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ABSTRACT

Learning Chinese word embeddings is important in many tasks of
Chinese language information processing, such as entity linking,
entity extraction, and knowledge graph. A Chinese word consists of
Chinese characters, which can be decomposed into sub-characters
(radical, component, stroke, etc). Similar to roots in English words,
sub-characters also indicate the origins and basic semantics of
Chinese characters. So, many researches follow the approaches
designed for learning embeddings of English words to improve Chi-
nese word embeddings. However, some Chinese characters sharing
the same sub-characters have different meanings. Furthermore,
with more cultural interaction and the popularization of the Inter-
net and web, many neologisms, such as transliterated loanwords
and network terms, are emerging, which are only close to the pro-
nunciation of their characters, but far from their semantics. Here,
a tripartite weighted graph is proposed to model the semantic re-
lationship among words, characters, and sub-characters, in which
the semantic relationship is evaluated according to the Chinese
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linguistic information. So, the semantic relevance hidden in lower
components (sub-characters, characters) can be used to further
distinguish the semantics of corresponding higher components
(characters, words). Then, the tripartite weighted graph is fed into
our Chinese word embedding model insideCC to reveal the semantic
relationship among different language components, and learn the
embeddings of words. Extensive experimental results on multiple
corpora and datasets verify that our proposed methods outperform
the state-of-the-art counterparts by a significant margin.
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1 INTRODUCTION

Word embeddings, where words or phrases in the corpora are
mapped into low-dimension vectors of real numbers, are popu-
lar techniques for language modeling [5, 10], feature learning [12],
and knowledge processing [21, 25]. For example, the knowledge
graph, a network of interconnected knowledge, is constructed by
recognizing entities and their relationships or links from free texts,
databases and other sources. The correct identification of entities
and links is generally based on learning the embeddings of words.
From the perspective of linguistics, the aim of learning word em-
beddings is to capture and learn the semantic relation, interaction,
as well as the contextual co-occurrence of words.

Word Characters Sub-characters
# 1 Se s =L H ai ITXU
(sea) (water)  (every)
MR
(ocean)
¥ i F:
N N ——— Y a
(ocean) (water) (goat) i EL RCDH
(a) Radical (b) Component (c) Stroke (d) Pinyin (e) Wubi

Figure 1: The hierarchy of the Chinese word: word, character,
sub-character. The word consists of multiple characters, and
the character consists of various sub-characters, including
(a) Radical, (b) Component, (c) Stroke, (d) Pinyin, (¢) Wubi.

The general approach to learning word embeddings is treating
texts as word sequences, which ignores the internal semantic rela-
tion and interaction among words. However, Chinese words con-
sist of characters, which further consist of sub-characters-radical,
component, etc. For example, "#{¥(ocean)" consists of "{(sea)"
and "#F(ocean)" in Figure 1. "#(sea)" is decomposed into several
sub-characters, such as the radical " (water)" and component
"H}(every)". As the example shows, sub-characters denote partial
semantics of words and characters. Therefore, discovering the se-
mantics of sub-characters can improve Chinese word embeddings.

Recently, researchers have attempted to apply sub-characters
to learn Chinese word embeddings. For example, JWE [29] decom-
posed words into sub-characters for refining the semantics of words.
Although JWE learns the semantics of words by incorporating sub-
characters, the semantics of sub-characters are highly relevant with
both Chinese characters and Chinese words. For example, the sub-
characters of "% (apricot)" and "/&(dull)" are both "/RK(wood)" and
"[d(mouth)". Obviously, "/K(wood)" is more relevant to "75(apricot)"
than "J&(dull)" in its original semantics. However, JWE does not
discriminate them and encode the characters using the same sub-
characters, causing ambiguity in identifying Chinese characters and
words. Besides, the semantics of sub-characters to characters may
vary according to the words. For example, the words "##-(ocean)"
and "< (fashion)" share the same character "J¥(ocean)", but have
different meanings (refer to Section 3). This diversity causes the am-
biguity in learning Chinese word embeddings. Few researches are
reported on discovering such internal semantic interaction among
words, characters, and sub-characters.
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Furthermore, due to the globalization, many neologisms are in-
troduced into Chinese, such as transliteration loanwords and tech-
nical terms. For example, "##Z(fans)" is a transliteration loanword
common in youth. However, it is also a kind of Chinese noodles.
For neologisms, both their characters and sub-characters do not
relate to them semantically. This case exacerbates the ambiguity
in identifying the semantics of Chinese characters and poses new
challenges for learning Chinese word embeddings.

In conclusion, recent researches incorporate sub-characters into
learning Chinese word embeddings, but ignore the internal se-
mantic relation and interaction among words, characters, and sub-
characters. So, the internal semantic relationship can be employed
to enhance Chinese word embeddings. In order to address the afore-
mentioned issues, we employ a tripartite weighted graph for man-
aging the inherent semantics of different language components,
and propose a Chinese word embedding model insideCC for discov-
ering and learning the internal semantic relation and interaction.
Extensive experimental results verify the strength of insideCC in
incorporating the internal semantic information and capturing the
contextual co-occurrence information. Our contributions are sum-
marized as follows:

1. The tripartite weighted graph is proposed to model the se-
mantic relationship among words, characters, and sub-characters.
The semantic relationship is evaluated according to the linguistic
information among related language components. So, the semantic
relevance hidden in lower components (sub-characters, characters)
can be used to further distinguish the semantics of corresponding
higher components (characters, words).

