete them.

DeleteNodes(D, Pnodes): Deletes the information of nodes
in the set D from the set Pnodes of processors.

We require information on the deleted nodes to facilitate the
design of the parallel decremental algorithm, so we separate
the deleted nodes and their incident edges.

Check(Ri, i, di, Ai): In the i-th iteration, it checks whether
the set Ri contains deleted nodes and if the trees rooted at
nodes in Ri also contain deleted nodes (except the nodes in Ri).
Specifically, if the set Ri contains deleted nodes, it removes

those nodes along with their associated shortest path trees,
and finally records the number of deleted nodes in Ri as di

(where di is initially 0). If the tree rooted at a node v in Ri

contains deleted nodes (except the node v), it removes the
deleted nodes and their children in the tree T v→

i (or T v←
i ) and

adds the node v to the new set Ai (where Ai is initially an
empty set). If no deleted nodes are found, the trees remain
unchanged. To facilitate this process, the nodes can be sorted
based on their IDs and sent from the processor set Pnodes to
the relevant processors for checking in the corresponding trees
T v→

i (or T v←
i ). This is easier since each node knows its father

node in the tree.

The purpose of Check(Ri, i, di, Ai) is to identify the affected
nodes and remove them from the shortest path trees that have
their roots in the hitting set during each iteration.

ActivateEdges(G(V\D)): Activates edges and nodes in
G(V\D).

In Section 4.1, we temporarily deactivate certain edges dur-
ing the execution of Algorithm 2 (the parallel preprocessing
algorithm) to construct the hitting set Ri (i ∈ 1, · · · , ⌈log n⌉).
However, when designing our parallel decremental algorithm,
we need to reactivate these edges to use them for computation.

QueryDistanceMatrix(D, A, B,C): Queries the distance
matrix D whose rows and columns correspond to the IDs of
nodes in the set A and the set B and get a matrix C with size
|A| × |B|, which stores the distances from the nodes in the set
A to the nodes in the set B.

BlockedFloydWarshall(A): Processors that store matrix A
communicate with each other to compute APSP using the
blocked Floyd-Warshall algorithm (c.f. [18]) in the MPC
model.

MMOnSemiring(A, B,C): Computes matrix multiplica-
tion of two matrices A and B on semiring in the MPC model
using the algorithm presented in Lemma 3. We then compare
the resulting distance matrix with matrix C using the min op-
eration on semiring. The final distance matrix is denoted as
C.

To enhance comprehension of the subroutine MMOnSemiri-
ng(A, B,C), we provide a basic example below.

Example 1. Given a directed weighted graph G with nodes
{v1, v2, v3, v4, v5}, the hitting set for this graph is Ri = {v3, v4}

in a iteration. The restricted Bellman-Ford algorithm is then
executed to generate the distance matrix A below:
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

v1 v2 v3 v4 v5

v1 0 ∞ 1 3 ∞

v2 ∞ 0 2 ∞ ∞

v3 ∞ ∞ 0 5 1
v4 ∞ 4 ∞ 0 3
v5 ∞ ∞ ∞ ∞ 0



A =



0 ∞ 1 3 ∞

∞ 0 2 ∞ ∞

∞ ∞ 0 5 1
∞ 4 ∞ 0 3
∞ ∞ ∞ ∞ 0



D = A ⋆ A =



0 7 1 3 2
∞ 0 2 7 3
∞ 9 0 5 1
∞ 4 6 0 3
∞ ∞ ∞ ∞ 0


The distances from the nodes in the hitting set Ri = {v3, v4}

to the nodes in the graph G are d(v3, v4) = 5, d(v3, v5) = 1,
d(v4, v2) = 4, and d(v4, v5) = 3. On the other hand, the
distances to the nodes in the hitting set Ri = {v3, v4} from the
nodes in graph G are d(v1, v3) = 1, d(v2, v3) = 2, d(v1, v4) = 3,
and d(v3, v4) = 5.

