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Abstract Although many graph processing systems have
been proposed, graphs in the real-world are often dynamic. It
is important to keep the results of graph computation up-to-
date. Incremental computation is demonstrated to be an ef-
ficient solution to update calculated results. Recently, many
incremental graph processing systems have been proposed to
handle dynamic graphs in an asynchronous way and are able
to achieve better performance than those processed in a syn-
chronous way. However, these solutions still suffer from sub-
optimal convergence speed due to their slow propagation of
important vertex state (important to convergence speed) and
poor locality. In order to solve these problems, we propose
a novel graph processing framework. It introduces a dynam-
ic partition method to gather the important vertices for high
locality, and then uses a priority-based scheduling algorithm
to assign them with a higher priority for an effective process-
ing order. By such means, it is able to reduce the number of
updates and increase the locality, thereby reducing the con-
vergence time. Experimental results show that our method
reduces the number of updates by 30%, and reduces the total
execution time by 35%, compared with state-of-the-art sys-
tems.

Keywords incremental computation, graph processing, it-
erative computation, asynchronous, convergence

Received month dd, yyyy; accepted month dd, yyyy

E-mail: zhyu@hust.edu.cn

1 Introduction

Graphs have played an important role in real-world applica-
tions. Recently, algorithms involved in dynamic graph anal-
ysis have been widely studied such as analyzing complex re-
lationship networks [1], ranking pages in web graphs for an-
alyzing the evolution of social networks [2], and identifying
essential proteins [3]. These algorithms need to update the
computation result on the evolving graph in order to keep
it up-to-date. Incremental computation [4–6] is an efficien-
t technique for solving this problem. It reuses the result of
the prior computation to accelerate convergence of a graph
instead of rerunning the computation over the entire graph.
Recently, asynchronous systems, such as GraphIn [7], which
are based on the delta-based accumulative iterative computa-
tion model [8, 9], have been proposed to support incremental
computation. Compared with synchronous systems [10–12],
asynchronous systems discard the barriers, so that any pro-
cessing unit vertex can immediately send the data to the suc-
cessor vertex after completing the calculation step. Although
current asynchronous incremental graph processing has a bet-
ter state transfer method than that in the synchronous pro-
cessing mode, its convergence rate is still suboptimal due to
the lack of efficient partitioning method and its ineffective
scheduling order.

The partitioning method involves dividing the graph into
multiple parts for achieving high performance. Each parti-
tion holding a subgraph as a separate computing task can run
parallel in a process or thread. Real-world graphs are always
power-law graphs [13], and this means that a lower propor-
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tion of vertices, which we call hot vertices, have much higher
degree than the average vertex degree. These hot vertices not
only easily lead to imbalanced subdivision, but also have a
significant influence on the state change propagation. Some
existing graph partitioning methods [14], such as hash-based
vertex partition or random edge partition, tend to break the
original connectivity of the graph structure, which results in
low locality and high communication overhead. In addition,
static partition methods are unsuitable for dynamic graphs,
since changes in evolving graphs can skew these original par-
titions, resulting in load imbalance. In this paper, we take
the efficiently performing vertex/edge additions situation in-
to account, and the situation is a common phenomenon across
most real-world applications.

The scheduling order [8] of the vertices will directly af-
fect the convergence time of the iterative computation, and
a proper scheduling algorithm will accelerate convergence of
the graph. During the propagation of the state change, the
predecessor vertex, called the pre-vertex, always affects the
successor vertex, called the suc-vertex. Scheduling the vertex
with larger state change in priority will accelerate all vertices
reaching convergences. However, the traditional round-robin
scheduling method does not take the state change propaga-
tion efficiency into account. For example, it is possible to
schedule a low-priority vertex first, and then schedule a high-
priority vertex, where low-priority means low state change.
In this way the propagation effect of the latter would cause
the former to be ineffective, resulting in poor convergence
speed.

In this paper, we propose a new framework to partition
graphs and schedule vertices, which leads to a higher access
locality and faster convergence time. Concretely, our frame-
work consists of two schemes: First, the partition strategy
classifies the vertices into hot and cold vertices dependen-
t on their degrees, where hot vertices have higher priority to
influence others than cold vertices. Then the partition algo-
rithm gathers hot vertices and their adjacent edges to build
hot blocks and assigns them to the hot partitions dynamically
while vertex/edge additions occur. Second, to further utilize
the partition algorithm, a hot-priority scheduling algorithm is
proposed. It manages each partition as several equal-sized
chunks, and regards each chunk as scheduling units. For fast
convergence, it assigns hot chunks a higher priority. Since the
state change propagation from that chunk always has greater
influence comparing with lower one, the chunk with a higher
priority is always scheduled first during the iterative compu-
tation.

The experimental results show that our approach is effec-

tive with respect to execution time and the number of state
updates. In addition, our experiment also shows that the algo-
rithm optimizes the locality by comparing the cache hit rates.
Compared with GraphIn, a state-of-the-art asynchronous in-
cremental computation system, our approach is more efficien-
t since it reduces the total execution time to lower than 35%
and it reduces the number of state updates of vertices by 30%.