2. The Chinese word embedding model insideCC, which accepts
the tripartite weighted graph as input, is proposed to enhance Chi-
nese word embeddings. With the tripartite weighted graph, insid-
eCC can learn the semantic relation among language components
and then strengthen the semantics of words. Since the components
of neologisms (transliteration loanwords, etc) have loose semantic
relationship among them in the tripartite weighted graph, insideCC
can identify the neologisms.

3. Extensive experimental results in word similarity and word
analogy reasoning tasks verify that insideCC outperforms the state-
of-the-art counterparts by a significant margin. Quantitative analy-
sis and additional case studies provide sufficient proof of insideCC’s
semantic learning capability.

2 RELATED WORK
2.1 Semantic methods

Semantics refer to the meaning of the language component, such as
word, character, and radical. Strenuous efforts have been made to
explore the semantics hidden in different language components. For
instance, Chen et al. [3] proposed CWE to improve the representa-
tions of Chinese words by incorporating the semantic information
of Chinese characters. In order to incorporate the semantic con-
tribution of Chinese characters, SCWE [27] assigned weights to
characters by calculating the similarity between English transla-
tions , while ACWE [13] employed attention mechanism to perceive
the semantic relation between words and characters.

Considering the composition structure of Chinese, there are
tens of thousands of words in Chinese, which are decomposed of
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thousands of characters. The characters might have difficulties in
revealing the semantics inside themselves. So, several researches
make a scrutiny into sub-characters in an attempt to understand the
meaning of a word. JWE [29] and RECWE [4] enhanced Chinese
word embeddings by decomposing characters into sub-characters
and utilizing the semantic information of sub-characters. However,
these approaches cannot distinguish the characters composed of
the same sub-characters, such as "y (apricot)", and "/&(dull)", whose
sub-characters are "/K(wood)" and "1 (mouth)".

Considering the hierarchy of Chinese words, Yin et al. [28] pro-
posed MGE to learn Chinese word embeddings by utilizing the
combination of words, characters, and radicals. Song et al. [22]
proposed LSN for jointly learning the semantics by maximizing the
overall probability of the relation among words, characters, and
components. However, they ignore the semantic interaction among
words, characters, and sub-characters. For example, the word "
#(ocean)", the characters "/ (sea)" and "(ocean)", and the sub-
character " { (water)" have similar semantics and are relevant to
water. The internal semantic relation and interaction can provide
supplementary semantics for the word and characters.

2.2 Morphological methods

Chinese is a hieroglyphic language which preserves the morphol-
ogy and original semantic elements, and the meaning of Chinese
characters can be conjectured by their morphological information.
The morphological information, such as stroke and glyph, is intu-
itive to readers since it is visual and conforms to the human spatial
imagination. Researches on the morphological information have
also achieved progress. For instance, Fasttext [1] utilized the n-gram
sequences of English letters to enhance word embeddings. Inspired
by Fasttext, CW2VEC [2] leveraged the n-gram sequences of strokes
in words by regarding strokes as letters. Nevertheless, the charac-
ters with identical stroke sequence, such as " (soil)", " T.(work)"
and ":(scholar)", cannot be distinguished by these methods.

Glyphs also retain much morphological information since Chi-
nese characters evolve from pictographs and have different struc-
tures. Researchers have focused on glyphs in the past five years. For
example, GWE [23] utilized all visual parts of Chinese hieroglyphs
to enhance word embeddings. Glyce [16] proposed a semantic rep-
resentation learning method based on glyphs. However, some un-
necessary parts will interfere in distinguishing Chinese characters,
burden the training process and consume extra resources.

2.3 Phonetic methods

In order to hear, speak, and read, the phonetic information like pro-
nunciation and speech is inseparable from languages. Generally, one
Chinese character may correspond to several pronunciation with
different meanings, and one pronunciation may also correspond to
multiple Chinese characters, causing ambiguity in distinguishing
Chinese characters. Therefore, pinyin is usually combined with
other sub-characters to improve the distinguishing accuracy of
Chinese characters in recent researches. For example, SSP2VEC
proposed by Zhang et al. [30] designed a sub-character feature
string by incorporating strokes, pinyin romanization and the struc-
ture of the characters, so as to enhance Chinese word embeddings.
Later, Sun et al. [24] proposed ChineseBERT, which combined the
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glyph and pinyin to enhance word embeddings, but ignored their
intrinsic semantic information.

2.4 Contextual co-occurrence based methods

Generally, sentences are used in oral communication and written
expressions. That is, words need to be understood according to their
contexts and speech situation. In order to understand the mean-
ings of words, word sequences and overall statistics are considered
into researches. Mikolov et al. [17] first proposed representative
word2vec models-CBOW and Skipgram, which obtained word
embeddings through the contextual co-occurrence information.
However, word2vec only employed the local information of the tar-
get words, ignoring the global information between the target and
contextual words. Therefore, Pennington et al. [19] proposed Glove
to decompose the co-occurrence probabilities matrix for learning
the local and global information simultaneously.

Also, one word may have different meanings in different sit-
uations. In order to explore the meanings of words, Peters et al.
[20] proposed ELMo to learn complex features of words and their
changes in different contexts. Inspired by ELMo, BERT [6] replaced
few words with masks to strengthen the contextual memory dur-
ing the training process. Developing from BERT, CharBERT [14]
constructed word representations based on sub-words, aiming to
perceive characters and refine the semantics of words.

