
Massively Parallel Approximate Steiner Tree
Algorithms

Chilei Wang, Qiang-Sheng Hua⋆, and Hai Jin

National Engineering Research Center for Big Data Technology and System/Services
Computing Technology and System Lab/Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan 430074, People’s Republic of China.
qshua@hust.edu.cn

Abstract. This work studies the approximate Steiner tree problem in
the Massively Parallel Computation (MPC) model where each machine
has O(nσ) memory and σ ∈ (0, 1). n is the number of nodes in a graph.
We focus on the undirected connected weighted graphs with shortest
path diameter D and a terminal set S. The shortest path diameter is the
minimum number of edges required for the shortest path constituting
a weighted graph’s diameter. The straightforward approach takes O(n)
rounds and O(n3−σ/2) total memory, which is inefficient. To simplify the
straightforward approach and reduce the round complexity, we design
a constant-round subroutine to compute the routing table and combine
algebraic strategies with recursive methods to compute the Steiner tree
efficiently. By these techniques, we give the first parallel 2(1 − 1/|S|)-
approximate Steiner tree algorithm that requires O(σ−1 logn+D) rounds
with the same memory size and the same approximation ratio. Moreover,
we extend the straightforward approach to the MPC model with O(n)
memory per machine, which takes O(logn) rounds and significantly out-
performs the existing algorithm [21] when D ≫ O(logn).

Keywords: The MPC model · Steiner Tree · Round Complexity · SPF.

1 Introduction

Over the last several years, the study on graph algorithms in the Massively
Parallel Computation (MPC) model has become the focus of growing interest,
including graph connectivity [2], shortest paths [10, 11], and minimum spanning
tree (MST) [9]. Furthermore, the significant development gap between storage
capability and CPU performance causes communication to be a pivotal deter-
minant of the algorithm’s running speed. Hence, in the MPC model, reducing
the communication complexity of graph algorithms is of utmost importance.

The Steiner Tree (ST) problem, a typical combinatorial optimization prob-
lem, has been widely applied in network design and computational biology [4].
⋆ Corresponding author(qshua@hust.edu.cn); This work was supported in part by Na-

tional Science and Technology Major Project 2022ZD0115301.

2 C. Wang et al.

The ST problem is defined as finding a tree with the smallest edge weights,
connecting all nodes in a specific set S of an undirected graph. Actually, the
ST problem is inherently connected to the MST and shortest path problems.
Concretely, it reduces to the MST problem when S contains all nodes and to the
shortest path problem if S comprises only two nodes. However, unlike MST and
shortest path problems that have polynomial-time solutions, the ST problem is
NP-hard [12], which cannot be solved in polynomial time unless P = NP .

Thus, most researchers concentrate on the approximate solutions for the ST
problem [22]. In the last four decades, there have been numerous studies on the
approximate Steiner tree (AST) problem in the sequential model [17] and the
parallel and distributed models [4], including the Congested Clique model [21]
and the Congest model [6]. These highlight the necessity and importance of
studying the ST problem.

Although the MPC algorithms designed for the MST or shortest path prob-
lems are fairly rich, as far as we know, no MPC algorithm has been proposed
for the ST problem so far. In addition, the study of the ST problem can be
extended to related optimization issues. For example, the traveling salesman
problem, which is used extensively in logistics management and other fields [18].
Therefore, this paper focuses on the AST problem for undirected weighted dense
graphs in the MPC model and aims to design an efficient MPC algorithm for it.

1.1 Our Contributions

In summary, our contributions are below:
• This paper proposes the first parallel AST algorithm in the MPC model

(refer to Theorem 1 and Algorithm 4 in Section 5 for details).
• Compared with the straightforward approach (see Section 4.1), our parallel

algorithm can greatly reduce the round complexity when the graph’s shortest
path diameter [21] is smaller than n, where n is the total number of nodes.

• Technically, we design a simpler subroutine to compute the routing table
(see Definition 4 and Algorithm 2 in Section 5.1) and simplify the process of the
straightforward approach by combining the algebraic methods and the recursive
strategies, leading to a reduction in round complexity (see Section 5.2).

Next, we present the main results below, which can be readily proved by
combining Lemma 3, Lemma 5, and the analysis in Section 6:

Theorem 1. In the MPC model, each machine has O(nσ) memory (σ ∈ (0, 1)
is a constant), given a graph G = (V,E) with n nodes and a set S of terminals,
there is a parallel algorithm that takes O(σ−1 log n+D) rounds and O(n3−σ/2)
total memory to solve the 2(1− 1/|S|)-approximate ST. Moreover, in the MPC
model with O(n) memory for each machine, the AST can be solved in O(log n)
rounds and O(n2.5) total memory.