Our contributions are as follows:

• We first propose a partition approach, which improves
access locality in asynchronous incremental computa-
tion and provides the basic for scheduling algorithm;

• We next propose a hot-priority scheduling algorithm for
fast convergence by focusing special attention on the hot
vertex;

• We implement our framework by modifying Maiter [8],
which is an asynchronous iterative computation system
for static graphs. The experimental results demonstrate
that our approach is effective on evolving power-law
graphs.

The rest of this paper is organized as follows. Section 2
introduces the background statement and challenges. Sec-
tion 3 and Section 4 describe the details of the framework,
followed by experiments described in Section 5. Section 6
briefly surveys related works. Finally, we conclude the paper
in Section 7.

2 Background and Problem Statement

In this section, we first present basic concepts in graph. We
next introduce Maiter and some key contents in asynchronous
incremental graph processing. We finally dicuss some prob-
lems in partitioning and scheduling.

2.1 Preliminary

A graph Gt = (V t, Et) consists of a finite set V t of ver-
tices,

{
vi | vi ∈ V t} (0 6 j < n), and a set Et of directed edges

(we view undirected edge as two directed edges), where
Et =

{
e =
(
vi, v j

)
∈ Et | vi ∈ V t, v j ∈ V t

}
. We call vi and v j as

the resource vertex and the destination vertex of e, respective-
ly. V t represents the element of the graph and Et represents
the relationship between elements at the time t. Let

∣∣∣V t
∣∣∣ de-

note the number of vertices in the set V t, and
∣∣∣Et
∣∣∣ represent

the number of edges in set Et. A parameter k is used to de-
note the number of partitions, and graph partitioner divides
the graph into a collection Pt

0, P
t
1, ...P

t
k−1 that yields k sub-
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Fig. 1 A possible round-robin scheduling order is v4 → v5 → v1 → v2 → v3. (a) illustrates the scheduling of v4 to v2. When scheduling v4, it first updates
its state value s1

4 = s0
4

⊕
∆s0

4, then it pushes m4 to its suc-vertex and sets ∆s0
4 to initial value zero. When scheduling v5, it receives the message m4 and

accumulates m4 to ∆s0
5, then it does the same work as v4 does, updating its state value s1

5, sending message m5 to its suc-vertex and setting ∆s0
5 to 0. Similarly,

v1 and v2 have the same job as v4 and v5 do. Finally, (b) illustrates the scheduling of v3. v3 also performs its update operation, and sends back m3 to all its
nerghours.

graphs. Let
∣∣∣Pt

i

∣∣∣ (0 6 i < k) represent the number of elements
in partition Pt

i.
In asynchronous delta-based accumulative iterative com-

putation, according to Maiter [8], each vertex vi updates its sk
i

and ∆sk
i starting from ŝ(0) and ∆ŝ(0) independently and asyn-

chronously, where sk
i presents the state of vi after k iterations,

∆sk
i presents the change from sk−1

i to sk
i , ŝ(0) denotes the orig-

inal state, and ∆ŝ(0) denotes the inital delta value of the new
graph. For each iteration, there are two separate operations
for vertex vi:

• Accumulate operation: whenever receiving a message
m j (e.g., value is g { j, i}

(
∆sk−1

j

)
) sent from any pre-

vertex v j ∈ V , it accumulates the m j to ∆sk
i , according to

this function:

∆sk
i =

n∑
j=1

⊕
g { j, i}

(
∆sk−1

j

)
, (1)

where g { j, i} () is a user-specified function used to cal-
culate the value passed from vertex v j to vertex vi, and
“
⊕

” is an abstract operator.
• Update operation: it first updates its state sk−1

i to sk
i by

accumulating ∆sk
i , according to the following function:

sk
i = sk−1

i

⊕
∆sk

i , (2)

then sends the message g {i, h}
(
∆sk−1

i

)
to any of vi’s out-

neighbours vh, and resets ∆vi to 0.

After several iterations of the above two operations, the
vertex state should remain unchanged in the end. We deter-

mine graph convergence when all vertices in the graph are
unchanged. Let s(∗) denote the convergence point on Gt.

In asynchronous incremental graph processing, according
to [7], in order to reuse the result of the prior computation
instead of recomputing from scratch, the computation result
on the previous graph is necessary to construct ŝ(0) and ∆ŝ(0)

when the new data arrives (Gt changes to Gt+1). For a graph
data mining algorithm with the operator ‘

⊕
’ as ‘+’, ŝ(0) and

∆ŝ(0) are constructed in following way: for a kept vertex vi, let
ŝ(0)

i = s(∗)
i ; for a newly added vertex v j, let ŝ(0)

j = 0. To ensure

that s1
j = ŝ(0)

j

⊕
∆ŝ(0)

j , ŝ(0)
j is calculated by ∆ŝ(0)

j = s1
j − ŝ(0)

j

, since ‘
⊕

’ is ‘+’. Typically, s1
j can be derived from the

following form: sk
j =

n∑
r=1

⊕
g {r, j}

(
sk−1

r

)
.