3 TRIPARTITE WEIGHTED GRAPH

A Chinese word consists of several characters, which may appear
in other words. Each character denotes partial semantics of the
word. Similarly, characters may share sub-characters that indicate
common partial semantics of the character. In order to describe the
semantic relationship among words, characters, and sub-characters,
we propose a tripartite weighted graph defined as followed.

DEFINITION 1. Let the word set W = {wy, wa, - -+, wp, }, the char-
actersetC = {c1, 2, -+ ,cm}, and the sub-character set SC = {sc1, sca,
-+-,sc;} in the training corpus D. The tripartite weighted graph
G = (V,E, W) whereV=WUCUSC,E C (WxC)U(CxSC),
and W is a weight set. Yw; € W, if it contains cj, there exists an edge
between w; and c;j. Similarly, Ve; € C contains scj, an edge joins
them. Weights on edges indicate the relationship strength between
two nodes (words and characters or characters and sub-characters).

e ey
it /

ik

L%

a

Figure 2: An example of the tripartite weighted graph
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Figure 2 is an example of the tripartite weighted graph. The
words "J F(ocean)" and "¥¥ “S(fashion)" share the same char-
acter "7¥(ocean)", which contains the sub-characters " (water)"
and " (goat)". The word "#3 7 (ginkgo)" contains the character
"# (apricot)". The word "B IC 57 (Olympic)" contains the char-
acter "#R(forest)", which contains the sub-character "ZK(wood)".
The characters "7 (apricot)", "5 (beam)", "2F(dull)", and " (sleepy)"
shares the sub-characters "/K(wood)" and "1 (mouth)".

Words, characters, and sub-characters in the tripartite weighted
graph can be extracted from dictionaries, such as Modern Chinese
Dictionary [7]. However, the key challenge to build a tripartite
weighted graph is to assign weights to edges. Since the semantics
of sub-characters are not given in dictionaries and the corpora for
sub-characters are rare, it is not straightforward to compute the
weights between character and sub-characters. Here, we map sub-
characters into characters according to their semantics (Figure 3).
For example, the sub-character " { (water)" is mapped into the char-
acter "7K(water)". In this way, the corpora for words and characters
can be utilized to evaluate the semantics of sub-characters.

sub-characters characters sub-characters characters sub-characters characters

FRE A 22(silk) 4 K(dog) i E(walk)
T e F(grass) t sla(heart) 3 JE(foot)
£ S(metal) 1 Apeople) > #(old)
T e B(eat) o Ktire) E] (cow)
ok H(water) A Pl(meat) # F(cloth)
i & E(speak) [ T (knife) } T(show)
I Fa(illness) E E(jade) - Fl(net)

E F(hand) i vKice) & (flog)

Figure 3: Mapping sub-characters into characters

¥ layer

2" Jayer

3" layer

4 layer

0.5

/ AN /

/ Aaotaor / \ / \

(A £ A [ Aadraoo | L I [ Anotams | 50 Jav

| !, At A, KA | | | x| 3 layer
i / / \ /

Figure 4: The structure of Tongyici Cilin. The first layer con-
tains 12 major categories (A-L), and the following layers
contain the sub-categories of the parent layer. Words and
characters are categorized into the clusters with codes like
"Aa01A01". Weights on edges denote the lengths of edges.

The semantic relevance of sub-characters varies in different char-
acters. For example, the sub-character "/K(wood)" contributes more
semantics to "H(beam) "and "7 (apricot)" than "[F(sleepy)" and
"JR(dull)" (Figure 2). So, it is not feasible to set the same semantic
relevance for the same sub-character in different characters. Here,
Tongyici Cilin [15], is employed to evaluate the semantic relevance.
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Similar to WordNet [18], Tongyici Cilin is a tree-shape structure
(Figure 4), where non-leaf nodes are the categories, and leaves are
the clusters.

Given a character ¢; and a sub-character scj, we first map sc; into
its equivalent character char(scj), and know the locations and cat-
egories that ¢; and char(scj) belong to. According to the locations
of ¢; and char(scj), we can evaluate the semantic relevance by the
distances between them and their parents. Inspired by the method
proposed by Zhu et al. [31], we further employ Modern Chinese
Dictionary to collect the co-occurrence of characters since Tongyici
Cilin only considers the semantic relevance in isolated characters.
Now, the semantic relevance between c; and sc; is defined as:

0, scj ¢ c; || char(sc;) or c; out of vocab
PRV ERS]
W,
1.0, char(scj) =c¢;

, only char(scj) or c; in a cluster

ey

sim(ci, scj) =

2 w3sc;

g

1.05—-0.05%d) = Ve 2n + ,others
We, [

1

where d is the distance between c; and char(sc;), g is the distance
between their parents, and n is the children number of their com-
mon ancestor since the semantics of the descendants have large
divergence if the ancestor has many children. 3, wi 3 sc; denotes
the amount of the words that contains the characters with sc;
except ¢;, and |W,| denotes the amount of the words containing c;.
The semantic relevance can not be used as the weight directly
since it may be over-large or over-small in some cases. Many Chi-
nese characters are phono-semantic compound characters. For ex-
ample, "*F(goat)" is the phonetic component of "{F(ocean)" while
"{ (water)" is the semantic component. So, the semantic relevance
between "¥¥(ocean)" and its sub-character "y (water)" is much
greater than the semantic relevance between "% (ocean)" and its sub-
character "i(goat)". Here, we normalize the semantic relevance
between a character and its sub-characters. That is, the weight
between character ¢; and sub-character sc; is calculated as:

()

We also utilize Tongyici Cilin and the corpora for words and
characters to evaluate the weights between words and characters.
For example, the word "B #K T 5,(Olympic)" and the character
"#K(forest)" are far away in Tongyici Cilin, and their contextual
co-occurrences are rare in the corpora, so the normalized weight of
"#(forest)" to "BLFKIL 5E(Olympic)" is small. Above all, the weight
between word w; and c; is defined as:

wj,j = softmax(sim(c;, sc;))

©)

Aij = softmax(sim(wj, cj))

4 INSIDECC

As the tripartite weighted graph shows, the semantics of words can
be indicated at both the character level and sub-character level in
some sense. For example, the sub-character "7K(wood)" is close to
the semantics of the character "#(forest)", but far to the semantics
of the transliterated loanword "B KL 5% (Olympic)" because the
sub-characters or characters of "B #K L (Olympic)" do not share
similar semantics with the word. Besides, neologisms, e.g. name (" 2
Z:(Jack Ma)") and transliteration loanword ("B K IL 75 (Olympic)"),
can not be considered as the semantic composition of characters. It
motivates us to utilize the semantic association among words and
language components to enhance word embeddings.
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Here, we propose Chinese word embedding model insideCC
(Figure 5), which discovers and learns the semantic relation and
interaction among words, characters, and sub-characters with the
tripartite weighted graph as the input. InsideCC combines the em-
beddings of different language components to generate the ultimate
target word embedding and predict contextual words.

Sentence

o1+ s ¢

i & o, ; T N
T — 000

I
I
I
I
1
]
I
I
I
7 i Ve —
I
I
I
I
|
I
I
1

: Vo
o s — -0 0@

> Vow

Context

‘/5,1
P
—é- 000

o ¥ s¢

<,
g 1 ARTYY -
TGy

Figure 5: The architecture of Skipgram-based insideCC model.
w; represents the target word. w;_j to w;_; and wj;1 to w;, are
the contextual words of w;, which are replaced by w,, in the
Context square for concise demonstration. ¢; to c|,,,| denote
the characters in w;. sc1 to sc|¢,| denote the sub-characters
in ¢;. 4;j, wi j, and @; j are the semantic relevance between
w; and cj, ¢; and scj, w; and scj, respectively. vy, ¢, and vy
are the embeddings of the target word, characters, and sub-
characters. v. is the embedding of contextual sub-characters.
vs denotes the ultimate target word embedding.

Algorithm 1 Distinguishing semantic relevance

Input: tripartite weighted graph G = (V, E,2) where V.= W U C U SC
Output: Semantically relevant language components

1: Initialize Queue Queue, and Queues,

2: for word w; € W do

3: for character c; in w; do

4 Aij = softmax(sim(wj, cj));

5: if A;j > 6 then > 0 is a hyper-parameter
6: Pile c; and A; j to Queue,;

7: for sub-character scg in c; do

8: wjk = softmax(sim(cj,scy));

9: @ik = softmax(sim(w;, sci);
10: if |wjx — @ik | < o then v o is a hyper-parameter
11: Pile scx and wj x to Queuesc;

12: return Queue. and Queues.;

4.1 Distinguishing semantic relevance

In order to utilize the components to enhance word embeddings,
we first need to distinguish the semantic relevance between words
and their components. Here, we introduce two hyper-parameters
0 and o that denote the semantic threshold of characters and sub-
characters. By comparing the weights between components with
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0 and o, we can exclude the characters and sub-characters that
are less relevant to words (Algorithm 1). In the algorithm, we first
distinguish the semantically relevant characters (Line 2-6), and then
identify the semantically relevant sub-characters (Line 7-11).

As Algorithm 1 shows, the semantic relevance can be distin-
guished with the semantic thresholds of characters and sub-characters,
so that the interference of semantically irrelevant characters and
sub-characters can be reduced. Thus, the semantics of words will
be improved. For instance, since the character "#(forest)" and the
sub-character "ZR(wood)" have little semantic contribution to the
word "B IE 57 (Olympic)", the semantic relevance of "#(forest)"
and "/R(wood)" to "BLHKIT57,(Olympic)" will be ignored when the
tripartite weighted graph is encoded as input.

4.2 Integrating sub-character semantics

Now, the embeddings of the target word, target characters, target
sub-characters, and contextual sub-characters will be combined
together to generate new target word embedding.

Let vy, ¢, Uts, Ucs represent the embedding of the target word,
target characters, target sub-characters, and contextual sub-characters,
respectively. Assume there are |w;| characters in word w;. The word
embedding v,, and character embedding v; are calculated as:

Uwzéwi (4)
[wi]
1 1
ve=— ~(éc; +&,, 5
e M}le(c, 2ey) %)

where é,,,, é s and é ), are the embeddings of word w;, character
cj, and the semantic relevance A; j, respectively.