By computing A ⋆ A, where ⋆ represents the computation
on semiring with the operation (min,+), the distance matrix D
between 5 nodes is obtained. This is equivalent to computing
d(vi, v j) = mink {d(vi, vk), d(vk, v j)} (i, j ∈ {1, 2, 3, 4, 5}, k ∈
{3, 4}).

The example above clearly demonstrates that computing
the distances between nodes using matrix multiplication on
a semiring is more convenient. This method outperforms the
direct computation of distances between each pair of nodes
individually, leading to a reduction in the round complexity
needed for our decremental algorithm in the MPC model.

4.2.2 The Decremental Procedure in the MPC Model

In this section, we will present the parallel decremental proce-
dure for solving the dynamic APSP problem below:

To begin, we set h =
√

n1−α/2 log n/|D|, and execute Delete(D,
P(D)) to delete the correlated edges incident to these nodes.
For the initial ⌈log h⌉ iterations, we recompute the shortest
paths between nodes to update the distance matrix Dist (refer
to lines 4-15 in Algorithm 3).

Specifically, in each iteration, we begin by checking the af-
fected nodes and trees using the subroutine Check(Ri, i, di, Ai)
(refer to line 6 of Algorithm 3). Then, we resample nodes in
V\(Ri ∪ D) to avoid the number of deleted nodes in Ri is too
large and execute Restricted Bellman-Ford (G(V\D), v, hi,

MPC(nα)) (refer to Algorithm 1) and Restricted Bellman-
Ford (

←−
G(V\D), v, hi,MPC(nα)) (refer to Algorithm 1), which

yields the ≤ hi shortest path trees T v→
i and T v←

i .

Next, by executing MMOnSemiring(Mi,Mi,Dist), we ob-
tain the final distance matrix between the remaining (n − |D|)
pairs of nodes in each iteration. Mi represents the distance
matrix obtained by combining the results of the Restricted
Bellman-Ford (G(V\D), v, hi,MPC(nα)) algorithm, the Re-
stricted Bellman-Ford (

←−
G(V\D), v, hi,MPC(nα)) algorithm,

and the shortest paths trees with at most hi edges from and
to the nodes in the set Bi ∪ Ai. Moreover, for the procedure
MMOnSemir-ing(Mi,Mi,Dist), extra processors are invoked
to compute the matrix multiplication on semiring (see details
in Section 4.2.3).

After that, we get the shortest path trees with at most h
edges and the corresponding distance matrix Dist between
|V\D| nodes. Then, we utilize this distance matrix Dist to
compute the distance between any two nodes in V\D, with the
number of edges between the two nodes is at least h (refer to
lines 16-22 of Algorithm 3).

Concretely, we are inspired by the method in [38], which
uses short-hop distances between nodes to calculate long-hop
distances. First, we sample a random vertex subset H with size
O(nlogn/h) through NodesRandomSample(V\D, h, Pnodes).
Then, we execute QueryDistanceMatrix(Dist,H,H,DistH)
to query the distance matrix Dist, obtained from the previous
⌈log h⌉ iterations, to get the shortest distance submatrix DistH

with at most h edges between all node pairs in H. Next, we
compute (DistH)⋆|H| (we still use DistH to denote the finial re-
sult) by BlockedFloydWarshall(DistH), to obtain the shortest
distances between all node pairs in H.

Subsequently, we utilize QueryDistanceMatrix(Dist,V\D,
H,DistV\D,H) to query the distance matrix Dist to obtain the
distance submatrix DistV\D,H using at most h edges, from
nodes in set V\D to nodes in H. Similarly, we execute
QueryDistanceMatrix(Dist,H,V\D,DistH,V\D) and obtain
the distance submatrix DistH,V\D with at most h edges, from
nodes in H to nodes in V\D. In line 20 of Algorithm 3, we set
an empty matrix N of size |V\D| × |H| to facilitate the com-
putation of line 21 in Algorithm 3. To compute the shortest
distance between all node pairs in V using at least h edges, we
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Algorithm 3 The Decremental Procedure in MPC(nα)
Input: A directed graph G = (V, E,W), the new hitting set Ri and the shortest ≤ hi paths trees T v→

i and T←v
i for 1 ≤ i ≤ ⌈log n⌉, deleted nodes set D.