Then, we compare our algorithms with existing parallel AST algorithms. The
results are outlined in Table 1. In the MPC model with O(nσ) memory assigned
to each machine (σ ∈ (0, 1) is a constant), our parallel algorithm has a lower
round complexity compared to the straightforward approach, particularly when

Massively Parallel Approximate Steiner Tree Algorithms 3

Table 1. Comparison between our parallel algorithms and the existing parallel ap-
proximate Steiner tree algorithms

Algo. (MPC(O(nσ))†) Round complexity Total memory Types of Algo.
The straightforward algorithm O(n) O(n3−σ/2) Deterministic

Our work O(D + σ−1 logn) O(n3−σ/2) Deterministic
Algo. (MPC(O(n))‡) Round complexity Total memory Types of Algo.

Saikia and Karmakar [21] O(log log n+D) O(n2) Deterministic
Our work O(logn) O(n2.5) Deterministic

Note: (1)† means the MPC model with O(nσ) memory per machine and σ ∈ (0, 1);
(2) ‡ represents the MPC model with O(n) memory for each machine.

D ≪ n. Furthermore, when D = O(log n), the round complexity required by
our algorithm is O(log n), which matches the best deterministic MST algorithm
with O(n2) total memory in [9]. In the MPC model with O(n) memory for each
machine, when D ≫ O(log n), our algorithm outperforms that of Saikia and
Karmakar [21]1, with the cost of increasing the total memory. However, it still
has a certain gap compared to the best MST algorithm in [19], which takes only
constant rounds.

2 Related Work

Over the past thirty years, designing parallel and distributed AST algorithms [1]
has been primarily based on the sequential algorithms from [17] and [22]. Among
these, the algorithms designed for the Congested Clique model and the Congest
model are most relevant to those in the MPC model.

In the Congest model, to solve the AST problem, Chen et al. [7] proposed the
first distributed algorithm, which takes O(n2) rounds2 and has an approxima-
tion ratio of 2(1− 1/|S|). Then, Chatermosook et al. [6] presented a distributed
2-approximate ST algorithm with O(n log n) rounds. The two algorithms above
are deterministic. Later, Khan et al. [16] designed a randomized ST algorithm
with O(log n)-approximation ratio, using O(D log2 n) rounds. Next, Saikia and
Karmakar [20] presented a deterministic 2(1− 1/|S|)-approximate ST algorithm
that requires O(D +

√
n log∗ n) rounds, combining the methods from [17] and

[22]. Following this, for the ST problem with the same approximation ratio in the
Congested Clique model, Saikia and Karmakar [21] designed the first determin-
istic algorithm with O(D + log log n) rounds, using the steps in [20]. Recently,
Kerger et al. [15] extended the 2(1−1/|S|)-approximate ST problem to the quan-
tum Congested Clique model and designed a randomized distributed algorithm
using O(n1/4) rounds.
1 The algorithms designed for the Congested Clique model with O(n) restricted mem-

ory per machine can be applied directly in the MPC model with O(n) memory for
each machine [3].

2 We only show the rounds required for these distributed algorithms since the first
goal in the MPC model is reducing the round complexity.

4 C. Wang et al.

Compared to the nearly absent research on the AST problem in the MPC
model, the MST problem has been well studied. For instance, in the MPC model
with O(nσ) memory for each machine, Coy and Czumaj [9] proposed a determin-
istic parallel MST algorithm taking O(log n) rounds and O(n+m) total memory
or O(logD) rounds and O((n + m)1+Ω(1)) memory, where m is the number of
edges in a graph. Moreover, the latter matches Ω(logD) lower bound [9].

3 Preliminaries

In this section, we will first introduce the MPC model and the problem defi-
nitions. Then, we will describe the parallel all-pairs shortest path (APSP) al-
gorithm designed by Hajiaghayi et al. [14] in Section 3.3, which is an essential
component of our parallel AST algorithm.

3.1 The MPC Model

As a theoretical computation model, the MPC model evolves from the MapRe-
duce model [13]. It contains three key parameters: the number P of machines
required, the memory M of each machine, and the size N of the input, such
that P = Õ(N/M) (Õ(·) hides a logarithmic factor). The MPC algorithms are
executed in synchronous rounds. Initially, the input data are distributed across
P machines. Within each round, machines perform local computations without
inter-machine communication. At the end of each round, machines send or re-
ceive messages with each other to obtain the data for the computation in next
round. The data size sent or received from other machines is no larger than M .
Machines communicate with each other in a pairwise interconnected manner.

Generally, the MPC model contains three memory settings [11]: 1) the strongly
superlinear memory (M = O(n1+σ), where σ > 0 is a constant); 2) the near-
linear memory (M = O(n)); 3) the strongly sublinear memory (M = O(nσ),
where σ ∈ (0, 1) is a constant). This paper considers the latter two memory set-
tings. In particular, we focus on designing parallel algorithms in the MPC model
with strongly sublinear memory, which is more difficult and more scalable.

Complexity Measurements: In the MPC model, the first and most critical
objective is to minimize an algorithm’s round complexity. Reducing the total
memory required by the algorithm is the secondary goal.