2.2 Challenges of Existing Solutions

The placement of vertices and edges affects the communica-
tion and computation of graph processing and therefore plays
a key role in performance. Since real-world graphs are often
dynamic, it is necessary to provide efficient graph partition-
ing when a graph changes. Suppose that there is an initial
partitioning of the original graph. If the new graph is placed
following random partitioning, it will result in a high com-
munication cost among partitions since random partitioning
does not utilize any information about the structure of the
graph. Moreover, a power-law distributed graph will always
have poor performance if some partition methods ignore the
important role of hot vertices. In addition, applying the of-
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(a) (b)

Fig. 2 A priority scheduling order is v3 → v4 → v5 → v1 → v2. (a) illustrates the scheduling of v3. v3 updates the state value and sends m3 to its suc-vertex.
The rest of the vertices v1, v2, v4, v5 all have received m3 before scheduling. (b) illustrates the scheduling of v4 to v2. When scheduling v4, it should receive
the message m3 and accumulate m3 to ∆s0

4, then it does the same work as v3 does, updating its state value s1
4, sending message m4 to its suc-vertex and setting

∆s0
4 to 0. Similarly, v1, v2 and v5 have the same job as v4 does.

fline graph partition method [15] on a dynamic graph every
time its structure changes is obviously inefficent due to the
high overhead of repartitioning.

The round-robin scheduling algorithm still has room for
improvement. It has suboptimal performance since it ignores
the priority of scheduling vertex. We take PageRank as a
trivial instance. Let us see what happens when considering
the delta value as priority, which is proposed by Maiter [8].
Fig. 1 and Fig. 2 illustrate how the state change propagates in
the round-robin way and priority scheduling, respectively.

Initially, the priority is determined by the delta value.
There is an assumption that the current delta values of v1,
v2, v3, v4, v5 are 0.3, 0.2, 0.8, 0.3, 0.2, respectively. A possi-
ble round-robin scheduling is listed as follows: v4 → v5 →
v1 → v2 → v3. When scheduling vi, it first receives the mes-
sage m j sent from its pre-vertex v j and accumulates m j to
∆s0

i . Then vi updates its state value s1
i = s0

i

⊕
∆s0

i , where
“
⊕

” is “+”. Finally, it pushes mi to its suc-vertex and sets
∆s0

i to initial value zero. At the time all vertices listed fin-
ish an iteration, the total delta value Td = 1.8 drops to Td

′ =

∆s1 +∆s2 +∆s3 +∆s4 +∆s5 = 0.4+ 0.3+ 0+ 0.4+ 0.3 = 1.4.
With the same initialization condition, the scheduling order is
changed to: v3 → v4 → v5 → v1 → v2 in priority scheduling.
The difference from the previous one is that the vertex v3 with
the highest delta value is scheduled first. The total delta value
of all vertices is now Td

′ = ∆s1 + ∆s2 + ∆s3 + ∆s4 + ∆s5 =

0.189+0+0.712+0.189+0 = 1.09. Comparing with the pre-
vious one, Td

′ = 1.4, the priority scheduling method speeds
up the delta value’s approach to zero. However, the above

priority scheduling method ignores the impacts of vertex de-
gree.

We here compare the above priority scheduling with de-
termining the priority by degrees. The initialization condi-
tion is that all vertices have the same initial delta value 0.2
except ∆̂v(0)

4 = 0.21. The priority scheduling order is list-
ed as: v4 → v5 → v1 → v2 → v3 since the vertex v4

has the highest priority decided by the delta value. In this
case, the result is Td

′ = ∆s1 + ∆s2 + ∆s3 + ∆s4 + ∆s5 =

0.218 + 0.129 + 0 + 0.219 + 0.129 = 0.695. With the same
initialization condition, the priority scheduling order based
on degrees is changed to: v3 → v4 → v5 → v1 → v2 since
the vertex v3 has the highest degree. The total delta value of
all vertices is now Td

′ = ∆s1 + ∆s2 + ∆s3 + ∆s4 + ∆s5 =

0.111 + 0 + 0.393 + 0.112 + 0 = 0.616. The result shows
that scheduling the vertex with high degree first has a better
convergence speed.

In addition, the priority scheduling in Maiter is still a ran-
dom scheduling, which always results in a large number of
random access. Suppose that a possible priority scheduling
order is v3 → v1 → v5 → v4. However, these four vertices
may not be in a contiguous storage. The result of processing
may be ineffective due to poor locality.

3 Partition Scheme

In this section, we discuss the details of our partition scheme.
Firstly, the original graph is decomposed into multiple sub-
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graphs in a hash-based vertex partitioning. Subgraphs are
assigned to each worker for spawning partitions in parallel.
There are three steps to spawn partitions: (1) Distinguish a set
of hot vertices from the original graph. (2) Build the hot ver-
tex block consisting of vertex and edges incident to each hot
vertex. (3) Group hot blocks to the same partition by a par-
tition algorithm to acheive a better locality. Then a heuristic
method is provided for assigning cold vertices and their inci-
dent edges. Secondly, when the graph is dynamic, we discuss
how to maintain the characteristic of hot blocks dynamical-
ly when modifications occur. Our assumption is that at each
time step, there are only additions of vertices and edges.