Assume there are S,,; sub-characters in word w;, A,,; charac-
ters in the context, and |c,| sub-characters in character c;,. The
target sub-character embedding v;s and contextual sub-character
embedding v.s are calculated as:

1 [wi leu| 1
Uts = —— —(€sc, + éwuﬁv) (6)
Swi u=1 v=1 2

i+k ‘Wp‘ lcul

A_MP;k uZ:; UZ:; et b p2i o 0)

—_

Ues =

where &, and e, , are the embeddings of sub-character sc,
and the semantic relevance wy, ,, respectively.

After obtaining the embeddings above, the ultimate target word
embedding v;,, is calculated as:

1
Vpw = 1 ; Um, mM=w,cts, cs 8)

The methods of optimization and negative sampling are the same
as those in Skipgram. As for the maximum overall log-likelihood
function, insideCC employs four conditional probabilities, which
are calculated as:

W]
1
L(W) = Z Wi Z Z logP(wiyjlom), m=w,c ts,cs (9)
m W | o
exp(ézvuvm)

P(wylom) = Wi m=w,cts,cs  (10)

Z‘tzl exp(é&tvm)
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5 EXPERIMENTS AND ANALYSIS
5.1 Experimental Settings

5.1.1 Training corpora and evaluating datasets. The training cor-
pora and evaluating datasets are as follows:

o The adopted training corpora are Chinese Wikipedia Dump'
with 270,292,772 tokens and 766,723 words and THUCNews?
with 309,526,604 tokens and 397,871 words.

o WS240, WS8297, and SL999 [9] are adopted for word similarity
tasks, which contain 240, 297, and 999 word pairs along with
manually tagged similarity scores, respectively. Since SL999 is
an English dataset, we translate it into Chinese by selecting the
most common meaning of each English word.

o WA1124 and WA7636 [11] are used for word analogy reasoning
tasks. WA1124 consists of 677 groups of capital-belong-country,
175 groups of state-include-city, and 272 groups of family relations.
WA7636 consists of 3192 groups of geography, 1465 groups of
history, 1370 groups of nature, and 1609 groups of people.

5.1.2  Baselines. Our insideCC is evaluated against the state-of-the-
art models listed below.

o CBOW and Skipgram? [17] are efficient contextual co-occurrence
based models, and are widely used as the competitors.

o CWE? [3] and SCWE? [27] are character-based Chinese word
embedding models. CWE utilizes the semantic information of
characters, while SCWE further incorporates the semantic simi-
larities between characters.

o GWE? [23] and CW2VEC’ [2] are morphology-based Chinese
word embedding models. GWE utilizes the glyphs of characters,
while CW2VEC utilizes the n-gram sequences of strokes.

o JWE8 [29] is a sub-character based Chinese word embedding
model, and utilizes the semantic information of sub-characters.

5.1.3  Parameter settings. The embedding dimension is 200, the
length of the context window is 8, the original learning rate
is 0.025, and the number of iteration rounds is 100. As for the
negative sampling process, the number of negative samples is 10,
and the random negative sampling rate is 107*. Furthermore,
we conduct parameter analysis to determine the value of the hyper-
parameters (Figure 6). We set 0 to be 0.75 and o to be 0.25 because
InsideCC performs best when 6 = 0.75 and ¢ = 0.25.

For fair comparison, we keep the common configurations and
parameters identical for all models, and adopt other configurations
and parameters with the best performance in their papers, as well
as adopt average scores to report the final results of multiple tasks.

5.2 Word similarity

Word similarity tasks mainly evaluate the capability of word em-
beddings to reveal the semantic relation between two words. The
results on word similarity tasks (Table 1) demonstrate that insideCC
outperforms the baselines in the corpora and evaluating datasets.

!https://dumps.wikimedia.org/zhwiki
Zhttp://thuctc.thunlp.org/
3https://code.google.com/p/word2vec
“https://github.com/Leonard-Xu/CWE
Shttps://github.com/JianXu123/SCWE
Ohttps://github.com/ray1007/GWE
"https://github.com/bamtercelboo/cw2vec
8https://github.com/HKUST-KnowComp/JWE
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Figure 6: Parameter analysis for hyper-parameters

The reason is that insideCC accepts the tripartite weighted graph as
its input. So, it can learn the semantics of words, characters, and sub-
characters, thus achieving better performance than CBOW and Skip-
gram. By leveraging additional semantic information of fine-grained
sub-characters, insideCC also surpasses CWE and SCWE. Compared
with JWE, insideCC integrates the semantic relevance and incorpo-
rates the semantic relation and interaction among words, characters,
and sub-caracters, which are not reflected in the baselines. As for
GWE and CW2VEC, identical character glyphs and stroke n-gram
sequences may bias the training process for learning the semantics
of words. Thus, insideCC can capture and utilize more semantic
information to enhance Chinese word embeddings, and outperform
GWE, CW2VEC, and JWE as well.

The results in SL999 are not better than the results in W5240 and
WS297. The reason is that SL999 is a large dataset and has some
translation errors when mapping some English words into Chinese
words. For example, the Chinese mapping of the word pair "old,
new" in SL999 is "# (old), HT(new)". However, the best translation
should be "IH(old), #i(new)"-a pair of antonyms, which is more
reasonable in Chinese. Consequently, the translation errors lead to
insufficient semantic information and lower scores in SL999.