There are many useful and efficient subroutines in the MPC model with
strongly sublinear memory, such as sorting an ordered set, broadcasting messages
from one machine to other machines, and finding the maximum or minimum in
a set, which all take only O(σ−1) rounds [10, 13].

3.2 The Problem Definitions

This paper mainly considers the undirected connected weighted dense graphs
G = (V,E,W). Specifically, V denotes the set of n nodes, E represents the set
of m edges, and W : E → R+ is the weight function. When m = Θ(n2), it is a

Massively Parallel Approximate Steiner Tree Algorithms 5

dense graph. For any two nodes u1, u2 ∈ V , d(u1, u2) denotes the distance from
u1 to u2. In addition, in the MPC model, the IDs of the nodes in V are marked
as 1, 2, · · · , n, and the edges related to a node, ordered by the ID of another
endpoint, are stored in a continuous set of machines. Namely, the node and its
edges with smaller IDs will be stored in the machines with smaller IDs [10].

Definition 1 (The ST problem). Considering the graphs above, given a node
(or terminal) subset S ⊆ V , the ST problem is defined as finding a tree T0 =
(V0, E0) that minimizes

∑
e∈E0

w(e), where S ⊆ V0 ⊆ V and E0 ⊆ E.

It is worth mentioning that the nodes belonging to V \ S are called the non-
terminals and the nodes that belong to V0 \S are known as Steiner nodes. Next,
we introduce some important definitions for computing the AST.

Definition 2 (The Shortest Path Forest (SPF) [7, 21]). Given a graph
G = (V,E,W) above and a node subset S in Definition 1, the SPF for S, denoted
as GSPF = (V,ESPF , w), is a subgraph of G that comprises |S| disjoint trees
Tj = (Vj , Ej ,W), where j ∈ {1, 2, · · · , |S|}. Moreover, these trees satisfy the
following conditions: 1) Each Vj contains only one node sj from S; 2) For any
node v ∈ Vj, sj is the unique source of v, where sj ∈ S; 3)

⋃|S|
j=1 Vj = V and

different node subsets are pairwise disjoint; 4)
⋃|S|

j=1 Ej = ESPF ⊆ E; 5) The
shortest path from v ∈ Vj to sj ∈ Vj in Tj is the shortest path from v to sj in G.

Definition 3 (The Complete Distance Graph (CDG) [17, 22]). Consid-
ering the graphs above and the subset S in Definition 1, the CDG, denoted by
KS = (V,E′), consists of all nodes in G and is connected, undirected, and
weighted. The weight of each edge (u1, u2) ∈ E′ is the corresponding shortest
distance between u1 and u2 in the original graph G.

Definition 4 (The Routing Table (RT) [5]). Given a graph G = (V,E)
above and its adjacency matrix A0 of size n× n, the RT R is an n× n matrix.
Each element R[u1, u2] = z in R, where u1, u2, z ∈ V , satisfies that (u1, z) ∈ E
and z is the first intermediate node on a shortest path from u1 to u2.

3.3 A Known Parallel APSP Algorithm

Next, we introduce the parallel exact APSP algorithm from [14], which is Algo-
rithm 1 below. The primary idea of Algorithm 1 is to iteratively compute the
product A⋆A for ⌈log n⌉ times, where A is the n×n adjacency matrix of the graph
G = (V,E). In addition, ⋆ represents the multiplication over semiring (min,+).
That is to say, for any nodes u1, u2 in V , (A ⋆A)u1,u2

= minz∈V {Au1,z +Az,u2
}

(see lines 4 - 5 of Algorithm 1). After ⌈log n⌉ iterations (see line 1 of Algorithm
1), we obtain the distance matrix An (replaced by Dist in line 7 of Algorithm
1). Lemma 1 below presents the rounds required by Algorithm 1.

Lemma 1 (Algorithm 1 [14]). In the MPC model with O(nσ) memory for
each machine (σ ∈ (0, 1] is a constant), a graph G = (V,E) that has n nodes
and its adjacency matrix A, Algorithm 1 computes the distance matrix Dist
using O(σ−1 log n) rounds and O(n3−σ/2) total memory.

6 C. Wang et al.

Algorithm 1 The Parallel APSP algorithm [14]
Input: An n× n matrix A distributed among O(n2−σ) machines numbered as Pi,j,1,

each of which has a memory size O(nσ), where i, j ∈ {1, 2, · · · , n1−σ/2}.
Output: The distance matrix Dist
1: for h = 1, 2, · · · , ⌈logn⌉ do
2: The machine Pi,j,1 broadcasts the sub-matrix A2h−1

i,j with size nσ/2 × nσ/2 to
other O(n1−σ/2) machines numbered by Pi,j,k, where k ∈ {2, 3, · · · , n1−σ/2}. ▷ If
h = 1, then A1

i,j = Ai,j

3: The machine Pi,j,1 broadcasts the sub-matrix A2h−1

i,j to other O(n1−σ/2) ma-
chines numbered by Pk,i,j , where k ∈ {1, 2, · · · , n1−σ/2}.