Algorithm 1 Partition Algorithm
Input: V , E, Vhot

Output: Pi

1: for each vi in set Vhot do
2: if D (vi) ≥ τ then
3: Vsuc ← f indsuc (vi)
4: for each edge (vr, v j), vr ∈ {vi ∪ Vsuc} , v j ∈ Vsuc do
5: Set (vr, v j) as visited
6: Ph ← Ph ∪

{
vr, (vr, v j), v j

}
7: end for
8: end if
9: end for

10: for each Pi in set Pc do
11: Pi ← ∪rep (Vhot)
12: end for
13: for each vi , vi ∈ V ∧ vi < Vhot do
14: Vsuc ← f indsuc (vi)
15: for each (vi, v j), v j ∈ Vsuc and (vi, v j) is unvisited do
16: if A (vi) = ϕ ∧ A

(
v j

)
= ϕ then

17: Assign
{
(vi, v j)

}
to minsize (Pc) /* The result of

function minsize(Pc) is a partition with the mini-
mum size in set Pc.*/

18: else if
(
A (vi) , ϕ ∧ A

(
v j

)
= ϕ
)
∨ (A (vi) = ϕ ∧

A
(
v j

)
, ϕ) then

19: Assign
{
(vi, v j)

}
to minsize (A (vi))

20: else if A (vi) ∩ A
(
v j

)
, ϕ then

21: Assign
{
(vi, v j)

}
to minsize

(
A (vi) ∩ A

(
v j

))
22: else if A (vi) ∩ A

(
v j

)
= ϕ then

23: Assign
{
(vi, v j)

}
to minsize

(
A (vi) ∪ A

(
v j

))
24: end if
25: end for
26: end for

A set of hot vertices needs to be identified firstly. Let
Vh = {vi | vi ∈ V,D (vi) > τ} to denote the set of hot vertices,
where D (vi) is the degree of vi, and τ is a system-supplied
threshold. Note that if the threshold value decreases, a larger

number of vertices would be selected as hot vertices. These
hot vertices lead to a large number of hot blocks and hot par-
titions, reducing the system efficiency. From another point of
view, a high threshold value would not be helpful. A suitable
threshold value should be determined to match the hot ver-
tices ratio of the real-world graph. As sorting all vertices of
the whole graph is not efficient, a statistical sampling method
can be considered. We randomly select a small subset of ver-
tices V ′ ⊂ V instead of the entire graph, and sort them to
V ′′ (V ′′ ∪ V ′ = V ′,V ′′ ∩ V ′ = V ′). Suppose that there is an R
proportion of hot vertices in the graph; the threshold value
shall be set to the degree of (|V ′| ∗ R)th sampled vertex in set
V ′, which is D

(
V ′′|V ′ |∗R

)
.

The hot block of a hot vertex vi ∈ Vh is denoted by
HVBi =

{
Vh

i ∪ Eh
i

}
, where Vh

i = {vi} ∪ {v|v ∈ V, (vi, v) ∈ E},
Eh

i =
{
(v′, v′′) |v′ ∈ Vh

i , v
′′ ∈ V, (v′, v′′) ∈ E

}
. There are two

types of partitions, Ph and Pc, where Ph =
∪

vi∈Vh
HVBi and

Pc indicates the cold remaining subgraph. For each hot ver-
tex in Vh, we concentrate the hot vertex and its incident edges
to build hot blocks and assign them to the hot partition Ph.
After finishing the hot vertices, we next handle the cold ver-
tices with a heuristic partitioning. The details are shown in
Algorithm 1.

The set of hot vertices is determined if vertex vi satisfies
D (vi) ≥ τ. Each hot vertex vi ∈ Vhot and its incident edges
are assigned to Ph (Lines 4-6). Note that the partition size
should be kept in the average size in terms of similar number
of edges in the interest of balancing load in a coarse way. It
is necessary to take a new partition to hold edges instead of
assigning the edge to the hot partition when the size of the
partition approaches to |E| /k. To gather the message sent by
the pre-vertex of the hot vertex placed in cold partition, some
replicas of the hot vertex, rep(Vhot), are placed in cold parti-
tions (Line 11). Subsequently, the heuristic rules are as fol-
lows: If neither the source nor the destination of edge (vi, v j)
has been assigned to any partition, then the edge is placed in
the partition with the minimum size in P (Lines 16-17), where
A(vi) represents the set of partitions where vertex vi has al-
ready been placed. If just one of vi or v j has been assigned,
then the edge is placed in partition with the minimum size in
A(vi) or A(v j) (Lines 18-19). If both of vi and v j have already
been placed in some partition, and in addition, A(vi) and A(v j)
have common elements, then the edge is placed in the parti-
tion with the minimum size in A (vi) ∩ A

(
v j

)
(Lines 20-21).

The last case is that both vi and v j have already been placed
in some partition, but A(vi) and A(v j) have no common ele-
ments; then the edge is placed in partition with the minimum
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size in A (vi)∪A
(
v j

)
(Lines 22-23). In this case, a new replica

of the vertex is created.
The modification to the structure of a graph over time can

be exemplified as the addition of vertices and edges. When
a vertex is added to the graph, the information about it-
s first-level neighbors is available. To simplify processing,
the added vertex and its neighbors are regarded as a group of
newly added edges. For addition of vertices and edges, there
can be two scenarios. Firstly, all existing vertices still main-
tain their characteristics whether they are hot or not. Second-
ly, some of the cold vertices will turn into hot since they ac-
quire some new edges. For the first case, we assign new edges
according to the heuristic rule in Algorithm 1 (Lines 13-26).
For the second case, we must transfer those turned vertices
from the cold partition to the hot partition, and keep the load
balancing. To achieve this, we first take the edges of the
turned vertices out of cold partitions, and then assign them
again according to the rule of Algorithm 1. At this time, the
input of Algorithm 1 is some new data ∆V , ∆E, ∆Vhot. |E| /k
also has grown.