In order to evaluate the performance of distributing word em-
beddings in the embedding space, we merge three datasets: W5240,
WS297, and SL999 and visualize the distribution of all nouns, verbs,
and adjectives for eight models (Figure 7). The distribution of CBOW
(Figure 7(a)), SCWE (Figure 7(d)), and GWE (Figure 7(e)) is sparser
than other models, leading to loose connection among words and
lower scores in word similarity tasks. Besides, the distribution of
Skipgram (Figure 7(b)), CWE (Figure 7(c)), and CW2VEC (Figure
7(f)) is divided into dense and sparse regions, making the word
distribution more imbalanced. For JWE (Figure 7(g)) and insideCC
(Figure 7(h)), their word distribution is denser than other models
because the sub-characters enhance the semantic relation among
words. And due to additional utilization of the semantic relevance,
insideCC has denser word distribution and less isolated words than
JWE. Therefore, insideCC has the best capabilities for semantic
generalization and word distribution. On one hand, the overall
standard deviation of insideCC is the smallest among the eight
models, indicating the word embeddings generated by insideCC
are more stable in the continuous embedding space. On the other
hand, the semantic relation and word connection in insideCC are
tighter than other models. The reason is that the sub-characters
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Table 1: Experiment results (%) of word similarity and word analogy reasoning tasks

Wikipedia THUCNews
Model word similarity word analogy reasoning word similarity word analogy reasoning
WS240 WS297  SL999  WA1124 WA7636 WS240  WS297 SL999  WA1124 WA7636
CBOW 54.05 58.86 32.08 84.15 39.92 55.74 59.76 31.16 72.69 34.22
Skipgram  56.22 60.51 30.82 84.21 41.35 57.98 59.44 33.45 74.59 39.69
CWE 56.36 62.17 32.42 84.17 41.28 56.92 59.55 33.45 72.76 39.77
SCWE 55.32 58.14 36.95 80.87 35.56 56.23 58.75 35.17 70.58 30.56
GWE 56.02 61.22 31.43 83.73 40.56 52.34 56.63 33.28 71.12 37.16
CW2VEC  55.83 60.25 30.12 80.65 38.34 52.45 59.76 32.62 70.75 36.19
JWE 54.95 64.16 37.25 84.23 39.28 55.37 60.47 37.62 73.75 37.12
insideCC ~ 56.76 65.04 39.64 85.55 41.63 59.21 61.26  38.35 81.44 40.97
CBOW  std: 0.290246220020708 Skipgram  std: 0.24117941589090708 CWE  std: 0.2412574442869493 SCWE  std: 0.2660432195624452
06
o6 . «  Noun * N * . o6 . Noun
Verb o4 04 ° : * . °* Verb
o Adjective . : o4 . Adjective
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~ . 02 « “Noun w2 Noun -02 *
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(a) CBOW (b) Skipgram (c) CWE (d) SCWE
GWE  std: 0.30603564043084064 CW2VEC  std: 0.2543849143247351 JWE  std: 0.2401419675598568 insideCC  std: 0.2340749776305277
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(e) GWE (f) CW2VEC (h) insideCC
Figure 7: The distribution of all nouns (blue), verbs(red), and adjectives (orange) of three data sets: W§240, WS§297, and SL999.

The overall standard deviation is shown at the top of each figure.

reveal relevant semantics and the semantic relevance conveys the
semantic contribution of the sub-characters.

The characteristics of the datasets also confirm that insideCC
can capture more semantic relevance among multiple-granularity
language components. For example, nouns like entity names occupy
76.8% in WS240 and 74.5% in WS297, which are 13.1% more than
in SL999 (61.4%). But adjectives and verbs occupy more in SL999
(8.2%, 22.0%) than in WS240 (2.2%, 12.4%) and WS297 (1.8%, 13.1%).
The internal differences in the proportion of word properties cause
varied performance for 8 models in 3 datasets. The models good
at capturing the semantics of nouns may perform better in W5240
and WS5297, while those good at learning the semantics of verbs
and adjectives may perform better in SL999. Further, the proportion
of the word pairs with at least one common character and sub-
character is 8.75% and 32.5% in W5240, 14.48% and 32.99% in WS297
as well as 17.42% and 38.64% in SL999. The proportion distribution
is consistent with the improvement in the performance of insideCC
in word similarity tasks. The matching scores in W5297 are higher

1375

than the scores in W5240 since the semantic relation is closer in
W5297. Although there are more semantically relevant word pairs
in SL999, the matching scores are lower than other datasets due to
its larger size and translation errors.

5.3 Word analogy reasoning

Word analogy reasoning tasks aim to evaluate the semantic rele-
vance, contextual association, and linguistic regularities between
two pairs of word embeddings. Two datasets are chosen for the
evaluation. As mentioned in Section 5.1.1, WA1124 concentrates
more on the semantic information and contextual co-occurrence
information, both of which can be captured by insideCC. WA7636
contains abundant neologisms, such as person names, transliterated
loanwords, festivals, etc. So, WA7636 is mainly designed for the
linguistic regularities rather than the semantic information.
According to the experimental results (Table 1), insideCC out-
performs the baselines in all word analogy reasoning tasks. The
reason why Skipgram and CWE surpass JWE in WA7636 is that
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Table 2: Analogy details (%) in different datasets and corpora. The score represents the proportion of successful analogy
reasoning cases. cbe, sic, and fr represent capital-belong-country, state-include-city, and family relation, respectively.