4: Each machine Pi,j,k computes A2h

i,k = A2h−1

i,j ⋆ A2h−1

j,k , where i, j, k ∈
{1, 2, · · · , n1−σ/2}. ▷ A2h−1

i,j ⋆ A2h−1

j,k represents the multiplication of two matrices
A2h−1

i,j and A2h−1

j,k over semiring (min,+)
5: Execute the broadcast operation among machines numbered by Pi,j,k to com-

pute partial sums of sub-matrix A2h

i,k to obtain A2h

i,k (i, j, k ∈ {1, 2, · · · , n1−σ/2}).
6: end for
7: Return Dist = An

Proof. As we can see, in only one round, Algorithm 1 can compute all the partial
sums of all pairs of nodes (refer to line 4 in Algorithm 1). Since there are only
broadcast operations in each iteration (refer to lines 2, 3, and 5 in Algorithm
1), it takes only constant rounds. Therefore, we obtain the round complexity for
Algorithm 1, as shown in Lemma 1.

4 Techniques

4.1 A Straightforward Parallel AST Algorithm

The general steps of addressing the AST problem in the Congested Clique
model [21] and the Congest model [20] are below: 1) Construct the SPF; 2)
Modify the weights of edges in the graph; 3) Construct the MST on
the modified graph; 4) Delete the non-terminal leaves from the MST.
When exact algorithms are used for each step [15, 20, 21], the approximation ratio
of the ST is 2(1− 1/|S|). Through these steps, we obtain a straightforward AST
(SAST) algorithm in the MPC model with strongly sublinear memory below:

Step 1: Initially, we compute the CDG (see Definition 3 in Section 3.2) using
Algorithm 1. Then, we solve the RT (refer to Definition 4 in Section 3.2). Specif-
ically, we denote the RT for A2j = A2j−1

⋆ A2j−1

as Rj (j ∈ {1, 2, · · · , ⌈log n⌉}).
According to [5], if Rj is known, then for A2j+1

= A2j ⋆ A2j , Rj+1[u1, u2] =
Rj+1[u1, Rj [u1, u2]], where u1, u2 ∈ V . The resulting RT is R = R⌈logn⌉. This is
the same as computing the distance matrix in Algorithm 1. Thus, the rounds and
total memory needed in this step are O(σ−1 log n) and O(n3−σ/2), respectively.

Finally, we construct the SPF (the |S| disjoint trees Tj = (Vj , Ej), where
j ∈ {1, 2, · · · , |S|}, as defined in Definition 2). Specifically, we determine the

Massively Parallel Approximate Steiner Tree Algorithms 7

source of every node v ∈ V by comparing all distances from v to the terminals in
S, using the distance matrix Dist. It requires O(σ−1) rounds and O(|S|n) total
memory. Next, we can determine the edges in the tree Tj by the RT R in only
one round (for each node v in Tj , we find and mark its connecting edge (u, v),
where u is the direct predecessor.). This is implied by the fact that the subpath
of the shortest path is also the shortest path [8], so u has the same source as v.

Step 2: We modify the edge weights of the original graph G as follows: 1) Set
all tree edges with a weight of 0; 2) Set the weights of all non-tree edges whose
endpoints have the same source to ∞; 3) For any edge (u1, u2) whose endpoints
have different sources, we set its weight to w′(u1, u2) = d(si, u1) + w(u1, u2) +
d(u2, sj), where si and sj are the sources of u1 and u2 (i, j ∈ {1, 2, · · · , |S|} and
i ̸= j), respectively. Next, we analyze the round complexity required in this step.
Since each node must modify its edge weights using information from all other
nodes, which is at most n. As the memory of each machine is O(nσ) (σ ∈ (0, 1)), it
takes O(n1−σ/σ) rounds and O(n2) total memory using the broadcast operation.

Step 3: We solve the MST on the modified graph with an existing determin-
istic MPC algorithm [9], which takes O(log n) rounds and O(n2) total memory.

Step 4: We prune the MST computed in Step 3. This results in at most n
updates since deleting a non-terminal leaf will cause another new non-terminal
leaf [1]. Thus, it takes up to O(n) rounds and O(n) total memory.

In summary, this algorithm takes O(n) rounds and O(n3−σ/2) total memory.
In addition, the SAST algorithm computes the exact result for the 2(1− 1/|S|)-
approximate Steiner tree without incurring any additional approximation ratio.

4.2 Challenges and Solutions

The challenges in reducing the rounds of the SAST algorithm are below:
Firstly, Step 2 is too complex and causes a high round complexity, which is

inefficient. Simplifying this step and reducing the required rounds is important.
Secondly, the round complexity of deleting the non-terminal leaves in Step

4 is too high. It is a key challenge to reduce the round complexity.
The solutions to the challenges above are as follows:
To tackle the first challenge, we combine steps 2 and 3 in Section 4.1 into

one step. We combine the recursive strategy with algebraic methods to connect
these |S| disjoint trees and then obtain the required MST. This simplifies both
Step 2 and Step 3 and reduces the round complexity for computing the MST.