The above partitioning splits vertices into multiple parts so
that several replicas of one vertex may distribute across dif-
ferent partitions. The master should be selected to dominate
the remaining replicas named mirrors. We always set the hot
vertex in the hot partition as the master. It is also importan-
t to ensure that each cold partition has a similar number of
masters due to the priority of chunk being confirmed by col-
lecting the delta value of the master vertex, where the details
will be provided in the next section.

In order to achieve a better access locality, we manage par-
titions in the form of chunks, where each partition consists of
several chunks and the size of each chunk is set according to
the server’s CPU last-level cache size. In each chunk, a lo-
cal key-value state table is created to manage the information
of each vertex. The index of a vertex and four other fields
make up a table entry. The vid is the index of a vertex, and
next two fields store the state value and the delta value, re-
spectively. The fourth field holds the edges assigned to the
current chunk, and whether the vertex is a master or a mirror
is marked in last field.

There are several motivations for giving special treatment
to the hot vertex and for gathering them in same partition.
First, hot vertices always collect greater delta values than
others in terms of receiving more messages from their con-
nections. Second, scheduling the vertex with higher degree
would speed up iteration processing, where the example in
Section 2 supports our argument. Third, to coordinate with
the hot priority scheduling algorithm, we gather hot vertices

to give hot partition a higher priority. Finally, when the sys-
tem schedules a hot partition and finds that the hot vertex and
its neighbours can be accessed locally, it will consume less
execution time.

4 Hot Priority Scheduling Algorithm

In asynchronous incremental computation, since the com-
munication between any two vertices is completely asyn-
chronous, it means that the update operations can be executed
in any order. In order to reach a fast convergence, the up-
dates of a specific vertex whose priority is greater than others
should receive preference to be performed. In this section,
we show the details of the hot block priority scheduling algo-
rithm.

4.1 Priority Definition

The traditional scheduling strategy selects vertices from the
local table and performs the update operations in a cyclic
paradigm. Though this strategy is simple and can avoid s-
tarvation, it ignores the current state of vertices and the con-
nection relationship between vertices. However, two factors
mentioned above can influence the convergence time of itera-
tive computation to a great extent. We introduce a hot priority
scheduling algorithm based on both current state and inherent
topological information of vertices. It regards a chunk as the
scheduling unit so that each worker can compute the schedul-
ing unit repeatedly for lower cache miss rate. Each worker
needs to maintain an auxiliary table to keep the scheduling
information of a chunk. Table entries contain ChunkID, Pri,
Total_delta, the scheduling times T , where ChunkID marks
the chunk, Pri is the priority of the chunk, Total_delta is the
total delta value of all vertices contained in chunk, and T is
the number of scheduling times.

We first define the priority of the chunk C:

Pri (C) = α (T ) ∗ De (C) + β ∗ (1 − α (T )) ∗ Delta (C) (3)

The priority of the chunk, denoted as Pri(C), is determined by
the interaction of three factors. The first factor, De (C) is the
average degree of all vertices contained in the chunk. Obvi-
ously, this value will be higher in hot partitions. The second
factor, Delta (C) is the total delta value of all vertices con-
tained in the chunk collected by the Total_delta field. This
factor indicates the current state of the entire chunk and the
influence on the other chunks. Last but not least, the third fac-
tor, scheduled times T , will affect the contribution to the pri-
ority of two factors above. The function α (T ) (0 < α (T ) < 1)
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is a monotonic decreasing function of T . This means that
the value of α (T ) will decrease as the scheduling times in-
crease. In contrast, (1 − α (T )) and T maintain a positive cor-
relation. 0 < β < Deave

Deltaave
is the scaling factor set at the initial

stage, where Deave and Deltaave are the average values of all
chunks’ De(C) and Delta(C), respectively.

Algorithm 2 Hot Priority Scheduling Algorithm
Input: Wi,Ci

Output:
1: Total_delta (Ci)← 0
2: Accumulate the delta value of vertices in PQueue to

Total_delta
3: Write PQueue to local table
4: PriMax← Pri (Ci)
5: Csc ← Ci

6: for each chunk C j held by Wi do
7: if Pri

(
C j

)
> PriMax then

8: PriMax← Pri
(
C j

)
9: Csc ← C j

10: end if
11: end for
12: process (Wi,Csc)
13: T ← T + 1

There are three characteristics of this design: (1) The
chunk with higher De (C), which can easily collect more mes-
sages due to its complex connectivity, always has priority to
be scheduled. (2) As the final convergence condition of a
chunk depends on its total delta value, the chunk with the
larger Total_delta should have priority to be scheduled. (3)
With the increase of scheduling times, the centre of priori-
ty is shifted to the delta value, which can reflect the actual
convergence state of the graph.