Output: The shortest paths distance matrix Dist
1: h =

√
n1−α/2 log n/|D|

2: Execute Delete(D, P(D)) ▷ Delete the incident edges of nodes in set D
3: Execute ActiveEdges(G(V\D))
4: for i = 1 to ⌈log h⌉ do
5: hi ← 2i

6: Execute Check(Ri, i, di, Ai) ▷ Check the affected nodes by the shortest paths with roots in the hitting set Ri

7: if di > 0 then
8: Bi ← NodesRandomSample(V\(Ri ∪ D), di, Pnodes) ▷ Sample the nodes to complete the hitting set
9: end if

10: for each node v ∈ Bi ∪ Ai do
11: (T v→

i , P(T v→
i ))← Restricted Bellman-Ford (G(V\D), v, hi,MPC(nα))

12: (T s←
i , P(T s←

i ))← Restricted Bellman-Ford (
←−
G(V\D), v, hi,MPC(nα))

13: end for
14: Execute MMOnSemiring(Mi,Mi,Dist)
15: end for
16: H ← NodesRandomSample(V\D, h, Pnodes)
17: Execute QueryDistanceMatrix(Dist,H,H,DistH)
18: Execute BlockedFloydWarshall(DistH) ▷ Compute (DistH)⋆|H|

19: Execute QueryDistanceMatrix(Dist,V\D,H,DistV\D,H) and QueryDistanceMatrix(Dist,H,V\D,DistH,V\D)
20: Set a null matrix N with size |V\D| × |H|
21: Execute MMOnSemiring(DistV\D,H ,DistH ,N) ▷ Compute DistV\D,H ⋆ DistH
22: Execute MMOnSemiring(N,DistH,V\D,Dist) ▷ Compute DistV\D,H ⋆ DistH,V\D
23: for i = ⌈log h⌉ + 1 to ⌈log n⌉ do
24: Execute Check(Ri, i, di, Ai) ▷ Find the shortest paths trees remained caused by the opeartion of node deletions
25: MMOnSemiring(Mi,Mi,Dist)
26: end for
27: Execute DeleteNodes(D, Pnodes)
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sequentially execute MMOnSemiring(DistV\D,H ,DistH ,N)
and MMOnSemiring(N,DistH,V\D,Dist). These subroutines
are used to compute DistV\D,H ⋆ DistH ⋆ DistH,V\D (refer to
Lemma 1) and compare it with the previously existing distance
matrix Dist.

For the remaining iterations from lines 23-26 in Algorithm
3, we compute and compare the distances using the shortest
path trees left by the preprocessing algorithm. At the end
of the decremental procedure in Algorithm 3, the procedure
DeleteNodes(D, Pnodes) is performed to delete the information
of nodes in set D. This completes the whole process of the
node deletion operations.

We will present a detailed analysis of the round complexity
and the total memory required for Algorithm 3 in Section
4.2.3.

Furthermore, to determine the shortest paths between any
two nodes, we initialize an empty matrix ΠDist with size n × n
to update the shortest paths after the execution of lines 14
and 18 of Algorithm 3. This can be achieved with O(1 +
⌈(1 − α/2)/α⌉) rounds and O(n3−α/2) total memory, since we
only need to know the intermediate node that minimizes the
distance between two nodes. Thus, the memory required for
storing ΠDist is O(n2). (The shortest path trees rooted at these
intermediate nodes are already known during the computation
of the decremental procedure in Section 4.2.)

Additionally, to obtain the shortest paths between nodes of
lines 16-22 of Algorithm 3, we set |H| empty matrices with
size |H|×|H|. These empty matrices are used to record the inter-
mediate nodes during the execution of BlockedFloydWarsha-
ll(DistH), which causes O(|H|3) memory (the number of rounds
and memory are determined later in Section 4.2.3). When exe-
cuting lines 21 and 22 of Algorithm 3, we also set two empty
matrices with size n × n to store the intermediate nodes for
each pair of nodes in V , which induces O(1 + ⌈(1 − α/2)/α⌉)
rounds and O(n3−α/2) total memory.