To address the second challenge, we mark the endpoints of these con-
necting edges that connect these |S| trees. Then, using these endpoints and the
routing table, we find the Steiner nodes, which reduces the round complexity
when a graph’s shortest path diameter is smaller than n.

Additionally, we design a simpler and novel algorithm to calculate the RT,
which takes only constant rounds. This reduces the round complexity of the
parallel algorithm that computes the RT in Section 4.1.

8 C. Wang et al.

5 The Parallel Approximate Steiner Tree Algorithm

According to the strategies in Section 4.2, this section first computes the SPF
in Section 5.1. Then, in Section 5.2, we address the AST problem.

5.1 The Construction of the SPF

The process of computing the SPF is similar to Step 1 in Section 4.1. The key
difference is a new parallel algorithm designed for the RT.

Algorithm 2 The parallel RT algorithm
Input: The n×n distance matrix Dist, a matrix A with size n×n, and the predecessor

matrix
∏A of A, distributed among O(n2−σ) machines numbered as Pi,j,1, where

i, j ∈ {1, 2, · · · , n1−σ/2}, each of which has a memory size O(nσ).
Output: The routing table Ri,k with size n× n.
1: The machine Pi,j,1 broadcasts the sub-matrix Ai,j with size nσ/2 × nσ/2 to other

O(n1−σ/2) machines numbered by Pi,j,k, where k ∈ {2, 3, · · · , n1−σ/2}.
2: The machine Pi,j,1 broadcasts the sub-matrix Disti,j to other O(n1−σ/2) machines

numbered by Pk,i,j , where k ∈ {1, 2, · · · , n1−σ/2}
3: The machine Pi,j,1 broadcasts the nσ/2 × nσ/2 sub-matrices

∏A
i,j and Disti,j to

other O(n1−σ/2) machines numbered by Pi,k,j , where k ∈ {2, 3, · · · , n1−σ/2}.
4: for all machines Pi,j,k (i, j, k ∈ {1, 2, · · · , n1−σ/2}) execute locally in parallel do
5: Set an empty matrix R with size nσ/2 × nσ/2

6: for i′ = 1, 2, · · · , nσ/2 do
7: for k′ = 1, 2, · · · , nσ/2 do
8: for j′ = 1, 2, · · · , nσ/2 do
9: if i′ = k′ then Set Ri,k[i

′, k′] =
∏A

i,k[i
′, k′] and stop

10: end if
11: d(i′, k′) = Ai,j(i

′, j′) +Distj,k(j
′, k′)

12: if d(i′, k′) = Disti,k(i
′, k′) and i′ ̸= j′ then Set Ri,k[i

′, k′] = j′ and
stop ▷ when i′ = j′, this avoids the case of Disti,k(i

′, k′) = Distj,k(j
′, k′),

indicating equal distances between i′/j′ and k′.
13: end if
14: end for
15: end for
16: end for
17: end for
18: Execute the broadcast operation among machines numbered by Pi,j,k, j ∈

{1, 2, · · · , n1−σ/2} to obtain the final predecessor matrix Ri,k.
19: Return R ▷ R is made up of n2−σ submatrices Ri,k of size nσ/2 × nσ/2.

A Simpler Algorithm for the RT: We compute the RT only once, using the
distance matrix Dist and the adjacency matrix A of G (Algorithm 2), instead
of computing it ⌈log n⌉ times as in Step 1 in Section 4.1. First, we initialize
the predecessor matrix

∏A of A such that for u1, u2 ∈ V , if e(u1, u2) ∈ E,

Massively Parallel Approximate Steiner Tree Algorithms 9

then
∏A

[u1, u2] = u2, otherwise,
∏A

[u1, u2] = NIL. Also, we set
∏A

[u1, u1] =
NIL. Second, we compute A ⋆ Dist (line 12 in Algorithm 2), modifying the
elements of

∏A accordingly. The resulting predecessor matrix R =
∏A is the

RT. The principle behind this is simple: 1) Dist = A ⋆ Dist means that the
shortest distances between nodes will not change anymore; 2) (A ⋆ D)u1,u2 =
minz∈V {w(u1, z) + d(z, u2)} determines u1’s predecessor. The concrete process
is shown in Algorithm 2. Moreover, we give a simple example in Fig. 1 to better
understand Algorithm 2. Next, we analyze the rounds of Algorithm 2.

Fig. 1. A concrete example of Algorithm 2

Lemma 2 (Algorithm 2). In the MPC model with O(nσ) memory (σ ∈ (0, 1])
for each machine, for a graph G = (V,E) that has n nodes, the adjacency ma-
trix A, A’s predecessor matrix

∏A, and the distance matrix Dist, Algorithm 2
computes the RT R of Dist using O(σ−1) rounds and O(n3−σ/2) total memory.