4.2 Scheduling Scheme

The scheduling process is given in Algorithm 2, which deter-
mines the execution sequence of the chunk. There are two
new variables. PriMax represents the current maximum of
the priority. Csc stands for the chunk to which PriMax be-
longs, and it also represents the candidate for the next round
of scheduling. In the beginning, suppose that a round of
scheduling execution has been completed, and the Ci has fin-
ished the scheduling. The algorithm sets the Total_delta of
Ci to 0 (Line 1), where Ci is temporarily convergent. Then
it initializes PriMax and Csc by Pri(Ci) and Ci, respectively
(Lines 4-5). By traversing the Pri of all chunks, the final Csc
is found (Lines 6-11), then the algorithm assigns Csc to Wi to
execute (Line 12). Of course, after each round of scheduling,

the scheduling time T needs to be increased by 1 (Line 13).
There are two reasons for us not to worry that some chunks
will be starved for scheduling. First, the chunk that has just
been scheduled is in a temporary state of convergence. That
means that the subgraph converges locally, and it may stil-
l be activated by the other chunks. So the second factor of
Pri(C) is possibly 0 (Line 1), and the scheduled chunk will
lose the competitive advantage of Primax. Furthermore, if
an old chunk fails to be PriMax many times, it would hold
more Total_delta, which will be the main contribution to be
PriMax, as the T continues grow.

4.3 Processing of Chunk

To ensure thread safety for a message passing between mul-
tiple workers, each worker maintains a thread-safe queue to
synchronize communication messages (Lines 2-3) in Algo-
rithm 2. The process of a chunk consists of two stages: Up-
dating operation and forwarding operation as shown in Algo-
rithm 3. In the initialization state before a round of process-
ing, each vertex has stored the received message containing
the status change information in the delta value field. If a
chunk is considered to be unconverged (Line 2), an updating
operation is performed on each vertex in the chunk: (1) A
user-defined state accumulate function updates the state val-
ue (Line 4); (2) the changes of the state value processed by
user-specified functions g {i, j} () are accumulated by each lo-
cal out-neighbor (Lines 5-8); (3) the delta value is reset to the
initial value for the next accumulation (Line 9). The above
three steps are repeated until the chunk converges.

When the chunk is converged, each mirror vertex in the
chunk should forward its state values as the message to the
related master vertex for global updating. Therefore, those
temporarily converged chunks may be activated again by re-
ceiving the message from these scheduled chunks. The for-
warding operation obtains the chunkID, which holds the mas-
ter of mirror vertex vi (Line 15). If the target chunk Cm is
processing at this point, to avoid breaking thread safety, the
system temporarily stores data into a thread-safe data queue
instead of writing it to the local table directly (Line 17).
After the chunk Cm completes the processing, it will up-
date the Total_delta field of the chunk by accumulating the
delta value of the vertices in PQueue, and writing the data to
the local table synchronously (Lines 2-3) in Algorithm 2. If
the target chunk Cm is waiting for being scheduled, the sys-
tem updates the state table of target chunk Cm directly with
si (Lines 18-21). It is worth noting that we associate the up-
dating of Total_delta with the updating of the local state ta-
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ble. The reason is that in this way we can make Total_delta
reflect the state of the current chunk in a timely manner; it
helps the scheduler to select a proper chunk to process. Once
the message has been sent, we must set the state value of the
mirror vertex to the initialization value for future operations
(Line 22).

Algorithm 3 Processing Chunk
Input: C0
Output:

1: // Updating operation
2: while C0 is not converge do
3: for each vertex vi in chunk C0 do
4: si ← si + ∆si

5: for each edge (vi, v j) of vertex vi do
6: ∆s j

′ ← g {i, j} (∆si)
7: ∆s j ← ∆s j + ∆s j

′

8: end for
9: ∆si ← 0

10: end for
11: end while
12: // Forwarding operation
13: for each vertex vi in chunk C0 do
14: if vi is mirror then
15: Cm ← getchunk (vi)
16: if Cm is running then
17: Write si as delta value to PQueue
18: else
19: Cm.Total_delta← Cm.Total_delta + si

20: Write si as delta value to local table
21: end if
22: v j ← inital value
23: end if
24: end for

5 Evaluation and Analysis

In this section, some experimental evaluations of our method
are presented to prove the effectiveness of our framework.

5.1 Preparation

5.1.1 Experimental Environment

The experiments are performed on a server holding a 2-way
8-core 2.60GHz Intel Xeon CPU E5-2670 and 64GB mem-
ory, running a Linux operation system with kernel version
2.6.32. The last-level cache size of each CPU is 20480kb.
Each core serves each worker as a thread for parallel pro-
cessing. The size of each chunk is designed according to the
server’s last-level cache size. So here we set the chunk size to

2MB to ensure that the entire data of the chunk can be load-
ed into at least the last-level cache when a thread running in
a core schedules the target chunk. The proportion R of hot
vertices in a graph is 0.5%.

5.1.2 Datasets and Algorithm

The datasets including various sizes of real-world graphs are
summarized in Table 1: Orkut, Soc-LiveJournal, Twitter2010
[16], and Friendster from Stanford large network dataset col-
lection. In practice, we employ a popular graph data mining
algorithm, PageRank, as benchmark; this is a base rank algo-
rithm for several important algorithms.