Wikipedia THUCNews
Model WA1124 WA7636 WA1124 WA7636
cbe sic fr geography  nature  history  people cbe sic fr geography  nature  history  people
CBOW 89.66 95.43 62.87 55.15 29.34 20.08 28.56 74.89 72.00 69.85 41.79 19.58 2.40 35.78
Skipgram  90.39 9543  59.56 56.15 26.96 23.78 33.90 7592 8743  62.87 49.29 23.38 0 36.23
CWE 90.99 94.29 58.46 56.82 26.49 25.62 33.01 71.64 86.86 62.13 48.59 22.62 0 34.73
SCWE 86.71 90.86 59.93 50.95 26.88 12.81 23.73 69.72 80.00 57.35 34.72 24.91 0.80 29.19
GWE 84.19 89.71 63.24 55.75 27.84 24.44 29.35 73.86 80.00 57.36 45.95 22.53 0.80 33.53
CW2VEC  87.89 89.14 56.99 51.88 25.30 23.78 29.08 73.86 66.86 65.44 44.15 20.91 1.60 36.38
JWE 91.14 96.00 62.50 56.15 27.91 20.34 24.35 76.51 77.71 64.34 45.76 22.53 1.60 33.83
insideCC 9143 97.14 63.24 56.45 27.44 28.53 30.87 84.79 88.00 70.22 50.55 23.57 6.40 38.23
CBOW Skipgram CWE e SCWE
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Figure 8: The visualizations of the Chinese word embeddings. The selected word pairs are ("5 A (man)", "2 A\ (woman)")(MW),
("ZF(nephew)", (£ % (niece)")(NN), and (" /L5 (brother), Il % (sister)")(BS). Red circles represent words. The cosine similarities
between the word embeddings of the selected word pairs are shown at the top right corner of each figure.

the sub-characters of neologisms provide negative semantics while
the words and characters reveal positive semantics. Besides, SCWE
performs worse than other baselines. The main cause is that the se-
mantic and linguistic relation among words in WA7636 may change
when translating neologisms into English. In addition, insideCC can
distinguish these neologisms by utilizing the semantic relevance,
while the baselines ignore the internal semantic connection and in-
teraction among words, characters, and sub-characters. Therefore,
insideCC can surpass the baselines.

For more in-depth analysis, we present key details about Word
analogy reasoning tasks on different types of word analogies in
Table 2. The scores are higher in WA1124 than WA7636 due to its
smaller dataset size and higher hit rates in each category. insid-
eCC achieves the highest hit rates in all categories of WA1124. For
WA7636, insideCC performs competitively in geography, nature, and
people, and achieves the highest hit rates in history.

We choose the words in family relation for further analysis be-
cause their semantic relationships always keep unchanged and they
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have high contextual co-occurrence in the corpora. Meanwhile,
their characters or sub-characters can extract more commonalities
and reveal the semantic relevance, which depends on the distance
between words in the embedding space. For instance, "% A (man)"
- "% N(woman)" ~ "{£F (nephew)" - "{£ % (niece)". The common
characters " A (human)" and "{£(niece)" as well as the common sub-
character " { (human)" can reveal the semantic relation between
words. However, the analogy results of " J. 55 (brother)" and "fH
If(sister)" may be different since there is no common character
or sub-character between them. For better illustration, we demon-
strate the visualizations of Chinese word embeddings through PCA
(Principal Component Analysis) downscaling operation in Figure 8.

Both CBOW and Skipgram incorporate the word co-occurrence.
So, Figure 8(a) and 8(b) show that the relative positions of words
are quite close. However, they use different prediction methods for
learning word embeddings. Thus, the word embeddings of the same
words learnt by CBOW and Skipgram separately may be different.
In the figures, the absolute positions of words differ a lot.
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In Figure 8(c) and 8(d), the distance between " .5 (brother)" and
"§H Ik (sister)" varies a lot. CWE utilizes characters to capture the
semantic information, so the distance in CWE is longer since there
are no common characters in " JT. % (brother)" and "IH & (sister)".
SCWE translates Chinese into English to calculate the semantic
similarities of characters. The English words of " B oBR and "It
5" are "brother", and the English words of "BH", "R and "HH LR
are "sister", so SCWE can capture more semantics and relate the
words more closely, leading to smaller distance.

For GWE (Figure 8(e)) and CW2VEC (Figure 8(f)), the distance
between "5 A(man)" and "% A (woman)" becomes longer, indi-
cating that the morphological information may reduce overlap-
ping semantics. Besides, the distances of " /. (brother)" and "fH
IR (sister)" as well as "{£ F(nephew)" and "{£ % (niece)" are smaller
in CW2VEC due to some identical parts in stroke n-gram sequences,
while GWE utilizes the glyphs of characters, which are different in
" 51,26 (brother)" and "H{H #R(sister)", thus leading to larger distance
between "JT. 5 (brother)" and "IH K (sister)".

In Figure 8(g) and 8(h), the positions of "{£ F(nephew)" and
"f£ Z(niece)" are quite close since JWE and insideCC both uti-
lize sub-characters for additional supplementary semantic. Besides,
compared with JWE, insideCC utilizes the semantic relevance to
convey more accurate semantic contribution of sub-characters and
distinguish the semantics of words, making "iH #f(sister)" farther
from " 1.5 (brother)" in the embedding space.