4.2.3 Complexity Analysis

Lemma 7. For Algorithm 3 in the MPC model with strongly
sublinear memory S = Õ(nα), the following results hold:
• DeleteNodes(D, Pnodes) has a round complexity of O(1).
• Delete(D, P(D)), Check(Ri, i, di, Ai), and ActivateEdg-

es(G(V\D)) have a round complexity of O(1/α).
• MMOnSemiring(A, B,C) has a round complexity of

O(1 + ⌈(1 − α/2)/α⌉) in each iteration.
• QueryDistanceMatrix(D, A, B,C) has a round com-

plexity of O(1/α).

• BlockedFloydWarshall(DistH) has a round complexity
of O(n1−α/2logn/(hα))

Proof. As the subroutine DeleteNodes(D, Pnodes) can be lo-
cally completed within one round during each iteration of
Algorithm 3, its round complexity is O(1). On the other hand,
the main operations for Delete(D, P(D)), Check(Ri, i), and
ActivateEdges(G(V\D)) are all sorting and broadcast (as ex-
plained in Section 3.2), which cause a round complexity of
O(1/α). The round complexity for MMOnSemiring(A, B,C)
can be obtained by applying Lemma 3.

As for QueryDistanceMatrix(D, A, B,C), the IDs of the
sampled nodes in A and B are determined by the processors
set Pnodes, which can be completed in O(1/α) rounds. Then,
to query the distances from nodes in A to nodes in B, we
construct two matrices MA with size |A| × n and MB with size
n×|B|. In Section 3.1, we numbered vertices in V as 1, 2, · · · , n.
We sort the nodes in A (or B) in ascending order. If the node
with ID i (i ∈ {1, 2, · · · , n}) in A is in the iA position, then
the node corresponds to the iA row in MA. Then, we set the
element of the iA-th row and i-th column of MA as 1; otherwise,
it is zero.

The construction of matrix MB is similar to matrix MA.
Therefore, we only need to compute the distance submatrix
C = MA × D × MB using Lemma 3 (the general matrix multi-
plication is the same as the matrix multiplication on semiring).
The round complexity is O(1/α).

The subroutine BlockedFordWarshall(DistH) divides the
matrix DistH with size |nlogn/h| × |nlogn/h| into submatrices
with size nα/2×nα/2 (the memory of each processor in the MPC
model is O(nα)). In this case, we require n1−α/2 log n/h itera-
tions to complete the computation of this subroutine. Within
each iteration, as the submatrix multiplication on semiring can
be computed in a single processor, there are only broadcast op-
erations that send a submatrix to other processors. Therefore,
the round complexity for BlockedFloydWarshall(DistH) is
O(n1−α/2 log n/(αh)). □

To better understand the process of QueryDistanceMatr-
ix(D, A, B,C), we provide a straightforward example below:

Example 2. Given a directed weighted graph G with nodes
{u1, u2, u3, u4, u5} and the distance matrix D between the five
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nodes below:

D =



u1 u2 u3 u4 u5

u1 0 2 1 3 5
u2 3 0 2 4 3
u3 6 1 0 5 1
u4 3 4 5 0 3
u5 2 1 4 2 0


The IDs of the five nodes are numbered as their subscripts.
We want to query the distances from nodes in set A = {u2, u3}

to nodes in set B = {u1, u2, u4}. According to the proof of
the Lemma 7, the matrices MA and MB constructed are as
following:

MA =

0 1 0 0 0
0 0 1 0 0

 , MB =



1 0 0
0 1 0
0 0 0
0 0 1
0 0 0


Then we can compute the distance submatrix C = MA×D×MB

from nodes in A to nodes in B as following:

C =

3 0 3
6 1 1


Lemma 8. (The round complexity of the parallel decremen-
tal procedure) Given a weighted digraph G, the decremental
procedure (Algorithm 3) can process a set of deletion nodes D
in the MPC model with O(

√
n1−α/2|D| log n/α) rounds for the

fully dynamic APSP problem, where n is the number of nodes
in G, h =

√
n1−α/2 log n/|D|, and a is a constant. Additionally,

the total memory required to execute Algorithm 3 is O(n3−α/2).