Table 1 Graph Datasets Summary

Datasets Vertices Edges

Orkut(Ok) 3,072,441 117,185,083
Soc-LiveJournal(Lj) 4,847,571 68,993,773
Twitter2010(Tw) 41,652,230 1,468,365,182
Friendster(Fs) 65,608,366 1,806,067,135

5.1.3 Schemes for Comparison

In practice, our framework has been implemented in the
delta-based accumulate iterative computation model by mod-
ifying Maiter, which is one of the state-of-the-art systems
for supporting asynchronous graph processing. Compared
with some alternative frameworks, like Spark [17], GraphLab
[18], and Piccolo [19], Maiter [8] has been shown to acheive
significantly superior outperform in the iterative computa-
tion. We evaluate and analyze the experiment from two as-
pects: First, we compare our framework with Maiter-RR as
well as Maiter-Pri in two ways on the original graph, where
Maiter-RR uses the robin-round scheduling and Maiter-pri
uses the priority scheduling applied by Maiter. The two ways
are the cache miss rate and the scheduling overhead. Next, for
an evolving graph, we compare our framework with GraphIn-
RR and GraphIn-Pri in three ways on a dynamic graph, where
both of them are implemented on GraphIn [7], which is the
state-of-the-art system for supporting asynchronous incre-
mental computation and also based on Maiter. These three
ways are the overhead of preprocessing, the number of up-
dates, and the total execution time, respectively. All of the
above four schemes are using a hash method to divide graph-
s. For convenience, we name our approach hot block priority
scheduling (Hot-Priority).
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Fig. 3 Last-level cache miss rate

5.2 Evaluation

In order to simulate that the graph is changing dynaimcally,
we first load a large proportion of the total graph, i.e. 95%, as
the original graph for processing, then load a small proportion
of the remaining graph each time, i.e. 1%. We assume that
the graph changes only five times.

5.2.1 Cache Miss Rate

We here compare our method with Maiter on the measure of
last-level cache miss rate on different graphs. From Fig. 3,
both Maiter-RR and Maiter-Pri run with a higher cache miss
rate. Their average cache miss rate is as high as 65%. The
reason is that the above two scheduling methods on the ba-
sis of hash partitioning can easily lead to irregular access.
When a partition stores a large amount of data greater than
the cache size, and random access occurs frequently, it re-
sults in frequent cache substitution. By comparison, after our
preprocessing, hot vertices that are frequently accessed can
quickly forward messages locally. Furthermore, vertices in a
scheduling chunk can be updated repeatedly until the chunk
converges. Therefore, the average cache miss rate of our
method is always less than Maiter-RR.

5.2.2 Scheduling Overhead

We evaluate the scheduling overhead of Maiter-Pri and Hot-
Priority. We think of a simple polling schedule for its local ta-
ble, Maiter-RR, does not have scheduling overhead due to the
order in which the vertex is executed is fixed. For Maiter-Pri,
it needs to maintain a priority queue for each worker to sup-
port dynamic priority scheduling, which is the result of the
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Fig. 4 Scheduling time on different datasets

next round of scheduling, the vids of vertices. This result is
generated by two steps: (1) Randomly sampling and sorting
to determine boundary; (2) selecting the vertices whose prior-
ity is larger than boundary and loading them into the priority
queue to wait for upcoming scheduling. The time complexity
of step (1) is fixed, and it can be considered as O(MlogM),
where M is the number of sample vertices. Step (2) requires
O(N) time to extract the priority queue, where N is the local
state table size. However, Hot-Priority just needs O(n) time to
select a chunk from several chunks, where n is the number of
chunks, so that from the experiment in Fig. 4, its scheduling
overhead is far less than Maiter-Pri.

5.2.3 Preprossing Overhead

We evaluate the preprocessing time of Maiter, GraphIn, and
Hot-Priority. Fig. 5 shows the overhead of the preprocess-
ing on four datasets when loading the original graph. Fig. 6
shows the result when processing different incremental data
on Friendster. The overhead of preprocessing of Maiter and
GraphIn is only loading data, since they use the hash parti-
tion method, which always loads data directly into the cor-
responding partition according to the hash function. In con-
trast to them, Hot-Priority needs to repartition the graph data
for generating hot partitions. Theoretically, Hot-Priority will
inevitably consume more preprocessing time. Actually, the
time consumption of our approach is approximately 1.4 times
that of Maiter and GraphIn. However, Hot-Priority will com-
pensate for this additional overhead in the subsequent phase
with the obvious benefits such as high locality and short con-
vergence times.
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5.2.4 Number of Updates

We evaluate the number of updates of GraphIn-RR, GraphIn-
Pri, and Hot-Priority on FriendSter with different percentages
of change. Fig. 7 shows the results relative to that of GraphIn-
RR. It shows that Hot-Priority is always better than GraphIn-
Pri while the number of updates in GraphIn-RR is the highest
and is much higher than Hot-Priority. The randomness of
the GraphIn-RR scheduling will cause the local temporarily
converged vertices to be reactivated frequently. These ver-
tieces should perform the reprocessing since those slower s-
tate propagations from hot vertices arrive. However, Hot-
Priority always selects vertices with higher delta value and
higher degree to schedule, which will help spread the state
change and accelerate convergence. There are two reasons
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Fig. 7 Relative numbers of updates

causing the experimental results of Hot-Priority and GraphIn-
Pri to be similar. On the one hand, Hot-Priority is based on
the chunk-unit. Accordingly, when scheduling a chunk from
some cold chunks, some of the vertices in the cold chunk may
not be activated without receiving the message, but the entire
chunk is scheduled. This will increase the number of updates
for some vertices but happen very rarely, since the hot chunk
always has a higher scheduling priority. On the other hand,
although GraphIn-Pri always extracts the priority queue with
the highest priority for scheduling, it ignores the impact of
the degree of hot vertices.