Proof. As shown in Algorithm 2, there are only broadcast operations in lines 1
- 3 and line 20, which cost O(σ−1) rounds. There is no communication between
machines in lines 4 - 19 since each machine executes local computation. Similar
to the computation of APSP in Algorithm 1, Algorithm 2 requires O(n3−σ/2).

The Parallel SPF Algorithm: Algorithm 3 computes the SPF in two steps.
First, it computes the CDG (or Dist) in line 1 and the related RT R in line
2. Second, it finds the source of each node v ∈ V/S by selecting the minimum
distance from v to S in line 3. Using the RT, it constructs the tree Tj rooted

10 C. Wang et al.

Fig. 2. An illustrative instance for Algorithm 3

at sj ∈ S (j ∈ {1, 2, · · · , |S|}) in line 4. For clarity, we provide an illustrating
example for Algorithm 3 in Fig. 2.

Algorithm 3 The parallel SPF algorithm
Input: A given undirected connected graph G = (V,E,W) and the terminal set S.
Output: The SPF GSPF = (V,ESPF , w).
1: Execute Algorithm 1: compute the distance matrix Dist.
2: Execute Algorithm 2: compute the RT R of the distance matrix Dist.
3: The machines storing the distances of each v ∈ V/S and nodes in S find v’s source.
4: The machine that stores the tree edge of v ∈ V/S whose source is s ∈ S, sends the

tree edge and the distance d(s, u) to the machine that stores s ∈ S.

Lemma 3. In the MPC model, each machine has O(nσ) memory and σ ∈ (0, 1),
for a graph G with n nodes and a terminal set S, Algorithm 3 computes the SPF
GSPF = (V,ESPF) taking O(σ−1 log n) rounds and O(n3−σ/2) total memory.

Proof. By Lemmas 1 - 2, it requires O(σ−1 log n) rounds and O(n3−σ/2) memory
to run lines 1 - 2 in Algorithm 3. Sorting these distances and finding the minimum
in line 3 takes O(1/σ) rounds. Line 4 requires O(1) rounds to send messages.

5.2 The Computation of the AST

This subsection computes the AST in the MPC model using the first two strate-
gies proposed in Section 4.2, which will be detailed in Algorithm 4.

In Algorithm 4, we first label the states of all nodes in line 1, which are used
to identify the Steiner nodes later. Then, we reorder the nodes whose IDs are the
row and column indices of the adjacency matrix A such that querying the edges
with endpoints in different trees (line 2) is more convenient. Next, we modify
the weights of edges with endpoints in distinct trees in lines 3 - 5 (see Fig.3(b)),
the same as in Section 4.1. We select the edge with minimum weight connecting
Ti (i ∈ {1, 2, · · · , |S|}) to its closest tree (not Ti) in line 6 (see Fig.3(c)). In
lines 7 - 9 (refer to Fig. 4(a)), we delete the heaviest edge that causes a cycle
or a duplicate edge among the |S| trees. We find the necessary connecting edges
(line 10 and Fig. 4(b)) and modify the states of non-terminals that are Steiner

Massively Parallel Approximate Steiner Tree Algorithms 11

nodes (line 11). Since we utilize the RT, there is no resource contention between
machines when multiple edges are selected for a tree T . Finally, we delete the
non-terminal leaves in GSPF in line 12 and obtain the AST (refer to Fig. 4(c)).
Now, we analyze the correctness and round complexity for Algorithm 4.

Fig. 3. A straightforward example of the process of lines 2 - 6 in Algorithm 4

Fig. 4. A concrete instance of the process of lines 8 - 12 in Algorithm 4

Lemma 4. Algorithm 4 can compute an MST correctly without line 10 in Algo-
rithm 4. Additionally, the approximation ratio of the ST computed is 2(1−1/|S|).

Proof. The core ideas behind the SAST algorithm and Algorithm 4 for comput-
ing the MST are the same. Firstly, the MSTs computed by the two algorithms
both contain all the tree edges: the SAST algorithm sets the weights of all edges
in GSPF to 0 and Algorithm 4 retains the edges in GSPF . Secondly, the two al-
gorithms both modify the weights of edges whose endpoints are in different trees
in the same way. The difference is as follows: each time, the SAST algorithm
chooses the minimum weight edge. However, Algorithm 4 selects the minimum
weight edge between each tree Ti(i ∈ {1, 2, · · · , |S|}) and its closest tree. Conse-
quently, we have |S| selected edges, which may cause a cycle. However, Algorithm
4 either deletes the edge with maximum weight in the cycle or the duplicate edge

12 C. Wang et al.

in lines 7 - 9. This shows that Algorithm 4 computes the MST correctly. Thus,
the approximation ratio of the ST solved by Algorithm 4 is 2(1− 1/|S|), which
is the same as that of the SAST algorithm.