Proof. Algorithm 3 comprises ⌈log n⌉ iterations, with only
⌈log h⌉ iterations used to recompute the shortest paths for the
hitting set Ri. During the initial ⌈log h⌉ iterations, the most
costly operation is the Restricted Bellman-Ford algorithm,
which costs O(hi/α) rounds for each node v ∈ Bi ∪ Ai in
each iteration. Since |Bi ∪ Ai| ≤ |D| (the affected nodes in Ri

cannot be larger than the number of deleted nodes), the number
of round complexity to compute these trees rooted at these
affected nodes is at most O(|D|hi/α) rounds in each iteration.
Although the round complexity for MMOnSemiring(A, B,C)
is O(1 + ⌈(1 − α/2)/α⌉), it comes at the expanse of increasing
the total memory to O(n3−α) (α ∈ (0, 1)) according to Lemma
3. For the initial ⌈log h⌉ iterations, the round complexity is
O(
∑⌈log h⌉

i=0 |D|hi/α) = O(|D|h/α).

In lines 16-22 of Algorithm 3, by Lemma 7, the most costly
operation is executing BlockedFloydWarshall(DistH), which
requires O(n1−α/2 log n/(αh)) rounds. Starting from iteration
i = ⌈log h⌉ and continuing until i = ⌈log n⌉, the round com-
plexity is O(log n/α), which is caused by MMOnSemiring(A,
B,C) and Check(Ri, i), ect. (See Lemma 8.)

In summary, by setting h =
√

n1−α/2 log n
|D| , the decremental

procedure requires O(
√

n1−α/2|D| log n/α) rounds.

Now, we analyze the computation complexity of Algorithm
3. On the one hand, as we recompute the shortest paths tree
for the affected nodes of Ri in the i-th iteration, the computa-
tion complexity to execute the restricted Bellman-Ford algo-
rithm for the initial ⌈log h⌉ iterations is O(

∑⌈log h⌉
i=0 |D|n2hi) =

O(n5/2−α/4|D|1/2 log1/2 n). On the other hand, the computation
complexity to execute the matrix multiplication over semiring
(min,+) is O(n3 log n) in total.

□

4.3 The Parallel Incremental Procedure

In Section 4.2, we assumed that the number of deleted nodes
is |D|. Therefore, the number of inserted nodes is also |D|,
but with different nodes and edges. As outlined in Section
1.2, parallelizing the modified Floyd-Warshall algorithm with
two-layer loops poses a challenge. Even if the modified Floyd-
Warshall algorithm can be executed in constant rounds, the
round complexity can be as large as O(|D|). To address this, we
propose a method to design the parallel incremental procedure
using the blocked Floyd-Warshall algorithm [18] and an MPC
algorithm of matrix multiplication on semiring.

In Section 4.2, we obtain the distance matrix Dist with size
(n − |D|) × (n − |D|) for O(n − |D|) nodes and the shortest trees
whose roots are affected nodes or belong to the hitting set.
After inserting |D| nodes and their incident edges, we must
update a distance matrix with size n × n and the shortest paths
between these n nodes. Specifically, we need to compute
the distances for the remaining n|D| pairs of nodes, which
comprises |D|2 pairs of inserted nodes and n|D| − |D|2 pairs of
nodes between the inserted nodes and the existing nodes. Then,
we utilize these computed distances to update the distance
matrix Dist. For an intuitive understanding of the update
process resulting from the inserted nodes, refer to Fig. 3 and
Fig. 4.