5.2.5 Execution Time

Fig. 8 shows the execution time of the considered schemes on
Friendster with the different percentages of change. We ob-
serve that the Hot-Priority approach reduces execution time
by 35% compared with GraphIn-RR, and by about 15% com-
pared with GraphIn-Pri for PageRank. In comparison, Hot-
Priority performs better, that is, the updates in Hot-Priority
are more effective than that in the robin-round way. Further,
Hot-Priority selects more effective updates to execute, which
can hit cache frequently and propagate state change effective-
ly by selecting higher-degree or more influential vertices.

6 Related Work

To date, a great deal of work has been devoted to the devel-
opment of graph processing. On the one hand, some graph
processing research [4,6,17,19–21] has been applied to gen-
eral big data processing platforms. On the other hand, some
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specific graph processing systems [8,9,11,13,18,22,23] have
also been developed. Some of them work in a bulk syn-
chronous parallel way such as Pregel. In addition, a few
proposed systems such as graphLab, PowerGraph and Maiter
support asynchronous iteration.

Google’s Pregel defines a series of successive supersteps
to support graph-based iterative algorithms. Since Pregel has
been proposed, many open-source Pregel-like frameworks
including giraph++ [24], Pregel+ [25], and GPS [26] have
been developed for supporting optimization, as GPS propos-
es the large adjacency list partitioning to deal with high-
degree vertices, and Pregel+ exploits vertex mirroring and
message combining to reduce message communications. Fur-
thermore, in the vertex-centric model, GraphChi [27], a large-
scale graph processing system in the multicore setting, uses a
parallel sliding windows method to improve out-of-core ac-
cess. In contrast to the vertex-centric model, there are also
various programming paradigms. X-Stream [23] has a more
sequential access by using an edge-centric graph computa-
tion model but still has a unpredictable access pattern. Xie
et al. [28] propose a block-oriented iterative graph compu-
tation model that updates a block instead of updating a ver-
tex, but it ignores the priority. PathGraph [29] implements
the path-centric abstraction for fast iterative graph computa-
tion by dividing a graph into paths and reviewing each path
as a processing unit, which allows fast loading and locality-
optimized computing.

All of the above described systems organize iterative com-
putation into global synchronous supersteps. In contrast
to the synchronous model, GraphLab [18] proposes a da-
ta pulling programming paradigm and sparse computation-

al dependencies to support asynchronous execution, which
can eliminate the waiting time for synchronous barriers. Ad-
ditionally, in Maiter [8], the graph iterative computation
can be executed efficiently and asynchronously. Under the
asynchronous delta-based accumulative iterative computa-
tion model, each vertex in Maiter propagates the change of
the state instead of the state. Since the changes can be ac-
cumulated, Maiter allows all communications between ver-
tices to be propagated in a completely asynchronous way for
avoiding unnecessary communication and computation. It
also proposes a priority scheduling algorithm to accelerate
convergence in asynchronous iterative computation. Pow-
erSwitch [30] uses two patterns, synchronous and asyn-
chronous, for distributed parallel-graph computation by adap-
tively switching two patterns during graph computation.

There are several systems for supporting incremental par-
allel processing on massive datasets. Incoop [4] saves and
reuses states at the granularity of tasks to support incremental
processing for one-step applications. DryadInc [10] allows
their applications to reuse prior computation results for sup-
porting incremental processing. Rather than focusing on one-
pass applications, several recent studies have addressed the
incremental processing for graphs. Kineograph [11] reuses
prior states by constructing incremental snapshots of the e-
volving graph. i2MapReduce [6] supports a fine-grained in-
cremental computation. In contrast to synchronous updates,
GraphIn [7] applys asynchronous updates to support incre-
mental computation. However, the existing asynchronous up-
dates are still suboptimal due to their suboptimal state propa-
gation and ineffective scheduling order. Our work illustrates
an effective improvement on asynchronous incremental com-
putation.

Graph partitioning is an essential step prior to graph pro-
cessing since subgraphs should be stored in distributed mem-
ory instead of entire graphs. PowerGraph [13] combines the
foundation of Graphlab with the vertex-cut partition in order
to maintain efficient communication and well-balanced load
in power-law graphs. Several greedy heuristics [13] are also
proposed to decrease communication cost and ensure well-
balanced loads on skewed graphs. Fennel [31], a framework
for streaming graph partitioning, achieves high-quality par-
titions by partitioning a graph in a single pass. For changes
in graphs, [32] extends the streaming graph partitioning to
reassign the vertices to partitions in a restreaming fashion.
[33] presents a novel model for the problem of partitioning
dynamic graphs.
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7 Conclusion and Future Work

In this paper, we propose an effective framework to improve
access locality and accelerate state change propagation dur-
ing iterative computation in asynchronous incremental graph
processing. Our framework consists of two parts, the first is
a partition method, and the other is a priority scheduling al-
gorithm. Our framework can achieve a high cache hit rate
and accelerate convergence with an acceptable preprocessing
overhead, and we report these experiments to evaluate our
method. The results show that by employing our approach,
the current system can efficiently improve the performance
of graph processing. Our future work includes two aspect-
s. First, we will work on extending the hot block priority
approach to distributed platforms for supporting large-scale
graph data. Second, we will explore new partition algorithms
to support dynamically generating hot blocks in the deletion
case when the graph evolves.
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