More intuitively, the cosine similarities of word pairs indicate the
analogy performance. It can be observed that insideCC achieves the
most accurate results on MW-BS and MW-NN, which corresponds
to the real semantic relations. As for BS-NN, it is hard to iden-
tify their family relations since " JT.55 (brother)" and "{H Ik (sister)"
have multiple meanings in Chinese, such as blood brothers and
sisters, cousins, friends, and even strangers. So, it is unreasonable
to regard the relation between "{£F(nephew)" and "{£ % (niece)"
and the relation between "JT. 5 (brother)" and "IH & (sister)" as the
same relation directly. For the word pair "JT. 5 (brother)" and "Il
K (sister)", insideCC captures and incorporates more semantics like
blood brothers and sisters rather than cousins, thus causing inferior
cosine similarity of BS-NN to the baselines.

5.4 Case studies

We also perform case studies to assess the capability of insideCC in
capturing and learning the semantic relation and interaction among
words, characters, and sub-characters. Table 3 shows the top 10
closest words to "¥#{¥(ocean)”, which are predicted by Skipgram,
CWE, JWE, and insideCC, respectively.

The words like "t }i(polar region)" and "A<(atmosphere)" are
semantically irrelevant to "+ (ocean)", but share some contextual
co-occurrence with it, so they are predicted by Skipgram. Besides,
most words predicted by CWE are semantically relevant to "if
¥ (ocean)", except "t Hli(polar region)" and "KFifiZE(continental
shelf)", indicating that incorporating the semantics of characters is
not enough to reveal the complete semantics of words. Even though
JWE predicts "X 5(atmosphere)", it can associate more words with
"} ¥ (ocean)" than Skipgram and CWE since it integrates the se-
mantics of sub-characters. The reason why JWE associates "X
S (atmosphere)" with " ¥ (ocean)" is that "X = (atmosphere)"
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usually occurs with "Kf(sea)" and shares the same character
"K(large)" with it, resulting in the indirect relation between "X
S (atmosphere)" and " {*(ocean)". The words predicted by in-
sideCC all contain the character "#ff(sea)", and are semantically
relevant to "J&{¥(ocean)". So, insideCC can discover the semantic
relevance and provide supplementary semantics for sub-characters.
Meanwhile, some words such as "% B Jfi(ocean resources)” usu-
ally occur together with "#&*(ocean)" in the contexts. It shows
that insideCC can also take advantage of the external contextual
co-occurrence information. Therefore, insideCC can utilize the in-
ternal semantic information and external contextual co-occurrence
information to associate words, characters, and sub-characters with
relevant semantics, thus making the word embeddings more accu-
rate and representative than other models.

Table 3: The top 10 closest words to "#i{¥(ocean)" predicted
by Skipgram, CWE, JWE, and insideCC

Skipgram CWE JWE insideCC

L IBEEY) LIGFEE (halobios) | gew neny 1 {FEAEY)
(halobios) 2. I R (marine (}.lalobios) (halobios)

2. ¥ i (marine  environment) 2. 15 (maritime) 2. {fFFEEA B (marine
environment) 3. 3’ LTRSS ! environment)

3. ¥ JF¥(submarine) (oceanography) i H ,,F\Limarme 3. {f}F¥ (submarine)
4. i 4. #7K (seawater) Zn%:;(;(nmen )t 4. Kiff(sea)

(polar region) 5. I BTR 5' %%@EZZWE;::ZH) 5. 7K (seawater)

5. (ocean resources) 6‘ T?ﬁ(sea)}) 6. #7 T 2 (marine
(oceanography) 6. ¥ (ocean current) ) @\r cubmari engineering)

6. & A (ecology) 7. # PR (seabed) 7. @t;(iu marine) 7. i

7. 5 (deep ocean) 8. #1¥ T 2 (marine 815 h (oceanography)

8. K5 (atmosphere)  engineering) E)ocje(a/r{o’g:ap Y)h 8. {fi(sea)

9. K 9. i ith(polar region) 16 N ?éd mosphere) 18R (seabed)
(the Pacific Ocean) 10. KPEZE 2 10. IR

(distant ocean)

10. #i7K (seawater) (continental shelf) (deep ocean)

6 CONCLUSION AND FUTURE WORK

In this paper, the tripartite weighted graph with a weight assign-
ment approach is proposed to model the relationship among words,
characters, and sub-characters, and manage their semantics. Be-
sides, with the tripartite weighted graph as the input, the Chinese
word embedding model insideCC is designed to discover the seman-
tic relation and interaction among different language components,
strengthen the semantics of words with relevant sub-characters,
and learn the embeddings of Chinese words. Furthermore, experi-
mental results of word similarity and word analogy reasoning tasks
verify that insideCC outperforms the state-of-the-art counterparts
by a significant margin. Additionally, our methods are language-
specific and can be employed to other languages with analogous
reading and writing regularities to Chinese, such as Japanese.

Several improvements may be possible in our future work. First,
since Tongyici Cilin only contains synonyms, we can incorporate
other auxiliary dictionaries like Hownet [8] to discover and learn
more accurate semantic relevance. Second, we can employ other
models like the transformer [26] to optimize the ultimate semantic
relevance. Finally, we can explore emerging methods to integrate
the embeddings of multiple-granularity sub-characters.
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