Fig. 3 and Fig. 4 illustrate the update process of the dis-
tance matrix with size n × n. They show how we use the
distance matrix obtained by the decremental procedure in Sec-
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Algorithm 4 The Incremental Procedure in the MPC(nα)
Input: The distance matrix Dist obtained by the decremental procedure, the adjacency matrix An/|D|,n/|D| of the inserted nodes, the adjacency matrices Ai,n/|D|,

and An/|D|, j of edge weights between the existing nodes and the inserted nodes (i, j ∈ {1, . . . , n/|D| − 1}).
Output: The shortest paths distance matrix D
1: The first iteration: ▷ Figure (a) and figure (b) in Figure 3
2: for i = 1 to n/|D| − 1 do
3: Processors that contain submatrix Distii broadcast their matrices to processor that contain horizontal adjacency matrix Ai,n/|D| or vertical adjacency

matrix An/|D|,i

4: Processors that contain submatrix Disti j(i , j, j ∈ {1, . . . , n/|D| − 1}) send their matrices to processors that contain vertical adjacency matrix An/|D|, j as
in Figure 3

5: Processors that contain submatrix Dist ji(i , j, j ∈ {1, . . . , n/|D| − 1}) send their matrices to processors that contain horizontal adjacency matrix A j,n/|D|

as in Figure 3
6: Execute MMOnSemiring(Disti j, An/|D|, j, An/|D|, j) and MMOnSemiring(Dist ji, A j,n/|D|, A j,n/|D|) ( j ∈ {1, . . . , n/|D| − 1}) ▷ See details in Section 4.2
7: end for
8: for i = 1 to n/|D| − 1 do
9: Processors that contain submatrices Ai,n/|D| or An/|D|,i send their matrices to processors that contain An/|D|,n/|D|

10: Execute MMOnSemiring(A n
|D| ,i
, Ai, n

|D|
, A n
|D| ,

n
|D|

)
11: end for
12: The second iteration: ▷ See Figure 4
13: Processors with matrix An/|D|,n/|D| communicate with each other to compute APSP with blocked Floyd-Warshall algorithm and get the distance submatrix

Dn/|D|,n/|D|

14: for i = 1 to n/|D| − 1 do
15: Processors with matrix Dn/|D|,n/|D| broadcast their matrix to processors with matrix An/|D|,i and Ai,n/|D|

16: Execute MMOnSemiring(Ai, n
|D|
,D n

|D| ,
n
|D|
, Ai, n

|D|
) and MMOnSemiring(D n

|D| ,
n
|D|
, A n
|D| ,i
, A n
|D| ,i

) and use Di,n/|D| and Dn/|D|,i to replace Ai,n/|D| and An/|D|,i,
respectivety. ▷ See details in Section 4.2

17: end for
18: for i = 1 to n/|D| − 1 do
19: Processors that contain matrix Di,n/|D| broadcast their matrix to processor with matrix Dn/|D|, j ( j ∈ {1, . . . , n/|D| − 1});
20: Processors that contain matrix Disti, j send their matrices to processors that contain matrix Dn/|D|, j ( j ∈ {1, . . . , n/|D| − 1});
21: Execute MMOnSemiring(Di,n/|D|,Dn/|D|, j, Disti, j) on processors that contain matrix Dn/|D|, j ( j ∈ {1, . . . , n/|D| − 1}) and use Di, jto replace Disti, j▷ See

details in Section 4.2
22: Processors that contain matrix Dn/|D|, j ( j ∈ {1, . . . , n/|D| − 1}) send Di, j to processors that contain matrix Disti, j (which would be replaced by Di, j)

( j ∈ {1, . . . , n/|D| − 1})
23: end for
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tion 4.2 to obtain the final distance matrix for n2 pairs of nodes
in two iterations.

Fig. 3 The process of updating the adjacency matrix with the distance matrix
in the first step.

Specifically, the leftmost figure in Fig. 3 depicts the dis-
tance matrix of 16n2/25 pairs of nodes (the yellow part) and
the adjacency submatrices that need to be updated (the white
part). The right figures illustrate the update process in the first
iteration, where the distance matrix is utilized to update the
horizontal and vertical adjacency matrices in Fig. 3 (a). In
Fig. 3 (b), the updated parts are employed to update the white
part in Fig. 3 (a), causing its color to change as shown.

Fig. 4 The process of updating the distance matrix in the second step.

Fig. 4 illustrates the update process of the distance matrix
in the second iteration. The deep orange matrix in Fig. 4 (a)
represents the last diagonal update, which is the final distance
matrix for the last n2/25 pairs nodes. In Fig. 4 (b), this
distance matrix is utilized to update the horizontal and vertical
distance matrices (the deep orange part). In Fig. 4 (c), the
distance matrix of 16n2/25 pairs of nodes is updated.