Algorithm 4 The parallel AST algorithm
Input: The SPF GSPF = (V,ESPF , w) =

⋃|S|
j=1(Tj = (Vj , Ej)) obtained by Algorithm

3, the adjacency matrix A, the RT R, and the terminal set S.
Output: The AST T0.
1: Label the states of the terminals in S and nodes in V/S as true and false, respec-

tively.
2: Reorder the row and column indices in A according to the ID values of terminals

in S, each of which is followed by the ordered IDs of its child nodes. ▷ see Fig. 3(b)
3: The machines that store the 1 × |VTi | distance vectors from si ∈ S to nodes in

the tree Ti (i ∈ {1, 2, · · · , |S|}), broadcast them to the machines that store the
|VTi | × |VTj | submatrix A[VTi , VTj], where j ̸= i and j ∈ {1, 2, · · · , |S|}. ▷
A[VTi , VTj] represents the submatrix of A with row indices in VTi and column
indices in VTj .

4: The machines that store the |VTi | × 1 distance vectors from nodes in the tree Ti

(i ∈ {1, 2, · · · , |S|}) to si ∈ S, broadcast them to the machines that store the
|VTj | × |VTi | submatrix A[VTj , VTi], where j ̸= i and j ∈ {1, 2, · · · , |S|}.

5: The machines that store A[VTi , VTj], add the elements of A[VTi , VTj] with the cor-
responding elements in the distance vectors, where i, j ∈ {1, 2, · · · , |S|} and i ̸= j.
▷ Modify the weights of edges whose endpoints belong to different trees.

6: The machines that store the modified submatrix A[VTi , V/VTi] choose the minimum
value of A[VTi , V/VTi]. ▷ Find the connecting edge for each tree to its closest tree.

7: Invoke other O(|S|/nσ) machines (or one machine if |S| ≤ nσ) to receive the |S|
selected edges for the |S| disjoint trees sent by the machines that store them.

8: The invoked machines modify the endpoints of each selected edge to their sources
and then match these edges that have a common endpoint recursively, until there
are two common sources. ▷ Find the duplicate edge or the cycle among the trees.

9: The invoked machines either delete the duplicate edge or compare all edge weights
in the cycle and find the heaviest edge e = (si, sj) and delete the corresponding
edge e = (i, j). ▷ Delete the heaviest edge in the cycle or the duplicate edge.

10: The machines that store the selected edges e = (i, j), send these edges to the
machines that store the tree Ti and its closest tree Tj , where i, j ∈ {1, 2, · · · , |S|}
and i ̸= j. ▷ e = (i, j) connects Ti and Tj , with i ∈ Ti and j ∈ Tj , respectively.

11: The machines that store the tree Ti (Tj), find the nodes on the path from i (j)
to the root of Ti (Tj , where i, j ∈ {1, 2, · · · , |S|} and i ̸= j), using R. Meanwhile,
these machines modify the states of these nodes to true. ▷ Find the Steiner nodes.

12: Delete all nodes in GSPF whose states are false and their corresponding edges. ▷
Delete the leaves in GSPF that are non-terminals.

13: Return T0 = GSPF

Lemma 5. In the MPC model, each machine has O(nσ) (σ ∈ (0, 1)) memory,
for the graph G = (V,E) that has n nodes, a terminal set S, the adjacency

Massively Parallel Approximate Steiner Tree Algorithms 13

matrix A, the RT R, and the SPF GSPF = (V,ESPF) computed by Algorithm 3,
Algorithm 4 solves the AST in O(log |S|+D) rounds and O(n2) total memory.

Proof. In Algorithm 4, executing line 1 takes only one round because each ter-
minal in S is a root of a tree in GSPF = (V,ESPF). There is only a sorting
operation in line 2 of Algorithm 4, which takes O(σ−1) rounds. In lines 3 - 4 and
10, the broadcast operations require O(σ−1) rounds. Finding the minimum and
maximum weight edges in lines 5, 6, and 9 takes O(σ−1) rounds. Dealing with
|S| edges recursively in line 8 requires O(log |S|) rounds. It takes only one round
to send messages to the corresponding machines in line 10. The most expensive
operation is to find the nodes on a path in line 11 of Algorithm 4, which requires
O(D) rounds since the graph’s shortest path diameter is D. The total memory
for this algorithm is O(n2), as the size of the adjacency matrix A is O(n2).

6 Extension to the Near-linear Memory Setting

Now, we extend the straightforward method of computing AST to the MPC
model with O(n) memory for each machine. The four-step process remains un-
changed: 1) In Step 1, we obtain the CDG and the RT R using Algorithm 1
and Algorithm 2, respectively. The subsequent process follows Section 4.1. We
can store the edges of the |S| disjoint trees in a single machine since the number
of edges in these trees is less than n. By Lemmas 1 - 2, Step 1 takes O(log n)
rounds and O(n2.5) total memory. 2) For Step 2, since each node contains up to
n edges, we can modify the edge weights of each node in a single machine, which
costs only one round. As there are n nodes, the total memory needed is O(n2).
3) In Step 3, we utilize the existing fastest parallel MST algorithm proposed by
Coy and Czumaj [9], requiring O(log n) rounds and O(n2) total memory. 4) Step
4 can be completed in one round, as a single machine is sufficient to store all
edges of the MST.