4.3.1 The Incremental Procedure In The MPC Model

In contrast to the blocked Floyd-Warshall algorithm employed
in the distributed memory model [18, 19, 39], where the sub-
matrix can be stored in a single processor, the size of each
distance submatrix in our work is too large to be stored in a
single processor. This increases the difficulty of designing an
efficient algorithm for the dynamic APSP problem in the MPC
model after inserting nodes and incident edges. However,
we can make a tradeoff between the round complexity and

the total memory required in the MPC model. By leveraging
the MPC algorithm of matrix multiplication on semiring in
Lemma 3 (see Section 2.3), we can obtain a parallel incre-
mental algorithm with low round complexity in Algorithm
4.

Since the size of the inserted nodes set is |D|, the adjacency
matrix of the inserted nodes constitutes a proportion of |D|

2

n2

of the n × n final distance matrix. Therefore, we divide the
n × n matrix into n

|D| ×
n
|D| parts. The distance matrix obtained

by the decremental procedure in Section 4.2 is divided into
(n/|D| − 1)2 same parts, with each submatrix of size |D| ×
|D| stored in O(|D|2/nα) processors, where the memory of
each processor is S = Õ(nα). The symbols Disti, j, where
i, j ∈ {1, . . . , n/|D| − 1}, are employed to denote these distance
submatrix. Ai,n/|D| and An/|D|, j (where i, j ∈ {1, . . . , n/|D| − 1})
denote the adjacency matrices between the existing nodes
and the inserted nodes. Furthermore, An/|D|,n/|D| denotes the
adjacency matrices between the inserted nodes. To reduce the
round complexity for the incremental procedure, additional
processors are invoked to compute the final distance matrix.

Compared to the preprocessing procedure and the decre-
mental procedure, when using additional processors, the main
challenge is to reduce the total memory required rather than the
round complexity. To update the distance matrix D between
n nodes, according to [22], only O(|D|3(1−α)) extra processors
are needed.

Referring to Fig. 3 (a), to update the adjacency matrices
in the horizontal and the vertical direction, we send the dis-
tance matrices Disti, j (or Dist j,i, where i ∈ {1, · · · , n/|D|}), to
the processors storing An/|D|, j (or A j,n/|D|), as shown in line
2-line 7 of Algorithm 4. We then perform matrix multipli-
cation on semiring using Lemma 3 for O(n/|D|) times since
i ∈ {1, . . . , n/|D| − 1}. The update of the adjacency matrix
An/|D|,n/|D| from line 8 to line 11 (which can refer to Fig. 3
(b)) can be completed similarly. To update the distance ma-
trix Disti, j in the second iteration, we first update the matrix
An/|D|,n/|D| using the algorithm in Lemma 3 (which is in line
13 of Algorithm 4).

The subroutine Broadcast(An/|D|,n/|D|, P(An/|D|,n/|D|), P(Ai,n/|D|),
P(An/|D|,i)) (where i ∈ {1, · · · , n/|D|}) in Section 3.2 is em-
ployed to update the distances between the existing nodes and
the inserted nodes. (refer to lines 14-17 in Algorithm 4.) The
update of the distance matrix Dist is divided into O(n/|D|)
steps. As executing MMOnSemiring(Di,n/|D|,Dn/|D|, j,Disti, j)
requires additional processors, we send the data required for
updating the matrix Disti, j to the processors that store the
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original adjacency matrix Ai,n/|D|, i ∈ {1, · · · , n/|D|} (refer to
lines 18-23 in Algorithm 4). Then we complete the matrix
multiplication on semiring.

To obtain the corresponding shortest paths, we begin by
initializing an empty predecessor matrix ΠD of size n × n and
create n empty trees rooted at n nodes (which include the nodes
remaining after executing Algorithm 4 and the inserted nodes).
These empty trees can reduce the overhead compared to setting
n empty matrices to the record nodes on the shortest paths
between nodes. During the computation of the incremental
procedure, whenever updates occur in the predecessor matrix
ΠD, we concurrently update these n trees.

4.3.2 Complexity Analysis

Lemma 9. (The round complexity of the parallel incremental
procedure) Given the distance matrix Dist for graph G\D, an
empty predecessor matrix ΠD, and n empty trees rooted at
each node, the incremental procedure proposed for a fully
dynamic APSP problem can handle a batch of the inserted
nodes with size |D| to obtain the shortest paths between these
n nodes in O( |D|nα/2 +

n
α|D| ) rounds for the MPC model.

Proof. In Section 4.3, we use extra O((n/|D|)3−α) processors
to reduce the round complexity of computing the distances
and shortest paths between updated nodes. In Algorithm 4,
MMOnSemiring(A, B,C) (See Lemma 3) costs O(1 + ⌈(1 −
α/2)/α⌉) rounds, and the broadcast operation executed by
processors costs O(1/α) rounds in each for loop of Algorithm
4. As the input matrix size is |D| × |D| and the memory of each
processor is Õ(nα), the shortest paths between the inserted
nodes can be completed in O( |D|

αnα/2 ) rounds. Then, the total
number of rounds for Algorithm 4 is O( |D|

αnα/2 +
n
α|D| ).

Furthermore, it is evident that the computation complexity
required to execute lines 1-7 and lines 18-23 of Algorithm 4
is the same, both of which are O(( n

|D| − 1)2|D|3). Similarly,
the computation complexity for lines 8-11 and lines 14-17 of
Algorithm 4 is O(( n

|D| − 1)|D|3). The computation complex-
ity to execute line 13 of Algorithm 4 is O(|D|3). Therefore,
the computation complexity of Algorithm 4 is O(|D|n2) since
|D| ≤ n. □

4.4 The Proof of Theorem 1

In the following section, we will analyze the round complex-
ity of the parallel algorithm proposed in this paper for the
dynamic APSP problem.

The Proof of Theorem 1: By utilizing Lemma 2, a parallel
decremental algorithm can be transformed into a parallel fully
dynamic algorithm. Combining this with Lemma 6, Lemma
8, and Lemma 9, the worst-case update round complexity
for our parallel algorithm can be expressed as O( n log2 n

α|D| +√
n1−α/2|D| log n/α+ |D|

αnα/2 +
n
α|D| ). To minimize the round com-

plexity of updating the shortest paths, we set |D| = O(n
1
3+
α
6 log n).

This yields the results specified in Theorem 1. Moreover, the
number of computation operations for our parallel fully dy-
namic algorithm is O(n3 log n/|D| + n5/2−α/4|D|1/2 log1/2 n +
n3 log n + |D|n2) = O(n3 log n).

Currently, to query the shortest path between any two nodes,
we have to combine and compare the shortest path of any two
nodes from the trees solved during the parallel incremental
procedure in our parallel decremental procedure. Therefore,
we query the shortest path of any two nodes twice: once
from the parallel decremental procedure and another from
the parallel incremental procedure. This can be achieved
by the sorting and broadcast operations, we can obtain the
final shortest path in O(α−1) rounds, instead of computing the
final shortest paths between all n nodes simultaneously, which
would be prohibitively expensive.

The query of the shortest path between any two nodes
requires at most O(n/n2α) = O(n1−2α) rounds, as the number
of nodes on the shortest path is limited to at most n. □

5 Conclusion

In this paper, we propose the first fully dynamic parallel al-
gorithm for solving the all-pairs shortest path problem in the
MPC model. Specifically, our algorithm achieves a worst-case
update complexity of O(n

2
3−
α
6 log n/α) rounds for directed

weighted graphs with non-negative cycles. Our algorithm
consists of three main components: first, we present a prepro-
cessing algorithm that constructs a decremental data structure.
Second, we design a decremental algorithm to update the data
structure under node deletions, which yields the distance ma-
trix and the shortest path trees. These structures are then used
by our parallel incremental algorithm to handle node inser-
tions. Finally, we compare our algorithm with the existing
static APSP algorithms in the MPC model, demonstrating the
effectiveness of our approach.
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