Hence, we obtain a parallel AST algorithm in the MPC model with near-
linear memory using O(log n) rounds and O(n2.5) total memory. This greatly
improves the result in [21], which takes O(log log n+D) rounds when D ≫ log n.

7 Conclusion

This paper studies the approximate Steiner tree problem in the MPC model
with O(nσ) memory for each machine and σ ∈ (0, 1). Specifically, to reduce the
round complexity of the straightforward approximate Steiner tree algorithm,
we use a simpler method to compute the routing table that takes only con-
stant rounds and combine the recursive strategy with the algebraic methods to
solve the approximate Steiner tree more efficiently. Then, we obtain a parallel
2(1 − 1/|S|)-approximate Steiner tree algorithm that takes O(D + σ−1 log n)
rounds and O(n3−σ/2) total memory. Furthermore, we extend the straightfor-
ward approximate Steiner tree algorithm to the MPC model with O(n) memory
for each machine, requiring O(log n) rounds. This reduction in round complexity
is highly beneficial when D = Ω(log n).

14 C. Wang et al.

References

1. Akbari, H., Iranmanesh, Z., Ghodsi, M.: Parallel minimum spanning tree heuristic
for the steiner problem in graphs. In: Proc. ICPADS. pp. 1–8. IEEE (2007)

2. Andoni, A., Song, Z., Stein, C., Wang, Z., Zhong, P.: Parallel graph connectivity
in log diameter rounds. In: Proc. FOCS. pp. 674–685. IEEE (2018)

3. Behnezhad, S., Derakhshan, M., Hajiaghayi, M.: Brief announcement: Semi-
mapreduce meets congested clique. CoRR abs/1802.10297 (2018)

4. Bezensek, M., Robic, B.: A survey of parallel and distributed algorithms for the
steiner tree problem. Int. J. Parallel Program. 42(2), 287–319 (2014)

5. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: Proc. PODC. pp. 143–152. ACM
(2015)

6. Chalermsook, P., Fakcharoenphol, J.: Simple distributed algorithms for approxi-
mating minimum steiner trees. In: Proc. COCOON. pp. 380–389. Springer (2005)

7. Chen, G., Houle, M.E., Kuo, M.: The steiner problem in distributed computing
systems. Inf. Sci. 74(1-2), 73–96 (1993)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd Edition. MIT Press (2009)

9. Coy, S., Czumaj, A.: Deterministic massively parallel connectivity. In: Proc. STOC.
pp. 162–175. ACM (2022)

10. Dinitz, M., Nazari, Y.: Massively parallel approximate distance sketches. In: Proc.
OPODIS. pp. 35:1–35:17. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019)

11. Dory, M., Matar, S.: Massively parallel algorithms for approximate shortest paths.
In: Proc. SPAA. pp. 415–426. ACM (2024)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

13. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in
the mapreduce framework. In: Proc. ISAAC. pp. 374–383 (2011)

14. Hajiaghayi, M., Lattanzi, S., Seddighin, S., Stein, C.: Mapreduce meets fine-grained
complexity: Mapreduce algorithms for apsp, matrix multiplication, 3-sum, and
beyond. CoRR abs/1905.01748 (2019)

15. Kerger, P.A., Neira, D.E.B., Izquierdo, Z.G., Rieffel, E.G.: Quantum distributed
algorithms for approximate steiner trees and directed minimum spanning trees. In:
Proc. QCE. pp. 1249–1259. IEEE (2023)

16. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed
approximation algorithms via probabilistic tree embeddings. In: Proc. PODC. p.
263–272. ACM (2008)

17. Kou, L.T., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta
Informatica 15, 141–145 (1981)

18. Lenzen, C., Patt-Shamir, B.: Improved distributed steiner forest construction. In:
Proc. PODC. pp. 262–271. ACM (2014)

19. Nowicki, K.: A deterministic algorithm for the MST problem in constant rounds
of congested clique. In: Proc. STOC. pp. 1154–1165. ACM (2021)

20. Saikia, P., Karmakar, S.: A simple 2(1-1/l) factor distributed approximation al-
gorithm for steiner tree in the congest model. In: Proc. ICDCN. pp. 41–50. ACM
(2019)

21. Saikia, P., Karmakar, S.: Distributed approximation algorithms for steiner tree in
the congested clique. Int. J. Found. Comput. Sci. 31(7), 941–968 (2020)

22. Wu, Y., Widmayer, P., Wong, C.K.: A faster approximation algorithm for the
steiner problem in graphs. Acta Informatica 23(2), 223–229 (1986)

